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We use state-of-art measurements of the galaxy luminosity function (LF) at z = 6, 7 and 8 to
derive constraints on warm dark matter (WDM), late-forming dark matter (LFDM) and ultra-light
axion dark matter (ULADM) models alternative to the cold dark matter (CDM) paradigm. To this
purpose we have run a suite of high-resolution N-body simulations to accurately characterise the
low-mass end of the halo mass function and derive DM model predictions of the high-z luminosity
function. In order to convert halo masses into UV-magnitudes we introduce an empirical approach
based on halo abundance matching which allows us to model the LF in terms of the amplitude and
scatter of the ensemble average star formation rate halo mass relation, 〈SFR(Mh, z)〉, of each DM
model. We find that independent of the DM scenario the average SFR at fixed halo mass increases
from z = 6 to 8, while the scatter remains constant. At halo mass Mh & 1012 M� h−1 the average
SFR as function of halo mass follows a double power law trend that is common to all models, while
differences occur at smaller masses. In particular, we find that models with a suppressed low-mass
halo abundance exhibit higher SFR compared to the CDM results. Thus, different DM models
predict a different faint-end slope of the LF which causes the goodness-of-fit to vary within each
DM scenario for different model parameters. Using deviance statistics we obtain a lower limit on the
WDM thermal relic particle mass, mWDM & 1.5 keV at 2σ. In the case of LFDM models, the phase
transition redshift parameter is bounded to zt & 8 · 105 at 2σ. We find ULADM best-fit models
with axion mass ma & 1.6 · 10−22 eV to be well within 2σ of the deviance statistics. We remark
that measurements at z = 6 slightly favour a flattening of the LF at faint UV-magnitudes. This
tends to prefer some of the non-CDM models in our simulation suite, although not at a statistically
significant level to distinguish them from CDM.

I. INTRODUCTION

In the past few years there has been significant
progress in the characterization of the high-redshift UV-
luminosity function (LF) (see e.g. [1–9]). Measurements
from galaxy samples at z & 4 have shown that the slope
of LF remains steep to MUV ∼ −17 magnitudes (see
e.g. [6, 7]) with important implications for scenarios of
cosmic reionization. Evidence of such steepness persist-
ing to very faint magnitudes (MUV ∼ −13) would im-
ply the existence of a large population of dim galaxies
contributing to the reionization of the universe (see e.g.
[10–13]). However, it is only very recently that observa-
tions have begun probing the galaxy LF at such low UV-
luminosities. As an example, measurements of the LF to
MUV ≈ −15 at z ∼ 6 and MUV ≈ −17 at z ∼ 8 have
been obtained in [14–16], while estimates to even fainter
magnitudes have been obtained by Livermore, Finkel-
stein and Lotz [17]. The latter have been able to charac-
terise for the first time the LF to MUV = −12.5 at z ∼ 6,
MUV = −14 at z ∼ 7 and MUV = −15 at z ∼ 8, showing
that the LF slope remains steep to very faint magnitudes
and at high-redshifts.

These measurements have been possible thanks to the
detection of very faint high-redshift objects through the
gravitational lensing magnification caused by massive
galaxy clusters that are the targets of the Hubble Fron-
tier Fields (HFF) program [18, 19]. This novel approach
is a promising alternative to deep galaxy survey searches
such as the Hubble Ultra Deep Field [20–22], but it is
not exempt of systematic errors that can bias the deter-
mination of the LF. As an example, the uncertainty in
the assumed size distribution of very faint galaxies [23]
and the magnification error due to lens model uncertain-
ties can alter the LF faint-end slope [24]. The latter has
been shown to be the dominant source of systematics. In
particular the analysis of [24] has indicated that when
carefully assessed, current LF estimates cannot exclude
the presence of a flattening of the LF at the faint-end, as
expected from a number of numerical simulations studies
[69, 70], which would call into question some of the pro-
posed reionization scenarios. However, the implications
of these measurements are far wider than probing the
link between galaxy formation models and cosmic reion-
ization history, since they provide a test of the nature of
dark matter (DM) itself.
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In the standard cosmological model (e.g. [25]), DM
consists of cold, collisionless particles interacting with
visible matter (and indeed other DM particles and neu-
trinos) only via gravity. This is known as the cold dark
matter (CDM) paradigm, and has various motivations
from particle physics such as supersymmetry, extra di-
mensions, axions, and string theory (for reviews, see e.g.
Refs. [30–32]). In such a scenario the faint galaxies ob-
served at high-redshift populate small-mass DM halos.
As an example, analytical models of the LF suggest that
galaxies with magnitude MUV ≈ −15 at z ∼ 8 should
be hosted in halos of mass of ≈ 109M� h−1 (see e.g.
[10, 12]). Therefore, the recent measurements of the
faint-end of the galaxy LF function at z = 6, 7 and 8
probe the lightest and earliest to form DM objects, which
are at the frontier of our knowledge.

The CDM paradigm has been tremendously successful
at reproducing observations of the large-scale distribu-
tion of matter in the universe [26–29]. In contrast, the
emergence of anomalies at small scales and the lack of
detection of supersymmetric weakly interactive particles
(WIMPs) or QCD axions in the lab (e.g. Refs. [33, 34])
have prompted the investigation of broader scenarios
that evade detection in standard channels. For exam-
ple, direct detection interpretations are altered when the
DM production method breaks the link between thermal
cross-section and abundance, when production is non-
thermal, or when symmetry dictates particular couplings
to be absent or suppressed. In the present work we will
be particularly interested in models of DM that not only
evade direct detection, but also differ from CDM in terms
of cosmological structure formation, and as such can be
probed with the high-z LF. In these scenarios, astro-
physics offers a probe of DM particle physics comple-
mentary to laboratory based searches.

We will consider three examples of DM models fitting
this prescription. A warm dark matter (WDM) compo-
nent with thermal relic particle mass mWDM O(∼ keV),
inspired by particle physics models of sterile neutrinos,
has been advocated as a solution to the small-scale
anomalies of CDM (see e.g. [38, 39]). Sterile neutri-
nos in this mass range cannot be detected in standard
WIMP searches at least with current experimental ca-
pabilities (see e.g. [35–37]), but leave imprints on the
cosmic structure formation due to their thermal veloci-
ties. Ultralight axions (ULAs) with mass O(10−22 eV)
may be present in hidden sectors, evading DM searches
based on the couplings of the QCD axion [40–42]. ULAs
and other models of scalar field/wave DM affect structure
formation due to their large de Broglie wavelength [43–
51]. Our third and final benchmark model is late-forming
dark matter (LFDM) [72, 73]. In such a scenario DM
particles emerge from a scalar field undergoing a phase
transition near matter-radiation equality which alters the

small scale distribution of density fluctuations.1

A common feature of these scenarios is the suppres-
sion of matter density fluctuations below a cut-off scale
that depends on the specificity of the DM particle model.
Traces of this signature have been tightly constrained us-
ing matter power spectrum measurements at z ∼ 4 − 5
from Lyman-α forest observations (see e.g. [74, 75]).
However, it has been pointed out that such bounds may
relax if the thermal evolution of the intergalactic medium
is a non-monotonic function of redshift [76]. A detailed
discussion of other caveats pertaining the properties of
the intergalactic medium that enter such analyses can
be found in [51]. Alternatively, DM models predicting a
cut-off in the matter power spectrum can be constrained
using measurements of the abundance of faint galaxies
at high redshifts. This is because the suppression of
power at small scale leads to suppressed abundance of
low-mass halos. Similarly, constraints on DM scenarios
can be inferred from measurements of the dark matter
distribution in the local universe. Indeed, it was the
discovery of small scale anomalies in the distribution of
structures surrounding the Milky Way, such as the core-
vs-cusp problem [52, 53], the missing satellites problem
[54, 55] and the too-big-to-fail problem [56, 57] that have
prompted the study of non-standard DM models such
as WDM. Nevertheless, in the low redshift universe it is
hard to disentangle whether such anomalies are the result
of the non-standard properties of DM or the consequence
of baryon feedback (see e.g. [58–60]). This is because
the amplitude and nature of the baryonic processes that
contribute to the shaping distribution of matter at small
scales and at late times remains largely uncertain (see
e.g. [61, 62]). In the high-redshift universe on the other
hand, baryonic processes are expected to be less complex,
thus it is possible that measurements of the abundance
of faint high-z galaxies hosted in low mass DM halos may
provide more pristine insights on DM.

Constraints on the WDM models using earlier high-
redshift LF measurements have already been obtained in
numerous works in the literature. As an example, the
authors of [77] have derived constraints on WDM ther-
mal relic mass from estimates of the high-redshift galaxy
number density and found mWDM ≥ 0.9 keV at 2σ. Us-
ing LF measurements at z ∼ 8− 10 in combination with
bounds on the optical depth parameter from Planck the
authors of [78] found that mWDM ∼ 2 − 3 keV. Strong
exclusion bounds with mWDM ≥ 2.4 keV at 2σ have been
recently obtained in [79] using the LF faint-end data from
[17]. Differently from these analyses, the authors of [80]
have obtained constraints on WDM models using high-
redshift measurements of the cumulative luminosity func-
tion resulting in mWDM > 1.3 keV at ∼ 2σ.

1 Other related scenarios that we do not consider include self-
interacting DM (e.g. Refs. [63, 64]), the “effective theory of
structure formation” [65], and generalised models [66–68].
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FIG. 1: WDM best-fit models against LF data at z = 6.
Curves from bottom to top corresponds to WDM-1 to WDM-
5 respectively.

A key assumption in the analysis of WDM models us-
ing LF measurements is the derivation of the relation
between halo mass and UV-magnitude that is necessary
to convert the N-body calibrated halo mass function into
the LF model prediction. In [80] the authors have esti-
mated this relation for the CDM model using halo abun-
dance matching (HAM) and linearly extrapolated the re-
lation to faint galaxy magnitudes. However, it is far from
obvious that such a relation can be assumed to hold inde-
pendent of the underlying DM model assumptions. For
example, in [81] the authors have used a similar method-
ology to derive constraints on mixed axion-CDM mod-
els. However, unlike [80], they calibrated halo mass and
UV-magnitude relation for each of the investigated axion-
CDM models. Instead of considering the cumulative LF,
the authors of [82] have used a conditional LF method to
constrain wave dark matter models directly against LF
measurements. Their analysis has found a lower bound
on a boson-like DM particle mass, mψ ≥ 1.2 · 10−22 eV
at 2σ.

Here, we aim to derive up-to-date bounds on several
DM scenarios consisting of WDM, LFDM and ULADM,
using a large compilation of high-redshift LF data. To
this purpose we have run high-resolution N-body sim-
ulations which take as input modified initial conditions
appropriate to each of the DM models considered. We ac-
curately estimate the corresponding halo mass functions
at low masses and at high-redshifts that we use to in-
fer DM model predictions of the high-redshift luminosity
function. As already stressed, this requires assuming a
relation between halo mass and galaxy UV-luminosity. In
order to improve upon the approaches of previous stud-
ies, we have developed a hybrid methodology (described
in Section III) which intends to make progress in the use
of LF measurements by addressing two important aspects
previously overlooked: (i) it accounts for dust extinction

on rest-frame UV photons which may alter the HAM in-
ferred relation between halo mass and UV-magnitude at
different redshifts. This is done by correcting the UV-
luminosities using the established correlation between
dust extinction and the UV-continuum slope [83], and (ii)
it allows us to gain insights on the DM model-dependence
of the star formation rate (SFR) of high-redshift galax-
ies. This involves using the Kennicutt-relation [91] to
convert the corrected UV LF measurements into SFR
density functions (see e.g. [13, 84, 85]).

Our analysis of the high-redshift galaxy LF indicates
that in the case of WDM models the thermal relic mass is
constrained to be mWDM & 1.5 keV at 2σ (see Fig. 1 for
a preview of the results at z = 6). The same dataset
excludes LFDM models with phase transition redshift
zt ≤ 5 · 105 at more than 4σ, while ULADM models
with ma & 1.6 · 10−22 eV are compatible with the data
within 2σ.

The paper is organised as follows: Section II describes
the DM models, the N-body simulation characteristics
and halo detection scheme. Section III details the hybrid
method we use to model the high-redshift galaxy UV
LF. The LF datasets used in this work are described in
Section IV with the results presented in Section V. We
discuss and conclude in Section VII.

II. N-BODY SIMULATIONS

In this section we describe the properties of the simu-
lated DM models, the characteristics of the N-body sim-
ulations, the identification of halos and the evaluation of
the halo mass functions.

A. Cosmological models

Our reference cosmological model is a standard flat
cold dark matter model with cosmological constant (to
which we will simply refer as CDM) specified by the fol-
lowing set of model parameters: matter density Ωm =
0.3, baryon density Ωb = 0.046, reduced Hubble param-
eter h = 0.7, scalar spectral index ns = 0.99,2 and root-

2 After running the simulations of the CDM, WDM and LFDM
models we realised that we had inadvertently generated the lin-
ear power spectrum of our reference CDM model with the scalar
spectral index set to ns = 0.99 rather than the Planck best-fit
value ns = 0.96. Given the limited computing time allocation
available to us we were unable to re-run these models, therefore
we decided to complete the simulation suite with ns = 0.99 for
the ULADM models as well. By using a larger value of ns our
numerical simulations systematically predict slightly more power
at small scales, resulting in a slight increase in the abundance of
small-mass halos. This has the tendency to relax the constraints
on the alternative DM models. Hence, we obtain more conserva-
tive bounds on the DM model parameters than what we would
have inferred using ns = 0.96.
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mean-square fluctuation amplitude at 8h−1Mpc σ8 =
0.8. For this model we compute the linear matter power
spectrum using the code camb [92]. The cosmological pa-
rameters listed above are common to all simulated mod-
els. We consider three classes of DM:

• WDM models consisting of realizations with ther-
mal relic particle mass mWDM = 0.696 keV (WDM-
1), 1.000 keV (WDM-2), 1.465 keV (WDM-3),
2.000 keV (WDM-4) and 2.441 keV (WDM-5). The
corresponding linear matter power spectra have
been computed using the formulae provided in [93]
with the damping slope parameter set to ν = 1 and
the number of degree-of-freedom gWDM = 1.5.

• LFDM models consisting of realizations with phase
transition redshift zt = 5 · 105 (LFDM-1), 8 · 105

(LFDM-2) and 15·105 (LFDM-3). The linear power
spectra of these models have been computed with
a specifically modified version of camb (see [72]).

• ULADM models consisting of realizations with par-
ticle mass ma = 1.56 · 10−22 eV (ULADM-1),
4.16 · 10−22 eV (ULADM-2) and 1.54 · 10−21 eV
(ULADM-3). We have computed the correspond-
ing linear power spectra with the publicly available
code axionCAMB3 [71].

In the top panel of Fig. 2 we plot the linear matter
power spectra of the simulated models at z = 0, while
in the bottom panel we plot the transfer functions of the
DM models with similar cut-off scale. We can see that
the spectra converge to the reference CDM model on the
large scales k . 1 h Mpc−1, while differences arise in the
suppression of power at smaller scales.

It is worth noticing that with our choice of model
parameters, LFDM-1, LFDM-2 and LFDM-3, and
ULADM-1, ULADM-2 and ULADM-3 are characterised
by power spectra which have a cut-off scale nearly identi-
cal to that of WDM-2, WDM-3 and WDM-5 respectively.
As can be seen in the bottom panel of Fig. 2, the corre-
sponding transfer functions are also characterised by very
similar half-modes4, these are quoted in Table I. Despite
such similarities, we can see that these models exhibit a
different distribution of power for k & k1/2. Hence, it is
reasonable to expect that this may lead to differences in

3 http://github.com/dgrin1/axionCAMB
4 The half-mode k1/2 is defined has the wavenumber at which the

transfer function of a given DM model is half that of the corre-
sponding CDM one [32]:

T (k1/2) ≡

√
P (k1/2)

PCDM(k1/2)
=

1

2
. (1)

Notice that such a definition differs from that commonly used
in the literature which defines k1/2 as the wavenumber at which
the power spectrum of a given DM model is half the value of the
CDM one.

Model k1/2 Model k1/2 Model k1/2
WDM-2 7.3 LFDM-1 6.6 ULADM-1 8.7
WDM-3 11.3 LFDM-2 10.6 ULADM-2 13.7
WDM-5 20.4 LFDM-3 18.8 ULADM-3 25.2

TABLE I: Half-mode values in units of h Mpc−1.

FIG. 2: Top panel: Linear matter power spectra at z = 0 for
CDM (black solid line), WDM (blue lines), LFDM (red lines)
and ULADM models (green lines). Bottom panel: Transfer
function of the cut-off matched DM models.

the high-redshift abundance of small-mass halos for these
models, a point which we discuss in detail in Section II D.

B. Simulation characteristics

In principle, the use of N-body methods to simulate
the non-linear structure formation of the non-standard
DM cosmologies described above may not be a valid ap-
proach. This is because these models are characterised
by microphysical processes that distinguish their particle
dynamics from that of a purely collisionless DM compo-
nent.

As an example, in the case of WDM models, one should
in principle account for the distribution of thermal ve-
locities [93, 103]. This effect is usually implemented in
numerical simulations as a random kick applied to the
N-body particles (which trace the clustering of the mat-
ter density field), even though the root-mean-square ve-
locity of WDM particles is several order of magnitudes
smaller than that arising during the non-linear gravita-
tional collapse. However, as pointed out in [107], N-body
particles are a coarse-grained representation of the phase-
space distribution of the microscopic particles. Therefore
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FIG. 3: The growth rate ratio, ξ, defined in [82] for the
ULADM models for zstart = 100 and zend = 4 as function
of the mass scale M(k) = 4π(π/k)3ρm/3, where ρm is the co-
moving matter density. The vertical dotted lines denotes the
lowest mass scales probed by HST observations of the faintest
galaxies at 4 . z . 8. Unlike [82], our initial conditions use
the correctly evolved initial conditions from axionCAMB;
we use ξ as a measure of the importance of scale-dependent
growth to assess how well ULAs can be modelled with N -
body simulations. The lightest ULA model we consider is
well described by collisionless simulations at the percent level
for halo masses of interest.

the addition of a kick is equivalent to inducing a local co-
herent motion of a large ensemble of microscopic WDM
particles, which leads to a velocity spectrum that is in-
consistent with results from linear perturbation theory
[108]. In the case of fermionic WDM the Tremaine-Gunn
effect [109] leads to modified halo density profiles, how-
ever this occurs on scales smaller than those probed by
the LF. Thus, as we are interested in deriving the mass
distribution of DM halos, we can safely neglect this ef-
fect and run N-body simulations of WDM models with
appropriate initial power spectra.

In the case of ULADM models, realistic simulations
should solve the coupled Schrödinger-Poisson system (see
e.g. [50, 110] or [111] for the particle in cell approach) to
account for quantum wave-like effects that are specific to
this class of models. However, as in the study by Schive
et al. [82], the mass scales and redshifts which are of
interest to our analysis are mostly insensitive to these
effects. This is demonstrated in Fig. 3, where we plot
the growth rate ratio, ξ, defined in [82] using the exact
growth solution in [32]. As we can see, over the mass scale
interval probed by LF observations the scale dependent
growth rate of our lightest ULADM model differs from
the CDM case by . 5%. Thus, for our purposes we can
safely simulate the non-linear clustering of these models
using the N-body method.

The use of N-body simulations is also justified in the
case of the LFDM models, since in this scenario DM
particles become collisionless soon after matter-radiation
equality. Thus, by the initial redshift of the simulations

the system becomes practically collisionless and its non-
linear clustering can be followed through the dynamics
of N-body particles with the appropriate initial power
spectrum.

We run the code ramses [94] to perform a series of
high-resolution N-body simulations with the goal of re-
solving the low-mass end of the high-redshift halo mass
function for the DM models described above. To this pur-
pose we have simulated (27.5h−1 Mpc)3 volumes with
Np = 10243 particles corresponding to a particle mass
resolution mp = 1.61 · 106 M� h

−1.
We generate initial conditions using the Zel’dovich ap-

proximation as implemented in mpgrafic [95]. For all
models we use the same phase of the initial conditions
and set the starting redshift zi of the simulations such
that for a given model the standard deviation of the lin-
ear density field smoothed on the scale of the coarse grid
is given by σ(∆coarse

x , zi) = 0.02. Enforcing this con-
straint gives sufficiently high initial redshifts such as to
guarantee that deviations from the Zel’dovich approxi-
mation remain negligible. For each model simulation we
store eleven snapshots between z = 0 and 10.

The simulations were run on the CURIE supercom-
puter of the Institute for Development and Resources in
Intensive Scientific Computing (IDRIS) using 1024 pro-
cessors for a total running time of 2 million hours.

C. Halo finder and spurious halo selection

We detect halos using a parallelised version of the
friend-of-friend algorithm [96] implemented in the code
pFoF [97]. This identifies halos as group of particles
with a given linking length parameter b, which we set
to b = 0.2.

In order to reduce the impact of mass resolution er-
rors, one may conservatively consider halos with at least
100 particles. However, in the case of cosmological mod-
els with suppressed spectra at small scales, the sampling
of Poisson noise between the cut-off scale of the power
spectrum and the Nyquist frequency of the simulations
leads to the formation of spurious numerical halos, which
cause an unphysical upturn of the halo mass function at
low masses [100–102].

Several empirical methods have been investigated in
the literature to identify and remove artificial halos. For
instance, Wang & White [102] have suggested to cut
halo catalogs below a mass limit Mlim = 10.1ρ̄ d k−2

peak
where ρ̄ is the mean matter density, d is the mean intra-
particle distance of the simulation, kpeak is the location
of the peak in the dimensionless linear power spectrum
∆2(k) ≡ k3P (k)/2π2 and the numerical coefficient is esti-
mated from simulations. A more sophisticated approach
has been proposed in [103], which relies on the idea that
genuine proto-halos are spheroidal, thus spurious halos
are identified as groups of particles associated to La-
grangian patches in the initial conditions characterised
by a shape flatter than a certain threshold.
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FIG. 4: Halo mass function at z = 4, 6, 7 and 8 (panels left to right) in mass bins of size ∆Mh/Mh = 0.20 for WDM-2, LFDM-1
and ULADM-1 models (panels top to bottom respectively) before (blue empty squares) and after (red filled triangles) halo
selection. In each panel the CDM halo mass function is shown as empty circles. Error-bars correspond to the Poisson errors in
each mass bin.

Here, we follow the approach presented in [73]. This
builds upon the fact that the structural properties of ha-
los as described by the spin and shape parameters as
well as the degree of relaxation provide distinct physical
proxies of the genuine nature of halos in the simulations.
In [73], the analysis of halo catalogs from WDM and
LFDM simulations has shown that halos contributing to
the upturn in the halo mass function are characterised by
highly distorted statistical distributions of halo spin and
shape parameters, which strongly correlate with large de-
viations from the virial condition as measured by the pa-
rameter η ≡ 2K/|E|,5 where K is the total kinetic energy
of the halo particles and |E| its gravitational potential
energy.

As shown in [73], retaining halos with at least 300 par-
ticles and with deviations from the virial state in the
range 0 < η < 1.5 are sufficient conditions to remove the
bulk of spurious objects from the numerical halo catalogs
and recover undistorted statistical distributions for halo
spin and shape parameters independently of the mass
resolution of the simulations.

To illustrate the effect of spurious halos in our simu-
lation suite we plot in Fig. 4 the halo mass function at

5 It is worth reminding that in the case of ULADM models the
virial theorem is modified by the presence of the quantum pres-
sure Q such that η = 2K/(|E|+ 2Q) [51, 104]. This is not taken
into account in our simulations, and we leave a detailed study to
future work.

z = 4, 6, 7 and 8 (panels from left to right) for WDM-
2, LFDM-1 and ULADM-1 models (panels from top to
bottom respectively). In each panel the black points rep-
resent the CDM mass function, while blue (red) points
denote the non-standard DM model mass function before
(after) spurious halo selection. Error-bars are given by
the Poisson error within each mass bin. For each model
we can see that at the high-mass end the mass function
converges to that of CDM. This is expected, since on
large scales the models have linear matter power spec-
tra identical to that of the CDM case. At low masses
(Mh . 1010M� h

−1) we can see the characteristic upturn
which is indicative of the presence of spurious halos. In
particular, the lower the redshift the higher the ampli-
tude of the upturn, consistent with the expectation that
the number of spurious halos increases as the simulation
evolves from earlier to later times. After halo selection,
the upturn disappears and we recover the expected halo
abundance suppression at the low-mass end.

We apply the selection criteria of [73] to all numerical
halo catalogs. Since we consider halos with no less than
300 particles, the selected halo catalogs have a mass cut
at Mmin

h ≈ 5 · 108 M� h
−1. Therefore, with the intent of

being as conservative as possible we will not extrapolate
any result below Mmin

h .
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z A a p
4 0.35620 0.94020 -0.87256
5 0.29542 0.94630 -0.99538
6 0.29188 0.82990 -0.84125
7 0.21785 0.91178 -1.1072
8 0.25823 0.79364 -0.81431

TABLE II: Sheth-Tormen multiplicity function best-fit coef-
ficients to the CDM mass function at 4 ≤ z ≤ 8.

FIG. 5: Halo mass function of the reference CDM model sim-
ulation at z = 4, 5, 6, 7 and 8 in mass bins of size ∆Mh/Mh =
0.20. The dashed lines corresponds to Sheth-Tormen multi-
plicity function, Eq. (2), with best-fit parameters at the dif-
ferent redshifts given in Table II.

D. Halo mass function

We fit the halo mass function of the CDM model as:

dn

dMh

∣∣∣
CDM

=
ρ̄

Mh
2

d lnσ−1

d ln Mh
fST(δc/σ), (2)

where ρ̄ is the mean matter density, σ is the root-mean-
square of the linear density field smoothed on the scale
enclosing a spherical volume of mass Mh, and fST(δc/σ)
is the Sheth-Tormen (ST) multiplicity function [105]:

fST(ν) = 2A

√
aν

2π
e−

aν
2

[
1 +

1

(aν)p

]
, (3)

where ν = (δc/σ)2 with δc being the linear spherical
collapse threshold computed using the formula given in
[106]. We determine the best-fit ST coefficients using a
Levenberg-Marquardt minimisation scheme. These are
quoted in Table II for the redshifts of interest. In Fig. 5
we plot the numerical mass functions against the ST best-
fits.

We use the CDM calibrated formula to fit the mass
function of the non-standard DM simulations using the
following parameterisation:

dn

dMh
= 10

α+βM∗
Mh

(
1− e−

Mh
M∗

)γ dn

dMh

∣∣∣
CDM

, (4)

where α, β, γ and M∗ are parameters which we best-fit
against the N-body mass function. We prefer to work
with such a parameterisation rather than the formula in-
troduced in [107], since it provides better fits to the nu-
merical data. Accordingly, we find the best-fit functions
to have reduced χ2

red ≈ 1. In Appendix A we illustrate
the goodness-of-fit of Eq. (4) and quote the values of the
best-fit coefficients for all simulated DM models.6

As discussed in Section II B the models LFDM-1,
LFDM-2 and LFDM-3, and ULADM-1, ULADM-2 and
ULADM-3 are characterised by a power spectrum cut-
off which is nearly identical to that WDM-2, WDM-3
and WDM-5 respectively. Nevertheless, we find differ-
ences among these models for the predicted abundance
of low-mass halos at high-redshifts which are well above
the numerical statistical uncertainties (∼ 2% level). This
can be seen in Fig. 6, where we plot the ratio of the best-
fit mass function at z = 4, 6, 7 and 8 (left to right panels)
for WDM-2/LFDM-1 and WDM-2/ULADM-1 (top pan-
els), WDM-3/LFDM-2 and WDM-3/ULADM-2 (central
panels), and WDM-5/LFDM-3 and WDM-5/ULADM-
3 (bottom panels). Ratios with respect to the LFDM
models are shown as red dotted lines, while those with
respect to ULADM models are shown as blue solid lines.
In particular, we can see that the WDM models have
systematically greater abundances of low-mass halos rel-
ative to the LFDM counterparts, while the opposite oc-
curs for the ULADM modes. As can be seen in the lower
panel of Fig. 2, this is consistent with the fact that the
LFDM models have transfer functions that for k & k1/2
are systematically lower than the WDM ones, while the
ULADM transfer functions are larger. We will see that
these differences manifest in different predictions of the
faint-end slope of the LF at high-redshifts.

III. METHODOLOGY

Our goal is to constrain the simulated DM models us-
ing an up-to-date compilation of high-redshift LF data at
z = 6, 7 and 8 covering an unprecedented UV-magnitude
range from the brightest to the very faint. In order to
convert the N-body calibrated mass functions into LF

6 In order to avoid confusion we want to remark that the iden-
tification of M∗ as a mass scale cut-off related to a DM model
parameter such as the thermal relic mass in the case of WDM
models or the axion mass in the case of ULADM models is valid
only for β = 0. Since we find β 6= 0 for all models, one should not
associate any particular physical meaning to the redshift evolu-
tion of the best-fit values of M∗ quoted in Tables VIII, IX and X.
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z=4 z=6 z=7

z=8

FIG. 6: Ratio of the best-fit mass functions at z = 4, 6, 7 and 8 (left to right panels respectively) for WDM-2/LFDM-1 and
WDM-2/ULADM-1 (top panels), WDM-3/LFDM-2 and WDM-3/ULADM-2 (central panels), WDM-5/LFDM-3 and WDM-
5/ULADM-3 (bottom panels). Ratios with respect to the LFDM are given by the red dotted lines, while those relative to
the ULADM models are shown as blue solid lines. The short-dash-dot lines above and below each curve given the numerical
statistical errors around the ratio of the best-fit functions.

model predictions that can be compared to the data it
is necessary to specify a relation between halo mass and
UV-luminosity. As already mentioned in Section I, past
studies in the literature computed such a relation using
HAM methods [80, 81] or assumed a parametric form to
be constrained by the LF data [82].

Here, we adopt a hybrid method with the intent of
gaining insight on the evolution of the star formation rate
of high-redshift galaxies as a function of redshift and host
halo mass, as well as assessing the impact of dust extinc-
tion on the rest-frame UV-luminosities. The approach
used here can be summarized as follows:

• LF measurements are corrected for dust extinction
using the established relation between extinction
AUV and UV-continuum slope βUV from [83]. In
particular, we calibrate an extinction model using
UV-continuum slope measurements from Bouwens
et al. [113] to correct LF data at z = 4 and 5
from [6]. The implementation of this extinction
correction is described in Section III A;

• the corrected LF data at z = 4 and 5 is converted
into the respective SFR densities ϕ(SFR) using the
Kennicutt-relation [91].

• The inferred ϕ(SFR) functions at z = 4 and 5,
together with the halo mass function fits to the
N-body simulations, are used to derive SFR(Mh)

relation using HAM technique. The SFR(Mh) re-
lations at z = 4 and 5 are then redshift-averaged
to obtain the average relation, SFRav(Mh). This is
repeated for each of the simulated DM model. This
step is described in Section III B;

• For each DM model, after converting the SFR back
into UV-luminosities we model the LF at z = 6, 7
and 8 by integrating over the halo mass function
a log-normal SFR probability density distribution
with average 〈SFR(Mh)〉 ≡ εzSFRSFRav(Mh) and
intrinsic dispersion σzεSFR

, where εzSFR and σzεSFR
are

free parameters. This will be explained in detail in
Section III C;

• Finally, a χ2-analysis of LF data at z = 6, 7 and 8 is
performed to determine the best-fit values of εzSFR
and σzεSFR

, and evaluate the goodness-of-fit for each
DM model.

To avoid confusion, hereafter we refer to density func-
tion as ϕ to denote ϕ ≡ dΦ/d log10X, and as φ to denote
φ ≡ dΦ/dX, where Φ is the cumulative density function.

A. Dust extinction correction & SFR densities

We correct the LF data using the empirical relation
between extinction and UV-continuum slope, AUV =
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4.43 + 1.99βUV [83]. Following [84], at each MUV we
assume βUV to be normal distributed with mean 〈βUV 〉
and dispersion σβUV = 0.34, giving the average extinc-
tion 〈AUV 〉 = 4.43 + 0.79 ln (10)σ2

βUV
+ 1.99 〈βUV 〉. AUV

is set to zero when AUV < 0.
We model the mean slope 〈βzUV 〉 as in [13, 112]:

〈βzUV 〉 ={[
βzM0
− c
]

exp
[
dβz

dM0
· MUV−M0

βzM0
−c

]
+ c, MUV ≥M0

dβz

dM0
· [MUV −M0] + βzM0

, MUV < M0

(5)
where c = −2.33 and M0 = −19.5. We approximate
βzM0

and dβz/dM0 as linear redshift functions with co-
efficients determined by least-square interpolation of the
values given in Table 3 of [113]. This gives:{

βzM0
= −1.573630− 0.069756 · z,

dβz

dM0
= −0.095379− 0.006827 · z. (6)

The extinction correction has a twofold effect on the
LF function (see e.g. [84]). First, it shifts the LF toward
brighter magnitudes since

Mc
UV = MUV − 〈AUV (MUV, z)〉, (7)

where 〈AUV (MUV, z)〉 ≥ 0. Second, it alters the magni-
tude bin-size and consequently the amplitude of the LF.
Denoting with ∆MUV the bin-size of the uncorrected LF,
we have

∆Mc
UV = ∆MUV −

〈
AUV

(
MUV +

∆M

2
, z

)〉
+

+

〈
AUV

(
MUV −

∆M

2
, z

)〉
. (8)

Thus the corrected LF reads as

φ(Mc
UV) = φ(MUV)

∆MUV

∆Mc
UV

. (9)

We use Eq. (7) and Eq. (9) to correct the LF mea-
surements (including errors) from Bouwens et al. [6] at
z = 4 and 5. These are displayed in Fig. 7, where we plot
the LF data (including errorbars) at z = 4 (red points)
and z = 5 (blue points) before (filled circles) and after
(empty triangles) correction for dust extinction.

We convert the corrected LFs into SFR densities
using the Kennicutt-relation SFR [M� yr−1] = 1.25 ·
10−28LUV [erg s−1Hz−1]7 [91]. We fit the SFR density
estimates with a Schechter fitting function:

ϕ(SFR) = ln(10)ϕ∗
SFR

(
SFR

SFR∗

)αSFR+1

e−
SFR
SFR∗ . (11)

7 Absolute magnitudes and luminosities in cgs units are related as:

LUV

erg s−1Hz−1
= 4π (10 · 3.8856802 · 1018)2 × 10−

MUV+48.6
2.5 (10)

FIG. 7: Galaxy luminosity function at z = 4 (red points) and
z = 5 (blue points) from Bouwens et al. [6] before (filled
circles) and after (empty triangles) correction for dust extinc-
tion. The arrow indicates the direction of the shift of the
uncorrected data due to the extinction correction.

z ϕ∗
SFR [Mpc−3 dex−1] αSFR SFR∗ [M� yr−1]

4 0.49055E-03 -0.16551E+01 0.46798E+02
5 0.29502E-03 -0.16995E+01 0.47624E+02

TABLE III: Schechter function (Eq. 11) best-fit coefficients
to SFR densities at z = 4 and 5.

The best-fit values of ϕ∗
SFR, αSFR and SFR∗ at z = 4

and 5 are quoted in Table III, while in Fig. 8 we plot the
SFR density function measurements against the best-fit
Schechter functions.

B. Average Mh-SFR relation

We use the analytical fits to the SFR density functions
and the halo mass functions to compute the Mh − SFR
relation at z = 4 and 5 from halo abundance matching,
n(> Mh) = Φ(> SFR) (see e.g. [85]), for each DM model
in our simulation suite. The inferred relations are shown
in Fig. 9 for the CDM (top left panel), WDM (top right
panel), LFDM (bottom left panel) and ULADM (bottom
right panel). The horizontal dotted lines indicate the lim-
iting values of SFR covered by the extinction corrected
LF measurements [6].

Let us focus on the CDM case. We can see that in
the range covered by the LF observations the values of
SFR at z = 4 and 5 span three orders of magnitude, yet
the difference in SFR at fixed halo mass between z = 4
and 5 does not exceed a factor of 2 across the entire
mass range. The largest differences occur at the high
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FIG. 8: SFR density function estimates at z = 4 (red empty
squares) and z = 5 (blue filled squares) obtained using dust-
corrected LF data from Bouwens et al. [6]. The dashed lines
represent the Schechter function (Eq. 11) with best-fit coeffi-
cients (see Table III).

and low-mass ends. At both redshifts the curve exhibit
a change of slope at M∗

h ≈ 2 · 1011 M� h
−1, with a steep

power law behaviour for Mh < M∗
h and a flatter trend for

Mh > M∗
h. This is consistent with the findings of [85],

where the authors have pointed out that the steep slope
at low masses can be indicative of feedback mechanisms
that inhibit star formation.

However, from Fig. 9 we can see that such interpre-
tation only holds for the CDM scenario. In fact, for
WDM, LFDM and ULADM models we find a system-
atic deviation from the CDM trend at low masses. Only
at large masses, Mh & 1011 M� h

−1 all models converge
to the same SFR-Mh relation at both redshifts. Notice
that such deviations correlate with the level of suppres-
sion of the low-mass halo abundance compared to the
CDM model. For instance, in the case of WDM-1 the
SFR in halos of mass Mh ≈ 1010 M� h

−1 is up to a fac-
tor ∼ 10 larger than CDM, while in the case of WDM-2
the SFR is a factor ∼ 3 larger. This follows from the
imposed equality of the number density distributions in
halo mass and SFR. In other words, DM models with
suppressed halo mass abundance at fixed low mass need
a larger star formation rate to match the observed SFR
densities compared to the CDM prediction. The end re-
sult is that in the alternative DM scenarios the star for-
mation rate halo mass relation tends to flatten at the low
mass end compared to CDM model. This implies that in
such alternative DM scenarios, in order to reproduce LF
observations, feedback mechanisms must operate differ-
ently than in CDM, being either less efficient in suppress-

ing star formation or even promoting it depending on the
specificities of DM model considered. The plots shown in
Fig. 9 also suggest that LF independent measurements of
the SFR and host halo mass in galaxies at z = 4 and 5
can directly test these trends and put constraints on the
DM scenario.

An important point that we would like to emphasise is
the fact that the shape of the Mh − SFR remains mostly
unaltered between z = 4 and 5, which corresponds to a
time scale of ≈ 360 Myr. In particular, the differences
between the two curves can be accounted to good approx-
imation by an overall amplitude factor. Thus, for each
DM model, we derive a template form of the Mh − SFR
relation, SFRav(Mh), by averaging the HAM inferred re-
lation at z = 4 and 5 at fixed halo mass. We use this
template function to model the ensemble average star
formation rate mass relation at z = 6, 7 and 8. This is
similar in spirit to the LF model calibration by Mason,
Trenti & Treu [13] who have performed HAM against LF
data at z = 5 from [6] to calibrate a redshift independent
star formation efficiency. In our case, we assume that
the ensemble average star formation rate differs from the
calibrated template at z = 6, 7 and 8 by an unknown
constant amplitude factor.

This ansatz has a twofold aspect. First, it implies that
the shape of Mh − SFR over the mass range of interest
is set by physical mechanisms very early on at redshift
higher than z = 8. Secondly, since z = 5 and 8 differ by
approximately ≈ 500 Myr, the assumption of a constant
scaling in amplitude is equivalent to assuming that there
are no feedback processes (e.g. supernova explosions)
that in such a time scale can significantly alter the shape
of the average Mh − SFR relation in the mass range of
interest.

C. Modelling of high-z luminosity function

We model the galaxy LF at z > 5 as in Mashian et al.
[85] and assume that the probability of having a galaxy
with star formation rate SFR in a halo of mass Mh (i.e.
the conditional SFR density) is given by a log-normal dis-
tribution. However, differently from [85] we assume the
mean8 to be given by 〈SFR(Mh, z)〉 ≡ εzSFRSFRav(Mh)
with variance σ2

z,SFR:

P (SFR|Mh) =
e
− 1

2σ2
z,SFR

log2
10

[
SFR

〈SFR(Mh,z)〉

]

SFR
√

2πσ2
z,SFR

, (12)

where SFRav(Mh) is the template relation previously
computed for each DM model, εzSFR is a free parameter
accounting for the overall amplitude of the 〈SFR(Mh, z)〉

8 We denote as 〈SFR(Mh, z)〉 the ensemble average of the SFR at
fixed halo mass Mh and redshift z.
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FIG. 9: Mh-SFR relation at z = 4 (short dashed line) and z = 5 (long dashed line) for CDM (top left panel), WDM (top right
panel), LFDM (bottom left panel) and ULADM (bottom right panel). The solid line in each panel represents the redshift-
averaged relation SFRav(Mh) at fixed halo mass between z = 4 and 5, which we use as a template to model the ensemble
average relation at higher redshifts (see Section III C).

relation at redshift z and σzSFR is a free parameter which
accounts for the intrinsic scatter around this relation.
The latter parametrises the stochasticity of the processes
which are responsible for the star formation.

We compute the SFR density at a given redshift by
integrating Eq. (12) over the halo mass function of a given
DM model:

φ(SFR, z) =

∫
dn

dMh
(Mh, z)P (SFR|Mh)dMh, (13)

then using the Kennicutt-relation we convert SFR into
UV-magnitudes to derive the extinction-free LF function
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in terms of the SFR density9,

φ(Mc
UV) ≡ 1

2.5
ϕ(SFR[Mc

UV], z). (14)

Finally, using Eq. (9) to transform dust-free UV-
magnitudes into the observed ones, φ(Mc

UV)→ φ(MUV),
we obtain the DM model prediction of the LF with εzSFR
and σzSFR as free parameters of the model.

At this point it is worth reminding the reader of the
differences between the approach described above and
the evaluation of the high-z LF presented in [85] and
[82]. In [85], the ensemble average 〈SFR(Mh, z)〉 is de-
rived by averaging at fixed halo mass the Mh−SFR rela-
tion inferred from halo abundance matching using SFR
densities estimates from LF measurements at 4 ≤ z ≤ 8.
Moreover, they set a redshift-independent intrinsic scat-
ter to σSFR = 0.5 dex. In contrast, in [82] the authors
have modelled the conditional luminosity function as a
log-normal distribution and assumed a parametric form
of the average UV-luminosity halo mass relation (with
three fitting model parameters) and a free dispersion pa-
rameter inspired by the conditional LF model of [114].

Our approach takes advantage of both methods in that
the ensemble average star formation halo mass relation
is modelled in terms of a template function (rather than
a parametric one) determined from LF data at z ≈ 4− 5
(rather than averaging across a larger redshift interval)
with the LF prediction depending only on two free model
parameters.

IV. DATA ANALYSIS

A. Luminosity function datasets

Over the past few years several groups have measured
the galaxy luminosity function at z & 6 (see e.g. [4–7]).
These studies have been able to precisely characterise the
bright-end of the LF (MUV < −15), while only recently
it has been possible to probe the faint-end thanks to the
detection of faint distant objects lensed by massive clus-
ters observed in the context of Hubble Frontier Fields
program [16, 17, 24].

Bouwens et al. [6] (B15 hereafter) have characterised
the luminosity function at 4 . z . 10 using the largest
galaxy sample to date from HST data. In Section III B
we have used their LF measurements at z = 4 and 5 to
calibrate our SFR-Mh template. We use their LF esti-

9 For clarity, we have

φ(Mc
UV) =

dΦ

dSFR

dSFR

dLUV

∣∣∣∣∣ dLUV

dMc
UV

∣∣∣∣∣ =
1

2.5
SFR

dΦ

dSFR
ln(10),

where in the last term we have used the Kennicutt-relation and
the magnitude-luminosity relation.

mates at z = 6, 7 and 8 (see Table 5 in B15) to infer
constraints on the simulated DM models.

Previous estimate of the LF in the same magnitude
range at z = 7 and 8 were obtained by Schenker et al.
[4] and McLure et al. [5]. However, these analyses use
smaller galaxy samples than those of B15. Moreover,
their estimates of the total magnitude of galaxies assume
them to be point sources, which as shown in the analysis
presented in the Appendix G of [6] introduces a system-
atic bias in the UV-magnitude determination of the most
luminous and extended sources. For these reasons we do
not include the LF measurements from [4, 5] in our anal-
ysis.

Luminosity function measurements over the same red-
shifts and UV-magnitude intervals of B15 have been ob-
tained independently by Finkelstein et al. [7]. The
galaxy samples used in the latter work largely overlap
with those of B15. However, this analysis uses different
selection criteria and data reduction procedures which
may be responsible for the slight underabundance of
bright galaxies compared to the findings of B15.

The dust extinction model parameters used in our
analysis have been calibrated to the values inferred from
[113] which uses galaxy samples (and data reduction pro-
cedures) that are common to those used in B15. Further-
more, the effect of the extinction is more important on
the bright-end of the LF. Hence, for coherence we discard
the LF data from Finkelstein et al. [7] and only use the
B15 data to cover the bright-end interval of the LF.

Measurements of the bright-end LF at z = 6 and 7
have also been obtained by Willott et al. [86] and Ouchi
et al. [87] respectively. More recently Bowler et al. [88–
90] have derived LF estimates at these redshifts in the
magnitude range −24 . MUV . −22, which in combina-
tion with the B15 data at z = 6 and 7 better anchor the
bright-end LF slope. However, we have verified that the
use of these additional datasets does not lead to further
constraints on the DM model fits, since these only affect
the faint-end of the LF.

LF measurements to MUV ≈ −15 have been obtained
by Atek et al. ([16], A15 hereafter) using a sample of 227
galaxy candidates at z ∼ 6− 7 and 25 candidates at z ∼
8 detected through HST observations of A2744, MACS
0416 and MACS 0717 clusters from the HFF program.
More recently Livermore, Finkelstein & Lotz ([17], L16
hereafter) have obtained LF measurements to MUV =
−12.5 at z ∼ 6, MUV = −14 at z ∼ 7 and MUV = −15
at z ∼ 8 using a sample of 167 galaxies detected through
the analysis of A2744 and MACS 0416 clusters in HFF
and including sources that escaped detection in A15.

As mentioned in Section I these observations have
opened the way to a new alternative approach to explore
the population of faint sources in the far distant universe.
However, differently from deep survey searches, these LF
estimates may be affected by a number of systematic er-
rors that need to be carefully evaluated. As pointed out
by Bouwens et al. ([24], hereafter B16), lens mass model
uncertainties affect the evaluation of the magnification of
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Dataset αz=6
LF αz=7

LF αz=8
LF

B15 [6] −1.90± 0.10 −2.06± 0.13 −2.02± 0.23
A15 [16] - −1.98± 0.12 −2.23± 0.37
L16 [17] −2.18± 0.13 −2.05± 0.24 −1.99± 0.26
B16 [24] −1.84± 0.06 - -

TABLE IV: Marginalised mean and 1σ error on αLF inferred
from the likelihood analysis of the LF datasets at z = 6, 7 and
8..

FIG. 10: Marginalised mean and 1σ error on αLF as inferred
from the likelihood analysis of the Schechter-fit to the LF mea-
surements from B15 (red solid circles), A15 (green solid trian-
gles), L16 (blue empty circles), B16 (magenta empty squares)
at z = 6, 7 and 8. The points have been slightly displaced in
redshift to facilitate readability of the figure.

the faintest sources and introduce a systematic bias in the
characterisation of the LF. In B16, the authors have in-
troduced a methodology to incorporate this effect in the
determination of the LF. Using a sample of 160 galax-
ies detected through observations of Abell 2744, MACS
0416, MACS 0717 and MAC 1149 they inferred the LF
at z = 6.

As a consistency check, we fit the various LF data with
the Schechter-function:

φ(MUV) = φ∗LF
ln (10)

2.5

e−10−0.4(MUV−M∗UV)

100.4(MUV−M∗UV)(αLF+1)
, (15)

where φ∗LF is a normalisation parameter, M∗
UV an expo-

nential cut-off scale and αLF the faint-end slope, and run
a Markov Chain Monte Carlo (MCMC) likelihood anal-
ysis to infer constraints on the Schechter parameters for
the B15, A15, L16 and B16 datasets . We refer the reader
to Section IV B for a general description of the statistical
approach adopted here. Since constraints on the differ-
ent DM models are sensitive to the faint-end slope, we

do not compare constraints on φ∗LF and M∗
UV across the

datasets and limit our consistency test to αLF.
In Table IV we quote the marginalised mean and 1σ

error on αLF. Notice that the mean values given in A15,
L16, and B16 are slightly different from those quoted in
Table IV. More importantly our estimated errors on αLF

are larger. This is because differently from the original
analyses we do not combine the datasets with additional
LF measurements covering the bright-end of the lumi-
nosity function.

In Fig. 10 we plot the values quoted in Table IV for
B15 (red solid circles), A15 (green solid triangles), L16
(blue empty circles), B16 (magenta empty squares). We
can see that the bounds on αLF at z = 6 from L16 do not
overlap with those obtained using B15 measurements. In
contrast, the LF measurements from B16, which have
been obtained by accounting for the lens mass model un-
certainties, give bounds that are consistent with those
obtained from the fit to B15. Similarly, at z = 7 and 8
the values of αLF from B15, A15 and L16 are compatible
with each other to within 1σ.

In the light of these results, we consider a compilation
of LF data consisting of 26 measurements (B15+B16) at
z = 6, 31 measurements (B15+A15+L16) at z = 7 and
22 measurements (B15+A15+L16) at z = 8 spanning
the UV-magnitude interval −23 . MUV . −13, while
in a separate analysis we evaluate the impact of the L16
measurements at z = 6 on the DM models.

B. Likelihood Evaluation

We perform a Markov Chain Monte Carlo (MCMC)
likelihood data analysis to derive constraints on the pa-
rameters characterising the theoretical LF model φth. To
this purpose we evaluate the following χ2:

χ2 =
∑
i

[
log10(φiobs)− log10(φith)

σilog10(φ)

]2
, (16)

where φiobs are the LF measured values. Since no in-
formation is available concerning possible correlations
among different UV-magnitude bins, for simplicity we
assume all LF measurements to be statistically indepen-
dent.

We generate the random chains using a Metropolis-
Hastings algorithm. We evaluate the rejection rate every
100 steps and adjust the width of the parameters dynam-
ically. We set uniform priors for the LF model parame-
ters.

For the Schechter-fitting function analysis described
above, we have computed the χ2 with φth given by
Eq. (15) and sampled a 3-dimensional parameter space
with (log10 φ

∗
LF, αLF, log10 M∗

UV) uniformly varying in the
range [−4,−2], [−3,−1] and [−30,−15] respectively. For
the DM model analysis, we have computed the χ2 with
φth given by Eq. (14) (after having converted the dust-
free UV-magnitude into observed ones) and sampled the
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Model log10 ε
z=6
SFR log10 σ

z=6
SFR χ2

z=6 log10 ε
z=7
SFR log10 σ

z=7
SFR χ2

z=7 log10 ε
z=8
SFR log10 σ

z=8
SFR χ2

z=8 χ2
tot

CDM −0.80 −0.23 21.5 −0.52 −0.23 27.6 −0.18 −0.39 15.8 64.9
WDM-1 −0.78 −0.26 87.7 −0.60 −0.25 57.4 −0.58 −0.24 23.8 168.9
WDM-2 −0.79 −0.25 22.4 −0.53 −0.24 31.6 −0.12 −0.47 17.5 71.5
WDM-3 −0.83 −0.22 20.5 −0.54 −0.23 28.1 −0.23 −0.37 15.7 64.3
WDM-4 −0.90 −0.20 21.7 −0.60 −0.21 27.8 −0.28 −0.35 15.9 65.4
WDM-5 −0.85 −0.21 22.0 −0.60 −0.21 27.1 −0.26 −0.36 15.8 64.9
LFDM-1 −0.92 −0.17 37.2 −0.73 −0.14 45.0 −0.29 −0.50 16.6 98.8
LFDM-2 −0.83 −0.23 20.1 −0.53 −0.23 28.3 −0.22 −0.38 15.6 64.0
LFDM-3 −0.85 −0.22 21.7 −0.73 −0.20 30.5 −0.49 −0.29 16.2 68.4

ULADM-1 −0.91 −0.24 21.3 −0.69 −0.24 33.6 −0.48 −0.36 14.9 69.8
ULADM-2 −0.89 −0.20 21.5 −0.78 −0.19 31.4 −0.59 −0.26 16.5 69.4

ULADM-3 −0.81 −0.23 21.9 −0.60 −0.21 27.3 −0.29 −0.34 15.9 65.1

TABLE V: Best-fit values of log10 εSFR and log10 σSFR at z = 6, 7 and 8 for the various DM models with the corresponding
values of the χ2. In bold letters are the models with lowest χ2 within each DM scenario.

2-dimensional parameter space with (εSFR, σSFR) uni-
formly varying in the range [−3, 1]. For each model we
run 3 independent chains of 106 samples and check their
convergence using the Gelman-Rubin test [115].

V. RESULTS

Here we present the results of the likelihood data anal-
ysis. We first focus on the goodness-of-fit of the differ-
ent DM models and derive constraints on a given DM
scenario using deviance statistics. Then we discuss the
constraints on the parameters of the SFR-Mh relation for
the best-fit DM models.

A. DM models goodness-of-fit

In Table V we quote the best-fit LF model parameters
and the corresponding χ2-values at z = 6, 7 and 8 for
each of the simulated DM models, while in Fig. 11 we
plot the corresponding LF against the data.

We find that the CDM model provides a very good
fit to the LF data with total reduced chi-square χ2

tot ≈
1. Among the alternative DM models, we find WDM-3,
LFDM-2 and ULADM-3 to be those with the lowest χ2

tot.
These are comparable or even slightly lower than that of
the CDM model with differences ∆χ2

tot . 1. Thus, given
current LF measurements, these models are statistically
indistinguishable from the standard CDM scenario. On
the other hand, we can see that χ2

tot varies from one
model to another within each DM scenario.

The deviance statistics indicate that the best-fit
WDM-1 model is excluded at more than 5σ compared
to the best-fit WDM-3 model with ∆χ2

tot ∼ 105, WDM-
2 is excluded at more than 2σ with ∆χ2

tot ∼ 7 (> 95%
probability), while WDM-4 and WDM-5 are statistically
compatible within 1σ (< 68% probability). Thus, we in-
fer a bound on thermal relic particle mass mWDM & 1.5
keV at 2σ. Similarly, in the LFDM case we find that
LFDM-1 is excluded at more than 5σ with respect to

LFDM-2 with ∆χ2
tot ∼ 35, while LFDM-3 lies within 2σ

with ∆χ2
tot ∼ 4. This suggests that for LFDM models,

the phase transition redshift zt & 8 ·105 at 2σ. The best-
fit models of ULADM-1 and ULADM-2 are within 2σ of
ULADM-3 with differences ∆χ2

tot ∼ 4. Thus, ultra-light
axion models with ma & 1.6 · 10−22 are compatible with
the LF data well within 2σ of the deviance statistics.

It is worth noticing that the LF data at z = 6 shows a
slight preference (though not statistically significant) for
DM models with a flattening of the faint-end slope. This
is consistent with the results of B16 where the authors
pointed out that the faint-end LF measurements at z = 6
permit a turnover (within 1σ) at −15 . MUV . −14. At
higher redshifts LF data do not cover such faint magni-
tude interval and have much larger statistical uncertain-
ties, thus the presence of a turnover or a flattening in the
LF remains largely uncertain. In the context of the stan-
dard CDM scenario, the flattening of LF at the faint-end
and the presence of a turnover can be the signatures of
physical processes affecting star formation in low-mass
galaxies as found in numerical studies based on hydrody-
namical simulations [69, 70, 116] and semi-analytic mod-
els of galaxy formation [117]. From Fig. 11 we can clearly
see that such a feature is also a distinct prediction of DM
models alternative to the CDM paradigm.

B. Constraints on SFR-Mh relation

We compute the average and 1σ marginalised errors
on log10 εSFR and log10 σSFR from the MCMC chains.
The values for the various DM models at z = 6, 7 and 8
are quoted in Table VI. We find the parameter posteri-
ors to be well approximated by a Gaussian distribution.
This can be inferred from the fact that the best-fit LF
parameter values given in Table V coincide to good ap-
proximation with average ones. As an example, this can
also be seen in Fig. 12 where we show the triangle plot of
the one and two-dimensional distributions of log10 εSFR
and log10 σSFR for the CDM model at z = 6. Similar
results hold for all models and at all redshifts.
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FIG. 11: Best-fit luminosity function for the various DM models against data at z = 6 (top left panel), z = 7 (top right panel)
and z = 8 (bottom panel) from B15 (red filled circles), B16 (magenta empty squares), A15 (green filled triangles) and L16 (blue
empty circles). Within each panel, CDM is shown in the top left; WDM models are shown in the top right (lines from bottom
to top correspond to WDM-1, WDM-2, WDM-3, WDM-4 and WDM-5 respectively), LFDM models are shown in the bottom
left (LFDM-1, LFDM-2 and LFDM-3 lines from bottom to top) and ULADM in the bottom right (ULADM-1, ULADM-2 and
ULADM-3 lines from bottom to top).

From the values quoted in Table VI we can see that
the values of εzSFR and σzSFR at a fixed redshift do not
vary significantly among the different DM models. On
the other hand, we find evidence of a systematic increase
of εzSFR from z = 6 to z = 8, while the scatter remains
constant. We can see this more clearly in Fig. 13 where
we plot 〈SFR(Mh), z〉 at z = 6 (black lines), z = 7 (blue
lines) and z = 8 (red lines) for CDM (top left panel),

WDM-3 (top right panel), LFDM-2 (bottom left panel)
and ULADM-3 (bottom right panel). The solid lines rep-
resent the ensemble average star formation halo mass re-
lation with amplitude factor εzSFR given by the marginal
mean value quoted in Table VI. The dashed lines indi-
cate the ±1σ statistical error. In each panel we also plot
the marginal mean of the intrinsic scatter σSFR and the
related uncertainty.
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Model log10 ε
z=6
SFR log10 σ

z=6
SFR log10 ε

z=7
SFR log10 σ

z=7
SFR log10 ε

z=8
SFR log10 σ

z=8
SFR

CDM −0.81± 0.09 −0.23± 0.05 −0.56± 0.15 −0.22± 0.07 −0.21± 0.26 −0.55± 0.42
WDM-1 −0.78± 0.04 −0.26± 0.02 −0.60± 0.07 −0.25± 0.03 −0.58± 0.14 −0.24± 0.06
WDM-2 −0.79± 0.06 −0.24± 0.03 −0.53± 0.11 −0.24± 0.06 −0.14± 0.27 −0.70± 0.48
WDM-3 −0.85± 0.08 −0.22± 0.04 −0.56± 0.12 −0.23± 0.06 −0.22± 0.22 −0.54± 0.41
WDM-4 −0.92± 0.09 −0.20± 0.04 −0.64± 0.14 −0.21± 0.06 −0.29± 0.23 −0.44± 0.19
WDM-5 −0.86± 0.09 −0.21± 0.04 −0.62± 0.14 −0.21± 0.06 −0.27± 0.24 −0.49± 0.37
LFDM-1 −0.93± 0.06 −0.17± 0.02 −0.74± 0.09 −0.14± 0.03 −0.29± 0.15 −0.63± 0.35
LFDM-2 −0.83± 0.08 −0.23± 0.04 −0.54± 0.12 −0.24± 0.06 −0.23± 0.22 −0.50± 0.35
LFDM-3 −0.86± 0.09 −0.22± 0.04 −0.75± 0.13 −0.20± 0.05 −0.51± 0.19 −0.30± 0.14

ULADM-1 −0.90± 0.06 −0.24± 0.03 −0.71± 0.10 −0.24± 0.05 −0.51± 0.14 −0.36± 0.10
ULADM-2 −0.91± 0.09 −0.20± 0.04 −0.80± 0.11 −0.19± 0.04 −0.61± 0.17 −0.27± 0.09
ULADM-3 −0.83± 0.10 −0.22± 0.05 −0.64± 0.15 −0.20± 0.06 −0.34± 0.24 −0.41± 0.32

TABLE VI: Average and 1σ marginalised errors on log10 εSFR and log10 σSFR at z = 6, 7 and 8 for the different DM models.
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FIG. 12: Triangle plot of the one and two dimensional dis-
tributions of log10 εSFR and log10 σSFR for the CDM model
at z = 6. We find similar results using the data at higher
redshifts and for the other DM models.

For DM models with lowest χ2
tot, we find the intrinsic

scatter σSFR ∼ 0.6 dex which is consistent with the value
assumed in [85].

We may notice that all models exhibit the same power
law trend at high masses, Mh & 1012 M� h

−1, while dif-
ferences occur at lower masses. In particular, we notice a
broken power law behaviour at the low-mass end for the
WDM-5, LFDM-3 and ULADM-3 models, which have
higher SFR at fixed halo mass than the CDM case. This
is consistent with the conclusion of the study on early
galaxy formation in the WDM scenario presented in [118]
and based on semi-analytical models (see also [119]). As
already stressed in Section III B, the differences at low
masses imply that in non-standard DM models the bary-

onic processes that regulate star formation during early
galaxy formation must operate differently than in CDM.
More precisely, the curves shown in Fig. 13 represent
constraints that simulations including baryonic physics
in such alternative DM models need to reproduce to be
compatible with LF observations. This will be worth in-
vestigating in the future using DM+hydro simulations.

VI. IMPLICATIONS OF LIVERMORE ET AL.
[17] DATA AT z = 6

Here, we discuss how the LF data at z = 6 from L16
modify the constraints on the DM models inferred in the
previous section. Since, these measurements points to a
steeper faint-end slope of the LF, we may expect the con-
straints on the DM scenarios to favorite models with a
SFR-Mh relation closer to that of the CDM case. In Ta-
ble VII we quote the χ2 of the DM models best-fitting the
LF data at z = 6 (L16+B15 for a total 23 data points),
while in Fig. 14 we plot the corresponding best-fit lumi-
nosity functions. Not surprisingly the models with the
lowest χ2 values are those with the lest suppression of
halo abundance at low masses.

However, it is worth noticing that none of the models
provide a good fit to the z = 6 LF data, since the reduced
χ2
red & O(2). This may point to the fact that the L16

data at z = 6 requires a shallower slope of the SFR-Mh at
low masses than that inferred from the LF data at z = 4
and 5, which is not the case at z = 7 and 8. We find
WDM-5, LFDM-2 and ULADM-3 to be the models with
the lowest χ2

tot values with respect to the realisations of
the same DM scenario.

The deviance statistics indicates that the best-fit
WDM-1 model is excluded at more than 4σ with ∆χ2

tot =
90.2, WDM-2 is excluded at more than 3σ with ∆χ2

tot =
13.3. while WDM-3 has ∆χ2

tot. This suggests a lower
bound on the WDM thermal relic mass corresponding
to mWDM & 2.0 keV. This is slightly stronger than that
inferred using the Bouwens et al. data at z = 6. In
the case of LFDM models, the deviance statistics ex-
clude the best-fit LFDM-1 model to more than 4σ with
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FIG. 13: Average SFR vs halo mass, 〈SFR(Mh), z〉 at z = 6 (black lines), z = 7 (blue lines) and z = 8 (red lines) for CDM
(top left panel), WDM-3 (top right panel), LFDM-2 (bottom left panel) and ULADM-3 (bottom right panel). The solid lines
corresponds to the marginal mean value of εzSFR while the dashed lines to the 68% statistical uncertainties quoted in Table VI
with the hatched area in between covering the ±1σ errors. In each panel we also plot the marginal mean and 1σ error on σSFR

at z = 6, 7 and 8.

∆χ2
tot = 36.0, while LFDM-2 and LFDM-3 are within

1σ of each other. This corresponds a constraint on zt
similar to the inferred in Section V. On the other hand
for the ultra-light axion models we find that ULADM-
1 and ULADM-2 are excluded at more than 2σ with
∆χ2

tot = 18.5 and 4.9 respectively. This points to a
strong bound on the axion mass ma & 1.5 × 10−21 eV
at 2σ, which is consistent with the constraints found in
[120] using the galaxy number density estimated from

L16 at z = 6.

VII. CONCLUSIONS

Measurement of the faint-end of the galaxy luminos-
ity function at high redshifts is key to understanding the
connection between early galaxy formation and scenarios
of cosmic reionization. Moreover, by probing the abun-
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Model χ2
z=6 χ2

tot

CDM 47.1 90.5
WDM-1 98.2 179.4
WDM-2 53.4 102.5
WDM-3 48.6 92.4
WDM-4 47.0 90.7
WDM-5 46.3 89.2
LFDM-1 67.8 129.4
LFDM-2 49.5 93.4
LFDM-3 47.2 93.9

ULADM-1 59.8 108.3
ULADM-2 46.8 94.7

ULADM-3 46.6 89.8

TABLE VII: Best-fit value of χ2
z=6 and χ2

tot for the different
DM models using L16+B15 data at z = 6.

FIG. 14: As in Fig. 11 for L16 data at z = 6 (cyan filled
circles).

dance of far distant galaxies hosted in the lightest DM
halos, one can also potentially test the nature of dark
matter particles in the universe. Scenarios alternative to
the CDM paradigm have been investigated in recent years
in response to the lack of detection of weakly interacting
massive particles in laboratory experiments and as a pos-
sible solution to anomalies in the observed distribution
of matter at small scales.

Using up-to-date measurements of the high-redshift
galaxy luminosity function we infer constraints on DM
scenarios alternative to CDM that feature a small scale
cut-off in the linear matter power spectrum. To this pur-
pose we have run a series of high-resolution N-body sim-
ulations of warm dark matter, late-forming dark matter
and ultra-light axion dark matter models to accurately

characterise the low-mass end of the halo mass function
at high redshifts (z & 4).

We have removed artificial groups of particles from the
N-body halo catalogs using a selection criterion based
on the analysis of the structural properties of the ha-
los. We have used the resulting halo catalogs to calibrate
analytical formula of the halo mass function which we
have utilised to infer DM model predictions of the high-
redshift galaxy luminosity function.

In order to convert halo masses into UV-magnitudes
we have developed an empirical approach based on halo
abundance matching that has a twofold advantage: (i) it
accounts for the effect of dust extinction which may alter
the redshift dependence of the UV-magnitude halo mass
relation, and (ii) it allows us to gain insight on the star
formation rate of galaxies as a function of host halo mass
and redshift.

Using a compilation of state-of-art measurements of
the LF at z = 6, 7 and 8 we perform a likelihood analysis
to evaluate the goodness-of-fit of the simulated DM mod-
els and infer constraints on the amplitude and scatter of
the ensemble average SFR-Mh relation in such models.

We find that at fixed halo mass the average SFR
slightly increases with increasing redshift, while the scat-
ter remains constant. For all DM models considered,
the SFR-Mh relation converges to the double power law
behaviour of the CDM model at Mh & 1012 M� h−1,
while differences occur at lower masses. In particular,
DM models characterised by a suppression of low-mass
halo abundance exhibit systematically higher SFR com-
pared to the CDM scenario. This suggests that baryonic
processes responsible for star formation in low-mass ha-
los cannot be treated independently of the assumptions
on the nature of the DM. Our results also indicate that
independent measurements of SFR and galaxy host halo
mass in this mass range and at these redshifts can di-
rectly constrain DM models.

Besides CDM, the other DM models best-fitting the
LF data with lowest value of χ2

tot are WDM-3, LFDM-2
and ULADM-3. These are statistically indistinguishable
from the best-fit CDM model, with differences ∆χ2

tot .
1. In contrast, we find the goodness-of-fit within the
same DM scenario to vary from one model realisation to
another. Thus, we infer constraints on the DM scenarios
from deviance statistics. In particular, we obtain a lower
bound on the WDM thermal relic particle mass mWDM &
1.5 keV at 2σ. This is less stringent than the limits found
in [79] which have used the L16 data at z = 6. The
LFDM models are constrained to have a phase transition
redshift zt & 8 · 105 at 2σ. We find ULADM best-fit
models to be statistically compatible with LF data well
within 2σ of the deviance statistics.

We would like to stress that LF measurements at z = 6
are consistent with a flattening or a turnover at faint UV-
magnitudes, a point already highlighted in [24]. This ex-
plains as to why models such WDM-3 and LFDM-2 have
χ2
tot values that are slightly lower than CDM. The pres-

ence of such a turnover at the faint-end of the LF has
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been predicted in a number of galaxy formation stud-
ies based on CDM/hydro simulations. Here, we have
shown that such a feature can be a signature of non-
standard DM. However, it is important to note that in
such non-standard DM models as considered here, a gen-
tle turnover requires a higher SFR at low halos masses
compared to the CDM prediction to compensate for the
sharp drop of halo abundance at these masses. In fact,
the constraints we have derived on the particle mass in
WDM and ULADM models and the phase transition red-
shift in LFDM would be much tighter if we had assumed
as template the CDM model’s average SFR-Mh relation.

The redshift evolution of the halo mass function at the
low-mass end as well as the SFR histories featured by
the investigated models suggest that further constraints
can be inferred from the Planck determination of opti-
cal depth [121] and more in general from studies of the
cosmic reionization history. However, this will be possi-
ble only at the cost of additional caveats. Regarding this
last point, a tomographic reconstruction of the reioniza-
tion history through cross-correlation of CMB temper-
ature and polarization maps with the angular distribu-
tion of reionization tracers as proposed in [122] can also
probe DM scenarios. Similarly, for measurements of cos-
mic reionization history from kinetic Sunyaev-Zeldovich
detections (see e.g. [123]). These are relevant aspects
that we plan to explore in future.
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Appendix A: WDM, LFDM and ULDAM halo mass
function best-fit coefficients

In Table VIII, IX and X we quote the values of the
coefficients of Eq. (4) best-fitting the halo mass func-
tions from the N-body halo catalogs of WDM, LFDM and
ULADM model simulations. For illustrative purposes in
Fig. 15 we plot the mass function at 4 ≤ z ≤ 8 from
the simulations of WDM-2 (panel a), LFDM-1 (panel b)
and ULADM-1 (panel c) models against the best-fitting
functions.
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Model z α β γ M∗
WDM-1 4.0 0.46688E-01 -0.15362E-02 0.77722E+00 0.36452E+12

5.0 0.56763E-01 -0.15343E-02 0.77124E+00 0.35490E+12
6.0 0.68210E-01 -0.14801E-02 0.80043E+00 0.35685E+12
7.0 0.12417E+00 -0.10537E-02 0.88205E+00 0.33658E+12
8.0 0.17072E+00 -0.87254E-03 0.97998E+00 0.31569E+12

WDM-2 4.0 -0.19738E-01 -0.41804E-02 0.86551E+00 0.67546E+11
5.0 0.85360E-02 -0.39280E-02 0.80553E+00 0.79238E+11
6.0 0.85360E-02 -0.39280E-02 0.80553E+00 0.79238E+11
7.0 0.11670E-01 -0.41489E-02 0.82052E+00 0.80275E+11
8.0 0.11890E-01 -0.31869E-02 0.86675E+00 0.89083E+11

WDM-3 4.0 -0.29145E-01 -0.13439E-01 0.53411E+00 0.25237E+11
5.0 0.21376E-02 -0.10081E-01 0.58836E+00 0.27828E+11
6.0 0.10142E-01 -0.94886E-02 0.59938E+00 0.28294E+11
7.0 0.16513E-01 -0.97150E-02 0.61578E+00 0.28749E+11
8.0 0.17838E-01 -0.97581E-02 0.62047E+00 0.28882E+11

WDM-4 4.0 -0.54437E-01 -0.12643E-01 0.51662E+00 0.83804E+10
5.0 -0.19856E-01 -0.15134E-01 0.42798E+00 0.11073E+11
6.0 0.44430E-02 -0.17341E-01 0.53405E+00 0.87945E+10
7.0 0.56581E-02 -0.18033E-01 0.55238E+00 0.90182E+10
8.0 0.75246E-02 -0.18507E-01 0.56916E+00 0.92176E+10

WDM-5 4.0 -0.34874E-01 -0.14503E-01 0.30686E+00 0.88613E+10
5.0 -0.22920E-01 -0.14582E-01 0.29235E+00 0.89928E+10
6.0 -0.18762E-01 -0.19141E-01 0.38016E+00 0.58888E+10
7.0 0.40597E-04 -0.21623E-01 0.41057E+00 0.58092E+10
8.0 0.19086E-02 -0.22924E-01 0.43360E+00 0.59553E+10

TABLE VIII: Halo mass function best-fit coefficients of Eq. (4) for WDM models.

Model z α β γ M∗
LFDM-1 4.0 0.77542E-02 -0.30292E-02 0.91358E+00 0.98292E+11

5.0 0.14193E+01 -0.28145E-04 0.71418E+00 0.16774E+14
6.0 0.12092E+00 -0.20581E-02 0.91856E+00 0.11639E+12
7.0 -0.94165E-01 -0.38357E-02 0.10138E+01 0.57870E+11
8.0 0.28828E+01 -0.37645E-05 0.10240E+01 0.59584E+14

LFDM-2 4.0 -0.29327E-01 -0.15755E-01 0.73613E+00 0.19674E+11
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[80] C. Schultz, J. Oñrobe, K. Abazajian, and J.S. Bullock,

Mont. Not. Roy. Astron. Soc. 442, 1597 (2014)
[81] B. Bozek, D.J.E. Marsh, J. Silk, and R.F.G. Wyse,

Mont. Not. Roy. Astron. Soc., 450, 209 (2015)
[82] H.-Y. Schive, T. Chiueh, T. Broadhurst, K.W. Huang,

Astrophys. J. 818, 89 (2016)
[83] G.R. Meurer, T.M. Heckman, D. Calzetti, Astrophys.

J. 521, 64 (1999)
[84] R. Smit et al., Astrophys. J. 756, 14 (2012)
[85] N. Mashian, P.A. Oesch, A. Loeb, Mont. Not. Roy. As-

tron. 455, 2101 (2016)
[86] C.J. Willott et al, Astron. J. 145, 4 (2013)
[87] M. Ouchi et al., Astrophys. J. 706, 1136 (2009)
[88] R.A.A. Bowler et al., Mont. Not. Roy. Astron. Soc. 440,

2810 (2014)
[89] R.A.A. Bowler et al., Mont. Not. Roy. Astron. Soc. 452,

1817 (2015)
[90] R.A.A. Bowler, J.S. Dunlop, R.J. McLure, D.J.

McLeod, Mont. Not. Roy. Astron. Soc. 466, 3612 (2017)
[91] R.C. Kennicutt, Ann. Rev. Astron. & Astrophys. 36,

189 (1998)
[92] A. Lewis, A. Challinor, A. Lasenby, Astrophys. J. 538

473 (2000)
[93] P. Bode, J. P. Ostriker, N. Turok, Astrophys. J. 556 93

(2001)
[94] R. Teyssier, Astron. & Astrophys. 385, 337 (2002)
[95] S. Prunet et al., Astrophys. J. Supp. 178, 179 (2008)
[96] M. Davis, G. Efstathiou, C. S. Frenk, S. D. M. White,

Astrophys. J. 292, 371 (1985)
[97] F. Roy, V. Bouillot, Y. Rasera, Astron. & Astrophys.

564, A13 (2014)
[98] J. S. Bullock et al., Astrophys. J. 555, 240 (2001)
[99] J. Courtin et al., Mont. Not. Roy. Astron. Soc. 410,

1911 (2011)
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