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Crucial tests of macrorealist and semi-classical gravity models with freely falling

mesoscopic nanospheres
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Recently, several proposals have been made to test the quantum superposition principle in the
mesoscopic regime. Most of these tests consist of a careful measurement of the loss of interference
due to decoherence. Here we consider, instead, the spread in position of a freely falling nanosphere.
We study in depth the dependence of this spread on self-gravity in the presence of decoherence
(exotic and non-exotic). We show that the influence of self-gravity is robust in the presence of weak
decoherence, and quantify this robustness by introducing a new parameter, the critical decoherence,
aimed at estimating the critical value above which self-gravity is overwhelmed by decoherence. We
also emphasise the crucial role played by the spread of the initial wave packet for the sensitivity of
free-fall experiments to decoherence.

I. INTRODUCTION

The quantum superposition principle has been validated
at various scales of mass and distance. For instance, dou-
ble slit-like interferences have been experimentally exhib-
ited for photons, electrons, neutrons, atoms, molecules
and, more recently, macro-molecules [1–3]. These ex-
periments aim at probing the limit of validity of quan-
tum theory and the quantum-classical boundary. More-
over, recent progress in quantum technology (in partic-
ular in quantum optomechanics [4]) nourishes the hope
that it will soon be possible to scrutinize the superpo-
sition principle at the level of mesoscopic objects (e.g.
nanospheres) of mass larger than 106 u (atomic mass
unit) [5–8]. Typically the experiments proposed so far
consist of measuring the decay of interference exhibited
by these objects and checking whether this decay can be
explained solely in terms of environmental (non-exotic)
decoherence sources (with a few notable exceptions [9–
12]). The realization of these experiments would make
it possible, among others, to test the validity of exotic
decoherence models of spontaneous localisation such as
the Ghirardi-Rimini-Weber (GRW) [13], Pearle [14] and
Continuous Spontaneous Localisation (CSL) [15] models
(for an extensive review of these models we invite the
reader to consult reference [16]). Here we investigate an-
other approach [9, 17]. Instead of considering quantum
interferences exhibited by a mesoscopic object (here a

∗ scolin@cbpf.br
† thomas.durt@centrale-marseille.fr
‡ willox@ms.u-tokyo.ac.jp
§ Present address: Centro Brasileiro de Pesquisas F́ısicas, Rua Dr.
Xavier Sigaud 150, Urca, CEP 22290-180, Rio de Janeiro, Brasil

solid nanosphere), we consider a free-fall experiment per-
formed in a zero-gravity environment (e.g. a satellite) in
which we estimate the spread of the quantum distribu-
tion of the position of its centre of mass. As we shall
show, this technique delivers a probe which is sensitive
to decoherence, but which could also, in principle, reveal
the influence of self-gravitational effects at the level of the
wave function of the centre of mass of the nanospheres
(CMWF). From this point of view it might yield a versa-
tile tool for investigating fundamental features exhibited
by quantum systems at the classical-quantum transition.

The paper is structured as follows. First we consider
the simple situation where a nanosphere is freely falling
without self-gravity, when only decoherence is present
(section II). This case has already been addressed in the
past [9, 17] and can be treated analytically [13]. Next, we
consider the situation where only self-gravity is present
(section III). This situation is more complicated because
in the presence of self-gravity the evolution law is intrin-
sically non-linear and integro-differential, and cannot be
cast into the form of a linear master equation. The ma-
jority of results obtained so far in this case are numerical
(see e.g. [18–21]). Here, in order to simplify the treat-
ment, we make use of a numerical scheme we recently de-
veloped, which enables us to approximate the non-linear
evolution by a non-linear Gaussian process [22].

One of our main results concerns the situation where both
self-gravity and decoherence are acting simultaneously on
the system (section IV). Until now, no numerical scheme
was available to tackle this question. We solve this
problem numerically through a hybrid approach which
takes into account the joint influence of decoherence (à
la Monte-Carlo) and self-gravity (according to the ap-
proximated scheme of section III) on the temporal evo-
lution of the density matrix of the centre of mass of
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the freely falling nanosphere (CMDM). This allows us
to make a quantitative study of the influence of decoher-
ence and self-gravity on the spread of the CMDM. Our
estimates reveal a subtle interplay between these two ef-
fects. Our results also establish that self-gravity is robust
with respect to decoherence, provided the latter is not too
strong. This is important in order to ensure the experi-
mental possibility of confirming or falsifying the existence
of self-gravity, as it is impossible to entirely suppress de-
coherence in any realistic experiment.

In section V we discuss the experimental constraints that
need to be met in order to be able to falsify self-gravity
and/or weak decoherence models. We introduce a qual-
ity factor aimed at estimating the sensitivity of a free-fall
experiment of the type considered throughout our paper.
By doing so, we reveal the crucial role played by the ini-
tial spread of the wave packet of the centre of mass of the
nanosphere, which acts as an amplifier for the sensitivity
of free-fall experiments.

The last section is devoted to the conclusion.

II. FREELY FALLING NANOSPHERE IN THE

PRESENCE OF DECOHERENCE.

A. Freely falling nanosphere.

Freely falling nanospheres in a zero-gravity environment
(a satellite) can be used for testing the superposition
principle (see e.g. the experimental proposal DECIDE-
DECoherence in [8, 23], to be carried aboard the mission
MAQRO-MAcroscopic Quantum ResonatOrs [8, 24]).
They are also recognized to have potential applications in
tests of the weak equivalence principle i.e. the universal-
ity of free fall (CASE-Comparative Acceleration Sensing
Experiments [8]). In the CASE proposal, the positions of
freely falling nanospheres – of various masses and com-
positions – released from an optical trap, are accurately
measured by optomechanical techniques. A conventional
accelerometer controls micro-propulsion thrusters of the
spacecraft in order to maintain it along a quasi-inertial
trajectory. Here, following [17], we propose to use such a
device in order to measure the quantum position spread
exhibited by a nanosphere after an inertial flight of long
duration. In the following we take for granted that a
feedback system – combining conventional accelerome-
ters and thrusters – makes it possible to create, inside
the satellite, a zero-gravity environment during periods
of the order of say 102 to 103 s, along the three spatial
directions. The spread in position of the freely falling
nanospheres can then be measured by repeatedly drop-
ping a pair of nanospheres from two well-calibrated po-
sitions inside optical traps, leaving them to “float” dur-
ing a certain time inside the satellite. After this time
it is possible to measure, with high accuracy, their posi-
tion by accelerating the satellite for a while by means of

its thrusters, along a direction orthogonal to a support
where the spheres will remain trapped (for instance by
gluing them on a solid surface as has been done in inter-
ference experiments involving macromolecules some years
ago [1]). By repeatedly measuring the relative positions
of nanospheres of equal mass and composition, we can
estimate the spread of their relative position (see [9, 17]
for related proposals). The novelty of our approach is
that using two spheres rather than one, allows us to get
rid of the intrinsic uncertainty of the inertial sensor that
is used for controlling the thrusters 1.

B. Free fall in the presence of exotic and

non-exotic decoherence.

Decoherence is omnipresent at the quantum level and,
unless it is possible to isolate a system from its direct
environment, the influence of decoherence is huge and
very rapid [25, 26]. By non-exotic decoherence we refer
to the well-documented sources of decoherence that are
due to the interaction of a system with its direct physical
environment. This includes scattering (by the quantum
system under study, here a nanosphere) of residual gas
particles, of thermal photons of the environment, emis-
sion and/or absorption of thermal photons and so on.
By “exotic decoherence” we wish to refer to a hypothet-
ical mechanism of spontaneous localisation (SL) which
would be active everywhere in our universe and would ul-
timately explain why classical objects are characterized
by an unambiguous localisation in space [16]. The im-
portance of SL models (also called macrorealist models)
lies in the fact that they bring an answer to the mea-
surement problem [27]. The GRW model [13] predicts
for instance that the quantum superposition principle is
violated in such a way that a macroscopic superposition
(Schrödinger cat state) will collapse into a well-resolved
localised wave packet (with an extent of the order of 10−7

m) after a time inversely proportional to the mass of the
pointer. This time becomes very small in the classical
limit, seen here as the large mass limit. For instance,
the original GRW model predicts that the collapse time
is of the order of 10−7 s for a pointer of mass equal to
1023 u. There exists an extended zoology of SL mod-
els, such as those attributing the source of spontaneous

1 Of course, the distance between the two spheres must be large
enough in order that van der Waals, Casimir, gravitational and
other interactions between them do not mask self-gravitation,
which is very weak. For instance, requiring that during 300s
the London interaction between the two spheres (equal to
(−3/2)AR2/d2 where A is the Hamaker constant equal to 10−19

J, R their radius and d their distance) does not diminish their
relative distance by more than one µm, imposes that they must
be dropped from locations separated by at least 3 cm, in which
case the stretching undergone by a one µm-sized packet during
the free fall is of the order of the Å and may be consistently
neglected.



3

localization to a dedicated universal localization mecha-
nism (GRW [13], CSL [14, 15], Quantum Mechanics with
Universal Position Localization (QMUPL) [16, 28] and
Adler’s SL models [29]), to self-gravitation (Diosi [28]
and Penrose [30]), to fluctuations of the spacetime met-
ric (Karolyhazy, Frenkel et al. [31]), to quantum gravity
(Ellis et al. [32, 33]) and so on. It is not our goal to
give a survey of all these models here, and we invite the
interested reader to consult the recent and very exhaus-
tive review paper of Bassi et al. dedicated to this topic
[16] as well as reference [34] where a careful estimate of
the SL parameters assigned to these various models is
provided. These models have in common that they lead
to accurate predictions regarding the quantum-classical
transition. Here we shall consider four of them in detail,
the original GRW model, the CSL model, the Diosi Pen-
rose model (DP) and the Quantum Gravity (QG) model.
Typically, in these models, a nanosphere of normal den-
sity will cross the quantum-classical transition when its
radius becomes larger than 10−7 m. Of course this tran-
sition is not assumed to be sharp and in the rest of the
paper we will study a range of radii from 10−8 to 10−5m.

C. Interplay between the free Schrödinger

evolution and decoherence

In order to take into account the influence of decoherence,
we modify (as a first step) the free Schrödinger evolution
by assuming that from time to time, the CMWF spa-
tially collapses in accordance with GRW’s original model
[13]. A key ingredient in this model is the so-called jump
factor, that is, a properly normalised Gaussian function
J(x, y, z) = C exp(−(x2 + y2 + z2)/2λ2)) (where C is
an appropriate normalisation factor) of extent λ, centred
around (x, y, z). This jump will occur at times that are
randomly distributed according to a Poisson distribution
with mean τ . The collapse localisation (x0, y0, z0) is also
randomly distributed with a spatial probability distribu-
tion given by

ρ(x0, y0, z0) =
∫

R3

dxdydz|J(x0 − x, y0 − y, z0 − z)Ψ(x, y, z)|2. (1)

During a jump, the initial CMWF ψi changes to
ψf (x, y, z) = J(x, y, z)ψi(x, y, z)/

√

ρ(x, y, z). In partic-
ular, Gaussian states of the form

Ψi(t,x) = exp(−Ar2 +Bxx+Byy +Bzz + C) (2)

jump to shrunken Gaussian states of the form

Ψf (t,x) =

exp(−(A+ (α/2))r2 +B′
xx+B′

yy +B′
zz + C′) . (3)

This model is characterized by two constants: γ = 1/τ
(the inverse of the average time between two jumps or lo-
calisations) and the inverse of a squared length α = 1/λ2

where λ is the extent of the localisation region. Many
important properties of the model only depend on the
product of γ and α, which is denoted by Λ :

Λ = γ · α . (4)

In absence of self-gravitation the effects of decoherence
are well-known: at each jump the center of the wave
packet jumps at random while, simultaneously, its ex-
tent shrinks. Indeed, the values of A before (Ai) and
after the jump (Af ) are related by the relation Af =
Ai +α/2. As the extent δr of the CMWF is of the order

of
(
√

Re(A)
)−1

, we find, neglecting dimensional factors
of the order of unity, that the extents of the CMWF
after and before a jump are related through the rule
1/δr2f = 1/δr2i +α such that δrf −δri ≈ −αδr3i . Between
two jumps the wave packet diffuses according to the free
Schrödinger evolution and δr(t+ τ) ≈ δr(t)+ ~τ/(Mδr),
where τ = γ−1 is the average time between two jumps.
After a while the spread of the wave packet asymptoti-
cally reaches an equilibrium value for which the shrink-
ing is compensated by free diffusion [9]: −αδr3equil. ≈
−~τ/(Mδrequil.). The asymptotic value of the spread of
the CMWF thus reads [13, 16]

δrequil. = (~/Mαγ)1/4 = (~/MΛ)1/4. (5)

Of course, experimentally, we have no access to the indi-
vidual trajectories followed by the CMWF, but averaging
over numerous realizations of the stochastic localization
mechanism by a quantum Monte-Carlo procedure makes
it possible to predict the average evolution of the object,
that is of the associated CMDM. As shown in the original
GRW paper, globally, the spread of the CMDM diffuses
even faster than in the absence of jumps, because of the
dispersion of the positions at which jumps occur, accord-
ing to the formula [13, 26]:

√

< r2 > (t) =
√

< r2 > (0)×
√

1 +
9~2t2

4M2(< r2 > (0))2
+

Λ~2t3

2M2 < r2 > (0)
. (6)

This relation is important because it makes it possible to
estimate the value of the decoherence parameter Λ (ob-
tained after summing the exotic and possibly non-exotic
contributions: Λ = Λexotic + Λnon−exotic). It explains in
particular why we can obtain direct information about
the decoherence undergone by the microsphere, simply
by measuring the spread of its CMDM (see [9, 10, 17] for
similar proposals).

We now evaluate the parameters γ and α (and Λ) cor-
responding to various exotic and non-exotic decoherence
processes. We first consider three non-exotic processes:
scattering of ambient air molecules by the nanosphere,
scattering of environmental thermal photons and emis-
sion of thermal photons by the nanosphere at tempera-
ture Ti [26, 34].
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1. Decoherence due to residual gas

Decoherence due to scattering by the nanosphere of
ambient gas molecules is characterized by the parame-
ters αair = 1/λ2air=makBT/2π~

2 ≈ 1019m−2T (where
ma is the average atomic mass of an air molecule, kB
the Boltzmann constant and T the numerical value of
the ambient temperature [34] expressed in kelvin) and

Λair = 8
√
2π

3
√
3

mavapR
2

~2 where va is the average velocity of

the gas molecules and p their pressure [26]. At normal
pressure, γair ≈ 1028s−1R2T 1/2 where R is the numerical
value of the radius of the sphere expressed in m and T
the temperature. At very low pressure (1017 times less
than the atmospheric pressure, which corresponds to a
density of some hundreds of molecules by cm3) we find
γair ≈ 1011s−1R2T 1/2 and Λair ≈ 1030m−2s−1R2T 3/2.

2. Decoherence due to thermal photons

Decoherence due to black body (b.b.) photons that stem
from the environment is characterized by the parame-
ters αscattering

bb = (kBT/(π
3/2

~c))2 ≈ 4 × 104m−2T 2 and

Λscattering
bb ≈ 2.1036m−2s−1R6T 9 [26].

Decoherence due to b.b. photons emitted by the nano-
sphere heated in the trap, at a temperature Ti, has
also been considered (see e.g. [34]), leading to the pa-
rameters αemission

bb ≈ 4 × 104m−2T 2
i , and Λemission

bb ≈
5 × 1025m−2s−1R3T 6 times a dielectric factor Im(ǫbb −
1)/(ǫbb + 2) that we take here to be equal to 0.1 (in ac-
cordance with [7]). Of course, when the nanosphere is
optically trapped, the laser light used will obviously heat
it. For instance in [35] an internal nanosphere tempera-
ture Ti = 1600K was mentioned, for which decoherence
due to black body emission overwhelms other sources of
decoherence, as can be extrapolated from Table I if we
multiply the 6th column by (2000/20)6 = 1012. This
problem is in fact difficult to deal with because the tem-
perature of the nanosphere depends in a complicated way
on its dielectrical properties and on the balance between
heating and radiation [35, 36]. On the other hand, we
expect these problems to be less stringent in a satellite
because in a micro-gravity environment it is possible to
levitate the nanosphere with a much less powerful laser.
We shall thus, from now on, assume that Ti ≈ 20 K (in
accordance with the benchmarks put forward in [24]), in
which case black body emission is under control. Taken
together, the above results make it possible to estimate
the various non-exotic decoherence parameters due to the
environmental influence. Some decoherence parameters
representative of these various mechanisms of decoher-
ence are listed in Table I as a function of the radius of
the nanosphere.

Throughout the paper we shall often assume that the
density of the nanosphere is equal to the density of sil-

R gas scattering b. b. scattering b. b. emission Λcrit.

Λgas γgas Λscatt.
b.b. γscatt.

b.b. Λemission
b.b. γemission

b.b.

10−5 6.4 × 1021 4 × 101 1017 1010 3.4 × 1017 2 × 106 1017

10−6 6.4 × 1019 4 × 10−1 1011 104 3.4 × 1014 2 × 103 1014

10−7 6.4 × 1017 4 × 10−3 105 10−2 3.4 × 1011 2 1011

10−8 6.4 × 1015 4 × 10−5 10−1 10−8 3.4 × 108 2 × 10−3 10−22

TABLE I. Non-exotic decoherence parameters estimated for a
nanosphere of unspecified density. On the right, we also give
the value of Λcrit. (for the case of 2.6 times normal density)
which is an effective decoherence measuring the strength of
self-gravity (cf. the discussion concerning (20)). The non-
exotic parameters were evaluated at a temperature Ti of 20
K, in an environment at 16 K. Λ is expressed in m−2s−1, the
radius R in m and γ in s−1.

icate, as described in [6], which is equal to 2.6 times
the normal (water) density. At the mesoscopic transition
R ≈ 10−7m, the mass of the nanosphere is then of the or-
der of 10−17kg and counts approximately 1010 nucleons.
We shall, at times, also consider a density more or less
ten times higher, because this increases self-gravitation
such that the mesoscopic transition occurs at a slightly
smaller radius, as has been shown in [22]. Such a density
corresponds to the density of gold. It is not clear however
whether it is possible to find a material of such a high
density which possesses the optical properties required
for trapping. It is not our goal to address these experi-
mental details here but they already motivated consider-
able research work in the past [35, 36] and we expect that
experimentalists will bring new answers to these ques-
tions in the near future.

The various parameters of decoherence do play a role.
For instance, if γ is smaller than the inverse of the free-
fall time, no jump is likely to occur and it is consistent
to neglect the corresponding source of non-exotic deco-
herence. This is the case for the non-exotic contributions
assumed to prevail in the experimental set up described
here, whenever we consider free-fall times of the order of
100 s and nanospheres of radius of the order of 100 nm,
as is clear from Table I. The probability that a collision
with a residual gas molecule or the emission or scattering
of a b.b. photon occurs during the free-fall is then small
and can consistently be neglected. However, in that case
other decoherence mechanisms, for instance those due to
exotic sources of decoherence, must be considered in pri-
ority, which opens an interesting observational window
around the mesoscopic transition2 where non-standard
effects are likely to prevail.

2 We performed some simulations (the results of which are given
in figures 3 and 6) in which we decrease and increase the mass by
30 percent, and the effect was still visible, which establishes the
robustness of the effects predicted by us around the mesoscopic
transition.
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3. Exotic decoherence from four SL models

Next, we consider four SL models. In the original GRW
model [13] (according to which γGRW is equal to the num-
ber of nucleons of the nanosphere times the universal pa-
rameter γ0 chosen by GRW to be equal to γGRW

0 = 10−16

s−1, while the localisation distance is of the order of 100
nm) one has ΛGRW = αGRW × γGRW=

(M/u)γGRW
0 αGRW=(M/u)10(14−16)m−2s−1.

In turn, in the CSL model [15], γCSL is equal to the
square of the number of nucleons of the nanosphere, mul-
tiplied by the spontaneous localisation rate per nucleon
(still denoted as γ0 in our paper) and by a scale depen-

dent function of the form [9] f̃CSL = (3/2)(10−7/R)4[1−
2(10−7/R)2 + (1 + 2(10−7/R)2)e−(R/10−7)2 ] so that we
find γCSL = (M/u)2γ0(3/2)(10

−7/R)4 [1−2(10−7/R)2+

(1 + 2(10−7/R)2)e−(R/10−7)2 ]. The localisation rate per
nucleon γ0 is an a priori free parameter, often taken to be
equal to 10−16 s−1 in accordance with the GRW prescrip-
tion, although larger values can be found in the literature
[16, 37]. Adler [29] for instance proposed a higher locali-
sation rate γ0 per nucleon in the range [10−8, 10−12] hz.

The parameter αCSL is also often chosen in conformity
with the GRW model: αCSL = αGRW = 10+14m−2.

As is discussed in more detail in [38], in the appropriate
regime, the Lindblad equation associated with a process
à la GRW (where sudden jumps happen from time to
time) can also be derived from a quantum Monte Carlo
unravelling in the sense of Ito, which is per se a continu-
ous stochastic process. This is the case of the CSL model
where by construction no sudden quantum jump is likely
to occur, which justifies the “C” label of the CSL model.

The decoherence parameters of the QG model [32, 33]

obey ΛQG =
c4M2m4

0

~3m3

P

where mP is the Planck mass, M

is the mass of the nanosphere, m0 the mass of a nucleon,

αQG =
c2m4

0

~2m2

P

≈ 10−6m−2, γQG ≈ 3 × 105(M/m0)
2s−1.

Typically ΛQG ≈ 3× 1019(M/10−17kg)2.

The decoherence parameters of the Diósi Penrose (DP)
model obey ΛDP = GM2/(2R3

~) and α = R−2 (where
R is the radius of the sphere andM its mass [28, 30, 34])
as well as γDP = GM2/(2R~).

Some decoherence parameters predicted in the frame-
work of these models are given in Table II, as a function
of various values for the radius of the nanosphere.

R GRW CSL QG DP Λcrit.

ΛGRW γGRW ΛCSL γCSL ΛQG γQG ΛDP γDP

10−5 6× 1013 6× 10−1 6.5× 1021 2.6× 108 6× 1029 6× 1035 3.8× 1016 3.8× 106 1017

10−6 6× 1010 6× 10−4 6.3× 1019 2.5× 106 6× 1023 6× 1029 3.8× 1013 3.8× 101 1014

10−7 6× 107 6× 10−7 6.7× 1016 2.7× 104 6× 1017 6× 1023 3.8× 1010 3.8× 10−6 1011

10−8 6× 104 6× 10−10 1.1× 1011 4× 103 6× 1011 6× 1017 3.8× 10−7 3.8× 10−11 10−22

TABLE II. Parameter values in four exotic decoherence models, estimated for a nanosphere of 2.6 times the normal density.
We also give the value of Λcrit. (cf. the discussion concerning (20)) evaluated at this same density. Λ is expressed in m−2s−1,
the radius R in m and γ in s−1.

4. Tests of macrorealism

Whenever the magnitude of exotic decoherence is at least
comparable to that of environmental decoherence, a cru-
cial test of macrorealist models becomes possible, in prin-
ciple, provided these models lead to a measurable differ-
ence in the spread of the wave function (which, in the
following, we take to be at least 5 nm – nm accuracy
has been reported in [39]). In figure 1, we plotted the
spread of the wave function of the centre of mass for
nanospheres with a 100 nm radius, after a free fall of 300
s, for two different initial spreads, in the presence (upper
curve) and absence (lower curve) of strong exotic deco-
herence. Obviously, the influence of exotic decoherence is
easily measurable when γ is strong enough (of the order
of 1018 and more), which establishes that our experimen-
tal proposal can unambiguously reveal the hypothetical
presence of exotic decoherence in the case of the CSL
or QG models (compared to the DP and GRW parame-
ter values plotted in Table II, these can be qualified as

“strong” SSL models).

As has been noted in [34], SL models invoking self-
gravitation and/or fluctuations of the spacetime metric
are a lot weaker than the CSL and QG gravity models. If
the experiment we propose is realized in an environment
prepared at a temperature of 16 K, in extreme vacuum
conditions, with a sufficiently cold nanosphere, exotic de-
coherence as predicted in the DP model [28, 30, 34, 40]
would be stronger than the non-exotic decoherence due to
the environment whenever the radius of the nanosphere
is of the order of 100 nm. Its presence is therefore, in
principle, measurable. We shall come back to this point
in section IVB which is devoted to the numerical results,
and also in section V where we discuss the experimental
constraints.
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FIG. 1. Spread (expressed in m) of the CMDM as a func-
tion of the time t (expressed in s, with t ∈ [270, 300] s),
for a nanosphere of radius 100 nm and mass density ρ =
20000 kgm−3 (density of gold), with initial spread δr0=10−9

m. The curves marked by squares and stars correspond to
the absence of decoherence, respectively with and without
self-gravity. The decoherence parameters are α = 1018 m−2

and γ = 1 s −1. The curves marked by plus symbols and
circles correspond to the case where decoherence is present,
respectively in the absence and presence of self-gravity, while
the curve marked by triangles is the analytic curve (6).

III. SELF-GRAVITATION ONLY.

A. Effective potential for gravitational

self-interaction of a solid homogeneous spherical

object.

Although various manifestations of gravity at the macro-
scopic and cosmological scales have been accurately stud-
ied it is not clear yet how gravitation is generated by a
quantum object, and it is even less clear how the ob-
ject interacts with itself under the influence of gravita-
tion. Here we shall assume that in first approximation
the source of gravity of a quantum object is equivalent
to a classical matter density equal toM |Ψ(t,x′)|2, where
Ψ represents the CMWF of the object and M its mass.
Whenever we can suppose that the object is point-like
(that is, when the spread of the CMWF is much larger
than the size of the object), quantum effects due to self-
gravitation are encapsulated in the Schrödinger-Newton
equation [41]

i~
∂Ψ(t,x)

∂t
= −~

2∆Ψ(t,x)

2M

+

∫

d3x′|Ψ(t,x′)|2V (|x− x
′|)Ψ(t,x), (7)

where V (d) = −GM2/d, which fits with the mean field
coupling limit proposed by Møller [42] and Rosenfeld [43]
in the non-relativistic limit. If the object possesses an
internal structure, the situation is more complicated [22]

and it is then necessary to integrate the self-gravitational
Newtonian interaction over the degrees of freedom as-
signed to its internal structure. In the case of a rigid ho-
mogeneous nanosphere this can be done exactly and one
finds that, at short distance, instead of the Newton po-
tential V , the effective self-interaction can be expressed
[22, 44] in terms of d = |xCM − x

′
CM | as follows:

V eff(d) =
GM2

R

(

−6

5
+

1

2

(

d

R

)2

− 3

16

(

d

R

)3

+
1

160

(

d

R

)5
)

(d ≤ 2R), (8)

where R is the radius of the nanosphere. This expression
is valid when d is smaller than twice the radius of the
sphere. Otherwise, when d is larger than twice the size
of the object, the integration is straightforward. Making
use of Gauss’s theorem we recover the usual Coulomb-like
shape:

V eff(d) = −GM
2

d
(d ≥ 2R). (9)

It should be noted that the fifth degree polynomial (in d
R )

(8) agrees, up to its 4th derivative, with the Newtonian
potential in 1/r at the transition point (d = 2R).

The resulting integro-differential evolution law of the
CMWF now reads

i~
∂Ψ(t,xCM)

∂t
= −~

2∆Ψ(t,xCM)

2M
+

∫

d3x′CM |Ψ(t,x′
CM)|2V eff(|xCM − x

′
CM |)Ψ(t,xCM)

(10)

where V eff(|xCM − x
′
CM |) is fully defined through equa-

tions (8,9).

Although self-gravitation has been invoked as a source of
spontaneous localization by several authors among which
Diósi and Penrose [28, 30, 40], from the literature on
this subject it is not always easy to understand through
which mechanism gravitational self-collapse would ulti-
mately lead to spontaneous localization [45].

As we explain in [22], self-gravitation, as defined through
equations (8,9,10), does not require any extra ingredi-
ent to explain why objects localize. In our view, and
this is for instance confirmed by the accurate numeri-
cal simulations carried out by van Meter [21], the non-
linearity of the Schrödinger-Newton (S-N) equation suf-
fices to explain how and why quantum systems sponta-
neously tend to reach a stable minimal energy state in
which dispersion is exactly compensated by self-gravity.
From this point of view the semi-classical gravity ap-
proach differs radically from stochastic spontaneous mod-
els of self-localisation in the sense that, as was noted in
[16], the S-N dynamics is deterministic while quantum
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jumps are intrinsically stochastic 3. In the rest of the
paper we shall therefore distinguish self-gravitation as
defined through equations (8,9,10), from the aforemen-
tioned sources of exotic decoherence and in particular
from the DP model [28, 30, 34, 40] which will be treated
on the same footing as other SL models, independent
from what we call self-gravitation. In any case, our study
shows that at the mesoscopic scale (nanospheres with
radii in the nm-mm range) the self-gravitational inter-
action, if it exists, may not be neglected. As we shall
show, for a well-chosen range of parameters, decoherence
and self-gravitation have comparable effects. Moreover,
self-gravitation is to some extent robust with respect to
decoherence. This justifies, in our opinion, the interest
of studying the interplay between both phenomena.

B. Interplay between the free Schrödinger

evolution and self-gravitation

The interplay between the free Schrödinger evolution and
self-gravitation has motivated an abundant literature. In
particular, a lot of attention has been devoted to the
properties of the ground state of the S-N equation (7), as
it constitutes a natural candidate for a self-collapsed lo-
calized state [49–55]. In the literature, one also finds sev-
eral attempts to (numerically) study the temporal evolu-
tion of the self-localization process that results from grav-
itational self-focusing [18–21, 52, 56–58]. For instance, in
[19] scaling arguments are combined with numerical esti-
mates to give a lower bound of 1010 atomic units for the
mass of an initial Gaussian wave packet (with a typical
width of 0.5 µm) for it to undergo collapse to the ground
state.

These works are often characterized by a high level of
computational complexity. The main reason is that the
modified Schrödinger evolution (7) (or (8–10), depending
on the physical details of the system one wishes to study)
which incorporates self-gravitational interaction at the
quantum level, is at the same time non-linear and non-
local. This severely complicates its resolution by stan-
dard numerical methods. Another problem is that, so

3 It is known that certain non-linear modifications of the
Schrödinger equation violate the no-signaling theorem and seri-
ously menace the Lorentzian invariance of quantum theory [46].
As shown by Gisin [47], it is the combination of stochastic and
non-linear terms that avoids the violation of the no-signaling
theorem, and we are aware that, at first sight, the Schrödinger-
Newton dynamics might seem less ‘physical’ than the stochastic
spontaneous localisation models. However, one should bear in
mind that no fully satisfactory Lorentz invariant spontaneous lo-
calisation model is currently known. Other important issues in
this context are the measurement problem [27] and the deriva-
tion of the Born rule [16] which are still open problems in the
semiclassical gravity approach [48]. In any case, it is beyond the
scope of this paper to address these questions.

far, only two extreme regimes have been studied: the
so-called “single particle” [19, 59] and the “macroscopic”
regimes [41], which, respectively, correspond to the cases
where the extent of the CMWF is considerably larger
(d≫ R) or much smaller (d≪ R) than the radius of the
nanosphere (in the first case, the internal structure of the
sphere plays no role, and it can be considered as an ob-
ject without dimension, like an electron; on the contrary,
in the opposite regime, the center of mass is sharply lo-
calized and behaves as a classical point-like particle). In
the experiments proposed by us however, it is necessary
to also investigate the “mesoscopic” regime where the
extent of the CMWF is comparable to the radius of the
nanosphere (d ≈ R). In order to overcome these compu-
tational difficulties, we developed an approximative res-
olution scheme [22] which we briefly outline below.

Essentially, we approximate the effect of self-gravitation
by a harmonic potential, the spring constant of which
depends non-linearly on the spread of the CMWF. The
approximated evolution then reads

i~
∂Ψ(t,x)

∂t
= −~

2∆Ψ(t,x)

2M
+
k(< r2 >)

2
r2Ψ(t,x), (11)

where the spring ‘constant’ k(< r2 >) is now a function of

< r2 >=
∫

d3x
∣

∣ψ(x, t)
∣

∣

2
r2 , which remains to be defined.

This equation is obviously not linear, unless k is a con-
stant function (as occurs in the macroscopic regime), but
it possesses appealing properties which are in fact very
close to those of the modified Schrödinger evolutions (7)
(or (8–10) in the general case) we wish to study, for in-
stance it possesses a conserved quantity which mimicks
the exact self-gravitational energy as shown in [22, 38].

A very important feature of equation (11) is that if ini-
tially the CMWF is Gaussian, it will remain so at all
times. In particular, if we impose a Gaussian ansatz for
the solution of the form Ψ(t,x)=exp(−Ar2+Bxx+Byy+
Bzz+C), we obtain a closed system of differential equa-
tions for the complex functions of time A(t), Bx(t), By(t),
Bz(t), C(t). The evolution law for A(t) is particularly
simple:

dA(t)

dt
=

−2i~A2

M
+
ik(< r2 >)

2~
, (12)

where < r2 >= 3/(4Re(A)). This feature leads to a
substantial gain in computation time.

The spring constant k is shown in [22, 38] to obey:

k(< r2 >) = (GM2/R3)(1 − (9/16)d̃+ (1/32)d̃3) (13)

with d̃ =
√
< r2 >/R when

√
< r2 > ≤ 2R, and

k(< r2 >) =
GM2

(
√
< r2 >)3

(14)

when
√
< r2 > > 2R.
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Several trajectories generated with the help of our al-
gorithm are plotted in figure 2. The horizontal line in
this figure represents a Gaussian ground state of the har-
monic effective potential mimicking the self-interaction
of a Gaussian CMWF, as explained above. It can be
shown [22] that if the initial spread is smaller than half
the spread of the bound state, kinetic energy dominates
self-gravitational energy, resulting in a positive total en-
ergy, which forces the (spread of the) CMWF to escape to
infinity, as seen in figure 2. Breather-type solutions ap-
pear when the initial spread of the CMWF is such that
the particle is trapped by its own potential.

We also validated our numerical scheme by comparing
it to other numerical solutions, such as those obtained
by Giulini and Großardt [19] and also to those obtained
by van Meter [21] for the integro-differential S-N equa-

tion (7) in the region
√
< r2 > > 2R (the single particle

regime). We observed a rather good qualitative agree-
ment (in the sense of footnote 4) between the predictions
made from both approaches, which is perhaps not that
amazing as the numerical CMWF solutions of equation
(7) considered in [19, 21] have a quasi-Gaussian shape.

It is straightforward to analytically estimate the spread
of the bound states of the system of equations (11,13,14)
(that is, of the static solutions for which free diffusion
exactly compensates the self-gravitational force, as given
by dA/dt = 0) in the extreme regimes

√
< r2 > ≪ 2R

and
√
< r2 > ≫ 2R. In the regime

√
< r2 > ≪ 2R we

find [22]

√

< r2BS > =
9

4
(

~
2

GM3
)

1

4R
3

4 , (15)

in agreement with Diósi’s (rough) predicted value

( ~
2

GM3 )
1

4R
3

4 [41]. There is also good qualitative agree-
ment with the results obtained by more sophisticated

methods in the regime
√
< r2 > ≫ 2R, where we find

[22]

√

< r2BS > =
9

4

~
2

GM3
, (16)

in agreement with the approximated value of the extent
of the ground state given in [19], which is estimated at

twice the so-called Lieb radius ~
2

GM3 [59].

In general, i.e. outside the two extreme regimes√
< r2 > ≪ 2R and

√
< r2 > ≫ 2R, the width of the

bound state has to be obtained numerically, as explained
in [22].

Furthermore, the numerical value of the energy of the
normalized ground state in our approximation is -0.222
G2M5

~2 , which fits nicely 4 with the value -0.163 G2M5

~2 first
obtained in [61], which is the best known numerical value
for this parameter [49, 52].

In [22] we showed that in the ideal case (without any
kind of decoherence) the sensitivity to the presence of
self-gravitation is optimal if we can reach free fall times
of the order of 400 to 1000 s for nanospheres with radii
in the range of 1 to 10 µm. Now, a collision with even
a single atom (molecule) of the background gas would
collapse the CMWF on a distance of the order of the
de Broglie wavelength (in our case more or less one Å).
Therefore the duration of the free fall must be smaller
than the average time between two collisions (γ−1 in Ta-
ble I). In the conditions we propose to work in (see Table
I), if we consider a sphere with a radius of one µm, we
find a free fall time of (4.10−1)−1 ≈ 2.5 s. This is clearly
too small. However, a free fall time of 200 s is allowed
for nanospheres with a radius of 100 nm, and in the com-
ing sections we shall examine the possible experimental
realisations in this case.

4 The discrepancy between the respective values for the ground
state energy is of the order of 40 percent, but one should bear in
mind that, when approximating (7) by a gaussian evolution, the
aim is to obtain a qualitative estimate of the importance of the
interplay between decoherence and self-gravitation rather than a
numerical approximation of the exact solution, which due to the
inherent computational complexity of the problem is almost in-
tractable. There is however another approximation scheme that
is worth mentioning [60] which corroborates the observed agree-
ment in the two regimes we are concerned with in the present

paper: δr0 <
√

< r2
BS

> ≈ R and δr0 ≈

√

< r2
BS

> ≈ R, which

is not surprising at all since we tuned [22] the parameters of our
gaussian approximation scheme so that it (qualitatively) matches
the most reliable constraints that can be found in the literature
for (7) in the single particle regime. These are the results due
to van Meter, for the critical spread below which the energy is
positive and systems escape to infinity [21] and to Membrado
[61] for the energy of the bound state. Very good agreement

is reached in the region
√

< r2
BS

> ≪ R, mainly because the

dynamics there is linearizable [22, 62], while our model appears

to lose its predictive power in the region
√

< r2
BS

> ≫ R. This

regime however corresponds to long times and large masses which
we do not consider here. One should also keep in mind that in
the presence of decoherence, the dynamics must be re-initialized
after every quantum jump, and that the asymptotic shape of the
individual wave packet is gaussian [13], which fully justifies our
gaussian wave packet ansatz in this case.
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FIG. 2.
√
< r2 >t (expressed in m) as a function of the time t (expressed in s) for a homogeneous nanosphere of radius 10−7 m

and mass density of 2650 kgm−3, for both the free and the self-gravitating cases, for various initial values for the mean width
of the state. Identical line styles are shared by the curves with the same initial conditions and the self-gravitational case is
labeled by the symbol G. The continuous lines correspond to the initial condition

√

< r2(t = 0) > =
√

< r2BS >, where the
width of the bound state is defined by (15,16). The dashed lines (resp. dotted, or those marked by ∗) have for initial condition

0.5
√

< r2BS > (resp. 2
√

< r2BS >, or 3
√

< r2BS >). The final time corresponds to 24 hours.

IV. INTERPLAY BETWEEN THE FREE

SCHRÖDINGER EVOLUTION, DECOHERENCE

AND SELF-GRAVITATION.

A. Theoretical considerations: critical decoherence

parameter.

In [22] we showed that, even in the absence of deco-
herence, the effect of self-gravitation at the level of the
spread of the CMWF, which is the experimental param-
eter of interest, remains weak and difficult to observe.
Indeed, to enhance self-gravitation we must increase the
mass of the wave packet. This, on the other hand, slows
down the free diffusion and ultimately imposes durations
of free-fall flight that are too long to be realized experi-
mentally. If instead we try to accelerate the spread of the
CMWF by decreasing the initial spread, we increase the
kinetic energy of the particle and self-gravitation weakens
compared to free diffusion.

The situation could be improved in the presence of deco-
herence since it modifies the diffusion process in such a
way that one can experimentally consider heavier (larger)
nanospheres, for which self-gravitation becomes stronger
as well. More precisely, we expect that decoherence max-
imally amplifies the influence of self-gravity when the lo-
calisation mechanism repeatedly shrinks the CMWF to
a size where self-gravitation actively slows down the free
expansion of the CMWF, as is confirmed in our numeri-
cal study. In this case, the evolution between two succes-
sive jumps is expected to be maximally disturbed by self-

gravitation. This occurs whenever δrequil. – the asymp-
totic spread (5) associated to decoherence – is compara-

ble in size to
√

< r2BS >, the static, self-collapsed radius
(given by (15) or (16), depending on the situation):

δrequil. =
√

< r2BS >. (17)

From this constraint (combining equations (15), (16)
and (5)) it is straightforward to derive an analytic es-
timate of the critical decoherence parameter for which
self-gravitation and decoherence have comparable mag-
nitudes. This critical decoherence parameter Λcrit. reads
(neglecting constant dimensional factors of the order of
unity):

Λcrit. =
G4M11

~7
(18)

in the single particle regime
√

< r2BS >≫ 2R, and

Λcrit. =
GM2R−3

~
(19)

in the macroscopic regime
√

< r2BS >≪ 2R.

In summary, decoherence will not mask self-gravitation
whenever Λcrit. is larger than Λ, i.e., whenever

Λcrit. ≥ Λ, (20)

Different values of Λcrit. are plotted in Tables I and II,
and it is instructive to compare them with the other de-
coherence parameters.
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It is also instructive to reconsider the problem in the
framework of the aforementioned QMUPL model [16, 28],
where the stochastic parameters only affect the centre of
a Gaussian wave packet, not its size and for which it
can be shown that for a Gaussian ansatz of the form
Ψ(t,x)=exp(−Ar2+Bxx+Byy+Bzz+C), A(t) evolves
deterministically according to

dA(t)

dt
=

−2i~A2

M
+ Λ. (21)

On the other hand, as explained above, when only self-
gravitation is present, A evolves deterministically accord-
ing to (12). Taking into account both contributions, we
find that in the simultaneous presence of decoherence and
self-gravity A(t) obeys the evolution law

dA(t)

dt
=

−2i~A2

M
+
ik(< r2 >)

2~
+ Λ. (22)

It is easily verified that Λcrit. satisfies Λcrit. =
k(<r2BS>)

2~ .
In other words, decoherence becomes critical when its
contribution to the evolution law is comparable in mag-
nitude to the contribution of self-gravity, which, by the
way, implies the same type of relation as (18) and (19)
but now expressed in terms of a (continuous) decoherence
model which is very different from the (discrete) GRW
one.

B. Numerical predictions.

Summarizing the discussions of the previous sections: as
is clear from Tables I and II, there exists only a tiny
window around the mesoscopic transition (R = 10−7m)
where self-gravity and/or macrorealism are likely to be
falsifiable. For nanospheres of smaller radii, self-gravity
and exotic decoherence become too weak very rapidly,
while for larger radii they become overwhelmed by en-
vironmental decoherence. It is also obvious that strong
exotic (CSL and QG) decoherence, if it exists, will always
mask the presence of self-gravity and that it is only in the
absence of such strong sources of exotic decoherence that
self-gravity will be falsifiable. Experiments will therefore
have to be conducted in two steps. As a first step, one
must check whether or not “strong” exotic decoherence
(of the CSL or QG type and, as we shall show soon, of the
DP type as well) is present. If the answer is negative, it
becomes possible to falsify self-gravitation by measuring
departures from the predicted spread of the wave packet
in case only environmental decoherence is present. Need-
less to say, a positive answer in the first or second case
would constitute a remarkable achievement in itself.

In figures 1 and 3 through 6, we plot the temporal evo-
lution of the spread of CMDMs in the presence of deco-
herence. Figure 1 corresponds to a decoherence param-
eter Λ = 1018m−2s−1, while figures 3 to 6 respectively

correspond to Λ = {1013, 1013, 1016, 1011}m−2s−1. The
mass density of the nanosphere is always that of gold,
expect for figure 3 where that of silicate is used. The
initial spreads of the CMDM are respectively equal to
{10−9, 10−7, 10−9, 10−9, 10−7}m.

The results presented in these plots are obtained by mix-
ing a large number of individual trajectories in which the
CMWF jumps, from time to time, à la GRW and where
in-between two jumps, it evolves according to either the
free Schrödinger equation or the approximated S-N equa-
tion (11). Due to computational time limitations, we
keep the parameter γ relatively low (one jump every s)
and we adapt in each case the value of (α = Λ/γ) in order
to reach the values of Λ found in Tables I and II. We have
checked however that, after averaging over many realiza-
tions of the GRW process, the results we obtain in the
absence of self-gravity remain close to the theoretically
predicted asymptotic value (6), thus confirming that the
GRW model, as is well known, is to some extent indepen-
dent of variations in γ and α, provided Λ = αγ remains
constant. (In figures 1 and 3 through 6, we also plot the
theoretical estimate (6) of the spread of the CMDM in
the limit where it is averaged over infinitely many reali-
sations of the stochastic jump process.)

Our simulations confirm the various effects predicted in
the previous sections on the basis of purely theoretical
considerations:

(i) exotic decoherence is likely to be revealed by the free
fall experiment we propose in the “strong” exotic deco-
herence regimes, as predicted by the CSL and QG mod-
els. In such regimes, self-gravity is clearly overwhelmed
by decoherence. This can be seen from figure 1 where
the curves in the absence (below) and presence (above) of
decoherence are very clearly distinguishable. The curves
with/without decoherence in this figure differ by more
or less 500 nm after 300 s, which shows that even after
a mere 100 s, the experiment would make it possible to
falsify 5 without any doubt the CSL and QG models.

(ii) it is in fact also possible to falsify the “weak” ex-
otic decoherence models in the same way as the strong
models. This can be seen from figure 3 (for a silicate
nanosphere) where the curves in the absence or presence
of decoherence are still distinguishable: they are sepa-
rated by a distance of the order of 50 nm after 200 s,
which is still largely within the range of sensitivity of
5 nm we consider. Obviously decoherence masks self-
gravity here as well, which is not surprising since the
decoherence parameter exceeds the critical parameter by
a factor 100.

5 Being completely rigorous, these experiments can only falsify
exotic decoherence models but will not necessarily validate them.
Indeed, it would be very difficult to demonstrate unambiguously
that the experimental observation is due to the presence of exotic
decoherence and not to some uncontrolled standard source of
decoherence.
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FIG. 3. Spread (in m) of the CMDM as a function of the
time t (expressed in s, with t ∈ [270, 300] s), for a nanosphere
of radius 100 nm and mass density ρ = 2600 kgm−3 (den-
sity of silicate), with initial spread δr0=10−7 m. The curves
marked by squares and stars correspond to the absence of
decoherence, respectively with and without self-gravity. The
decoherence parameters are α = 1013 m−2 and γ = 1 s −1.
The curves marked by plus symbols and circles respectively
correspond to the absence and presence of self-gravity, while
the curve marked by triangles is the analytic curve (6).

(iii) From figures 4 and 5 it is clear that the subtle inter-
play between self-gravity and decoherence predicted the-
oretically in the previous section is manifestly present:
the effect of self-gravitation in the presence of deco-
herence remains comparable to the effect it has in the
case without decoherence, whenever the decoherence re-
mains close to the critical decoherence parameter (fig-
ure 4). When decoherence increases further (figure 5) it
is obvious that decoherence will mask self-gravity. In
other words, for a certain range of decoherence, self-
gravitational effects are robust with respect to decoher-
ence.

(iv) it is not possible to falsify the “weak” DP model in
the absence of self-gravity when the initial spread of the
CMDM is too small (see also point (vi) below). This can
be seen, for example, from figure 4 where in the absence of
self-gravitation, although still distinguishable, the curves
corresponding to the cases in which decoherence is either
absent or present are only separated by a distance of the
order of a nm after 1000 s. This sort of precision is out
of reach in our proposal.

It is however possible in principle to falsify the “weak”
DP model in the presence of self-gravity. Indeed, the dis-
tance between the corresponding curves (labeled “free”
and “with decoherence and self-gravity”) in figure 4 is
of the order of 20 nm after 1000 s, which is right at
the edge of presently reachable precisions, as we must
limit ourselves to free fall times of the order of 200 s (to
avoid decoherence caused by background gas). The effect
would be easier to detect however if the pressure could
be decreased, e.g. increasing the maximal free fall time
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FIG. 4. Spread (in m) of the CMDM as a function of the time
t (expressed in s, with t ∈ [900, 1000] s), for a nanosphere of
radius 100 nm and mass density ρ = 20000 kgm−3 (density of
gold), with initial spread δr0=10−9 m. The curves marked by
squares and stars correspond to the absence of decoherence,
respectively with and without self-gravity. The decoherence
parameters are α = 1013 m−2 and γ = 1 s −1, leading to a Λ
factor comparable to the DP prediction. The curves marked
by plus symbols and circles respectively correspond to the
absence and presence of self-gravity, while the curve marked
by triangles is the analytic curve (6).

by a factor of, say, 5. Then, as the difference between
the predicted spread in the presence of self-gravity and
decoherence and the predicted spread in the presence of
self-gravity only, is of the order of 10 nm after 1000 s, it
would in principle even be possible to distinguish both
behaviours. Remarkably, self-gravity even amplifies the
effect of decoherence here because the difference between
the predicted spread in the presence of self-gravity and
decoherence and the predicted spread in the presence of
self-gravity only, is more or less ten times higher than
what we would get in the absence of self-gravity for which
only a difference of the order of one nm is predicted.

(v) Besides the limited precision of individual position
measurements, another problem arises if the difference
in spread that is to be measured is too small: due to the
law of large numbers the acquisition time necessary for
an evaluation of the spread with a precision of ǫ, increases
as 1/ǫ2. For instance, discriminating a 100 nm and a 99
nm spread would impose a measurement with a precision
of 0.1 nm. This would require us, in virtue of the law
of large numbers, to repeat free falls one million times
(=(0.1/100)−2), which is clearly not possible.

(vi) As can be seen from figure 6 however, even if we
limit ourselves to free falls with durations of 200 s, when
decoherence is low we can improve the situation by in-
creasing the initial spread of the CMWF. In this case the
influence of self-gravity is of the order of 20 nm after 200
s in the absence of decoherence (or when decoherence is
negligible).

(vii) In the absence of any kind of exotic decoherence,
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FIG. 5. Spread (in m) of the CMDM as a function of the time
t (expressed in s, with t ∈ [900, 1000] s), for a nanosphere of
radius 100 nm and mass density ρ = 20000 kgm−3 (density of
gold), with initial spread δr0=10−9 m. The curves marked by
squares and stars correspond to the absence of decoherence,
respectively with and without self-gravity. The decoherence
parameters are α = 1016 m−2 and γ = 1 s −1. The curves
marked by plus symbols and circles respectively correspond
to the absence and presence of self-gravity, while the curve
marked by triangles is the analytic curve (6).

provided the environmental decoherence is weak enough,
self-gravity can still manifest itself even when the exter-
nal decoherence is of the order of the critical parameter
( Λ ≈ Λcrit). In this case, the optimal strategy would be
(1) to make use of maximally dense spheres (say the same
density as gold) in order to maximize self-gravity and (2)
to prepare the initial state in the vicinity of the self-
gravitationally bound state (which can be estimated to
be of the order of 10−8 m, on the basis of equation (15)).
Indeed, as can be seen on figure 6, the effect of self-gravity
is still clearly visible even in the presence of decoherence,
provided decoherence is not too strong (the critical deco-
herence parameter value is estimated here, from equation
(19), to be of the order of 1013 m−2 s−1). Similar com-
putations show that the effects are still present, though
less pronounced, when the density is close to the normal
density.

V. DISCUSSION: ‘REAL LIFE’ EXPERIMENTS,

AN IMPOSSIBLE MISSION?

In the previous sections we were, first and foremost, in-
terested in optimizing our numerical simulations, and we
deliberately neglected certain realistic constraints which
limit the experimental implementation of our ideas. This
explains why our predictions and expectations are more
optimistic than those which can be found in the litera-
ture on similar experiments (see [17, 24], in which the
spread of a freely falling nanosphere is used to reveal the
existence of exotic decoherence). We shall now briefly
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FIG. 6. Spread (in m) of the CMDM as a function of the time
t (expressed in s, with t ∈ [0, 1000] s), for a nanosphere of
radius 100 nm and mass density ρ = 20000 kgm−3 (density of
gold), with initial spread δr0=10−7 m. The curves marked by
squares and stars correspond to the absence of decoherence,
respectively with and without self-gravity. The decoherence
parameters are α = 1011 m−2 and γ = 1 s −1. The curves
marked by plus symbols and circles respectively correspond
to the absence and presence of self-gravity, while the curve
marked by triangles is the analytic curve (6).

discuss three of these constraints which are (i) the inter-
nal heating of the nanosphere, (ii) the duration of the
free fall and the mission lifetime, and (iii) the required
preparation process, which we think is the most interest-
ing constraint.

(i) when a nanosphere is optically trapped, its internal
temperature increases, so that the decoherence due to
black body emission becomes important. Regarding the
trapping of silicate nanoparticles, one can read in [10]
that ...“trapping and cooling of the external centre of
mass motion are possible, but the effects, intrinsic to op-
tical levitation, of heating by absorption and the cooling of
internal states is still problematic”... In [35] a temper-
ature of 1600 K is mentioned, which would mask both
weak (DP) and strong (CSL and QG) exotic decoher-
ence, as can be seen from Tables Tables I and II. How-
ever, the authors of [17] give a rather detailed overview of
the technical requirements involved during free-fall satel-
lite experiments and they give a benchmark of 25 K, for
which it is consistent to neglect the contribution to en-
vironmental decoherence due to black body emission in
comparison to CSL and QG contributions (still from Ta-
bles I and II). The benchmark for environmental decoher-
ence in a satellite mentioned in [17] implies a decoherence
parameter Λ of 10−11m−2s−1, which is nearly compatible
with the DP prediction in the case of silicate and very
comfortable in the case of gold. It is also comparable
to the critical decoherence parameter Λcrit for a silicate
nanosphere of radius 100 nm.

(ii) In the aforementioned works that investigate space-
based experiments [8, 17, 23, 24], the authors try to limit
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the free-fall durations to about 100 s and this for three
main reasons: (1) micro-thruster force noise, (2) imper-
fections in microgravity, and (3) mission lifetime. Micro-
thruster force noise and imperfect microgravity are be-
yond the scope of our work, but we are convinced that
measuring the relative position between two nanospheres
instead of measuring the spread in position of only one
nanosphere will actually improve the situation, as ex-
plained in section II. Now, the mission lifetime is not only
constrained by the duration of individual free fall exper-
iments but also by the number of experiments necessary
for reaching the required accuracy in the measurement of
the spread of the CMDM of the nanosphere. This ques-
tion, which has been addressed in [17] and is discussed in
greater detail in [24], has only briefly appeared in our dis-
cussion up to here (cf. remark (v) of section IVB). The
authors of [17, 24] use this limitation to impose limits on
which deviations from quantum physics one could actu-
ally hope to see in this type of experiment. In [17, 24] it
is shown that using just wavepacket expansion, it might
not even be possible to test CSL over its full parameter
range and perhaps also not the QG model, but certainly
not the DP model contrary to our proposal in the present
manuscript. As we shall now show, in (iii) below, certain
pessimistic predictions of [17, 24] may be circumvented
provided we relax one of their assumptions concerning
the initial state of the nanosphere, at the beginning of
the free-fall.

(iii) As discussed in (ii), it might no longer be true that
our experiment is sensitive to weak decoherence and/or
self gravity if one takes into account the more realistic
assumptions discussed in [8, 17, 23, 24]. Then why do
our results predict a gain of many orders of sensitivity,
compared to other free-fall experiments? Actually, we es-
timated (in [38]) the “classicality-parameter” µ which is
defined in [63] to measure the sensitivity of experiments
that are aimed at revealing a departure from the super-
position principle. This parameter can be defined for a
class of exotic decoherence models which comprises the
CSL model as a special case; it is essentially equal to the
base-10 logarithm of the inverse of the spontaneous local-
isation rate per electron (expressed in s). All the models
belonging to this class are characterized by a quadratic
scaling of the localisation rate as a function of the mass,
so that µ = −log10(γ0) − 2log10(me/u). As discussed
in [38], non-interferometric embarked experiments could
reach µ = 29, which is better than interferometric exper-
iments realized on earth, making it possible to discrimi-
nate the Diósi-Penrose model for which an experiment of
classicality µ = 28 is required.

This is corroborated by the remark (ii) of section IVB
where we claim that the “weak” DP model can be falsi-
fied after 200 s of free-fall. Incidentally this also shows
that the duration of the free-fall flight is not the most rel-
evant parameter. Actually, we optimized our numerical
predictions by varying several parameters, and not only,
as mentioned in (i) above, the duration of the time of

flight: some plots were obtained after having increased
artificially the effect of self-gravity by considering gold
nanoparticles, disregarding their optical properties; we
also assumed that the accuracy on position measure-
ments was of the order of one nm (in [24] a typical length
of 100 nm is considered instead) and, last but not least,
we optimized the initial spread of the CMWF, at the
time it is launched in the satellite. In our eyes the deep
reason for the gain of sensitivity should be attributed to
the latter parameter. In particular, δr0, the spread of
the state prepared at the beginning of the free-fall plays
a crucial role if we consider self-gravity because, as we
explained in [22], if this spread is too small, kinetic en-
ergy will dominate and self-gravity will not be strong
enough to compete with the free expansion of the wave
packet. On the contrary, if the initial spread is too large,
self-gravitation will be weak because it decreases with
the distance. Therefore, our most “impressive” plots
were obtained for initial spreads of the order of the self-
collapsed radius (given by (15) or (16), depending on the
situation).

In order to emphasize the crucial role played by δr0, let
us introduce a new parameter to estimate the sensitivity
of a free-fall experiment to decoherence:

Q =
2

9
tΛ <r2>(0).

This quality factor Q is nothing but the ratio between

the decoherence contribution Λ~
2t3

2M2<r2>(0) and the “free

expansion” contribution 9~2t2

4M2(<r2>(0))2 in (6). The deco-

herence parameter and the duration of the free-fall con-
tribute both linearly to Q, but Q also increases quadrat-
ically with the initial spread. For instance, after a free
fall of 100 s, when Λ is equal to 1013 m−2 s−1, Q is of the
order of 10−7 if the initial spread of the CMWF is equal
to 10−11 m, a typical value in an optical trap, but it is
of the order of 10 if this initial spread is equal to 100 nm
as in figure 3.

In all previous studies of free-fall experiments [8, 17, 23,
24] the role played by < r2 > (0) was overlooked for the
simple reason that in an optical trap the initial spread
is not a free parameter, and it is usually quite smaller
than the self-collapsed radius. However nothing forbids,
in principle, to slow down the nanosphere at the begin-
ning of its free fall, for instance by making use of laser
cooling techniques, and by a judicious use of external
decoherence, as discussed in [38].

In [38] we considered cooling by light [64–66], but cooling
by ambient gas is also possible in principle [67–70]. An-
other strategy would be to resort to other types of traps
(ion traps for instance). As indicated by the title of the
present section, we are not sure that the technical con-
straints on the implementation of our ideas will be solved
in the near future, but, even if at this very moment the
constraints on the free-fall time, or on the density of the
nanosphere and the size of the initial CMWF prohibit
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the implementation of our proposed scheme (even taken
one by one), nothing precludes the situation from chang-
ing dramatically tomorrow. Our goal is therefore not to
explore all technical details here (see for instance [24] for
a detailed study of technical constraints on a realistic
free fall experiment in a satellite), but rather to indicate
an optimal strategy to experimentalists, bearing in mind
the possibility of important technical developments in the
near and (perhaps not so) long term.

VI. CONCLUSIONS

Recent improvements in opto-mechanical [4] and nano-
optical [1, 39] devices nourish the hope that important
and fundamental experiments will be realized in the near
future, aimed at testing various non-standard propos-
als such as macrorealist models and semi-classical self-
gravitation models [5]. Several proposals have been pub-
lished for testing the superposition principle in the 106

to 109 u regime [35, 71] but none of these have been real-
ized yet (the present record is of the order of 104 u [72])
and all proposals mentioned in this paper, as well as the
free fall experiments considered by us, have the status
of gedanken experiments. However, it is very likely that
progress in cooling techniques will be such that over the
coming years we will see experimental realizations in the
mesoscopic regime which is of particular interest to us
(a sphere of 100 nm at twice the normal density counts
more or less 6.109 u).

In this paper we considered an approach [9, 17] in which,
instead of measuring the disappearance of interferences
in the quantum-classical transition, one measures the
spread of freely falling nanospheres in a zero gravity envi-
ronment. In order to correctly evaluate the temporal evo-
lution of the spreading of their CMWF and CMDM un-
der the joined influence of self-gravity and decoherence,
a problem that was never addressed before, it was neces-
sary to derive an exact expression for the self-interaction
of the nanosphere in the mesoscopic regime (8) and to
develop a numerical method based on the approxima-
tion scheme (11,13,14) which simplifies the resolution
of the system (8–10), to such an extent that a Monte
Carlo procedure mixing GRW jumps and gravitational
self-focusing becomes computationally tractable.

We showed that even in the presence of decoherence,
self-gravitation gives rise to possibly observable effects,
i.e.: that the self-gravitational influence is robust with
respect to decoherence in a certain range of parameters.
Of course, these effects are small and in order to be able
to observe the tiny influence of self-gravitation, the exper-
iment considered here must be realized in an extremely
clean environment and will necessarily involve very accu-
rate measurement techniques. In particular, measuring
the spread in position of the nanosphere after its free
fall requires one to go beyond the Abbe-Rayleigh limit.

The preparation process is also crucial, and, as we have
shown, in order to be able to falsify self-gravity, it is
necessary to be able to prepare the nanosphere in a very
cold state, which might not yet be reachable by presently
available cryogenic techniques.

One of our main results is the following: when decoher-
ence is small enough (i.e., when it is characterized by a
parameter Λ (4) comparable to the critical decoherence
parameter Λcrit which translates (18,19) the magnitude
of self-gravity in terms of decoherence (cf. (20)) an inter-
esting interplay appears between decoherence and self-
gravity.

In [21], van Meter wrote the following about the
Schrödinger-Newton equation: ...this theory predicts sig-
nificant deviation from conventional (linear) quantum
mechanics. However, owing to the difficulty of controlling
quantum coherence on the one hand, and the weakness of
gravity on the other, definitive experimental falsification
poses a technologically formidable challenge....

In the present paper, we presented an in-depth study of a
free fall experiment aimed at falsifying self-gravity, which
is a very important challenge, due to the well-known dif-
ficulties met in quantum gravity (see also [62, 73, 74] for
experiments inside a trap). Our proposal requires free
fall times in the range 102 to 103 s, which are only pos-
sible in an inertial, freely falling frame (a satellite). We
believe this could actually be one of the most interest-
ing physics experiments proposed so far, requiring the
use of a satellite [17] (of course keeping in mind that it
will not be realized immediately, since the feasibility of
our proposal is constrained by the progress in cooling
and trapping technology). In any realistic experiment it
is also imperative to take into account the interplay be-
tween decoherence and self-gravity, a question which has
never been addressed before. As we have shown in this
paper, the critical decoherence parameter makes it pos-
sible to define the experimental constraints necessary for
making self-gravity falsifiable.

Another key parameter that we identified here is the ini-
tial spread of the wave packet (section V). It is imperative
that this initial spread is of the order of the self-collapsed
radius of the nanosphere in order to be able to falsify
self-gravity and, even in absence of self-gravity, the sen-
sitivity of free-fall experiments will be hugely increased
provided we are able to tailor at will the initial spread of
the CMWF of the nanosphere. Unfortunately, the per-
formance of presently available optical traps does not yet
meet the constraints required in our proposal, but at least
our study indicates a promising direction of research to
experimentalists (decoherence-assisted cooling by light is
explored in [38]).
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