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1LPMMC, Université Grenoble Alpes, and CNRS, 38042 Grenoble, France
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We investigate the stationary-state fluctuations of a growing one-dimensional interface described by the
Kardar-Parisi-Zhang (KPZ) dynamics with a noise featuring smooth spatial correlations of characteristic range
ξ . We employ nonperturbative functional renormalization group methods to resolve the properties of the system
at all scales. We show that the physics of the standard (uncorrelated) KPZ equation emerges on large scales
independently of ξ . Moreover, the renormalization group flow is followed from the initial condition to the
fixed point, that is, from the microscopic dynamics to the large-distance properties. This provides access to the
small-scale features (and their dependence on the details of the noise correlations) as well as to the universal
large-scale physics. In particular, we compute the kinetic energy spectrum of the stationary state as well as its
nonuniversal amplitude. The latter is experimentally accessible by measurements at large scales and retains a
signature of the microscopic noise correlations. Our results are compared to previous analytical and numerical
results from independent approaches. They are in agreement with direct numerical simulations for the kinetic
energy spectrum as well as with the prediction, obtained with the replica trick by Gaussian variational method,
of a crossover in ξ of the nonuniversal amplitude of this spectrum.

DOI: 10.1103/PhysRevE.95.032117

I. INTRODUCTION

Introduced three decades ago [1], the Kardar-Parisi-Zhang
(KPZ) equation is one of the simplest nonlinear Langevin
equations. As such, it relates generically to a broad range
of systems, within the so-called KPZ universality class;
see [2–10] and references therein. Thus, stochastic growth
of roughening interfaces, for which the KPZ equation was
initially introduced [1,11], shares common features with
systems as dissimilar as, for instance, the Burgers equation in
hydrodynamics [12,13], the directed polymer (DP) in random
media [14,15], random matrices [16,17], the dynamics of Bose
gases [18–26], or active fluids [27]. The deep connections
within the KPZ universality class allow one, on the one hand, to
provide known results with alternative physical interpretations
in different languages (turbulence in hydrodynamics, DP free-
energy landscape, Fredholm determinants of random matrices,
etc.) and, on the other hand, to successfully export these results
from one problem to another.

In particular, in its original formulation, the KPZ equation
is a stochastic continuum equation with an uncorrelated
noise and, although remarkably difficult to address exactly,
its one-dimensional (1D) fluctuations and universal features
have been recently completely elucidated for the stationary
state [14,28], the approach to this stationary state [29–32], and
even the complete time dependence, starting from different
initial conditions (i.e., flat, sharp wedge, or stochastic) [33–36].
However, when the original KPZ model is slightly modified
(see [37–43] and references therein for examples), these exact
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solutions are in general no longer valid, and a key open issue is
to assess what the robustness of the KPZ universal features is
and to determine under what conditions they can be expected
to persist.

The present study focuses specifically on the role of a
spatially correlated noise, on a characteristic length ξ > 0.
Note that a noise with spatial power-law correlations was
studied numerically [44–48] and analytically [41,49–51]. In
contrast, we explicitly include a correlation length here. Such
an ingredient is crucial physically, since in experimental
systems ξ is always finite. Nevertheless, if universality truly
holds, then the macroscopic scale invariance is expected to be
independent of this microscopic correlation length and thus
to be captured by the same renormalization group (RG) fixed
point as for the uncorrelated case (ξ = 0). In particular, we
focus on a 1D interface in the asymptotic stationary state at
long times where we fully resolve the dependence of the
two-point correlation function on the relative space and time
[see Eq. (4)]. We show that, although the universal features
of the original KPZ equation with δ-correlated noise (ξ = 0)
emerge on large scales, the small-scale physics is strongly
dependent on ξ and is thus nonuniversal.

Experimentally, the KPZ dynamics was realized in a wide
range of platforms. To give a few examples, the universal KPZ
physics was observed in fronts of slow combustion of a sheet
of paper [52], at the separation between flat crystal facets
and rounded edges [53], at the interface of different modes of
turbulence in liquid crystals [54], in patterns in the deposition
of particles suspended in evaporating droplets [55], in chemical
reaction fronts in disordered media [56], in the shape of
growing colonies of bacteria and cells [57,58], and most
recently in epitaxy-driven film growth [59–61]. See, e.g., [7]
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or Sec. VII of [62] for overviews and additional references. In
this article we discuss in particular the nonuniversal amplitude
of the interface roughness [see Eq. (58)], which is a large-
scale observable that could be accessible experimentally even
though it depends explicitly on the microscopic correlation
length. See Secs. III C 3 and IV for details.

The role of a finite ξ has been addressed in a series of
previous studies in the language of the 1 + 1 DP end point [62–
67] and recently in Refs. [68,69], combining analytical
and numerical approaches to characterize the complete time
dependence of the KPZ fluctuations, starting from the so-called
sharp-wedge initial condition. It was predicted in particular
[within the Gaussian variational method (GVM) and a Bethe
ansatz analysis as well as with a direct numerical integration
of the correlated KPZ equation] that the amplitude of the KPZ
fluctuations must display a crossover, as ξ is tuned, from the
exact solution of the uncorrelated case (ξ = 0) [4,5,33] to a
regime of large-scale correlations. Still no exact analytical
expression has been obtained so far, not even for the stationary
state. When no exact solution is available (d > 1, correlated
noise, non-Gaussian noise, etc.) nonperturbative approaches
are necessary to study the KPZ physics. Here we employ a
very versatile method, the nonperturbative functional renor-
malization group (NPFRG) [70] (for reviews, see [71–75]), to
investigate the universal versus nonuniversal features of the
stationary two-point correlation function, in the presence of a
finite correlation length.1

The NPFRG method has been used in a very broad
range of problems, from high- to low-energy physics. In
statistical physics it has led to very accurate [77–79] and
fully nonperturbative [80–85] results. In particular, it has been
extended to the study of classical nonequilibrium systems
in Refs. [86–89]. Recent successful applications include the
dynamical random field Ising model [90,91] or, in the case
of far-from-equilibrium dynamics, fully developed turbu-
lence [20,23,92–95] and driven-dissipative Bose gases [96].
Examples of its application to nonstationary dynamics can be
found, e.g., in Refs. [97–101]. The NPFRG formalism to study
the KPZ equation has been developed in Refs. [102–105],
where it has allowed for an accurate description of its stationary
properties. In particular, the two-point correlation function
obtained in this framework reproduces the exact 1D solution
with extreme accuracy [104]. Predictions for universal ratios in
d = 2 and 3 [105] were recently tested in large-scale numerical
simulations, which showed remarkable agreement [106,107].
Several extensions of the KPZ dynamics have also been studied
in the NPFRG framework, such as the presence of power-law
spatially correlated noise [41] (see also [40] for temporally
correlated noise) and of spatial anisotropy [39]. We here adapt
this approach to the presence of a microscopic noise with
finite-range correlations and investigate both universal and
nonuniversal features.

The outline of the paper is the following. We first set up
in Sec. II the model centered on the 1D KPZ stationary-state
fluctuations, the corresponding NPFRG formalism, and the
specific approximation scheme considered. Then we present

1Note that the RG approach that we use is complementary to
perturbative functional renormalization schemes; see, e.g., [76].

in Sec. III our results for the two-point correlation function,
discussing successively the RG fixed point, the scaling form
of the correlator, and its nonuniversal features. We show that
universality is recovered at sufficiently large scales, in the sense
that the RG fixed point and the scaling form turn out to be the
same as for the uncorrelated noise case. On the other hand, the
nonuniversal features depend on the specific noise correlator,
and we discuss in Sec. IV the experimental application of
our results to probe the microscopic noise correlation. We
summarize and present some perspective to this work in Sec. V.
Additional details are gathered in the Appendixes.

II. SETUP AND THEORETICAL TOOLS

A. The KPZ equation with correlated noise

We consider the KPZ equation [1] in the presence of spatial
correlations in the microscopic noise

∂th = λ

2
[∇h]2 + ν∇2h + η,

〈η(t1,x1)η(t2,x2)〉 = 2Dδ(t1 − t2)Rξ ′(x1 − x2). (1)

Here h(t,x) is the time- (t-) and space- (x-) dependent field
that describes the interface height, η(t,x) is a stochastic noise
with Gaussian statistics and zero average, and angular brackets
〈·〉 denote averages over η. The noise correlator Rξ ′ is an
analytic function that decays to zero at a characteristic scale
ξ ′ and that is normalized as

∫
r Rξ ′ (r) = 1. Here and in the

following we use the shorthand notation
∫
t,x = ∫

ddx dt and∫
ω, p = 1/(2π )d+1

∫
ddp dω. Unless stated otherwise, Rξ ′ is

taken as a Gaussian function2

Rξ ′(x) = 1

(2πξ ′2)d/2
e−x2/2ξ ′2

, Rξ ′( p) = e−ξ ′2p2/2, (2)

where x =
√

x2 and similarly for p. We choose a system of
units where the correlation length ξ = ξ ′Dλ2/ν3 is the only
dimensionless parameter left after rescaling such that Eq. (1)
becomes

∂th = 1
2 [∇h]2 + ∇2h + η,

〈η(t1,x1)η(t2,x2)〉 = 2δ(t1 − t2)Rξ (x1 − x2). (3)

We focus on the fluctuations of the profile h(t,x) in the
stationary state, in which the average height 〈h〉 is finite and
corresponds to a drift linear in time of the growing interface.
The two-point correlation function in the stationary state is
defined as

C(τ,r) = 〈h(τ,r)h(0,0)〉 − 〈h(τ,r)〉〈h(0,0)〉
= 〈h(τ,r)h(0,0)〉c. (4)

Using connected correlation functions, denoted by the sub-
script c, amounts to working in the comoving frame where
the average height field 〈h〉 is subtracted out. The correlation
function C(τ,r) is related to the usual interface width W (τ,r)

2The same symbol are used for functions and their Fourier
transforms, which are differentiated by their arguments (t,x for real
and ω,p for Fourier space).
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by

W (τ,r) = 〈[h(τ,r) − h(0,0)]2〉c
= 2[C(0,0) − C(τ,r)]. (5)

Time-translational invariance in space and time is assumed.
Note that the time variable τ is a time difference in the
stationary state. For the standard KPZ dynamics (ξ = 0),
this correlation function exhibits scale invariance on large
spatiotemporal scales, where it takes the scaling form

C(τ,r) = r2χg

(
τ

rz

)
, (6)

with r = |r|. Here χ and z are the universal roughness and
dynamical critical exponents, respectively, and g is a universal
scaling function. In one dimension, the exponents take the
exact values χ = 1/2 and z = 3/2.

B. The KPZ field theory

The stationary state of the stochastic KPZ equation (3) is
described by the generating functional (in the path integral
representation)

Z[J,J̃ ]=
〈

exp

(∫
t,x

(hJ + h̃J̃ )

)〉
=

∫
D[h,I h̃] exp

(
−S[h,h̃]+

∫
t,x

(hJ + h̃J̃ )

)
, (7)

where the space-time dependence of the fields inside local
integrals is implicit. Here S[h,h̃] is the Martin-Siggia-Rose
Janssen–de Dominicis action [108–112]

S[h,h̃] =
∫

t,x
h̃

(
∂th − 1

2
[∇h]2 − ∇2h

)
−

∫
t,x1,x2

h̃(t,x1)Rξ (x1 − x2)h̃(t,x2), (8)

which depends on the height field h as well as the usual
response field h̃. The nonlocal term in Eq. (8) arises because
of the presence of the correlated noise (ξ > 0). Terms related
to initial conditions are neglected since we focus exclusively
on the stationary state.

The KPZ action (8) possesses several symmetries. Apart
from space-time translation and space rotation invariance,
S[h,h̃] is invariant under the following infinitesimal (terms
of order v2 and higher are neglected) field transformations:

h′(t,x) = h(t,x) + c,

h̃′(t,x) = h̃(t,x), (9a)

h′(t,x) = h(t,x + vt) + v · x,

h̃′(t,x) = h̃(t,x + vt). (9b)

For a 1D interface and uncorrelated noise ξ = 0, the
additional discrete transformation [102]

h′(t,x) = −h(−t,x),

h̃′(t,x) = h̃(−t,x) + ∇2h(−t,x) (10)

is also a symmetry. These transformations encode vertical
shifts of the interface (9a), Galilean boosts (9b), and time

reversal (10). Moreover, the Galilean and shift symmetries can
be gauged in time, considering c(t) and v(t) as infinitesimal
time-dependent quantities. The KPZ action S[h,h̃] is no
longer invariant under the gauged transformations, but its
change S[h,h̃] − S[h′,h̃′] is linear in the fields. This provides
generalized Ward identities with a stronger content than in
the standard (nongauged) case [104,113]. These symmetries
play an important role in devising an accurate approxima-
tion scheme in the NPFRG framework (see Sec. II D). We
emphasize that the correlated noise explicitly breaks the
time-reversal symmetry (10). Similarly, a temporal correlation
of the noise δ(t − t ′) → Rξτ

(t − t ′) would break the Galilean
symmetry (9b) [40,49,114–116].

C. Nonperturbative functional renormalization group

The NPFRG is a nonperturbative incarnation of the RG
(see [71–75] and references therein for reviews and in partic-
ular [87,88] for applications of the NPFRG to nonequilibrium
systems). It relies on Wilson’s view of the RG [117–119]
and consists in constructing a scale-dependent effective action
�k[ϕ,ϕ̃] where small spatial scales are integrated out. That is,
schematically,

e−�k [ϕ,ϕ̃] =
∫

D[h,I h̃]
p>k

e−S[h,h̃], (11)

where Fourier modes with p � k are frozen. Here k is the
momentum scale that separates small- (p > k) and large-scale
(p < k) spatial fluctuations and ϕ ≡ 〈h〉 and ϕ̃ ≡ 〈h̃〉 are the
expectation values of the fields. In practice, the coarse graining
is achieved in a smooth way. To this end, a cutoff, or regulator,
term2

�Sk[h,h̃] = 1

2

∫
ω, p

hi(ω, p)Rk,ij ( p)hj (−ω,− p) (12)

is added to the action (8). The hi for i = 1,2 label the field
h and response field h̃, respectively, and repeated indices are
summed over. The cutoff matrix Rk provides a momentum-
dependent mass term to the theory. Its elements are required
to be of order k (or higher) for p � k and to vanish for
p � k. The regulator Rk must also vanish when the RG
scale k is sent to 0. Apart from these constraints, it can
be chosen freely and will be specified in Eq. (20) below.
The flowing effective action �k[ϕ,ϕ̃] is defined (up to the
additive �Sk term) as the Legendre transform of the logarithm
of the generating functional of the coarse-grained theory
Wk[J,J̃ ] = ln(Zk[J,J̃ ]):

Zk[J,J̃ ] =
∫

D[h,I h̃] exp

(
−S − �Sk +

∫
t,x

(hJ + h̃J̃ )

)
,

�k[ϕ,ϕ̃] + �Sk[ϕ,ϕ̃] := Sup
J,J̃

{∫
t,x

(ϕJ + ϕ̃J̃ ) − Wk[J,J̃ ]

}
.

(13)

The addition of the �Sk term ensures that �k interpolates (as
the RG scale k is decreased from the UV scale3 � to zero)

3Here � can be interpreted as the inverse lattice length of a discrete
system.
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in between microscopic and macroscopic physics. The bare
action (8) is recovered in the limit of large k = � and the full
one-particle irreducible effective action (which is analogous
to the Gibbs free energy in thermodynamics) is obtained in the
limit k → 0 where the cutoff is removed

�k→�[ϕ,ϕ̃] = S[ϕ,ϕ̃], �k→0[ϕ,ϕ̃] = �[ϕ,ϕ̃]. (14)

The definition of the Legendre transformation (13) relates
the sources J,J̃ to the fields ϕ,ϕ̃ through

δWk[J,J̃ ]

δJi(t,x)
= ϕi(t,x), (15a)

δ�k[ϕ,ϕ̃]

δϕi(t,x)
= Ji(t,x) − δ�Sk[ϕ,ϕ̃]

δϕi(t,x)
. (15b)

The (connected) two-point correlation and response func-
tions at scale k,

Gk,ij (t − t ′,x − x′) = 〈hi(t,x)hj (t ′,x′)〉c, (16)

are given by the operator inverse of the second field derivative
of �k + �Sk ,

Gk = 1

�
(2)
k + Rk

, (17)

with the notation

�
(2)
k,ij (t − t ′,x − x′) = δ2�k[ϕ,ϕ̃]

δϕi(t,x)δϕj (t ′,x′)
. (18)

Because of space-time translational invariance, the second
field derivative of �k is diagonal in momentum space. This
implies that the Fourier transform of C(τ,r) [Eq. (4)] is simply
obtained from the matrix inverse of �

(2)
k (ω, p) in the limit

k → 0 as

C(ω, p) = [
�

(2)
k,ij (ω, p)

]−1
11 . (19)

In principle, the choice of the regulator matrix does not
affect the end results. However, in practice, approximations
introduce a spurious dependence on Rk . Since symmetries
provide strong constraints on the space of solutions of the
RG flow equations, an important requirement is that �Sk[h,h̃]
preserves the symmetries of the theory. We choose

Rk( p) = α

ep2/k2 − 1

(
0 ν(k)p2

ν(k)p2 −2D(k)

)
, (20)

where ν(k) and D(k) are two coefficients that depend on the RG
scale k. They will be defined in the next section in Eq. (30). The
coefficient α is a free parameter that can be tuned to minimize
the errors at a given order of approximation [120,121] (see
Appendix B). Note that Rk,ij has the same tensor structure as
the bare propagator (second field derivative of S[h,h̃]) and does
not depend on frequency. This ensures that the coarse-grained
theory is causal and that the flow preserves the Galilean and
shift symmetries (9) and also, when d = 1 and ν(k) = D(k),
the time-reversal symmetry (10) [104].

The evolution of the effective action �k with the RG scale
is given by an exact equation [70]

k∂k�k[ϕ,ϕ̃] = 1

2
Tr

[
k∂kRk

�
(2)
k [ϕ,ϕ̃] + Rk

]
, (21)

with its initial condition corresponding to the bare KPZ
action (8), as stated by Eq. (14). The trace operation on
the right-hand side stands for the usual trace over field and
space-time indices

Tr[A] =
∑

i

∫
t,x

Aii(t,x). (22)

Equation (21) provides a scheme to include fluctuations
gradually starting with the small-scale fluctuations and reach-
ing the thermodynamic limit (k → 0). At intermediate values
of k, �k plays different roles for large and small momenta
(compared to k). Derivatives of �k with respect to fields with
small momenta (p 	 k) yield the kinetic term and the vertices
of an effective action that can be used [instead of the original
bare action (8)] to compute large-scale correlation functions.
On the other hand, when the momenta are large (p 
 k),
the derivatives of �k quickly lose their dependence on k and
saturate to their physical values (as k is lowered further). In
this regime correlation functions are computed directly (with
no further functional integration) by the procedure outlined
above [Eqs. (17) and (19)].

Note that the UV cutoff scale should (in principle) be
taken to infinity to describe the continuous KPZ equation.
In practice, it is sufficient to choose it to be much larger than
all the momentum scales that are resolved. In particular, one
must have � 
 1/ξ to probe the structure of the microscopic
noise. Conversely, when ξ 	 1/�, the δ-correlated case is
effectively described.

D. Approximation scheme

Equation (21) combined with Eqs. (14) provides a differen-
tial equation and an initial condition (at k → �). In principle,
�k[ϕ,ϕ̃] can hence be determined for all values of k. However,
Eq. (21) is a functional partial differential equation that cannot
be solved exactly. It couples derivatives of �k of order n to
derivatives of order n + 1 and n + 2 and generates an infinite
hierarchy of equations relating all the correlation functions of
the problem.

Here we use a very successful approximation scheme
developed for the KPZ equation with δ-correlated noise (ξ = 0)
[105]; that is inspired by the Blaizot-Mendez-Wschebor
approximation [79,122], but rendered compatible with the
constraining symmetries of the KPZ action (see, e.g., [104]
for a detailed description). A practical way to implement this
scheme is to construct an ansatz for the flowing effective
action �k , which automatically preserves the gauged Galilean
symmetry, by using explicitly Galilean invariant building
blocks. In particular, this involves the covariant time derivative

D̃t = ∂t − ∇ϕ · ∇, (23)

which preserves the invariance under Galilean transformation.
When it is truncated to second order in the response field ϕ̃,
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the ansatz obtained with this procedure is

�k[ϕ,ϕ̃] =
∫

t,x

[
ϕ̃f λ

k

(
∂tϕ − 1

2
[∇ϕ]2

)
− 1

2

(∇2ϕf ν
k ϕ̃ + ϕ̃f ν

k ∇2ϕ
) + ϕ̃f D

k ϕ̃

]
. (24)

Here f X
k (with X ∈ {λ,ν,D}) are analytic functions of D̃t and

∇, which depend on the RG scale. They can be interpreted as
an effective nonlinearity, dissipation, and noise, respectively.
The bare action (8) is recovered when

f ν
�(ω, p) = 1, f λ

�(ω, p) = 1, f D
� (ω, p) = Rξ (p). (25)

When they are evaluated at a uniform and stationary config-
uration (ϕ = const and ϕ̃ = 0), the derivatives of �k[ϕ,ϕ̃] in
Fourier space become expressions depending on f X

k (ω, p), that
is, the operators D̃t and ∇ in f X

k are replaced by iω and −i p,

respectively. Note that the ansatz (24) contains arbitrary
powers of ϕ through the functional dependence of f X

k on the
covariant time derivative D̃t .

There are additional constraints on f X
k stemming from the

other symmetries. The gauged shift symmetry imposes

f λ
k (ω,0) = 1. (26)

For ξ = 0 and d = 1, the time-reversal symmetry (10) leads
to

f D
k = f ν

k , f λ
k = 1 (27)

such that there is only one independent function left in this
case.

In the following, we focus on the 1D case (vector symbols
are hence dropped). With the ansatz (24), the inverse propaga-
tor evaluated in a uniform and stationary configuration reads

�
(2)
k (ω,p) =

(
0 iωf λ

k (ω,p) + p2f ν
k (ω,p)

−iωf λ
k (ω,p) + p2f ν

k (ω,p) −2f D
k (ω,p)

)
. (28)

This is the most general form for �
(2)
k compatible with

the symmetry constraints and endowed with an arbitrary
dependence on ω and p. On the other hand, higher-order
vertices �

(n>2)
k are approximated.

When the ansatz for �k [Eq. (24)] is inserted into its exact
evolution equation (21), the RG flow can be projected onto the
flows of f X

k . This provides three partial differential equations
that can be solved numerically,

k∂kf
X
k (ω,p) = IX

k (ω,p) =
∫

f,q

JX
k (ω,p,f,q), (29)

where IX
k are nonlinear integral expressions depending on

f X
k , which can be found in Ref. [105]. They are obtained by

taking appropriate field derivatives of the right-hand side of the
exact flow equation (21) and replacing �k by its ansatz. The
trace in Eq. (21) produces integral equations with nonlinear
kernels JX

k .
The second-order (SO) approximation is further simplified

to the so-called next-to-leading-order (NLO) approximation,
introduced in Ref. [105]. It consists in partially truncating the
frequency dependence of f ν

k and f D
k by setting f X

k (�,Q) =
f X

k (0,Q) in JX
k (ω,p,f,q) on the right-hand side of Eq. (29)

for any arguments Q = q,|p ± q| and similarly for �. This
simplification drastically reduces the computational cost of
solving Eq. (29) while still yielding reliable results (see [105]).
Moreover, in the presence of microscopic noise correlations
(ξ � 0), we consider two independent flowing functions f ν

k

and f D
k since Eqs. (27) are not satisfied for ξ �= 0. However,

we still impose f λ
k = 1, following [105] (see also [123]).

To summarize, our approximation scheme consists of three
main points.

(i) The flowing effective action �k is expanded in powers
of ϕ̃ and only terms up to second order are retained. This is
the SO approximation level, which is essential to produce a
manageable set of flow equations. It amounts to assuming that
the fluctuations of the response field h̃ are Gaussian. Note that

this truncation is not applied to h since �k contains arbitrarily
high powers of ϕ. The second order was shown in Ref. [104]
to reproduce the exact results for the 1D scaling function when
ξ = 0 [124] with extreme accuracy.

(ii) The frequency dependence of f X
k is neglected in the

kernel JX
k , on the right-hand side of the flow equation (29).

This is the NLO approximation level. This approximation can
be assessed by comparing its outcome to the results of the SO
approximation alone. This was done for d = 1 in Ref. [105]
and only small differences were observed. This approximation
greatly speeds up the numerical solution of the flow equations
since it enables the analytical integration over the internal
frequencies f , in Eq. (29). Note that the bare frequency content
is preserved, so that f X

k still develops a nontrivial frequency
dependence. For d = 2 and 3 and ξ = 0, the exponents as well
as universal dimensionless ratios computed in Ref. [105] at
NLO are in close agreement with the outcome of numerical
simulations [106,107].

(iii) The function f λ
k is set to one. This approximation is

specific to one dimension because it is related to the time-
reversal symmetry (10). It ensures that if the long-distance
physics is described by a time-reversal symmetric IR fixed
point, then the latter is recovered exactly, whereas if f λ

k starts
flowing, it induces a small error on the fixed point properties.
See [123] for details.

III. UNIVERSAL AND NONUNIVERSAL FEATURES
OF THE TWO-POINT CORRELATION FUNCTION

A. Fixed point

In order to find RG fixed points and study scale invariance,
it is convenient to recast Eq. (29) in a dimensionless form. To
this end we define

ν(k) = f ν
k (0,0), D(k) = f D

k (0,0) (30)
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and introduce the rescaled variables4

p̂ = p

k
, ω̂ = ω

ν(k)k2
,

f̂ ν
k (ω̂,p̂) = f ν

k (k2ν(k)ω̂,kp̂)

ν(k)
,

f̂ D
k (ω̂,p̂) = f D

k (k2ν(k)ω̂,kp̂)

D(k)
,

ĥ(ω̂,p̂) =
√

k7ν(k)3

D(k)
h(ω,p),

ˆ̃h(ω̂,p̂) =
√

k3D(k)ν(k)h̃(ω,p).

(31)

The flows of ν(k) and D(k) define the two running anomalous
dimensions

ην(k) = −k∂kν(k)

ν(k)
, ηD(k) = −k∂kD(k)

D(k)
. (32)

In terms of the rescaled quantities, the ansatz for �k bares
the same form as its original definition (24) but for the term
in [∇̂ϕ̂]2 that is multiplied by

√
ĝk [with ĝk = D(k)/kν(k)3]

and for the covariant time derivative that is changed to D̃t̂ =
∂t̂ − √

ĝk∇̂ϕ̂ · ∇̂. Since λ is not renormalized due to Galilean
invariance, the flow of ĝk is only dimensional and reads

k∂kĝk = ĝk[3ην(k) − 1 − ηD(k)]. (33)

In terms of the rescaled variables, �k depends on the cutoff
scale only implicitly through f̂ X

k . This enables the emergence
of solutions of the flow equations [see Eq. (37) for the rescaled
equations] where f̂ X

k , ηX(k) (with X = ν,D), and ĝk do not
depend on k. These are fixed points of the RG flow and describe
the universal properties of the system.

At such a fixed point, the running anomalous dimensions
tend to constant values ηD(k) → η∗

D := ηD and ην(k) →
η∗

ν := ην . This implies that ν(k) = νξk
−ην and D(k) = Dξk

−ηD

behave as power laws, where νξ and Dξ are nonuniversal
constants that cannot be determined from the fixed point alone
but can be extracted from the full solution of the flow,

ν(k) = exp

(∫ �

k

ην(k′)
k′ dk′

)
−−→
k→0

νξk
−ην ,

D(k) = exp

(∫ �

k

ηD(k′)
k′ dk′

)
−−→
k→0

Dξk
−ηD . (34)

The dimensionful two-point correlation function [defined in
Eq. (4) and computed from Eq. (19)] can be expressed in
terms of rescaled quantities as

C(ω,p) = k−4 D(k)

ν(k)2
Ĉk

(
ω

k2ν(k)
,
p

k

)
= Dξ

ν2
ξ

k2ην−ηD−4Ĉ∗

(
ω

νξk2−ην
,
p

k

)
, (35)

4One can check in Eq. (28) that the introduction of the coefficients
ν(k) and D(k) in the regulator matrix (20) ensures that the cutoff term
scales (with k) as the rest of the kinetic term of �k . In this way, none
overwhelms the other (as the cutoff scale decreases) and the cutoff
matrix stays effective for all k in the rescaled units.

where Ĉk(ω̂,p̂) depends on k only through f̂ X
k . The second

equality holds for k small enough such that the fixed point has
been reached. Then k is a free parameter and can be chosen to
be k = p. Identifying with the correlator scaling form (6), in
Fourier space, yields

χ = (ηD + 1 − ην)/2, z = 2 − ην. (36)

Furthermore, Eq. (33) enforces that z + χ = 2 at any non-
Gaussian fixed point ĝ∗ �= 0. Note that at such a fixed point ηX

(and therefore χ and z) could be functions of ξ , but this is not
the case, as shown in the following.

The flow equation (29) becomes, in terms of the rescaled
quantities,

k∂kf̂
X
k = ηX(k)f̂ X

k + [2 − ην(k)]ω̂∂ω̂f̂ X
k + p̂∂p̂f̂ X

k + Î X.

(37)

The Î X(ω̂,p̂) is obtained from IX
k [Eq. (29)] by switching to the

rescaled variables and dividing by ν(k) or D(k) accordingly.
The equations for ηX(k) are deduced by evaluating Eq. (37)
at zero momentum and frequency and fixing f̂ X

k (0,0) = 1
consistently with Eqs. (30) and (31). Their explicit expressions
are given in Ref. [105].

The initial condition (25) of the flow is specified at a large
but finite UV scale � and reads for the dimensionless quantities

f̂ ν
�(ω̂,p̂) = 1, f̂ D

� (ω̂,p̂) = Rξ̂ (p̂), ĝ� = 1

�
, (38)

with ξ̂ = �ξ . In the unit system defined by Eq. (3), � (as
well as k) is dimensionless. We have chosen � = 200. Note
that the actual value of � never enters the dimensionless RG
flow. It is only necessary to commit to an actual value when
dimensionful quantities are computed. Moreover, even though
it seems that an additional parameter is needed (g is set to one
at the beginning [Eq. (3)]) to specify the initial conditions in the
rescaled variables, only the specific combination ξ̂ /ĝ� → ξ is
physically observable (does not depend on �) in the continuum
limit � → ∞. We choose ĝ� = 1/� and ξ̂ = �ξ , which is
consistent with the choice of units [Eq. (3)]. This implies that
the RG flow starts infinitesimally close to a Gaussian fixed
point (ĝ�→∞ = 0) and evolves towards the nonlinear KPZ
physics on large scales (ĝk→0 �= 0).

We have solved Eqs. (37) and (33) numerically for different
values of ξ̂ = �ξ . We found two remarkable properties.

(i) Although the microscopic action is not invariant under
the time-reversal symmetry (10) (i.e., f̂ D

� �= f̂ ν
�), both func-

tions tend to each other as k → 0. A fixed point is reached,
with f̂ D

∗ = f̂ ν
∗ . This means that the time-reversal symmetry is

emergent. Even if it is explicitly broken by the microscopic
theory (k → �), it is realized on large scales (k → 0).

(ii) The flow reaches the same fixed point for all values of
ξ̂ . The theories with ξ > 0 are in the basin of attraction of the
standard (ξ = 0) KPZ fixed point [1,4,5,33]. This implies that
the large-scale physics is universal, independent of the details
of the microscopic noise, and governed by the ξ = 0 fixed
point. In particular, the exponents of the scaling regime are the
ones of the standard 1D KPZ equation with an uncorrelated
noise, that is, χ = 1/2 and z = 3/2.

This behavior is illustrated in Fig. 1, which displays
f̂ D

k (0,p̂) and f̂ ν
k (0,p̂) for different values of ξ̂ , and at
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FIG. 1. (a), (c), (e), and (g): RG flow of the effective noise
correlation f̂ D

k (0,p̂) and (b), (d), (f), and (h): RG flow of the effective
dissipation f̂ ν

k (0,p̂). Different values of the rescaled correlation
length are shown: ξ̂ = 0 (black solid line), ξ̂ = 0.05 (blue dashed
line), ξ̂ = 0.1 (red dotted line), and ξ̂ = 1 (green dot-dashed line).
The two functions are plotted as functions of the rescaled momentum
p̂, for ω̂ = 0 and four different values of the RG “time” s = ln(k/�),
as the cutoff scale is lowered (a) and (b) s = 0, (c) and (d) s = −1,
(e) and (f) s = −6, and (g) and (h) s = −13. The axes of all the plots
are scaled in the same way. One sees that the time-reversal symmetry
(f̂ D

k = f̂ ν
k ), which is broken at s = 0, has emerged at s � −6 and

that the same fixed point is reached for all values of ξ̂ when s � −13.

successive RG times s = ln(k/�). Starting from initial con-
ditions (38) with different ξ̂ at s = 0 [Figs. 1(a) and 1(b)],
the functions evolve under the RG flow [Figs. 1(c) and 1(d)],
until they coincide at s � −6 [Figs. 1(e) and 1(f)], and then
they deform to reach their fixed point shape, represented in
Figs. 1(g) and 1(h).

B. Scaling of the two-point correlator

The fact that the RG flow for finite ξ leads to the same IR
fixed point as for ξ = 0 implies that the two-point correlation
function endows on large scales a scaling form with the same
universal scaling function, denoted by F̂ , as the ξ = 0 case.
Let us first emphasize that the fixed point is fully attractive:
Our numerical analysis shows that it is reached for any initial
condition without the need to fine-tune any parameter (no
unstable direction). This means that the KPZ dynamics leads
to generic scale invariance in one dimension, as expected
physically.

The existence of a scaling form for the correlation function
C(ω,p) was shown in Ref. [104] for ξ = 0. It relies on
both the existence of the fixed point, that is, k∂kf̂

X
k = 0 in

Eq. (37), and the decoupling property, that is, Î X(ω̂,p̂) → 0
when p̂ 
 1 or/and ω̂ ∼ p̂3/2 
 1. This property induces the
flow to essentially stop for the large p and/or ω sectors of �k ,
which hence decouple from the other sectors. When both these
conditions are satisfied, the general solution of the remaining
homogeneous equation (37) for large p̂ is a scaling form

f̂ X
∗ (ω̂,p̂) = p̂−ηXζX(ω̂/p̂3/2). (39)

The scaling form emerges in f̂k(ω̂,p̂) only at intermediate
values of p̂ because the rescaled functions do not tend to
their fixed point value uniformly. In fact, for ξ �= 0, the latter
is reached when p̂ 	 1/kξ (or p̂ 	 �/k when ξ 	 1/�;
see the discussion at the end of Sec. II C). In the rescaled
units, the nonuniversal features are gradually sent to larger and
larger values of p̂ as k decreases. This implies that a scaling
range emerges, where Eq. (39) holds, for 1 	 p̂ 	 1/kξ ,
that is, when the fixed point is reached and decoupling has
occurred. Switching back to the dimensionful quantities and
using Eq. (34), it follows that

f X
k→0(ω,p) = Xξp

−ηXζX

(
ω

νξp3/2

)
(40)

for k 	 p 	 1/ξ . In practice, the scaling function is extracted
from the numerical solution as

ζX(x̂) = lim
p̂→∞

p̂ηX f̂ X
∗ (x̂p̂3/2,p̂). (41)

We emphasize that the exponent ηX and the scaling functions
ζX are universal, whereas Xξ and νξ are nonuniversal and
depend explicitly on the correlated microscopic noise.

The two-point correlation function can be determined from
�k through Eq. (19) and the inverse of �

(2)
k [Eq. (28)],

C(ω,p) = lim
k→0

2f D
k (ω,p)

ω2 + [
p2f ν

k (ω,p)
]2 . (42)

One then deduces that, in the regime k 	 p 	 1/ξ , the
dimensionful correlation function also takes a scaling form

C(ω,p) = Dξ

ν2
ξ

p−7/2F̂

(
ω

νξp3/2

)
, (43)

where the scaling function F̂ is the same for any ξ and can be
determined from the fixed point solution as

F̂ (x̂) = 2ζD(x̂)

x̂2 + [ζ ν(x̂)]2
. (44)

We have inserted into Eq. (43) the values ην = ηD = 1/2,
known from Eq. (36). For different values of ξ , the scaling form
of the correlation functions hence only differs by ξ -dependent
nonuniversal amplitudes that can be extracted from the RG
flow.

This is confirmed by the numerical solution of the flow.
We computed C(ω,p) for different values of ξ (including
ξ = 0). To select the regime where scale invariance is expected,
we introduce an auxiliary scale K such that momenta and
frequencies

p > K, ω > K3/2 (45)

are excluded. Then the truncated correlation function CK (ω,p)
is multiplied by p7/2 and recorded as a function of the scaling
variable x = ω/p3/2. This provides the scaling function

FK
ξ (x) = p7/2CK (xp3/2,p), (46)

which is related to the universal scaling function (44) by
normalization factors

FK
ξ (x) = Dξ/ν

2
ξ F̂ (x/νξ ). (47)
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FIG. 2. Collapse of two-point correlation functions on large
scales for two different values of the microscopic noise correlation
length: ξ = 1.6 (gray) and ξ = 12.8 (black). (a) The scaling function
F �

ξ (x) [see Eq. (46)] is represented as a function of x for all
momenta and frequencies. This plot shows that different values of
p lead to different functions of x. There is no data collapse. (b) The
universal scaling function F̂ (x̂) = ν2

ξ /DξF
0.001
ξ (νξ x̂) is represented

as a function of x̂ for p < K and ω < K3/2 with K = 0.001.
The normalization factors νξ and Dξ are obtained from the fitting
procedure detailed in Appendix D and are consistent with the solution
of the RG flow equations (34). It is clear from (b) that when
K = 0.001, enough UV modes are excluded and F 0.001

1.6 and F 0.001
12.8

are equivalent (up to nonuniversal normalization factors).

For each value of ξ , a collapse is indeed observed for K small
enough. Furthermore, F̂ is the same for all ξ . This is illustrated
in Fig. 2; see Appendix D for more details.

C. Nonuniversal correlations

The NPFRG is not restricted to the study of the universal
properties of a system that emerge close to a fixed point. In this
section we compute the (nonuniversal) kinetic energy spectrum
in the stationary state for all momenta and not only momenta in
the scaling regime. We compare these results to the outcome of
previous numerical simulations presented in Ref. [66]. Finally,
we resolve the ξ -dependent crossover of the amplitude of the
kinetic energy spectrum on large scales.

1. Kinetic energy spectrum

The 1D KPZ equation for the profile h(t,x) corresponds to
the Burgers equation for ∂xh(t,x), which models a randomly
stirred fluid. Consequently, in analogy with hydrodynamics,
the kinetic energy density of the 1D KPZ dynamics can be

defined as

E = 〈(∇h)2〉 =
∫

ω,p

p2C(ω,p). (48)

We introduce the kinetic energy spectrum as

R̄(p) = p2

π

∫ ∞

0
C(ω,p)dω (49)

such that E = ∫
p

R̄(p). It can be interpreted as the amount
of kinetic energy contained in the Fourier mode p. Here R̄ is
also related to the derivative of the interface width (equal-time
correlation function) as

R̄(r) =
∫

p

eIpr R̄(p) = −∇2C(τ = 0,r)

= 1

2
∇2W (τ = 0,r). (50)

This function is precisely the quantity that has been studied
analytically and numerically in Refs. [62,66]. In these studies,
the complete time evolution of R̄(t,r) was investigated, starting
from the sharp-wedge initial condition for the 1D KPZ equa-
tion. The R̄(r) can be normalized as R̄(r) := [D̃(ξ )/ξ ]Eξ (r/ξ )
with D̃(ξ ) defined through

∫
r
R̄(r) = D̃. The normalization

and the shape of the correlator are characterized by D̃(ξ ) and
Eξ (x), respectively. Note that a similar normalization yields
in Fourier space R̄(p) = D̃(ξ )Eξ (pξ ), with Eξ (q = 0) = 1.
It was pointed out in Refs. [62,66] that the function Eξ (x) is
weakly dependent on ξ as long as ξ is not too large. More
precisely, it was found that Eξ = Rξ=1 and D̃ = 1 in the limit
ξ → 0 and it was assumed that Eξ

∼= Rξ=1 for small (but finite)
values of ξ . In the opposite limit of very large ξ the specific
shape of Eξ remains an open issue. D̃(ξ 
 1) as well as the
crossover from ξ 	 1 will be discussed in Sec. III C 3.

We have computed R̄ for various values of ξ . The result
of our calculation is shown in Fig. 3. Since our solution of
Eq. (37) for f X

k is numerical, it is restricted to a finite range
of momenta and frequencies, in particular ω1 � ω � �2. For
this reason, the frequency integral of Eq. (49) must be split
into three parts to be computed separately,

R̄(p) = R̄1(p) + R̄2(p) + R̄3(p)

= p2

π

[ ∫ ω1

0
+

∫ �2

ω1

+
∫ ∞

�2

]
C(ω,p)dω. (51)

First, the range ω1 � ω � �2 corresponds to the frequency
range where numerical data for the dimensionful correlation
function are available (see Appendix C) and the integral in R̄2

is computed numerically. Second, in the range ω � �2, the
correlation function can be replaced by its bare form (obtained
by inserting the initial conditions f X

� [Eq. (25)], instead of f X
k

in Eq. (42)),

C(ω,p) ∼= 2Rξ (p)

ω2 + p4
, (52)

since the high-frequency sector is determined by the beginning
of the RG flow. The frequency integration in R̄3 is then
performed analytically. Note that because of the exponentially
decaying noise correlator, R̄3 is negligible compared to the
other two parts of R̄.
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FIG. 3. Kinetic energy spectrum R̄. (a) R̄ for different values of
ξ . (b) R̄ (solid black line) as well as its two dominating contributions
[see Eq. (51)] R̄1 (dotted blue line) and R̄2 (dashed red line) and
the microscopic noise correlation function Rξ (p) (dash-dotted green
line) for a representative value of ξ = 1.6. The UV physics is well
captured by the bare noise correlator Rξ , while the universal KPZ
physics (given by R̄1) emerges in the IR domain.

Third, in the range ω � ω1, the fixed point is reached, and
for p 	 �, the scaling form of C [Eq. (43)] can be inserted
into the integral of R̄1,

R̄1(p) = Dξp
−3/2

πν2
ξ

∫ ω1

0
F̂

(
ω

νξp3/2

)
dω. (53)

The change of variables x̂ = ω/νξp
3/2 and the exponent

identity (36) finally provides

R̄1(p) = Dξ

πνξ

∫ ω1/νξ p
3/2

0
F̂ (x̂)dx̂. (54)

This expression is strictly valid for p 	 1/ξ (or p 	 � when
ξ = 0). It can however be safely used for any p because
R̄1 is negligible when compared to R̄2 at larger values of p

(see Fig. 3).
As shown in the preceding section, the integrand on the

right-hand side of Eq. (54) is a universal quantity, which can
be computed from the solution of the RG fixed point alone.
In particular, when p → 0 its integral becomes a universal
constant. The prefactor of Eq. (54), Dξ/πνξ , is the limit
D(k → 0)/πν(k → 0). The dependence of D(k)/πν(k) on
the RG scale k drops out at small values of k since the

time-reversal symmetry is restored and yields ηD = ην .5

As manifest in Eq. (34), its computation requires the entire
solution of the RG flow equations. This prefactor is hence a
nonuniversal quantity that depends on the value of ξ , as well
as the specific form of Rξ .

Two components of R̄ are plotted in Fig. 3 for a representa-
tive value of ξ = 1.6. Note that R̄1 and R̄2 add up so that R̄ is a
constant at small p (within a 0.16% of relative accuracy). This
is a consistency check of our calculation since the integrand on
the right-hand side of Eq. (54) is computed once for all values
of ξ from the universal scaling form at ξ = 0. We have checked
that the crossover from R̄1 to R̄2 dominating R̄ (at p ∼= 2×10−5

in Fig. 3) can be sent to arbitrarily small values of p by taking
ω1 small enough. At large p, the bare form (52) can be inserted
in Eq. (49) and provides R̄(p 
 1/ξ ) ∼= Rξ (p). This result is
consistent with the prediction Eξ ≈ Rξ=1 at small but finite
ξ discussed in Refs. [62,66] and suggests furthermore that in
the stationary state R̄(p)/D̃(ξ ) differs from the microscopic
Rξ (p) only for spatial modes p < 1/ξ .

2. Comparison between the NPFRG predictions
and previous numerical results

The 1D KPZ equation with correlated noise of range ξ was
studied in Refs. [62,63,65,66]. In particular, direct numerical
simulations were performed in Ref. [66], where the Fourier
transform of the kinetic energy spectrum R̄(r) [denoted by
R̄sat(y) in Ref. [66] and plotted in Fig. 6 therein] has been
computed for different values of ξ .

The numerical simulations of [66] were achieved by
sampling a noise with Gaussian statistics, computing the
corresponding KPZ time evolution, and averaging at the end. A
different system of units than ours was used (see Appendix A).
The correlation length was kept fixed and different values of
the diffusion coefficient ν were considered. Moreover, a fixed
correlation time ξ ′

τ and a different form for Rξ were used for
reasons of numerical stability [66].

The results of [66] can be easily converted to our units. The
end result is that the variation of ν turns into a linked variation
of ξ = ξ ′Dλ2/ν3 and ξτ = ξ ′

τD
2λ4/ν5 (the parameters used

in the simulation yield ξτ
∼= 0.539ξ 5/3) and that the noise

correlation function is well approximated by

Rξ,ξτ
(ω,p) = R′

ξ (p)R′
ξτ

(ω), (55)

with the momentum and frequency correlator being given by

R′
l(y) = 9

[
sinc

(
ly

2

)]8

[2 + cos(ly)]2
. (56)

We computed the RG flows with these initial conditions for
f D

� and different values of ξ (and ξτ
∼= 0.539ξ 5/3) and deter-

mined the corresponding kinetic energy spectra R̄. Figure 4
shows a comparison of the NPFRG results with the numerical
results. Their quantitative agreement is very satisfactory. Note
that the inclusion of a correlation time ξτ �= 0 explicitly breaks

5Note that setting f λ
k = 1 (see Sec. II D) is essential here.

Without this approximation we only get ηD
∼= ην and the limit

D(k → 0)/πν(k → 0) is not finite.
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FIG. 4. Comparison of the NPFRG calculation with direct nu-
merical simulations. The kinetic energy spectrum R̄ is computed
for ξ = 0.2622 and ξτ = 0.0579 (blue solid line), ξ = 1.7285 and
ξτ = 1.3428 (red dashed line), and ξ = 4.9725 and ξτ = 7.8134
(green dotted line). The lines show the NPFRG result and the circles
are the results of [66].

Galilean invariance (9b) [40,49,114–116]. It is remarkable
that this does not seem to affect the large-distance physics.
Such a robustness of Galilean invariance was pointed out in
Refs. [125–127] (see [128] for an overview). From an RG point
of view, this suggests that Galilean invariance is emergent
like the time-reversal symmetry. We cannot confirm this
statement within the NLO approximation used in the present
work since the breaking of Galilean symmetry by the initial
condition f D

� = Rξ,ξτ
generates violations of Ward identities

for higher-order vertex functions, which are neglected at this
order. In particular, the induced modification of the flow
equation of ĝk cannot be computed within NLO approximation
such that the RG flow of the theory is constrained to preserve
the identity exponent χ + z = 2 at the IR fixed point. However,
the presence of temporal correlations do not affect the results
found in Refs. [62,63,65,66] (where the full time evolution is
considered) in any noticeable way when compared to results
obtained in a Galilean invariant setup. This strongly suggests
that the IR physics is indeed Galilean invariant.

3. Crossover in the amplitude of the kinetic energy

As already mentioned, the stationary kinetic energy spec-
trum tends to a constant as p → 0,

D̃(ξ ) = R̄(p = 0) = Dξ

πνξ

∫ ∞

0
F̂ (x̂)dx̂. (57)

This constant can be related to the amplitude of the equal-time
correlation function, which, in the stationary state, takes the
form

W (τ = 0,r) = D̃|r|ξ , (58)

where | · · · |ξ is a rounded (on scales given by ξ ) absolute
value [62,63,65,66]. This means that for ξ = 0, one simply has
W (0,r) = |r|. When ξ is increased, the kink of the absolute
value becomes smooth and the slope of W (0,r) at large r

decreases. It is clear from Eq. (58) that D̃ is observable on
large scales. Equation (57) shows that it contains a ξ -dependent
factor that can be extracted from our calculation. The result is
shown in Fig. 5.

FIG. 5. Nonuniversal amplitude D̃, in log-log scale, from NPFRG
and from numerical simulations: (a) D̃ computed with spatial noise
correlations (2), with the NPFRG, and for different values of ξ (blue
solid line), as well as a power-law fit of the tail of the data (for
ξ � 18) (black dashed line), and (b) D̃ computed with spatiotemporal
correlations (55), with the NPFRG for different values of ξ and
ξτ

∼= 0.539ξ 5/3 (blue solid line) with its power-law fit (for ξ � 43)
(black dashed line) as well as two different estimations of D̃ from
the numerical computation of [66] (black circles and red squares).
The vertical axes of the two plots are scaled in the same way. The
horizontal axes are not. The decay of D̃(ξ ) with ξ is a large-scale
signature of the microscopic correlation length [see Eq. (58)]. It can
be observed experimentally by varying the coupling g = λ2D/ν3.

The behavior of the amplitude D̃ was previously addressed
in Refs. [62,65–67], fixing ξ ′ and varying the diffusion coeffi-
cient ν within the original KPZ equation (1) (see Sec. III C 2). A
crossover was predicted analytically at ξ ∼= 1, separating two
limiting behaviors: at small values of the correlation length
(ξ 	 1), a saturation of the amplitude to one D̃ ≈ 1 [4,5,33],
and in the opposite limit (ξ 
 1), a decay as D̃ ∼ ξ−1/3. Note
that the large-ξ prediction relies on the existence of an optimal
trajectory in the language of the directed polymer, as intro-
duced in Ref. [62] and discussed more recently in Ref. [68]. A
key ingredient is to assume that the roughness of the polymer
end-point free energy takes the form (58). The recent Bethe
ansatz analysis proposed in Ref. [69] also yields the same
behavior of D̃ in the regime ξ 
 1, under the assumption of a
one-step replica symmetry breaking in the replica description.

As for the behavior of D̃ at intermediate values of ξ ,
although no exact expression is available yet, two independent
predictions have been obtained in the form of an implicit equa-
tion D̃γ ∝ (4/ξ )γ /3(1 − D̃), with γ ∈ {3/2,6} and numerical
prefactors of order 10 [62], invoking in particular a GVM
computation with a full replica symmetry breaking [62,68].
These analytical predictions are qualitatively consistent with
numerical measurements either on a directed polymer on a
discrete lattice [65] or in a direct numerical integration of
the continuous KPZ equation [66]. At last, we mention that D̃

corresponds to the fudging parameter f in Refs. [62,67], which
coincides in fact with the full-replica-symmetry-breaking
parameter in the GVM computations presented in Ref. [63].

We determined the nonuniversal amplitude D̃ within the
NPFRG framework, both for a microscopic noise with spatial
correlations (2) and different values of ξ and for spatiotemporal
correlations (55) for different values of ξ and correlation
time set to ξτ

∼= 0.539ξ 5/3. The two curves look very similar
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but differ quantitatively. By construction, the two saturation
values at ξ = 0 are the same. The results are displayed in
Fig. 5 alongside the data of Fig. 14 of [66] converted to our
system of units. First, the crossover with ξ and the existence
of two limiting regimes at large and small ξ are recovered. We
find qualitative agreement with the corresponding analytical
predictions: At ξ = 0, the value is D̃(0) ∼= 0.82, and at large
ξ , the estimated power law is D̃(ξ 
 1) ∼= 1/ξ 0.24 for spatial
correlations and D̃(ξ 
 1) ∼= 1.4/ξ 0.27 for spatiotemporal
correlations. Second, the NPFRG results for spatiotemporal
correlations are compared with the results from direct numer-
ical simulations. The agreement is very precise for all values
of ξ . Let us emphasize that this is a remarkable feature, since
D̃ is a nonuniversal quantity, which hence depends on all the
microscopic details. This shows that they are reliably captured
by the NPFRG flow.

The discrepancy between our value D̃(0) ∼= 0.82 and the
analytical result D̃(0) = 1 [4,5,33] can possibly be attributed
to the order of the approximation used (NLO). The agreement
would probably be improved at the next (second) order. See
Sec. II D for a detailed discussion of the approximations
involved here. Note that the method used to estimate D̃ from
the numerical data [66] is known to underestimate D̃ and
indeed D̃(ξ = 0) < 1 in the data of Fig. 5. For the decay
exponent, the observed difference could be a hint to the fact
that for large ξ , one enters the regime of Burgers turbulence,
which is dominated by shocks [13]. Hence, it is not clear
whether the exponent values found (−0.24 and −0.27) are an
artifact of the approximation scheme or not. The exploration of
this regime within the NPFRG formalism is beyond the scope
of the present study.

IV. CONNECTION WITH EXPERIMENTS

The results presented here are experimentally accessible
for systems that can be considered as continuous on scales
smaller than ξ ′, that is, ξ ′ 
 a, where a is the microscopic
lattice size. The D̃ provides an easily accessible observable
because it can be measured on large scales [see Eq. (58)].
Although the detailed form of the noise may be hard to control
experimentally, it is reasonable to assume (when ξ ′ 
 a) that
there exists a small nonzero noise correlation length ξ ′ �= 0.
In the original system of units,

D̃′(ξ ′,D,ν,λ) = D

ν
D̃

(
ξ ′ λ

2D

ν3

)
. (59)

See Appendix A and Eqs. (A1) for the details of the conversion.
The behavior D̃ (Fig. 5) can be probed by varying ν, λ, or D in-
stead of ξ ′. Assuming that ξ ′ is fixed, the control parameter be-
comes g = λ2D/ν3. If g can be varied over one or two decades
and if ξ ′ is not too small, then a decrease of D̃′(ξ ′,D,ν,λ)
should be observable as g is increased. Note that an extended
discussion, on the different experiments in which these differ-
ent predictions on R̄(p) and D̃(ξ ) could be tested, is given in
Sec. VII of [62], using the units system recalled in Appendix A.

V. CONCLUSION AND PERSPECTIVES

We have used the NPFRG to determine the full momentum
dependence of the stationary two-point correlation function of

the stochastic KPZ equation with microscopic noise correlated
at a finite spatial scale ξ . We have resolved the nonuniversal
features at scales smaller than ξ as well as the universal
scaling regime on large scales. We have shown (within our
approximation scheme) that the universal physics is governed
by the presence of a fully attractive RG fixed point and does not
depend on the microscopic noise correlation length (Fig. 1).
This implies that the time-reversal symmetry (10) that is
broken at the microscopic level when ξ > 0 is emergent on
large scales.

We computed the kinetic energy spectrum of the stationary
KPZ dynamics, which is a single-time observable that is related
to the interface width through two space derivatives and a
Fourier transform. Both the ξ -dependent UV physics and the
universal IR physics are visible in Fig. 3. Our results extend
previous numerical simulations [66] to values of momenta
that were not accessible before (Fig. 4). Finally, we provide
an experimentally accessible observable D̃ and compute its
dependence on ξ (Fig. 5). Our results are in good agreement
with the numerical results of [66] as well as with other
analytical results [62,63,65,66,69] (although qualitatively).
Calculation at the next-order approximation would certainly
improve the results. In particular, they would help to settle the
discrepancy in the obtained value of the decay exponent of
D̃(ξ 
 1) with respect to the result of [62,63,65,66]. In this
respect, an experimental (or alternative) determination would
be desirable.

An interesting direction would be to investigate three-point
correlation functions and extend this study to larger values
of ξ , where the regime of 1D Burgers turbulence, with an
energy cascade developing, could be investigated. This is left
for future work.
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APPENDIX A: DIFFERENT UNITS

In this Appendix we detail the change of units relating
Eqs. (1) and (3) and the units used in the numerical simula-
tions [66]. Equation (1) is defined in terms of dimensionful pa-
rameters λ, ν, D, and ξ ′. Space, time, and fields can be rescaled.
Since the dimensions of η′ and h′ are related, three parameters
can be set to one by an appropriate choice of units. We choose
to keep ξ as the unique free parameter. The rescaling

t ′ = 1

ν

(
ν3

Dλ2

)2

t, x ′ = ν3

Dλ2
x,

h′ = ν

λ
h, η′ = ν2

λ

(
Dλ2

ν3

)2

η (A1)

converts the dimensionful quantities of Eq. (1) (noted here
with a prime) to the dimensionless ones of Eq. (3). The

032117-11



MATHEY, AGORITSAS, KLOSS, LECOMTE, AND CANET PHYSICAL REVIEW E 95, 032117 (2017)

remaining parameter is ξ = ξ ′λ2D/ν3. In particular, D̃′ takes
the form given by Eq. (59) and the dimensionful kinetic
energy spectrum becomes

R̄′(p′) = D

ν
R̄

(
ν3

Dλ2
p′

)
. (A2)

In the numerical simulations [66], the KPZ equation (1)
is written in terms of the parameters T , c, and � with the
correspondence

ν = T

2c
, λ = −1

c
, D = �

2
. (A3)

These parameters are inherited from the exact mapping
between a thermally equilibrated 1D elastic interface in a short-
range correlated disorder and a directed polymer growing
in a two-dimensional disordered energy landscape [2,14].
From there, the KPZ equation is recovered by noting that
the polymer-end-point free energy evolves (with the polymer
length) according to the KPZ equation with sharp-wedge initial
conditions and the KPZ parameters {ν,λ,D,ξ ′} obtained from
Eqs. (A3) [14,15]. In the language of the elastic interface,
c is the elastic constant, T is the temperature, and � is the
amplitude of the microscopic disorder two-point correlator. In
addition, ξ ′ is defined as the disorder correlation length, but it
can alternatively correspond to the typical thickness of the in-
terface [64]. Note that in these units, the two opposite limits of
ξ → 0 and ξ → ∞ translate respectively into the limits of high
temperature (T 
 Tc) and low temperature (T 	 Tc), with a
characteristic crossover temperature Tc(ξ ′) = (ξ ′cD)1/3.

APPENDIX B: PRINCIPLE OF MINIMUM SENSITIVITY

The cutoff matrix (20) contains an arbitrary parameter α.
In principle, the end result of a calculation should not depend
on α. However, any approximation introduces a spurious
dependence on the cutoff matrix. An optimal value for α

can be determined according to the principle of minimum
sensitivity [120,121], which leads to extremizing the quantity
computed with respect to α.

The present calculation turns out to be relatively insensitive
to α. We hence determined its optimal value using a single
observable D̃(0), defined in Eq. (57), and we used the same
optimal value for all ξ . This procedure is illustrated in Fig. 6,

FIG. 6. Principle of minimum sensitivity. The circles represent
the NPFRG results for D̃(0) as a function of α. The line is a third-order
polynomial fit.

which shows the variation of D̃(0) with respect to α. A third-
order polynomial fit yields αopt

∼= 38.82.
Note that the variations of D̃(0) around its optimal value

are small. The main source of error comes from the order of
truncation (NLO). The latter can be assessed by comparing
the NPFRG result D̃(0) � 0.82 for the KPZ equation with
uncorrelated noise (ξ = 0) to the exact result D̃(0) = 1, which
hints at roughly a 20% error.

APPENDIX C: NUMERICAL SOLUTION
OF THE RG FLOW EQUATIONS

In this Appendix we give some details on the numerical
solution of Eqs. (37) and (29). Dimensionless quantities such
as f̂ X

k and ηX(k) are directly obtained from the numerical solu-
tion of Eq. (37). Dimensionful observables such as C are then
extracted from this solution. This procedure was introduced in
Refs. [78,79] and is here generalized to frequency-dependent
quantities.

1. Solution of the dimensionless flow equations

We follow the numerical scheme used in Ref. [105]. A
large value of � = 200 is chosen where the initial conditions
Eq. (38) are set for each value of ξ . The dimensionless fre-
quency and momentum are discretized into regular grids p̂i =
p̂1 + �p̂(i − 1) (with i = 1,Np) and ω̂j = ω̂1 + �ω̂(j − 1)
(with j = 1,Nω) and the functions f̂ X

k (ω̂,p̂) are represented as
Np×Nω matrices [with only positive momenta and frequencies
since the solution of Eq. (37) only depends on the absolute
values |p̂| and |ω̂|]. The values of Np, Nω, �p̂, and �ω̂ as
well as all the other numerical parameters that we use are
specified in Table I.

A third-order polynomial spline is used to compute f̂ X
k

for momenta and frequencies that are not in the tabulated set
of values. In particular, this spline is used to compute the
derivatives in the linear part of the right-hand side of Eq. (37).
For p̂ � p̂Np

, the functions are approximated by power laws
f̂ X

k (ω̂,p̂) = f̂ X
k (ω̂,p̂Np

)(p̂/p̂Np
)η with

η = ln
[
f̂ X

k

(
ω̂,p̂Np

)] − ln
[
f̂ X

k

(
ω̂,p̂Np

− 0.2
)]

ln
(
p̂Np

) − ln
(
p̂Np

− 0.2
) , (C1)

where f̂ X
k (ω̂,p̂Np

− 0.2) is computed with the spline.
To compute the nonlinear integrals Î X on the right-hand

side of Eq. (37), the NLO approximation for the frequency
dependence is used [the replacement f̂ X

k (�̂,Q̂) → f̂ X
k (0,Q̂)

TABLE I. Parameters for the numerical solutions of Eqs. (37)
and (29).

Parameter Value Parameter Value

�p̂ 0.128 �ω̂ 0.25
Np 161 Nω 121
p̂0 10−10 ω̂0 10−10

Ng 30 qmax 4
ds 0.00002 smin −24.6
Mp 300 Mω 300
dp 0.072 dω 0.090
np 145 nω 105
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for all configurations �̂ and Q̂ inside the integrands Ĵ X,
which are defined in Eq. (29)]. This is exploited to per-
form the integration over the internal frequency analytically
(see [105] for detailed expressions). The integrals over the
internal momentum q̂ are computed with a Gauss-Legendre
quadrature. Because of the insertion of the cutoff matrix and
its scale derivative [see Eq. (21)] the remaining integrand∫
f̂

Ĵ X(ω̂,p̂,f̂ ,q̂) is a smooth function of p̂, ω̂, and q̂.
Moreover, the insertion of k∂kRk imposes that this integrand
is exponentially suppressed for q̂ and |p̂ ± q̂| 
 1. Conse-
quently, a coarser grid for q̂ and a smaller range of internal
momenta q̂ < qmax can be used to compute the integral on q̂

without loss of precision.
The lowering of the RG scale is performed with an explicit

Euler time stepping in the RG time

f̂ X
k(1−ds) = f̂ X

k − dsk∂kf̂
X
k , (C2)

where ds is the step size. This procedure is iterated until the
cutoff scale is much smaller than all the dimensionful momenta
that are considered, s → smin.

Finally, an additional procedure is implemented to correctly
resolve the momentum dependence of f̂ D

k for large ξ at the
beginning of the flow. Indeed, since � is taken to be 200, ξ̂ =
�ξ can be large even when ξ is not. Then f̂ D

� (ω̂,p̂) = Rξ̂ (p̂)
decays exponentially at a scale given by ξ̂ . If treated directly,
this would impose the choice of �p̂ very small and Np very
large.

On the other hand, at the beginning of the flow, when k ∼= �,
ĝk = g/k is very small and the RG flow equations are almost
linear. Hence, lowering the RG scale amounts to a rescaling.
Thus, at the beginning of the flow, the renormalized forcing
correlator is separated into two parts

f̂ D
k (ω̂,p̂) = Rξ̂k/�(p̂)/D(k) + δf̂ D

k (ω̂,p̂), (C3)

where only the first term has sharp momentum variations at
the beginning of the flow. Its RG flow can be determined
analytically, knowing ηD(k). For the second term, the RG flow
starts with δf̂ D

k = 0. As long as s = ln(k/�) is close to zero,
f̂ D

k is only weakly renormalized and δf̂ D
k remains small and

smooth and can be treated numerically. Its flow obeys an equa-
tion obtained from Eq. (37) by substituting f̂ D

k → δf̂ D
k on the

left-hand side and f̂ D
k (ω̂,p̂) → Rξ̂k/�(p̂)/D(k) + δf̂ D

k (ω̂,p̂)
inside Î X. When a spline or interpolation is necessary in
Î X, this is only applied to δf̂ D

k and the analytical form
of Rξ̂k/�(p̂)/D(k) is used. Then the rest of the momentum
integration is performed as outlined above and with the same
momentum grid.

As the effective correlation length ξ̂ k/� decreases with
the RG scale f̂ D

k becomes smooth. We use the criterion
that when ξ̂ k/�p̂5 = kξp̂5 < 1, �p̂ is small enough for a
straightforward numerical solution, the splitting (C2) ceases,
and the flow of the whole function f̂ D

k is computed at once.
This procedure is used in the same way in the frequency
variables when ξτ is nonzero.

2. Solution of the dimensionful flow equations

The dimensionful correlation function C can be computed
for arbitrary momentum and frequency with great accuracy

and low computational cost by suitably using the solution
of Eq. (37), instead of directly solving Eq. (29), follow-
ing [78,79]. The idea is to compute the flow in two parts.
For each dimensionful momentum p and frequency ω, the
beginning of the flow from k = � to k = ks(ω,p) [with
ks(ω,p) specified below in Eqs. (C5) and (C6)] is computed in
the dimensionless representation with the procedure described
previously, yielding f̂ X

ks
. The dimensionful solution (at k = ks)

is then obtained through Eqs. (31),

f X
ks

(ω,p) = Xks
f̂ X

ks

(
ω

k2
s νks

,
p

ks

)
. (C4)

The end of the flow from ks(ω,p) to k = �esmin is computed
on a secondary dimensionful grid, yielding f X

k→0.
Here we work with a logarithmic grid for the dimensionful

momenta and frequencies: pi = �edp(i−Mp), with i = 1,Mp,
and ωj = �2edω(j−Mω), with j = 1,Mω. The scale ks(ωj ,pi)
is defined for each (ωj ,pi) such that the corresponding
dimensionless momentum pi/ks or frequency ωj/ksν

2
ks

attains
a large given value p̂np

or ω̂nω
. The indices np and nω are hence

chosen close to the boundary of the grid (a few points before
not to be affected by effects from the finiteness of the grid).
More precisely, ks(ωj ,pi) is defined as

ks(ωj ,pi) = max(k1,k2), (C5)

with

pi = k1p̂np
, ωj = k2

2νk2 ω̂nω
. (C6)

Hence, for the second part of the flow on the dimensionful
grid k < ks , the condition pi 
 k is always satisfied. This
choice is tailored to ensure that the flow on the dimensionful
grid can be approximated in a simple and accurate way
such that all dimensionful momenta values are decoupled.
Indeed, the presence of the derivative of the regulator ∂kRk ,
which is peaked at values q � k, in the nonlinear integrals
on the right-hand side of Eq. (29) effectively cuts off the
internal momentum q to values q � k. This yields that any
pi computed on the dimensionful grid (satisfying pi 
 k)
also verifies pi 
 q and the integrand JX

k (ωj ,pi,f,q) in
Eq. (29) can be Taylor expanded to leading order in powers of
q/pi . Hence, within this approximation, the flow equations
become local in momentum space, i.e., the integral takes
the form IX

k (ωj ,pi) = Lk1(pi)
∫
q
Lk2(ωj ,q), with Lk1(p) and

Lk2(ωj ,q) two functions that can be extracted from the Taylor
expansion of JX

k (ωj ,pi,f,q). The integral over the internal
momentum q can be computed once (at every time step) for
all values of pi using the dimensionless grid such that the flow
equations for the different momenta pi on the dimensionful
grid are no longer coupled together.

Let us unfold the practical sequence to solve the RG
equations: Two independent and constant grids are defined,
a dimensionful (ω×p) grid and a dimensionless (ω̂×p̂) one,
on which the RG flow is calculated [with Eq. (37)]. To describe
the interplay between the two grids, we refer in the following
to the (dimensionless) grid that is obtained by rescaling the
dimensionful grid-points according to the rescaling procedure
given in Eq. (31) as the rescaled dimensionful grid. As
the grid-point values of the dimensionful grid stay constant,
the values of the corresponding rescaled dimensionful grid
grow according to Eq. (31) when the scale k decreases during
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the RG flow. Moreover, we choose the value of � such that

pMp
< �p̂np

, ωMω
< �2ω̂nω

, (C7)

which ensures that, at the beginning of the flow, all tabu-
lated rescaled dimensionful momenta pi/k and frequencies
ωj/ν(k)k2 lie inside the dimensionless grid. This allows us to
solve the dimensionful flow equation (29) at the beginning of
the flow on this grid, by identifying the rescaled dimensionful
grids points with the dimensionless ones.

As k decreases, the grid points of the rescaled dimensionful
grid grow until they run out of range of the dimensionless grid
one by one consecutively (in both frequency and momentum
direction). For convenience, we set np = Np and nω = Nω in
the following discussion. The generalization is evident. When
a rescaled dimensionful momentum or frequency variable of
a given grid point hits the edge of the dimensionless grid, at
the corresponding scale ks , the values of the dimensionful flow
functions f X

ks
(ω,p) on that grid point of the dimensionful grid

are deduced according to Eq. (C4). Once outside the range
of the dimensionless grid, the evolution of f X

k (ω,p) (with ω

and p on the dimensionful grid) is much slower and allows us
to compute the flow in the dimensionful representation from
JX

k (ωj ,p,f,q), which is Taylor expanded to leading order in
q/p, and all momenta decouple.

Finally, as the RG time s decreases in discrete steps, the time
s when a rescaled dimensionful grid point hits the border of
the dimensionless grid falls in general in between two discrete
time steps ds. A linear interpolation is used to evaluate f̂ X

ks

and ηX(ks) in between the two surrounding time steps.
All the points of the dimensionful grid sequentially attain

the edges of the dimensionless grid and all the rows and
columns of the dimensionful grid for f X

k (ωj ,pi) progressively
start running. In fact, the dimensionful flow effectively stops
very rapidly because of the decoupling property outlined in
Sec. III B and even the zeroth order of the Taylor expansion in
q/p can be used.

Note also that the flow of f X
k (ω,p) if either ω or p

is exactly zero cannot be computed on the dimensionful
grid. However, the first values p1 and ω1 can be rendered
arbitrarily small by lowering further the RG scale (carrying
the numerical integration longer). On the other hand, the zero
momentum or frequency properties are directly extracted from
the dimensionless grid.

APPENDIX D: EXTRACTION OF THE SCALING
FUNCTION AND NONUNIVERSAL AMPLITUDES

According to Sec. III B, the scaling functions associated
with the two-point correlation function are the same (for all

FIG. 7. Fitting parameters as functions of K: (a) αK
ξ and (b) βK

ξ .
The different levels of gray represent different values of ξ , with
the same legend as in Fig. 3. If enough of the small-scale physics
K � min(1/ξ,�) is excluded, Eq. (D2) provides an adequate fitting
form for all the scaling functions.

values of ξ ) up to normalizations. To test this in the numerical
solution, we first extracted the scaling function F̂ at ξ = 0 from
the combination of Eqs. (41) and (44). As shown in Ref. [104],
this function can be accurately represented by a family of fitting
functions that are power laws of rational fractions

F̂ (x̂) =
[∑n−1

i=1 A2i x̂
2(i−1) + A2n−1T

6/7x̂2(n−1)

1 + ∑n
i=1 A2i−1x̂2i

]7/6

. (D1)

Here T and Ai (with i = 1,2n − 1) are positive fitting param-
eters. We use n = 4 and denote by F̂fit(x̂) the corresponding
fitting function (extracted at ξ = 0). We then numerically
compute for each value of ξ the scaling function FK

ξ obtained
from the truncated two-point correlation function where
momenta p > K and frequencies ω > K3/2 are removed [see
Eq. (46)]. We determine the nonuniversal normalizations αK

ξ

and βK
ξ defined by

FK
ξ (x) = αK

ξ F̂fit
(
βK

ξ x
)
, (D2)

as a function of K , using αK
ξ and βK

ξ as fit parameters and

keeping F̂fit fixed.
We checked that when K is small enough, F̂fit indeed

represents an appropriate scaling function for FK
ξ (extracted

at ξ �= 0). The values of the obtained fitting parameters αK
ξ

and βK
ξ are displayed in Fig. 7 as a function of K for different

values of ξ . Below a certain threshold of K , these parameters
become constants (independent of K) and the error of the fit is
very small. It is clear from Fig. 7 that scale invariance emerges
on large scales. Conversely, when K is too large, there is no
scale invariance and the fitting procedure fails.
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[50] H. K. Janssen, U. C. Täuber, and E. Frey, Eur. Phys. J. B 9,

491 (1999).
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[104] L. Canet, H. Chaté, B. Delamotte, and N. Wschebor,

Phys. Rev. E 84, 061128 (2011).

[105] T. Kloss, L. Canet, and N. Wschebor, Phys. Rev. E 86, 051124
(2012).

[106] T. Halpin-Healy, Phys. Rev. E 88, 042118 (2013).
[107] T. Halpin-Healy, Phys. Rev. E 88, 069903(E) (2013).
[108] P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423

(1973).
[109] R. Bausch, H. K. Janssen, and H. Wagner, Z. Phys. B 24, 113

(1976).
[110] H.-K. Janssen, Z. Phys. B 23, 377 (1976).
[111] C. De Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978).
[112] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena

(Clarendon, Oxford, 2002).
[113] V. V. Lebedev and V. S. L’vov, Phys. Rev. E 49, R959 (1994).
[114] E. Katzav and M. Schwartz, Phys. Rev. E 70, 011601 (2004).
[115] A. A. Fedorenko, Phys. Rev. B 77, 094203 (2008).
[116] T. Song and H. Xia, J. Stat. Mech. (2016) 113206.
[117] L. P. Kadanoff, Physics 2, 263 (1966).
[118] K. G. Wilson, Phys. Rev. B 4, 3174 (1971).
[119] K. G. Wilson, Phys. Rev. B 4, 3184 (1971).
[120] P. M. Stevenson, Phys. Rev. D 23, 2916 (1981).
[121] L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal, Phys. Rev.

D 67, 065004 (2003).
[122] J.-P. Blaizot, R. Méndez-Galain, and N. Wschebor, Phys. Lett.

B 632, 571 (2006).
[123] In fact, within the NLO approximation, some higher-order

vertices, which are involved in the Ward identity related to
time-reversal symmetry yielding f λ

k = 1, are neglected. It
implies that this identity cannot be restored exactly even when
the flow leads to a time-reversal symmetric fixed-point. Hence,
setting f λ

k = 1 prevents f λ
k from acquiring a nontrivial flow,

which would induce a residual small breaking of time-reversal
symmetry when the latter should be realized in the IR.
However, the related error is small. It was checked in Ref. [105]
that the obtained exponents and dimensionless ratio differ only
weakly with or without this approximation. Note that, on the
other hand, no constraints are imposed on f ν

k and f D
k , which

are free to be different, such that the complete RG flow is not
constrained to be time-reversal symmetric.

[124] M. Prähofer and H. Spohn, J. Stat. Phys. 115, 255 (2004).
[125] A. Berera and D. Hochberg, Phys. Rev. Lett. 99, 254501 (2007).
[126] H. S. Wio, J. A. Revelli, R. R. Deza, C. Escudero, and M. S.

de la Lama, Europhys. Lett. 89, 40008 (2010).
[127] H. S. Wio, J. A. Revelli, R. R. Deza, C. Escudero, and M. S.

de La Lama, Phys. Rev. E 81, 066706 (2010).
[128] H. S. Wio, C. Escudero, J. A. Revelli, R. R. Deza, and M. S.

de la Lama, Philos. Trans. R. Soc. London A 369, 396 (2010).

032117-16

https://doi.org/10.1103/PhysRevLett.92.255703
https://doi.org/10.1103/PhysRevLett.92.255703
https://doi.org/10.1103/PhysRevLett.92.255703
https://doi.org/10.1103/PhysRevLett.92.255703
https://doi.org/10.1103/PhysRevLett.93.267008
https://doi.org/10.1103/PhysRevLett.93.267008
https://doi.org/10.1103/PhysRevLett.93.267008
https://doi.org/10.1103/PhysRevLett.93.267008
https://doi.org/10.1103/PhysRevLett.95.100601
https://doi.org/10.1103/PhysRevLett.95.100601
https://doi.org/10.1103/PhysRevLett.95.100601
https://doi.org/10.1103/PhysRevLett.95.100601
https://doi.org/10.1103/PhysRevLett.96.087202
https://doi.org/10.1103/PhysRevLett.96.087202
https://doi.org/10.1103/PhysRevLett.96.087202
https://doi.org/10.1103/PhysRevLett.96.087202
https://doi.org/10.1103/PhysRevLett.106.128102
https://doi.org/10.1103/PhysRevLett.106.128102
https://doi.org/10.1103/PhysRevLett.106.128102
https://doi.org/10.1103/PhysRevLett.106.128102
https://doi.org/10.1103/PhysRevE.89.010102
https://doi.org/10.1103/PhysRevE.89.010102
https://doi.org/10.1103/PhysRevE.89.010102
https://doi.org/10.1103/PhysRevE.89.010102
https://doi.org/10.1103/PhysRevLett.92.195703
https://doi.org/10.1103/PhysRevLett.92.195703
https://doi.org/10.1103/PhysRevLett.92.195703
https://doi.org/10.1103/PhysRevLett.92.195703
https://doi.org/10.1088/1751-8113/44/49/495001
https://doi.org/10.1088/1751-8113/44/49/495001
https://doi.org/10.1088/1751-8113/44/49/495001
https://doi.org/10.1088/1751-8113/44/49/495001
https://doi.org/10.1016/j.nuclphysbps.2012.06.003
https://doi.org/10.1016/j.nuclphysbps.2012.06.003
https://doi.org/10.1016/j.nuclphysbps.2012.06.003
https://doi.org/10.1103/PhysRevB.88.174301
https://doi.org/10.1103/PhysRevB.88.174301
https://doi.org/10.1103/PhysRevB.88.174301
https://doi.org/10.1103/PhysRevB.88.174301
https://doi.org/10.1103/PhysRevB.89.104201
https://doi.org/10.1103/PhysRevB.89.104201
https://doi.org/10.1103/PhysRevB.89.104201
https://doi.org/10.1103/PhysRevB.89.104201
https://doi.org/10.1103/PhysRevB.91.214201
https://doi.org/10.1103/PhysRevB.91.214201
https://doi.org/10.1103/PhysRevB.91.214201
https://doi.org/10.1103/PhysRevB.91.214201
https://doi.org/10.1103/PhysRevE.86.016315
https://doi.org/10.1103/PhysRevE.86.016315
https://doi.org/10.1103/PhysRevE.86.016315
https://doi.org/10.1103/PhysRevE.86.016315
https://doi.org/10.1103/PhysRevE.92.033016
https://doi.org/10.1103/PhysRevE.92.033016
https://doi.org/10.1103/PhysRevE.92.033016
https://doi.org/10.1103/PhysRevE.92.033016
https://doi.org/10.1103/PhysRevE.93.063101
https://doi.org/10.1103/PhysRevE.93.063101
https://doi.org/10.1103/PhysRevE.93.063101
https://doi.org/10.1103/PhysRevE.93.063101
https://doi.org/10.1103/PhysRevE.95.023107
https://doi.org/10.1103/PhysRevE.95.023107
https://doi.org/10.1103/PhysRevE.95.023107
https://doi.org/10.1103/PhysRevE.95.023107
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1103/PhysRevB.75.045324
https://doi.org/10.1103/PhysRevB.75.045324
https://doi.org/10.1103/PhysRevB.75.045324
https://doi.org/10.1103/PhysRevB.75.045324
https://doi.org/10.1103/PhysRevLett.99.150603
https://doi.org/10.1103/PhysRevLett.99.150603
https://doi.org/10.1103/PhysRevLett.99.150603
https://doi.org/10.1103/PhysRevLett.99.150603
https://doi.org/10.1209/0295-5075/90/30003
https://doi.org/10.1209/0295-5075/90/30003
https://doi.org/10.1209/0295-5075/90/30003
https://doi.org/10.1209/0295-5075/90/30003
https://doi.org/10.1140/epjc/s10052-010-1430-3
https://doi.org/10.1140/epjc/s10052-010-1430-3
https://doi.org/10.1140/epjc/s10052-010-1430-3
https://doi.org/10.1140/epjc/s10052-010-1430-3
https://doi.org/10.1103/PhysRevB.94.174301
https://doi.org/10.1103/PhysRevB.94.174301
https://doi.org/10.1103/PhysRevB.94.174301
https://doi.org/10.1103/PhysRevB.94.174301
http://arxiv.org/abs/cond-mat/0509541
https://doi.org/10.1103/PhysRevLett.104.150601
https://doi.org/10.1103/PhysRevLett.104.150601
https://doi.org/10.1103/PhysRevLett.104.150601
https://doi.org/10.1103/PhysRevLett.104.150601
https://doi.org/10.1103/PhysRevE.84.061128
https://doi.org/10.1103/PhysRevE.84.061128
https://doi.org/10.1103/PhysRevE.84.061128
https://doi.org/10.1103/PhysRevE.84.061128
https://doi.org/10.1103/PhysRevE.86.051124
https://doi.org/10.1103/PhysRevE.86.051124
https://doi.org/10.1103/PhysRevE.86.051124
https://doi.org/10.1103/PhysRevE.86.051124
https://doi.org/10.1103/PhysRevE.88.042118
https://doi.org/10.1103/PhysRevE.88.042118
https://doi.org/10.1103/PhysRevE.88.042118
https://doi.org/10.1103/PhysRevE.88.042118
https://doi.org/10.1103/PhysRevE.88.069903
https://doi.org/10.1103/PhysRevE.88.069903
https://doi.org/10.1103/PhysRevE.88.069903
https://doi.org/10.1103/PhysRevE.88.069903
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1007/BF01312880
https://doi.org/10.1007/BF01312880
https://doi.org/10.1007/BF01312880
https://doi.org/10.1007/BF01312880
https://doi.org/10.1007/BF01316547
https://doi.org/10.1007/BF01316547
https://doi.org/10.1007/BF01316547
https://doi.org/10.1007/BF01316547
https://doi.org/10.1103/PhysRevB.18.353
https://doi.org/10.1103/PhysRevB.18.353
https://doi.org/10.1103/PhysRevB.18.353
https://doi.org/10.1103/PhysRevB.18.353
https://doi.org/10.1103/PhysRevE.49.R959
https://doi.org/10.1103/PhysRevE.49.R959
https://doi.org/10.1103/PhysRevE.49.R959
https://doi.org/10.1103/PhysRevE.49.R959
https://doi.org/10.1103/PhysRevE.70.011601
https://doi.org/10.1103/PhysRevE.70.011601
https://doi.org/10.1103/PhysRevE.70.011601
https://doi.org/10.1103/PhysRevE.70.011601
https://doi.org/10.1103/PhysRevB.77.094203
https://doi.org/10.1103/PhysRevB.77.094203
https://doi.org/10.1103/PhysRevB.77.094203
https://doi.org/10.1103/PhysRevB.77.094203
https://doi.org/10.1088/1742-5468/2016/11/113206
https://doi.org/10.1088/1742-5468/2016/11/113206
https://doi.org/10.1088/1742-5468/2016/11/113206
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/PhysRevB.4.3184
https://doi.org/10.1103/PhysRevD.23.2916
https://doi.org/10.1103/PhysRevD.23.2916
https://doi.org/10.1103/PhysRevD.23.2916
https://doi.org/10.1103/PhysRevD.23.2916
https://doi.org/10.1103/PhysRevD.67.065004
https://doi.org/10.1103/PhysRevD.67.065004
https://doi.org/10.1103/PhysRevD.67.065004
https://doi.org/10.1103/PhysRevD.67.065004
https://doi.org/10.1016/j.physletb.2005.10.086
https://doi.org/10.1016/j.physletb.2005.10.086
https://doi.org/10.1016/j.physletb.2005.10.086
https://doi.org/10.1016/j.physletb.2005.10.086
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1103/PhysRevLett.99.254501
https://doi.org/10.1103/PhysRevLett.99.254501
https://doi.org/10.1103/PhysRevLett.99.254501
https://doi.org/10.1103/PhysRevLett.99.254501
https://doi.org/10.1209/0295-5075/89/40008
https://doi.org/10.1209/0295-5075/89/40008
https://doi.org/10.1209/0295-5075/89/40008
https://doi.org/10.1209/0295-5075/89/40008
https://doi.org/10.1103/PhysRevE.81.066706
https://doi.org/10.1103/PhysRevE.81.066706
https://doi.org/10.1103/PhysRevE.81.066706
https://doi.org/10.1103/PhysRevE.81.066706
https://doi.org/10.1098/rsta.2010.0259
https://doi.org/10.1098/rsta.2010.0259
https://doi.org/10.1098/rsta.2010.0259
https://doi.org/10.1098/rsta.2010.0259



