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1 Introduction

The ΛCDM model is widely accepted as the theory to describe the evolution of our Universe.
Its success is due to the high concordance of its predictions with experimental observations
in spite of its small amount of parameters. While this model presents some theoretical
problems related with its early time behavior their solutions seem to be naturally furnished
by inflation. Even if nowadays the main mechanisms of inflation begin to be almost clear,
the definition of a concrete model still bears several issues. A wide set of models has been
proposed over the years and in some cases theoretical predictions are so close that they are
nearly indistinguishable. This suggests that it can be both interesting and instructive to
analyze the problem from a different point of view and also emphasizes the importance of
finding some universality among all the models.

In order to have a better connection between theory and experimental observations, we
have proposed in [1] a classification of inflationary models that relies on the simplest property
of inflation i.e. the nearly exact scale invariance. Inspired by a formal similarity, it is possible
to describe inflation using a renormalization group equation (RGE) expressed in terms of a
beta function similar to the one that is well known in quantum field theory. In this framework
it is thus possible to describe inflation using the Wilsonian picture of renormalization group
(RG) flows between fixed points. From this point of view, it is easy to identify the terms in
the equations of motion which drive inflation and in particular it is straightforward to classify
inflationary models in terms of a minimal set of parameters. A major benefit of this formalism
is the possibility of defining universality classes, that similarly to the ones defined in statistical
mechanics, should be intended as sets of theories sharing a single scale invariant limit.

Strong motivations to support the introduction of this formalism are offered by the idea
of applying holography to cosmology [2, 3]. This picture has started to spread over the last
years [4–6] and indeed allows to find intriguing interpretations for different cosmological topics
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and in particular for inflation [7]. Interestingly, in the holographic description the departure
from a de Sitter (dS) configuration (i.e. inflation) is interpreted as a departure from conformal
invariance of the dual (pseudo) Quantum Field Theory (QFT). The departure from conformal
invariance is described by an operator O(x), dual to the inflaton field, that is characterized by
a scaling dimension ∆. The classification of these operators is equivalent to the classification
of the different inflation theories. The holographic interpretation of some universality classes
defined in terms of the β-function formalism for inflation has been discussed in [1], in [7]
and in [8].

While the analysis presented in [1] suits perfectly the case of single field models with
standard kinetic term and minimal coupling with gravity, the extension to generalized models
of inflation is still uncompleted. In particular in this paper we focus our interest on models
where the inflaton has a non-standard kinetic term. As it has been shown in [9], a non-
standard kinetic term can drive an period of inflation, called K-inflation. Explicit and well-
known examples are the Dirac-Born-Infeld (DBI) model [10, 11] or tachyon inflation [12–14]
(for a comparison between the theoretical predictions of these models and observational
constraints see for example [15]). A discussion of these models in terms of the Hamilton-
Jacobi approach of Salopek and Bond [16] was carried out in [6]. In particular the authors
have clearly pointed out that the evolution of the system can be consistently carried out in
terms of a Renormalization Group Equation (RGE).

In the present paper we propose a slightly different method to discuss models with non-
standard kinetic terms exploiting the Hamilton-Jacobi formalism. In particular, we propose a
different definition for the β-function that enforces the invariance of β under reparametriza-
tions of the inflaton field. This different definition is inspired by the analysis carried out
in [17], where the formalism was generalized in order to discuss models where the inflaton
is non-minimally coupled with gravity. In particular, it has been shown that the Einstein
frame formulation of models where the inflaton is non-minimally coupled with gravity also
admits a natural description in terms of the β-function approach. Since the Einstein frame
formulation of these models is equivalent to a subclass of models with non-standard kinetic
terms, the analysis presented in this paper is a generalization of the formalism which goes
beyond (and indeed incorporates) the analysis presented in [17].

The outline of this paper is the following: in section 2 we start by giving a brief review of
the main characteristic of inflationary models with non-standard kinetic term. In particular
we point out some fundamental differences with the standard case. In section 3 we present
the generalization of the β-function formalism to models with non-standard kinetic terms.
Some useful formula are reported in appendix A and some more theoretical arguments are
presented in appendix B. Section 4 is dedicated to the study of some explicit examples and we
show how the definition of a set of universality classes for inflationary models is carried out.
Another interesting example (i.e. a class of models which are inspired by tachyon inflation)
is reported in appendix C. Our concluding remarks are finally left to section 5.

2 Non-standard kinetic terms: a brief review

In models with generalized kinetic term, it is possible to go beyond the simplest realization
of inflation i.e. slow roll inflation. In particular in these models the phase of exponential
expansion can be driven by the non-standard kinetic term of the inflaton field. In this section,
we briefly review models with a non-standard kinetic term and we explain this mechanism.
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We start by considering the most general expression for the action describing a homo-
geneous classical scalar field φ(t) minimally coupled with gravity in the Einstein frame:1

S =

∫
d4x
√
−g
(
R

2κ2
+ p(φ,X)

)
, (2.1)

where X ≡ 1
2g
µν∂µφ∂νφ = −φ̇2/2 and p(φ,X) is a general function of φ and X. Note that

the choice p = −X − V (φ) corresponds to the standard case with canonical kinetic term.
The stress-energy tensor is defined as usual:

Tµν ≡ −
2√
|g|

δSm
δgµν

, (2.2)

and allows to express the pressure and the energy density associated with the scalar field:

p = p(φ,X) , (2.3)

ρ(φ,X) = 2Xp,X − p = −φ̇2p,X − p , (2.4)

where p,X ≡ ∂p/∂X. The evolution of this system is completely specified by Einstein Equa-
tions. In the case of interest we obtain:

H2 =
κ2

3
ρ , −2Ḣ = κ2(ρ+ p) = 2κ2Xp,X . (2.5)

A phase of inflation corresponds to a nearly constant H or equivalently a nearly negligible
Ḣ. This can be translated into a condition to achieve an inflationary stage by requiring
εH ≡ −Ḣ/H2 � 1. Using eq. (2.5) it becomes:

− Ḣ

H2
=

3

2

ρ+ p

ρ
=

2Xp,Xκ
2

2H2
. (2.6)

Notice that inflation takes place when ρ ' −p. This condition can be either satisfied for
negligible kinetic energy φ̇2 ' 0 or in the limit p,X ' 0.

More specifically in the case of a standard kinetic term, we have p(φ,X) = −X − V (φ)
which implies p,X = −1 and ρ(φ,X) = −X+V (φ), an inflationary stage can only be realized
for φ̇2 � V (φ). However, in the more general case, referred to as generalized kinetic term
inflation which is the focus of this paper, the condition of a normalized kinetic term, i.e.
p,X = −1, is relaxed. As a consequence the condition for inflation −Ḣ/H2 � 1 can also be
satisfied with p,X → 0, and a whole new set of inflationary models, where inflation is actually
driven by the kinetic term, can be defined.

Having described generalized kinetic term inflation, let us now discuss some fundamental
difference with the standard case. A first difference appears in the expression of the speed of
sound cs defined as c2

s ≡ p,X/ρ,X . Using eq. (2.4) the speed of sound can be expressed as:

c2
s =

p,X
p,X + 2Xp,XX

=
1

1 + 2X∂ ln |p,X |/∂X
. (2.7)

Obviously, for standard kinetic terms we have c2
s = 1, this being no longer true for generalized

kinetic term inflation.
1Working in a Friedman-Lemâıtre-Robertson-Walker with scale factor a(t) and assuming for simplicity a

flat metric in terms of cosmic time i.e. ds2 = −dt2 + a(t)2(dr2 + r2dΩ2).
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Another main difference arises when considering the non-Gaussian features of primordial
fluctuations.2 Interestingly, in the simplest realization of inflation the production of non-
Gaussianities is highly suppressed [18, 22]. However, this result may change dramatically
by considering models with non-standard kinetic terms, where sizable non-Gaussianities are
allowed.

In order to discuss non-Gaussianities3 we start by considering the three point correlation
function of the curvature perturbation ζ~k in momentum space:

〈ζ~k1ζ~k2ζ~k3〉 ≡ Bζ
(
~k1,~k1,~k1

)
, (2.8)

where the function Bζ(~k1,~k1,~k1) is typically referred to as bispectrum. Using momentum
conservation and rotational invariance the bispectrum can be expressed as:

Bζ

(
~k1,~k1,~k1

)
= (2π)3δ(3)

(
~k1 + ~k2 + ~k3

)
Bζ(k1, k2, k3) . (2.9)

It is then customary to express B(k1, k2, k3) in terms of the dimensionless scalar power
spectrum Ps(k) (see eq. (A.4)) evaluated at some fiducial scale k∗ as:

Bζ(k1, k2, k3) = (2π)4P2
s (k∗)

S(k1, k2, k3)

(k1k2k3)2
, (2.10)

where the dimensionless function S(k1, k2, k3) is the so-called “shape function” that depends
on the three momenta appearing in the bispectrum. We can finally introduce the so-called
“nonlinearity parameter” (introduced in [23]) fNL defined as:

S(K,K,K) ≡ 9

10
fNL , (2.11)

that corresponds to the amplitude of the bispectrum in momentum space in the equilat-
eral momentum configuration.4 Using this definition it is customary to extract fNL from
S(k1, k2, k3) and to express the bispectrum as:

Bζ(k1, k2, k3) =
9

10
fNL (2π)4P2

s (k∗)
S(k1, k2, k3)

(k1k2k3)2
, (2.12)

where the shape function is now normalized to one in the equilateral configuration (i.e.
S(K,K,K) = 1).

It is possible to show [20, 21] that for single field models, the leading contribution to fNL
comes from equilateral configurations f equil

NL . In particular the two dominant contributions
(which are called fλNL and f cNL) can be expressed as:

fλNL =
5

81

(
1

c2
s

− 1− 2λ

Σ

)
, f cNL = − 35

108

(
1

c2
s

− 1

)
, (2.13)

2For details on the derivation of the three point correlation functions in single-field models see for example
the classical papers of Maldacena [18] and Weinberg [19], the well known work of Chen et al. [20] or the review
of Chen [21].

3The convention used in this paper is consistent with the notation used in [21].
4In this configuration the three-momenta satisfy K = |k1| = |k2| = |k3|.
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where c2
s is the speed of sound and where Σ and λ are defined as [20, 21]:

Σ ≡ Xp,X + 2X2p,XX =
εHH

2

c2
s

, (2.14)

λ ≡ X2p,XX +
2

3
X3p,XXX . (2.15)

Notice that in the case of standard kinetic terms (i.e. for p,X = −1) we have λ = 0 and c2
s = 1

so that both these contributions are equal to zero. Higher order contributions are at least
linear in the slow-roll parameters [20, 21]. Planck measurements [24–26] constrains f equil

NL to

be |f equil
NL | < | − 4± 43| at 68% CL.
To conclude this review of generalized kinetic term inflation, let us present an explicit

example, the Dirac-Born-Infeld (DBI) model [10, 11] belonging to the category of brane in-
flation motivated by string theory. More precisely, the inflationary expansion of the Universe
is due to the motion of a D3-brane in a AdS-like throat described by the DBI Lagrangian in
a type IIB string theory. DBI inflation is specified by:

p(X,φ) =
1

f(φ)

[
1−

√
1 + 2f(φ)X

]
− V (φ) , (2.16)

where f(φ) = λ/φ4 and V (φ) is the potential. For this particular class of models p,X is thus
given by:

p,X = − 1√
1 + 2fX

. (2.17)

The DBI model of inflation has a non-trivial speed of sound c2
s = 1 + 2fX and allows the

production of sizable non-Gaussianities.

3 Generalized β-function formalism

Let us now describe generalized kinetic term inflation using the β-function formalism pre-
sented in [1]. Using the Hamilton-Jacobi approach of Salopek and Bond [16], the field φ is
taken as the clock to describe the system: the function φ(t) is inverted to express time in
terms of the field φ. In this framework, the Hubble parameter is a function of the field and
it is useful to rewrite by introducing the superpotential W (φ) ≡ −2H(φ) so that Friedmann
equation reads:

3

4κ2
W 2 = ρ . (3.1)

Differentiating W (φ) and using equation (2.5) leads to:

− p,X φ̇ =
W,φ

κ2
. (3.2)

In order to proceed with the formulation of the problem in terms of the β-function formalism
we must solve5 eq. (3.2) for φ̇ i.e. we have to express φ̇ as a function of φ. Once this solution
is found, we can proceed by expressing p,X(X,φ) as a function of φ only.

In analogy with [1], and inspired by the generalization of the β-function formalism to
models with non-minimal coupling with gravity discussed in [17], we define the β-function
associated with our model as:

β(φ) ≡ κ (−p,X)1/2 dφ

d ln a
= −2

κ
(−p,X)−1/2 W,φ

W
. (3.3)

5In general solutions will only exist locally i.e. on time-spans during which φ evolves monotonically.
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Note that other definitions for the β-function exist in the literature (see for example [6]).
Our specific choice is motivated by requirement of invariance of the β-function under a field
reparameterization. This is explicitly showed in appendix B along with more arguments to
justify the definition of eq. (3.3). By substituting eq. (2.5) and eq. (3.2) into eq. (2.4) we can
express the Hamilton-Jacobi equation as:

3

2
W 2(φ) +

2

κ2
(p,X)−1W 2

,φ(φ) = −2κ2p , (3.4)

which has the same form of the Hamilton-Jacobi equation derived in [1]. Moreover, it is
interesting to notice that once again the equation of state has a compact expression in terms
of the β-function. Indeed substituting eq. (2.4) and eq. (3.2) into eq. (2.6) we get:

ρ+ p

ρ
=

4κ2

3
(−p,X)−1 φ̇2

W 2(φ)
=
β2(φ)

3
. (3.5)

This equation shows that the beta function is indeed the function that controls inflation! In
particular inflation is realized in the vicinity of a zero of this function. As a consequence,
the discussion in terms of universality classes may be properly extended to this generalized
case. A review of most of the useful quantities to describe inflation expressed in terms of the
β-function formalism is presented in appendix A.

At this point is important to stress that while the definition of eq. (3.3) is similar in
form to the one given in [17], these two equations are substantially different. Indeed in the

treatment of [17] we have only considered models where the function (−p,X)1/2 only depends

on φ! Conversely in the present work we are interested in discussing models where (−p,X)1/2

depends both on φ and φ̇. As a consequence the problem cannot be directly reduced to the
case of the simplest realization of inflation!

4 Models with non-standard kinetic terms

In what follows, we show how the β-function formalism is applied to some concrete examples
of inflationary models with non-standard kinetic terms. The main difference with respect
to the standard case discussed in [1] is that a universality class of inflationary model is not
only fixed by β(φ) but we also need to specify a parametrization for p,X(X,φ). As explained
in section 3, once this parametrization is fixed we can proceed by solving eq. (3.2) for φ̇ (or
equivalently for X) and the whole dynamics can be expressed as a function of φ only.

It is important to stress that by fixing some parametrization for the β function we specify
a set of universality classes for inflationary models. However, as we also need to specify an
explicit expression for p,X , this universality only holds among models that share a similar
expression for the non-standard kinetic term.6 In this sense the classification proposed in
this paper is slightly different from the one proposed in [1].

Let us consider a quite general parametrization for p,X :

p,X = g(φ) [1 + 2f(φ)X]α . (4.1)

This parametrization has been chosen to recover two well-known examples of models of
inflation with non-standard kinetic terms:

• By fixing α = −1/2, f = λ/φ4 and g(φ) = −1 we recover the DBI model [10, 11].

6Different parameterizations for p,X(X,φ) lead to different cs that for example lead to a different amplitude
of the scalar power spectrum (see eq. (A.5)) and to a different value for ns (see eq. (A.6)).
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• By fixing α = −1/2 and f(φ) = 1 and g(φ) = −V (φ) we recover the case of tachyonic
inflation [12–14].

As a first step we can thus write eq. (3.2) for the models described by the parametrization
of eq. (4.1) (in the following we fix κ2 = 1):

− 2X (1 + 2f(φ)X)2α =
W 2
,φ

g2(φ)
. (4.2)

As a consequence, once α is fixed we are able to solve (at least piecewise) eq. (4.2) and we
can thus express X as a function of φ. The inflationary model is then completely specified
once an explicit parametrization for the β-function is known. Once the beta function is set,
the superpotential can be computed by solving:

− κ

2
β(φ) [−g(φ)]1/2 = [1 + 2f(φ)X]−α/2

W,φ

W
. (4.3)

The speed of sound is then given by:

c2
s =

1 + 2fX

1 + 2fX(1 + 2α)
, (4.4)

and it is also possible to show that:

2λ

Σ
=

4αc2
sfX

(1 + 2fX)2

(
1 +

4

3
fX

(
α+

1

2

))
, (4.5)

where λ and Σ are defined respectively in eq. (2.14) and in eq. (2.15).

As anticipated at the beginning of this section, universality classes of inflationary models
can be completely specified by fixing pX and β(φ). It the rest of this section we first focus
on a specific choice of parameter (α = −1/2, f = λ/φ4 and g(φ) = −1) that corresponds to
“DBI-like models”. In particular we show that in terms of the β-function formalism we can
easily recover the analysis of [10, 11] and we explain how this analysis can be generalized. A
similar treatment for models with α = −1/2, f = 1 and g(φ) = −V (φ), i.e. “Tachyonic-like
models”, is carried out in appendix C. After this discussion, we consider a different class
of models that can again be obtained from the parametrization of eq. (4.1). In particular,
we show that it is possible to define a set of inflationary models with cs 6= 1 and small
non-Gaussianities.

4.1 DBI-like models

Let us consider the parametrization of eq. (4.1) and fix α = −1/2, f(φ) = λ/φ4, g(φ) = −1.
In this case eq. (4.2) reduces to:

− 2X = W 2
,φ (1 + 2fX) , (4.6)

which allows to express X as a function of φ only:

− 2X =
W 2
,φ

1 + λW 2
,φ/φ

4
. (4.7)

– 7 –
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Substituting this equation into the expression for the β-function given in eq. (4.3) we get:

− β(φ)

2
=

W,φ

W
(

1 + λW 2
,φ/φ

4
)1/4

. (4.8)

This equation can be inverted to express W,φ as a function of β and W :

W,φ = −
√
λ

2

W 2β2

4φ2

(
1 +

√
1 +

64φ8

λ2β4W 4

)1/2

. (4.9)

As a consequence, once the parametrization of the β-function is fixed, we can solve this
differential equation to obtain the superpotential.

Similarly we can substitute eq. (4.7) into eq. (4.4) and into eq. (4.5) to get respectively:

c2
s =

1

1 + λW 2
,φ/φ

4
, (4.10)

2λ

Σ
=

λW 2
,φ/φ

4

1 + λW 2
,φ/φ

4
. (4.11)

The expressions for all the other relevant quantities to describe inflation can be derived using
the general formula that are reported in appendix A. In particular, comparing eq. (A.2) with
eq. (2.16) it is easy to show that the potential can be expressed as:

V (φ) =
φ4

λ

1− 1√
1 + λW 2

,φ/φ
4

+
3

4
W 2(φ)

[
1− β2

3

]
. (4.12)

At this point we can finally define a set universality class of models by specifying some
explicit parameterizations of the β-function. For example we can assume that in a neighbor-
hood of the fixed point the β-function can be expressed as:

β(φ) ' aφn . (4.13)

The asymptotic expressions for the superpotential can be computed using eq. (4.9). In
particular we can distinguish three different regimes (that, as we show in the following,
correspond to different values of n):

• For φ2/(βW )� 1 eq. (4.9) can be approximated as:

W,φ ' −
√
λ
W 2β2

4φ2
. (4.14)

We can thus integrate this equation to get:

W (φ) 'Wf

[
1 +

Wf a
2
√
λ

4
ln(φ)

]−1

, for n =
1

2
, (4.15)

W (φ) '

[
1

Wf
+

a2
√
λ

4(2n− 1)
φ2n−1

]−1

, for n 6= 1

2
. (4.16)
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Notice that eq. (4.16) gives two asymptotic behaviors for the superpotential:

W (φ) ' 4(2n− 1)

a2
√
λ

φ1−2n , for 0 ≤ n < 1

2
, (4.17)

W (φ) 'Wf

[
1− a2

√
λWf

4(2n− 1)
φ2n−1

]
, for n >

1

2
. (4.18)

Comparing eq. (4.18) with the condition φ2/(βW ) � 1 it should be clear that this
expression only holds for n < 2! Notice also that the case n = 0 is special as in this
case β approaches a constant non-zero value. As discussed in [1], this case corresponds
to power-law inflation [28]. Finally we can use eq. (4.12) to compute the potential
associated to the different expressions of W :

V (φ) ' 12

λa4

(
1− a2

3

)
φ2 , for n = 0 , (4.19)

V (φ) ' 12(1− 2n)2

λa4
φ2(1−2n) , for 0 ≤ n < 1

2
, (4.20)

V (φ) '
3W 2

f

4

[
1 +

Wf a
2
√
λ

4
ln(φ)

]−2

, for n =
1

2
, (4.21)

V (φ) '
3W 2

f

4

[
1− Wf a

2
√
λ

2(2n− 1)
φ2n−1

]
, for

1

2
≤ n < 2 . (4.22)

These cases correspond to some of the ansatzs considered in [10]. In particular n = 0
corresponds to the case B, 0 ≤ n < 1/2 is a generalization of case B, 1/2 ≤ n < 2 is
a generalization of case A and n = 1/2 corresponds to a case that was not considered
in [10].

It is also interesting to point out that for all these cases c2
s goes to zero during inflation.

As a consequence all these models predict the generation of large non-Gaussianities.

• For φ2/(βW )� 1 eq. (4.9) can be approximated as:

W,φ ' −
Wβ

2
. (4.23)

We can thus integrate this equation to get:

W (φ) 'Wf exp

[
−a

2

φn+1

n+ 1

]
. (4.24)

Comparing eq. (4.24) with the condition φ2/(βW ) � 1 it should be clear that this
expression only holds for n > 2! We can then use eq. (4.12) to compute the asymptotic
expression for the potentials associated with these models:

V (φ) '
3W 2

f

4
exp

[
−a φ

n+1

n+ 1

]
. (4.25)

Expanding the potential at the first order we find that this case corresponds to a
generalization of case A of [10]. For the models of this class c2

s approaches 1 and using
eq. (4.11) it is easy to show that these models predict negligible non-Gaussianities.
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• Finally we can consider the case φ2/(βW ) ' C where C is a constant of order 1. This
clearly corresponds to n = 2, and thus eq. (4.9) reads:

W,φ ' −D
√
λ
W 2β2

φ2
, (4.26)

where we have defined D ≡ [(1 +
√

1 + C)/8]1/2. We can thus integrate this equation
to get:

W = Wf

[
1− Da2

√
λWf

3
φ3

]
. (4.27)

Once again we can use eq. (4.12) to compute the asymptotic expression for the potentials
associated with these models:

V (φ) '
3W 2

f

4

[
1− 2Da2

√
λWf

3
φ3

]
. (4.28)

Again these models can be seen as a generalization of case A of [10].

As for the models of this class λW 2
,φ/φ

4 = λ2D2W 4
f a

4 we have

c2
s =

1

1 + λ2D2W 4
f a

4
. (4.29)

As a consequence c2
s is different from 1 and is finite. Moreover, we can use eq. (4.11)

and eq. (2.13) to show that for these models we have:

fλNL =
5

81

(
λ4D4W 8

f a
8

1 + λ2D2W 4
f a

4

)
, f cNL =

35

108

(
λ4D4W 8

f a
8
)
. (4.30)

These models are thus predicting non-zero non-Gaussianities which are not arbitrar-
ily large.

Notice that all the models considered in this section are obtained assuming that in the
neighborhood of the fixed point the β-function can be parameterized as in eq. (4.13). As a
consequence new classes of models can be defined if we consider different parameterizations.

4.2 A new class of models

While the models of section 4.1 have been useful in order to explain the application of
the formalism, it is fair to point out that they typically predict [15] values of cosmological
observables (in particular ns and r and/or a huge amount of non-Gaussianities) that are not
in good agreement with Planck constraints [24, 25]. In order to define a class of models that
satisfies this requirements we can consider some other models that can be described by the
parametrization of eq. (4.1).

For this purpose we fix g(φ) = γ/φ and we us assume that once the dynamics is expressed
in terms of φ, in a neighborhood of the fixed point and up to subleading corrections we have
2fX ' −C2 where C is a constant. In the following we will check the consistency of this
assumption.

We proceed by using eq. (4.2) to get:

− 2X =
W 2
φ

g2(φ)
(1 + 2fX)−2α ' φ2

W 2
φ

γ2

(
1− C2

)−2α
. (4.31)
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The relation between the β-function and the potential is then given by eq. (4.3) and it reads:

β(φ) = −2(−p,X)1/2W,φ

W
' −2

√
γ

φ

(
1− C2

)α/2 Wφ

W
. (4.32)

Using the definition of c2
s and 2λ

Σ it is easy to show that we have:

c2
s '

1− C2

1− (2α+ 1)C2
,

2λ

Σ
' −2

3

(4α− 1)C2

1− (2α+ 1)C2
. (4.33)

Note that we have still not fixed any particular parameterization for f(φ) but we only required
that during the evolution X(φ) approaches −C2/(2f). The explicit parameterizations of f(φ)
and X(φ) are thus fixed a posteriori when we fix the expression for β(φ). The value of α has
not been specified either. For example it is possible to choose α = 1/4 to set 2λ/Σ = 0. As
a consequence, the production of non-Gaussianities in these models is only controlled by c2

s.
At this point, in order to specify a class of inflationary models and to compute the

associated predictions for cosmological observables, a parametrization for β(φ) has to be
chosen. In the following we focus on the case β = −γ/φ. Let us start by computing N ,
number of e-foldings (using eq. (A.3)):

N = −
∫ φ

φf

(−p,X)1/2 dφ̂

β(φ̂)
=
(
1− C2

)α/2
(φ− φf) . (4.34)

Similarly we can use eq. (4.32) to get the explicit expression for W (φ):

W = Wf exp

{
−
γ2
(
1− C2

)α/2
2

(
1

φ
− 1

φf

)}
. (4.35)

The lowest order expression for W,φ is given by:

W,φ ' −
γ2
(
1− C2

)α/2
2φ2

, (4.36)

and X(φ) can also be directly computed to the lowest order using eq. (4.31):

− 2X ' γ2

φ2 (1− C2)α
. (4.37)

In order to be consistent with the assumption 2fX ' C2 we have:

f(φ) '
φ2
(
1− C2

)α
γ2

C2 . (4.38)

Finally we can compute the lowest order expressions for ns and r using eq. (A.6) and eq. (A.6)
respectively:

ns − 1 ' − 2

N2
−
γ2
(
1− C2

)α/2
N2

, r ' 8csβ
2 ' O(1)

N2
. (4.39)

For the typical value of N (i.e. N ' 60) we can find a large region of the parameter space
that gives values of ns and r that are in good agreement with Planck constraints [24, 25].
Moreover, as shown in eq. (4.33), these models are also predicting c2

s 6= 1 and sizable but not
huge non-Gaussianities.
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5 Conclusions

Models with non-standard kinetic term may predict both a deviation from c2
s = 1 and the

production of sizable non-Gaussianities. As these quantities can be directly constrained using
data [24–26], it is interesting to understand whether these models can still be considered as
viable or if they are completely ruled out. The β-function formalism was originally introduced
in [1] to describe single field inflationary models where the inflaton has a canonical kinetic
term and a minimal coupling with gravity.7 In this work we have proposed an extension
of this formalism in order to include inflationary models with non-standard kinetic terms.
In particular we have shown that the description of inflation in terms of RG equation still
holds, allowing for the definition of universality classes among different theoretical realizations
of inflation.

In this formalism, any model is completely defined by the form of its non-standard
kinetic term (which is parameterized by p,X) and by the β-function. As a first step we have
explicitly shown that some well-known models, such DBI (and tachyonic) inflation can be
easily reproduced and generalized in terms of this formalism. Moreover, as our approach
provides a powerful bottom-up method to construct new models, we have shown (using the
parametrization of eq. (4.1)) that a large class of new models can be introduced. We have
also shown that is possible to define models with c2

s 6= 1 and with non-Gaussianities that
are non-trivial but small enough to potentially agree with data. The definition of a concrete
(and hopefully theoretically well-motivated) inflationary model arising from some high energy
theory that belongs to this class offers an interesting possibility for future works.

A further generalization would be to extend our formalism to multi-fields models of
inflation.8 It would also be interesting to discuss the extension of the formalism both to
models with a non-minimal kinetic coupling between the inflaton and gravity (as in the case
of “new Higgs” inflation [35, 36]), and to models of modified gravity. These analysis are left
to future works.
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A Useful formula

In this section we present a summary of the main results for a general model. Predictions
are parametrized in terms of the function β(φ) and of p,X . As explained in section 3 and as
explicitly shown in section 4, once an explicit expression for p,X is fixed, we can express φ̇ as
a function of φ. As consequence everything can be expressed as an explicit function of φ.

• The superpotential is obtained by solving the equation:

β(φ) = −2

κ
(−p,X)−1/2 W,φ

W
. (A.1)

7The extension to non-minimal coupling is discussed in [17].
8The analysis of [34] and [6] can provide a useful guideline to achieve this result.
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• The pressure p(φ) is:

p(φ) = − 3

4κ2

(
1− β2(φ)

3

)
W 2. (A.2)

• The number of e-foldings is:

N = −κ
∫ φ

φf

(−p,X)1/2 dφ′

β(φ′)
. (A.3)

We then express the dimensionless power spectra9 and their spectral indexes as:

• Scalar power spectrum:

Ps =
κ2

16π2
W 2 1

csβ2(φ)
. (A.5)

• Scalar spectral index:

ns − 1 '

[
−β2(φ)− β(φ)

κ (−p,X)−1/2 d
dφ ln

(
csβ

2(φ)
)]

1− 1
2β

2(φ)− β(φ)
κ (−p,X)−1/2 cs,φ

cs

. (A.6)

• Tensor power spectrum:

Pt =
κ2

2π2
W 2(φ) . (A.7)

• Tensor spectral index:

nt ' −
β2(φ)

1− 1
2β

2(φ)− β(φ)
κ (−p,X)−1/2 cs,φ

cs

. (A.8)

• Tensor-to-scalar ratio:
r = 8csβ

2(φ). (A.9)

To conclude this section, we briefly discuss slow-roll parameters. “Horizon-flow” parameters
as introduced in [27] are particularly suitable for k-inflation.10 They are defined as:

ε0 ≡ H∗/H, εi+1 ≡ −
d ln |εi|

dN
=
β(φ)

κ
(−p,X)−1/2 d ln |εi|

dφ
, (A.10)

where H∗ is the Hubble parameter at some chosen time t∗. We compute ε1 and ε2:

ε1 =
1

H

dH

dN
=

1

2
β2(φ), (A.11)

ε2 =
2 (−p,X)−1/2

κ

dβ

dφ
, (A.12)

9The dimensionless scalar and tensor power spectra at horizon crossing are respectively defined as:

Ps =
κ2H2

8π2εHcs
, Pt =

2κ2H2

π2
. (A.4)

10Notice that in the referred paper N ≡ ln(a/ai) while we defined N ≡ − ln(a/af ).
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where we used dN = − κ
β(φ) (−p,X)1/2 dφ. In addition, we define the “speed-of-sound” pa-

rameter εcs :

εcs =
β(φ)

κ
(−p,X)−1/2 d ln cs

dφ
. (A.13)

Depending on the model, εcs may be written in terms of the other parameters εi. The spectral
indexes and the tensor to scalar ratio in terms of these parameters read:

ns − 1 =
−2ε1 − ε2 − εcs

1− ε1 − εcs
, (A.14)

nt =
−2ε1

1− ε1 − εcs
, (A.15)

r = 16csε1. (A.16)

B β-function parametrization and field redefinition

In this appendix we present some theoretical motivations (which are also supported by some
examples) to justify the definition of the beta-function given in eq. (3.3). As discussed
in [8, 17], if p,X is a function of φ only, say −F (φ), it is possible to define a new field ϕ as:(

dϕ

dφ

)
≡ (−p,X)1/2 = F 1/2(φ) , (B.1)

that has a canonical kinetic term. As a consequence, the β-function that describes the
cosmological evolution of ϕ can be defined directly following the procedure carried out in [1].
In particular we have:

β̃(ϕ) ≡ β(φ(ϕ)) = κ
dϕ

d ln a
, (B.2)

so that the evolution of the inflationary Universe is described in terms of an equation that
has exactly the form of a renormalization group equation. In this case the β-function that
describes the evolution of φ is given by:

β(φ) = β̃(ϕ(φ)) = κ
dϕ

dφ

dφ

d ln a
= κF 1/2(φ)

dφ

d ln a
, (B.3)

and therefore, we can equivalently work with either β(φ) or β(ϕ). The definition of β given
in eq. (3.3) is thus motivated by the request for this property. However, it is fair to mention
that different definitions for β (that indeed are perfectly valid) exist in the literature (see for
example [6]).

As explained in section 2 and in section 3, in the case of a generalized kinetic term, p,X
may be a general function of X and φ. As a consequence, in general we cannot perform the
field redefinition of eq. (B.1) and we cannot describe the dynamics in terms of a single scalar
field with a canonical kinetic term. However, as discussed in section 2 and in section 3, once
we have solved11 eq. (3.2) for φ̇, it is still possible to express φ̇ as a function of φ only. After
this procedure, even p,X can be expressed as a function of φ only and thus, using eq. (B.1)
we can define12 a new field ϕ whose cosmological evolution is described by:

β̃(ϕ) ≡ β(φ(ϕ)) = κ
dϕ

d ln a
, (B.4)

11The solution of this equation exists at least locally.
12While it is not always possible to find an analytical expression for φ(ϕ), in following we show that in some

cases this expression exists.
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that once again has exactly the form of a renormalization group equation. Notice that
expressing eq. (3.2) in terms of ϕ we recover the usual expression for ϕ̇ in terms of the
superpotential

ϕ̇ =
W̃,ϕ(ϕ)

κ2
. (B.5)

where W̃ (ϕ) ≡W (φ(ϕ)). Using this equation we can directly get:

β̃(ϕ) = κ
dϕ

d ln a
= −2

κ

W̃,ϕ

W̃
, (B.6)

and the usual Hamilton-Jacobi equation of [1]:

− 2κ2p̃(ϕ) =
3

2
W̃ 2(ϕ)− 2

κ2
W̃ 2
,ϕ(ϕ) =

3

2
W̃ 2(ϕ)

[
1− β̃2(ϕ)

3

]
. . (B.7)

At this point it is crucial to stress that even if it is possible to recover the expressions derived
in [1], in general the field ϕ has a non-standard kinetic term!13 In particular, while

(−p̃,X(ϕ))1/2

(
dφ

dϕ

)
= 1 , (B.8)

we still have p̃,X(X,ϕ) 6= −1! As a consequence both p̃,XX(ϕ) ≡ p,XX(φ(ϕ)) and p̃,XXX(ϕ) ≡
p,XXX(φ(ϕ)) are generic functions of ϕ and thus the model is still predicting c2

s 6= 1 and non-
zero non-Gaussianities.

Let us clarify this aspect by considering some examples where an analytical expression
for ϕ can be computed. In particular, let us consider some of the cases of DBI-like inflation
models presented in section 4.1. We can start by using eq. (4.7) to express p,X as:

− p,X =
(
1 + λW 2

,φ/φ
4
)−1

, (B.9)

and the expression for the β-function reads:

β(φ) = (−p,X)1/2 dφ

d ln a
=
(
1 + λW 2

,φ/φ
4
)−1/2 dφ

d ln a
. (B.10)

In order to cast the β-function in the canonic form we can proceed with the field redefinition
of eq. (B.1) i.e.:

dϕ =
dφ√

1 + λW 2
,φ/φ

4
(B.11)

At this point we can set β(φ) ' aφn and we show that it is possible to define some cases that
admit an analytical expression for φ(ϕ):

• As a first example we consider the case with n = 2. In this case W (φ) is given by
eq. (4.27) i.e.:

W = Wf

[
1− Da2

√
λWf

3
φ3

]
, (B.12)

13An explicit example of this feature is shown at the end of this appendix (see eq. (B.21)).

– 15 –



J
C
A
P
0
3
(
2
0
1
7
)
0
6
0

and thus:
W,φ ' −Da2

√
λW 2

f φ
2 . (B.13)

By substituting into eq. (B.11) to get:

dϕ ' dφ√
1 + λ2D2a4W 4

f

−→ ϕ ' φ√
1 + λ2D2a4W 4

f

. (B.14)

Notice also that in this case p,X becomes nearly constant approaching the fixed point.

• In order to define two more examples, we start by setting n > 2. In this case W (φ) is
given by eq. (4.24) i.e.:

W 'Wf exp

[
−a

2

φn+1

n+ 1

]
'Wf −Wf

a

2

φn+1

n+ 1
, (B.15)

and thus:

W,φ ' −
aWf

2
φn . (B.16)

We can thus substitute into eq. (B.11) to get:

dϕ ' dφ√
1 + λa2W 2

f φ
2n−4/4

. (B.17)

At this point we can notice that setting n = 5/2 we have:

dϕ ' dφ√
1 + λa2W 2

f φ/4
, −→ ϕ− ϕf =

2

C

√
1 + Cφ , (B.18)

where C ≡ λa2W 2
f /4. Clearly this equation can be inverted to express φ as a function

of ϕ. Another example can be easily obtained by fixing n = 3 so that:

dϕ ' dφ√
1 + λa2W 2

f φ
2/4

, −→ ϕ− ϕf =
sinh−1(

√
Cφ)√

C
, (B.19)

where again C ≡ λa2W 2
f /4. Once again it is possible to invert this equation and express

φ as a function of ϕ.

Let us conclude this appendix by expressing the lagrangian of DBI-like models (with
n = 5/2) in terms of the new field ϕ. By definition (dφ/dϕ)2 = 1 + Cφ and substituting
eq. (B.18) we can easily get: (

dφ

dϕ

)2

=

(
C

2

)2

(ϕ− ϕf)
2 . (B.20)

We can then substitute into eq. (2.16) to get:

p(X,ϕ) =
1

f̃(ϕ)

1−

√
1 + 2f̃(ϕ)

(
C

2

)2

(ϕ− ϕf)2X

− Ṽ (ϕ) , (B.21)

where as X ≡ gµν∂µϕ∂νϕ/2, f̃(ϕ) ≡ f(φ(ϕ)) and Ṽ (ϕ) ≡ V (φ(ϕ)).
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C Tachyonic inflation-like models

Tachyon inflation is another model with a non-standard kinetic term arising in string the-
ory [12, 13]. The slow-rolling scalar field leading to inflation is a tachyon.14 The pressure in
this model is given by:

p(φ,X) = −V (φ)
√

1 + 2X , (C.1)

where as usual, X ≡ −1
2 φ̇

2. It is useful to point out that in the case of tachyonic inflation
the expression for the energy density is:

ρ ≡ 2Xp,X − p = V (φ)

[
−2X√
1 + 2X

+
√

1 + 2X

]
=

V (φ)√
1 + 2X

= −p,X , (C.2)

so that the energy density is equal −p,X .
The equation of state reads:

ρ+ p

ρ
= φ̇2 , (C.3)

and the speed of sound:

c2
s = 1− φ̇2 . (C.4)

The dynamics is obtained from the Friedmann equations (2.5). An accelerated phase of
expansion requires ä/a > 0 which implies that φ̇2 is restricted to the range [0, 2/3]. Note
that the speed of sound moves away from its standard value during the phase of inflation
and non-trivial non-Gaussianities are allowed.

This class of models can thus be described by the parametrization of eq. (4.1) fixing
α = −1/2, f(φ) = 1, g(φ) = −V (φ). It is easy to show that in this case eq. (4.2) thus
reduces to:

− 2X =
W 2
,φ

V 2(φ)
(1 + 2X) . (C.5)

Again we can express X as a function of φ only:

− 2X =
W 2
,φ/V

2(φ)

1 +W 2
,φ/V

2(φ)
. (C.6)

Substituting into eq. (C.2) we thus get:

ρ = −p,X =
√
V 2(φ) +W 2

,φ . (C.7)

At this point we can use eq. (3.1) to get:

V 2(φ) =
9

16
W 4 −W 2

,φ , (C.8)

so that −2X is directly given by:

− 2X =
W 2
,φ

9
16W

4
. (C.9)

14In the literature this field is typically denoted with T .
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Substituting into the expression for the β-function given in eq. (3.3) we get:

β(φ) = − 4√
3

W,φ

W 2
. (C.10)

The solution of this equation is thus given by:

W (φ) = Wf

(
1 +Wf

∫ φ

φf

√
3

4
β
(
φ̂
)

dφ̂

)−1

. (C.11)

We can then compare with eq. (C.8) to get:

V 2 =
9

16
W 4

(
1− β2

3

)
. (C.12)

We can then use eq. (4.4) to compute the speed of sound:

c2
s =

1

1 +W 2
,φ/V

2
. (C.13)

Similarly we can use eq. (4.5) to show that:

2λ

Σ
=

W 2
,φ/V

2(φ)

1 +W 2
,φ/V

2(φ)
. (C.14)

As we are interested in describing inflation, which is realized for β(φ) � 1, we can safely
neglect β2/3 with respect to one so that:

V 2 ' 9

16
W 4 . (C.15)

Under this assumption it is also possible to get:

β(φ) = −
V,φ

V 3/2
, (C.16)

and also:

c2
s '

1

1 + β2/3
,

2λ

Σ
=

β2

3 + β2
. (C.17)

As a consequence for β2 → 0 we both have c2
s → 1 and negligible non-Gaussianities. Actually

inflation can also be realized for β ' −C with C sufficiently small.15 In this case we have:

W (φ) =
Wf

1 +WfCφ
, (C.18)

c2
s approaches a constant value different both from zero and one and 2λ/Σ approaches a

constant non-zero value.
We conclude this appendix by considering some particular parameterizations for the

β-function. In particular we show that by considering some simple expressions for the β-
function we can recover the models presented in [14].

15As discussed in [1] this case actually corresponds to the case of power-law inflation [28].
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For example we can consider the case β(φ) = aφn. Using eq. (C.11) we get:

W (φ) = Wf

(
1 + aWf

√
3

4

φm+1

m+ 1

)−1

, (C.19)

that corresponds to the case of inverse power-law potential of [14, 29, 30].

Similarly we can fix other parameterizations of the β-function in order to recover the
Exponential potential of [14, 31, 32] or the Inverse cosh potential of [14, 33].
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