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ABSTRACT
The set-up of the initial conditions in cosmological N-body simulations is usually im-
plemented by rescaling the desired low-redshift linear power spectrum to the required
starting redshift consistently with the Newtonian evolution of the simulation. The im-
plementation of this practical solution requires more care in the context of massive
neutrino cosmologies, mainly because of the non-trivial scale-dependence of the linear
growth that characterises these models. In this work we consider a simple two-fluid,
Newtonian approximation for cold dark matter and massive neutrinos perturbations
that can reproduce the cold matter linear evolution predicted by Boltzmann codes
such as CAMB or CLASS with a 0.1% accuracy or below for all redshift relevant to
nonlinear structure formation. We use this description, in the first place, to quantify
the systematic errors induced by several approximations often assumed in numerical
simulations, including the typical set-up of the initial conditions for massive neutrino
cosmologies adopted in previous works. We then take advantage of the flexibility of
this approach to rescale the late-time linear power spectra to the simulation initial
redshift, in order to be as consistent as possible with the dynamics of the N-body
code and the approximations it assumes. We implement our method in a public code†
providing the initial displacements and velocities for cold dark matter and neutrino
particles that will allow accurate, i.e. one-percent level, numerical simulations for this
cosmological scenario.

Key words: methods: analytical – methods: data analysis – methods: N-body simu-
lations – methods: numerical – methods: statistical – large-scale structure of Universe.

1 INTRODUCTION

Numerical N-body simulations constitute an essential tool
for the interpretation of cosmological observables in redshift
as well as weak-lensing surveys. Indeed, a great effort is cur-
rently made by several groups to build realistic mocks of the
large-scale matter and galaxy distributions (see, e.g. Angulo

? E-mail:matteo.zennaro@unimi.it (MZ)
† REPS – rescaled power spectra for initial conditions with mas-
sive neutrinos https://github.com/matteozennaro/reps

et al. 2012; Alimi et al. 2012; Watson et al. 2014; Klypin
et al. 2016; Fosalba et al. 2015).

In fact, while the evolution of perturbations in the lin-
ear regime, i.e. at large scales and high redshift, is well
described by Boltzmann codes such as CAMB (Lewis et al.
2000) or CLASS (Lesgourgues 2011) that accurately repro-
duce Cosmic Microwave Background (CMB) observations
(e.g. Planck Collaboration et al. 2015), numerical simula-
tions play a key role in providing predictions for the nonlin-
ear evolution of structures at small scales and low redshift,
where perturbation theory breaks down.
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2 M. Zennaro, et al.

An important difference between these two fundamen-
tal tools in modern cosmology is the fact that Boltzmann
codes account for the baryonic and radiation components of
the energy density as well as for relativistic effects. N-body
cosmological simulations, on the other hand, typically work
within the Newtonian approximation, expected to be valid
for small density perturbations (weak field) and small veloc-
ities, as it is the case for a dominant non-relativistic matter
component (Cold Dark Matter or CDM), assuming as an in-
put the expansion history of the Universe as determined by
the energy content as a function of redshift. Only fairly re-
cently a certain attention is being devoted to the issue of gen-
eral relativistic corrections to the initial conditions and to
large-scale observables (see e.g. Chisari & Zaldarriaga 2011;
Bruni et al. 2014; Rigopoulos & Valkenburg 2015; Valken-
burg & Hu 2015; Fidler et al. 2015; Hahn & Paranjape 2016)
or to the development of a fully general relativistic N-body
code (Adamek et al. 2014, 2016a,b). Such codes are needed,
especially for testing cosmology on scales approaching the
horizon, even if Newtonian simulations remain adequate for
the study of sub-horizon scales (Jeong et al. 2011).

Furthermore, N-body simulations often take advantage
of additional approximations, mainly for practical reasons.
For instance, the contribution to the background expansion
of the residual radiation density at the initial redshift is often
ignored, although it can amount to a few percent of the total
density at zi ' 100. Possible, related systematic errors are
usually avoided, in simulations of ΛCDM models, by assum-
ing for the power spectrum describing the initial conditions
the z=0 output of a Boltzmann code properly rescaled to the
initial redshift by assuming the Newtonian approximation.
This practical procedure ensures the recovery of the desired
linear theory at low redshift at the expenses of predictivity
at high redshift.

The situation, as one can expect, becomes more compli-
cated in the context of massive neutrino cosmologies. These
particles, in fact, are characterised by a Fermi-Dirac momen-
tum distribution with an appreciable tail in the relativistic
range, particularly at high redshift. What is more impor-
tant for clustering studies is that, in these models, the linear
growth factors of both cold matter (cold dark matter and
baryons) and neutrino perturbations present a characteristic
scale-dependence describing the evolution of the power sup-
pression at low scales induced by neutrino free-streaming
and such scale dependence also evolves with redshift. For
this reason, a rescaling of a low-redshift power spectrum
to the initial redshift of the simulation is not trivial and,
therefore, simulations of massive neutrino models often as-
sumed the density power spectra for the different species
provided by a Boltzmann code at the initial redshift (Viel
et al. 2010; Bird et al. 2012; Villaescusa-Navarro et al. 2013;
Ali-Haïmoud & Bird 2013; Rossi et al. 2014)

However, this procedure can lead to systematic errors,
negligible only for sufficiently large neutrino masses and/or
sufficiently low values of the initial redshift. In the context of
current cosmological investigations, such issues can become
relevant. On one hand, small values of neutrino masses are
currently favoured (e.g. Palanque-Delabrouille et al. 2015);
on the other hand, a low initial redshift might be respon-
sible for other systematic errors related to transients from
the initial conditions (Scoccimarro 1998; Crocce et al. 2006;
L’Huillier et al. 2014; Schneider et al. 2016).

In this work we first quantify the systematics errors
resulting from different possible choices for the initial con-
ditions and the background evolution in massive neutrino
simulations. If we allow values of the initial redshift as large
as zi = 100, and require, at the same time, that initial per-
turbations are determined by a Boltzmann code at that red-
shift, we need to make sure that the same physical conditions
are reproduced by the simulation in order to avoid unphysi-
cal discontinuities. As we will see, this can be achieved with
some tweaking of the initial conditions, while failing to do
so will result in systematic errors affecting the output power
spectra of the simulation. We will consider, in particular, the
following issues that could be easily overlooked in the im-
plementation of numerical simulations:

• the contribution of radiation to the expansion history;
• the fraction of massive neutrinos still relativistic and

therefore contributing to the radiation energy density (in-
evitably contributing to the matter energy density in
particle-based simulations);
• the scale-dependence of the growth rate, f(k) ≡

d lnD(k, a)/d ln a for the cold matter perturbations in the
initial conditions (this could be approximated, for instance,
by a constant f ' Ω0.55

m (z), as customary for ΛCDM cos-
mologies, moreover equal to unity when radiation is ne-
glected and Ωm = 1);
• the contribution to the radiation perturbations of the

relativistic fraction of massive neutrino at large redshift, a
quantity necessarily equal to zero in particle-based simula-
tions where all neutrinos are always accounted for as non-
relativistic particles that source the gravitational potential;
• relativistic corrections at near-horizon scales, leading

to a scale-dependence of both the growth factor and the
growth rate of all particle species (only relevant for very
large-volume simulations).

One can see that the first two points do not represent a
real problem as any radiation contribution can easily be in-
cluded in the (external) evaluation of the Hubble parameter
(as in Ali-Haïmoud & Bird 2013) yet, we will estimate the
effect of ignoring radiation in the background anyway. The
third point is of interest in ΛCDM cosmologies only when
radiation is indeed accounted for at the initial redshift since
otherwise the growth rate f = 1 in an exact Einsten-de Sit-
ter Universe. For non-vanishing neutrino masses, the growth
rate is, moreover, scale-dependent and we will quantify the
error resulting from the f ' 1 approximation. The fourth
point remarks that, at the initial redshift, there is still an
appreciable tail of relativistic neutrinos that is necessarily
ignored in some implementations of massive neutrino sim-
ulations. The last point comes from the fact that, in the
Newtonian framework often employed in simulations, radi-
ation (photon) perturbations are neglected, leading to in-
accuracies in the power spectrum on large scales, as shown
by Brandbyge et al. (2016) and Valkenburg & Villaescusa-
Navarro (2016).

In order to quantify the effects of the approximations as-
sumed to describe the issues mentioned above, we shall em-
ploy a simple two-fluid, Newtonian approximation for cold
dark matter and massive neutrinos density perturbations.
The solution to the corresponding differential equations can
reproduce the linear evolution predicted by Boltzmann codes
such as CAMB or CLASS with a 0.1% accuracy or below (on the
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ICs for Accurate Sims with Massive Neutrinos 3

CDM and total matter power spectra) for all redshifts and
neutrino masses relevant to nonlinear structure formation
(Blas et al. 2014), with the exception, of course, of general-
relativistic effects at large scales.

Furthermore, the two-fluid solution will allow the exact
rescaling of the desired low redshift, linear power spectrum
to the initial redshift of the simulation in massive neutrino
cosmologies in the same fashion similarly to what is usually
done in the ΛCDM case. We will show that, in this way,
we are able to ensure sub-percent errors on the linear evo-
lution of cold dark matter and total matter perturbations
in N-body simulation, at any redshift of interest for most
cosmological applications.

So far several different implementations of N-body sim-
ulations of massive neutrino cosmologies have been consid-
ered in the literature. In the grid-based method proposed
by Brandbyge & Hannestad (2009) neutrino perturbations
are solved in linear theory on a grid. In the particle-based
method employed by Brandbyge et al. (2008), Viel et al.
(2010), Villaescusa-Navarro et al. (2013), Castorina et al.
(2015) and Carbone et al. (2016) (but see Klypin et al.
1993; Primack et al. 1995, for earlier applications of a similar
set-up to higher-mass particles) neutrino perturbations are
instead described in terms of particles, similarly to CDM,
but including a thermal component in their initial veloc-
ity. An hybrid version of these two methods has been pre-
sented in Brandbyge & Hannestad (2010), while an alterna-
tive semi-analytic approach is explored by Ali-Haïmoud &
Bird (2013). Agarwal & Feldman (2011) and Upadhye et al.
(2014) consider an implementation purely based on CDM
particles, where a fraction of them presents initial perturba-
tions described by neutrino and baryon transfer functions.
In this case, however, the correct scale-dependence of the
matter power spectrum can only be reproduced at a sin-
gle redshift. Finally, Banerjee & Dalal (2016) presented a
method to simulate neutrino cosmologies combining N-body
and fluid techniques, aiming at alleviating the shot-noise
that affects purely particle simulations.

We will employ the proper scale-dependent rescaling of
the linear power spectrum based on the two-fluid approxi-
mation, to provide the initial conditions for a set of particle-
based simulations. This method has been proved to better
capture neutrino effects at the nonlinear level (Bird et al.
2012; Villaescusa-Navarro et al. 2013) while allowing stud-
ies of the relative velocity among the different species (In-
man et al. 2015). However, our results are rather general
and can be applied to any method in which the source of
the gravitational potential receives contributions from the
(linear or nonlinear) neutrino density field, therefore includ-
ing the grid-based approach or the semi-analytic method by
Ali-Haïmoud & Bird (2013). Such approaches may correctly
treat the relativistic neutrino perturbation and can there-
fore use as an input the linear power spectrum at the initial
redshift. Note however that they neglect radiation (photon)
perturbations for the evolution of CDM particles, thus re-
quiring rescaling of the z = 0 power spectrum in order to
avoid inaccuracies on large scales (near horizon and above).

This paper is organised as follows. In Section 2 we in-
troduce massive neutrino models and the main properties
of the linear solution to their two-fluid perturbations equa-
tions. Section 3 shows some possible systematic errors that
can arise from different approximations considered in setting

the initial conditions of simulations, both with and without
massive neutrinos. We quantify the impact of each of them
on the linear power spectrum, showing how they can be kept
under control. This analysis provides us with a method for
rescaling a low redshift power spectrum to the initial red-
shift. In Section 4.2 we test this method on a set of N-body
simulations. We present our conclusions in Section 5.

2 LINEAR MATTER PERTURBATIONS IN
MASSIVE NEUTRINOS COSMOLOGIES

This section briefly summarises some cosmological effects
of a non-vanishing neutrino mass relevant to our purposes.
We refer the reader to Lesgourgues & Pastor (2006) for a
comprehensive review.

Of particular importance for the applications consid-
ered in this work is the evolution of the neutrino background
density, both in its radiation and matter components, de-
scribed in the following section. In section 2.2 instead we
will present the two-fluid approximation for the evolution of
the cold dark matter and neutrino perturbations.

2.1 Evolution of massive neutrino density

We assume the energy content of the Universe to be com-
posed of cold dark matter (CDM, with total density ρc and
relative density Ωc), baryons (ρb, Ωb), photons (ργ , Ωγ), and
neutrinos (ρν , Ων) along with a cosmological constant (ρΛ,
ΩΛ). We will refer to the sum of CDM and baryon densities
as the total “cold matter” component with relative energy
density given by

Ωcb ≡ Ωc + Ωb , (1)

while we will distinguish a massless (relativistic) neutrino
component (ρrν , Ωrν) from a massive (non-relativistic) com-
ponent (ρnrν , Ωnrν ) such that

Ων ≡ Ωrν + Ωnrν . (2)

The total matter tout-court will be given by CDM, baryons
and massive neutrinos, and we will denote its relative energy
density as

Ωm ≡ Ωcb + Ωnrν . (3)

The evolution of both photon and neutrino densities
depends on their momentum distributions and can be ex-
pressed respectively as

ργ(z) =
π2

15
(kBTγ,0)4 (1 + z)4 , (4)

where kB = 8.617342×10−5eV K−1 is the Boltzmann’s con-
stant (h and c being equal to unity) and, for a neutrino
species of mass mν,i, expressed in eV,

ρν,i(z) =
(kBTν,0)4

π2
(1 + z)4F

[
mν,i

kBTν,0(1 + z)

]
, (5)

where Tγ,0 and Tν,0 are respectively the photon and neutrino
temperature today, while the function F is defined as

F(y) ≡
∫ ∞

0

x2
√
x2 + y2

1 + ex
dx. (6)

c© 0000 RAS, MNRAS 000, 000–000



4 M. Zennaro, et al.

It is convenient to express the neutrino energy density,
eq. (5), in terms of the photon density as

ρν,i(z) =
15

π4
Γ4
ν ργ(z)F

[
mν,i

kBTν,0(1 + z)

]
, (7)

where Γν ≡ Tν,0/Tγ,0 is the neutrino to photon temperature
ratio today. In the limit of instantaneous decoupling we have

Γν,inst =

(
4

11

)1/3

, (8)

while this value must be slightly modified if we want to take
into account the fact that the decoupling between photons
and neutrinos is not an instantaneous process (Hannestad &
Madsen 1995; Dolgov et al. 1997; Esposito et al. 2000) and
the distortions to the neutrino temperature spectrum intro-
duced by flavour oscillations (Mangano et al. 2005). Such
corrections are usually expressed in terms of an effective
number of neutrino relativistic degrees of freedom defined
as

Neff = Nν
Γ4
ν

Γ4
ν,inst

. (9)

We assume the value Neff = 3.046 corresponding to Γν =
0.71649 (Mangano et al. 2002, 2005). It should be noted,
however, that different approximations in the modelling of
the decoupling process lead to variations in the value of Γν
with negligible impact on the quantities of interest in this
work: for instance, in a cosmology with massless neutrinos,
using the instantaneous decoupling value instead of the de-
fault one results in a 0.01% difference on the value of the
Hubble rate at z = 100.

In this work we will limit ourselves, for simplicity, to the
case of Nν = 3 degenerate massive neutrinos of total mass

Mν ≡
Nν∑
i=1

mν,i . (10)

Under this assumption, the evolution of the neutrino con-
tribution to the expansion rate of the Universe can be ex-
pressed therefore as

Ων(z)E2(z) =
15

π4
Γ4
ν Nν Ωγ,0 (1 + z)4

×F
[
Mν/(Γν Nν kB Tγ,0)

1 + z

]
,

(11)

where E(z) describes the time dependence of the Hubble
rate, such that H(z) ≡ H0E(z).

Eq. (11) is the expression we will adopt to describe the
neutrino energy density, accounting for both the radiation
and matter behaviour at different epochs. The Hubble pa-
rameter will therefore be given by

H(z) = H0[Ωγ,0(1 + z)4 + Ωcb,0(1 + z)3+

+Ων(z)E2(z) + ΩΛ]1/2 ,
(12)

where Ωcb,0 and ΩΛ,0 represent the present cold matter and
cosmological constant relative contributions to the energy
density. Ωγ,0, instead, represents the residual contribution
of photons, given by

Ωγ,0 h
2 = 2.469× 10−5 , (13)

obtained from eq. (4) in terms of the CMB temperature,
assuming Tγ,0 = 2.7255 K.1

In the non-relativistic, late-time limit mν,i � Tν,0(1 +
z), or for z � znr with the redshift of non-relativistic tran-
sition znr estimated as

1 + znr ' 1890
mν,i

1 eV
, (15)

one obtains F → y 3
2
ζ(3), where ζ is the Riemann zeta func-

tion so that

ρν(z) =
45

2π4
ζ(3)

Γ4
ν ργ(z)

Tν,0(1 + z)
Mν ≡ nν(z)Mν , (16)

nν(z) being the neutrino number density. In other words, at
late times neutrinos can be assimilated to an additional mat-
ter component. Dividing eq. (16) by the critical density one
obtains the well-known expression for the neutrino energy
density as a function of the total neutrino mass

Ων,0h
2 =

Mν

93.14 eV
. (17)

2.2 Matter perturbations in two-fluid
approximation

The study of perturbations in presence of massive neutri-
nos dates back to Bond et al. (1980) (but see also Ma &
Bertschinger 1995; Wong 2008). A two-fluid approximation
to describe the evolution of coupled cold matter and mas-
sive neutrino perturbations has been studied by Shoji & Ko-
matsu (2010). More recently, Blas et al. (2014) considered
this approximation to describe the evolution at relative low
redshift (z � znr) in order to compute perturbative predic-
tions for the subsequent nonlinear evolution. By matching
the approximate solution to the exact Boltzmann solution
at z = 25 they recover a z = 0 linear prediction with an ac-
curacy, at k = 0.1hMpc−1, of 0.1% and and 1% respectively
for the cold matter and neutrino components.

We should notice that in practical applications, sub-
percent accuracy in the determination of neutrino pertur-
bations is not required. In fact, in the first place, in the
expression for the total matter power spectrum

Pm(k) = (1− fnrν )2 Pcb(k) + 2 (1− fnrν ) fnrν Pcb,ν(k)

+ (fnrν )2 Pν(k) (18)

the contributions of the cross-power spectrum between cold
matter and neutrinos, Pcb,ν(k), and of the neutrino power
spectrum, Pν(k), are suppressed respectively by one and two
powers of the massive neutrino fraction

fnrν (z) ≡ Ωnrν (z)

Ωm(z)
(19)

with respect to the contribution of the cold-matter power

1 We remark that in a ΛCDM cosmology with massless neutrinos,
in the computation of the Hubble function expressed as in eq. (12),
the neutrino energy density parameter is not given by eq. (11) but
by its relativistic limit,

Ων(z)E2(z) = Neff
7

8

(
4

11

)4/3

Ωγ,0(1 + z)4, (14)

and will therefore contribute, to all effects, to the radiation energy
density.
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spectrum Pcb(k). In addition, in particle-based simulations,
the initial power spectrum of neutrino particles is usually
wiped-out at the first time-step by the effect of thermal ve-
locities and recovered dynamically only at later times.

We now introduce the equations describing the evolu-
tion of cold matter and neutrino fluctuations. In our treat-
ment, perturbations in the massive neutrino density will con-
tribute to the gravitational potential and therefore affect the
growth of cold matter perturbations. For the cold matter, at
linear order, the continuity and Euler equations can be ex-
pressed as those of a pressure-less fluid (see, e.g. Bernardeau
et al. 2002)

∂δcb
∂t

+
θcb
a

= 0 , (20)

∂θcb
∂t

+Hθcb = −1

a
∇2φ , , (21)

where δcb = δρcb/ρ̄cb is the cold matter density contrast
and θcb ≡ ∇ · vcb is the divergence of its peculiar velocity
field. Regarding the neutrinos, the two-fluid approximation
consists in assuming that neutrino perturbations as well are
described just in term of two variables, that is the density
and velocity divergence, satisfying the same equations

∂δν
∂t

+
θν
a

= 0 , (22)

∂θν
∂t

+Hθν =
c2s
a
∇2δν −

1

a
∇2φ , (23)

with the difference that the Euler equation accounts for an
effective sound speed cs given by (Blas et al. 2014)

cs =
δpν
δρν
' 134.423 (1 + z)

(
1 eV

mν

)
km s−1 . (24)

The free-streaming scale, or wavenumber kfs, characterising
neutrino clustering, is directly related to the sound speed as

k2
fs ≡

3

2
Ωm(a)

a2 H2

c2s
. (25)

In the limit where massive neutrinos are non-relativistic,
eq. (25) reduces to the more familiar expression k2

fs '
0.83(Mν/Nν)Ωm,0/(1 + z) hMpc−1.

The set of equations (20)-(23) is then closed by Poisson
equation relating the peculiar gravitational potential φ to
the total matter perturbations δρm = δρcb + δρnrν

∇2φ =
3

2
H2 Ωma

2 δm . (26)

We look for factorizable solutions of the form, in Fourier
space, δi(a,k) = Di(a) δk,i and θi(a,k) = aH(a) Θi(a) θk,i,
the latter including a useful normalisation. We can rewrite
eq.s (20)-(23) as

∂Dcb
∂ ln a

= −Θcb , (27)

∂Θcb

∂ ln a
= AΘcb +B [(1− fnrν )Dcb + fnrν Dν ] , (28)

∂Dν
∂ ln a

= −Θν , (29)

∂Θν

∂ ln a
= AΘν+B

[
(1−fnrν )Dcb +

(
fnrν −

k2

k 2
fs

)
Dν

]
, (30)

where we introduced the functions

A(a) ≡ −
[
2 +

1

H2

dH

dt

]
=

1

2
[Ωcb + 2Ωr − 2ΩΛ + Ων + Ωrν − 2] , (31)

and

B(a) ≡ −3

2
Ωm, (32)

with each Ωi a function of time. Here we have Ωrν and Ωm,
the former being the fraction of relativistic neutrinos and
the latter the effective matter density parameter defined
in eq. (3), in which only the non-relativistic species are ac-
counted for and that determines the source of the gravita-
tional potential in the Newtonian approximation.

To explicitly write these two terms, since we are de-
scribing neutrinos as a fluid with an effective pressure pν ,
we can introduce the equation of state pν = wνρν where the
parameter wν(a) is a decreasing function of time. Then the
relativistic fraction can be written as

Ωrν(a) = 3wν(a)Ων(a), (33)

and the effective matter density parameter can be written
as

Ωm(a) = Ωcb(a) + [1− 3wν(a)]Ων(a). (34)

We can obtain the time-dependence of wν(a) from the en-
ergy density scaling ρν(a) ∼ a−3[1+wν(a)] as

3(1 + wν) = −d ln ρν
d ln a

= 4− yd lnF(y)

dy
,

(35)

where y = Mν/[Γν Nν kB Tγ,0(1 + z)]. We notice that the
derivative of F can be expressed in terms of the following
integral

dF(y)

dy
= y

∫ ∞
0

u2

1 + eu
du√
u2 + y2

.

Finally, we need to provide the boundary conditions.
These are given in terms of the initial values for the growth
rate of the cold matter component,

fcb(a) ≡ d lnDcb(a)

d ln a
(36)

and of neutrinos

fν(a) ≡ d lnDν(a)

d ln a
(37)

along with the ratio between neutrino and cold matter per-
turbations

β(a) ≡ Dν(a)

Dcb(a)
. (38)

We find four independent solutions that we linearly combine
by imposing the conditions

at z = 0 (1− fnrν )Dcb + fnrν Dν ≡ Dm ≡ 1,

at z = zi


βDcb −Dν = 0,

Θcb + fcbDcb = 0,

Θν + fνDν = 0,

(39)

where we have set the amplitude of the total matter growth
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6 M. Zennaro, et al.

factor at z = 0 equal to unity, since we will be interested in
rescaling the power spectrum at that redshift.

2.3 Comparison with Boltzmann codes

In this section we compare the two-fluid approximation with
the Boltzmann codes CAMB and CLASS.

To this end, we shall use as boundary conditions the
outputs of these codes at the chosen initial redshift. We
therefore start by comparing the initial conditions at zi = 99
provided by CAMB and CLASS in Fig. (1) for two different val-
ues of the total neutrino mass and find no significant differ-
ence between the two cosmologies.

To make sure that our input parameters for the two
Boltzmann codes represent exactly the same cosmology, we
also check to what extent the power spectra generated with
CAMB and CLASS agree with each other. This is shown in Fig. 2
as the absolute value of the relative difference evaluated for a
ΛCDM cosmology and two massive neutrino cosmologies at
redshifts z = 0, 1, 10, 99. We adopted the settings suggested
in Lesgourgues (2011) and in Lesgourgues & Tram (2011),
where the reference comparison between the two codes has
been originally presented. The agreement in the ΛCDM case
is better that 10−4, while in the massive neutrino cases is
better than 0.2% for k < 1h Mpc−1, a result consistent with
what indicated by the two reference papers. For the neu-
trino power spectrum, we find an agreement between the two
codes better than 1−2% at all scales below k ∼ 0.1h Mpc−1.

In Fig. 3 we show the comparison between the same
linear power spectra computed at the same redshifts using
our two-fluid approximation against CAMB, matching to the
Boltzmann code at zi = 99. In this case, we normalise our
results to agree with the CAMB total matter power spectrum
at z = 0, and study any discrepancy might arise at larger
redshift or for the other two components even at z = 0. We
have repeated the same analysis using the code CLASS, and
all the following results hold for both the codes. Overall, the
two-fluid approximation is able to recover the output from
the two Boltzmann codes with a precision of a few 10−4

on the relevant range of scales. In particular in both cases
for the total matter and the CDM power spectra we can
recognise three different regions:

(i) On very large scales, above the horizon at each red-
shift, we can see the mismatch induced by our Newtonian ap-
proximation, in which photon perturbations are completely
neglected, with respect to the relativistic solution provided
by the Boltzmann codes. This difference reaches an ampli-
tude of ∼ 10% at z = 99, maximal given our choice to
normalise at z = 0.
(ii) On intermediate scales, within the horizon but for

modes below ∼ 10hMpc−1, our two-fluid approximation
agrees very well with both codes (the percentage difference
being around 0.01-0.02%).
(iii) On very small scales, k > 10hMpc−1, the two fluid

approximation breaks down and the discrepancy with the
two Boltzmann codes begins growing increasingly. This is
expected as the approximate, effective pressure term in the
neutrino Euler equation becomes more relevant at large k.
Nonetheless, the two-fluid approximation is still quite reli-
able up to k ∼ 50hMpc−1, the relative difference with the
Boltzmann codes being still below 0.1%.

We note that, the agreement found for the cold and to-
tal matter components between our approximation and the
Boltzmann codes, is not present for the neutrino compo-
nent. In particular, at k ∼ 0.1h Mpc−1 the neutrino power
spectrum differs from both CAMB and CLASS by ∼ 100%.
In fact the agreement with the neutrino power spectrum
largely depends on the version and choice of precision pa-
rameters of the Boltzmann codes 2. Yet, this is not of great
importance as no observable or relevant quantity is exclu-
sively dependent on the neutrino perturbations, that only
provide, for instance, sub-percent corrections to the total
matter power spectrum. Moreover, the solution at the ini-
tial redshift (which is the one used for setting the initial
conditions for simulations) is always correct and shares the
same level of accuracy as the CDM component, since dis-
crepancies arise only in the the evolution of the initial power
spectrum and grow with time.

3 POTENTIAL SYSTEMATIC ERRORS FROM
THE INITIAL CONDITIONS

The usefulness of the two-fluid approximation consists in al-
lowing us to quickly quantify the possible systematic errors
resulting from different assumptions on the initial conditions
and the background expansion in simulations. The differen-
tial equations presented in the previous section have the
advantage, with respect to Boltzmann codes, of reproducing
the Newtonian physics simulated by N-Body codes and can
therefore mimic the expected evolution of perturbations at
the linear level.

We consider several potentially incorrect approxima-
tions, including some affecting as well ΛCDM cosmologies
(i.e. with massless neutrinos). For instance, one of the most
common approximations is to ignore the contribution of the
radiation density to the Hubble expansion. This is not a
problem in a ΛCDM cosmology as long as the initial power
spectrum is rescaled from a the low-redshift power spectrum
consistently with the expansion history assumed for the sim-
ulation. However, if we set-up the initial conditions with a
linear power spectrum computed by a Boltzmann code at
the initial redshift we should then assume the correct Hub-
ble expansion including the radiation contribution. Doing
otherwise, as we will see, can result in a systematic error
on the linear growth at low redshift of a few percent. Other
approximations might have lesser consequences but the re-
lated errors can cumulate and should nevertheless be taken
into consideration.

The reference growth factors we use for performing our
comparison are computed solving our system of fluid equa-
tions in the optimal set-up, within the limitations imposed
by the Newtonian approximation. This means we use the
neutrino density and effective pressure computed from the
momentum distribution function as in equations 11 and 35,
but we are not accounting here for any general-relativistic
correction at scales approaching the horizon.

2 With the 2014 version of CLASS and the precision parameters
therein contained, we are able to obtain an agreement of 1− 2%

between the two-fluid approximation and the Boltzmann solution
(as in Blas et al. 2014), which we do not recover with the latest
version of this code.
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Figure 1. Comparison of the initial conditions provided by CAMB (solid, red curves) and CLASS (dashed, blue curves) at the reference
initial redshift zi = 99 as a function of scale. Top: Ratio between CDM+baryon and neutrino fluctuations, β ≡ Dν/Dcb. Middle:
CDM+baryon growth rate, fcb ≡ d lnDcb/d ln a. Bottom: neutrino growth rate, fν ≡ d lnDν/d ln a. In the two columns we represented
the initial conditions for neutrino masses Mν = 0.15 (left) and 0.30 eV (right). The dashed vertical line marks the scale of the horizon
at the chosen redshift.

By solving the coupled equations (27)-(30) we obtain
the growth factor of each species, normalised to have the
same value at the initial redshift zi = 99 in order to quantify
the effect at z = 0 in terms of the expected error on the
power spectrum, therefore as the ratios

D2
cb(k, z = 0)

D2
cb, ref(k, z = 0)

,
D2
ν(k, z = 0)

D2
ν, ref(k, z = 0)

,

while the total matter growth factor Dm(k, z) is obtained as

Dm(k, z) = (1− fnrν )Dcb(k, z) + fnrν Dν(k, z) . (40)

for both the reference and approximated solutions.
We will quantify the systematic error on the linear

growth of total and cold matter and neutrino perturbations
as a function of redshift and scale for five different scenar-
ios. These are summarised in Table 1 while we show our

numerical results in Fig. 4. In what follows we describe each
scenario, discussing the resulting systematic error.

S1: no radiation and constant, initial growth rates

In the first scenario we neglect the radiation contribution to
the Hubble expansion setting

Ωγ,0 = 0, (41)

in eq. (12) and we impose the constant values for the growth
rate

fcb = fν = Ω0.55
m (zi) ' 1 (42)

in the initial conditions, eq. (39), at zi = 99 (we remark
that even a large error on the neutrino growth rate, fν has
negligible consequences). The combination of these two as-
sumptions is due to the second being a consequence of the
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Figure 2. Comparison between power spectra from CAMB and CLASS, |Pclass(k, z)/Pcamb(k, z)− 1|. The precision parameters of the two
codes have been set as in the comparison paper between CLASS and CAMB (for ΛCDM). The two codes agree on the CDM and total matter
power spectra at 10−4 level at almost all scales in the ΛCDM case, and their agreement is better than ∼ 0.2% for k < 1h−1 Mpc when
massive neutrinos are included.

Scenario Ωγ Ωrν f = d lnD/d ln a B(a)

S1: No photons, f constant 0 0 Ω0.55
m ' 1 correct

S2: No photons + f(k) 0 0 correct correct
S3a: f constant, f = Ω0.55

m correct correct Ω0.55
m correct

S3b: f constant, asymptotic value correct correct asymptotic correct
S4: Constant mass neutrino particles correct correct correct Ωm = (Ωcb,0 + Ων,0)a−3

S5: No relativistic neutrinos correct 0 correct Ωm = (Ωcb,0 + Ων,0)a−3

Table 1. Different scenarios of the considered, possible approximations in the initial conditions and in the Hubble expansion. B(a) is
the source term of the gravitational potential in the Newtonian approximation defined in eq. (32). When it is correct, Ωm includes only
the actual non-relativistic fraction of neutrinos, following eq. (34); otherwise, all neutrino perturbations are considered as non-relativistic
(irrespective of possible relativistic tails) and always act as sources of gravity.

first, for ΛCDM cosmologies, since Ωm(zi) ' 1 when no radi-
ation is present. In massive neutrino cosmologies this is not
strictly true because of the scale-dependence of the growth
rate and it therefore represents a further approximation for
these models.

In general a larger density of relativistic species leads to
a smaller growth of matter fluctuations. For this reason we
expect a higher amplitude of the power spectrum when we
neglect the contribution of radiation to the background. This
indeed is what we see in Fig. 4 for S1, where the amplitude of
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Figure 3. Relative difference, |P2FA(k, z)/Pcamb(k, z) − 1|, between the linear power spectrum P2FA(k, z) obtained in the two-fluid
approximation and the solution from CAMB, Pcamb(k, z). The total matter P2FA is normalised to match the CAMB results at z = 0. Upper,
middle and lower panels show, respectively, the results for the total matter fluctuations (Pm), CDM+b fluctuations (Pcb) and the
neutrinos fluctuations (Pν). We show three different cosmologies, on the left a standard ΛCDM one, in the middle column a cosmology
with Mν = 0.15 eV and on the right Mν = 0.30 eV. Colours from red to blue denote, in the order, redshifts z = 99, 10, 1 and 0. The
dashed horizontal lines mark the scale of the horizon at the corresponding redshift.

the power spectrum at all scales that were within the horizon
at zi, is larger than the reference case at z = 0 by 3 − 4%.
Moreover, since we are neglecting the scale-dependence of
the growth rate in the initial conditions, we see that the
error induced presents, in turn, a peculiar scale-dependence
at large but still observable scales.

S2: no radiation

In the second scenario we consider the case of using the
correct growth rate even when there is no radiation in the
background; to this purpose, we compute the Hubble func-
tion setting

Ωγ,0 = 0, (43)

in eq. (12). The growth rates are computed as numerical
derivatives of the power spectrum at the initial redshift (i.e.
numerically solving eq. (36-37) on each scale). In this case
the resulting error is clearly scale-independent but still cor-
responds to more than 2% on the low redshift ΛCDMmatter
power spectrum, reduced to around 1.5% in the massive neu-
trino case, due to the different effective number of relativistic
neutrinos contributing to radiation.

S3: constant growth rate, f

In the third scenario we overturn the situation and consider
the effect of using the correct background evolution (with
radiation and with the proper contribution of relativistic
neutrinos, as in eq. (12)) keeping the growth rate fixed (i.e.
scale independent). In one case, that we call S3a, the con-
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Figure 4. The impact of five common approximations assumed in simulations on the linear power spectrum at z = 0 with respect to
a reference power spectrum. The vertical gray line marks the scale of the horizon at zi = 99. The reference power spectrum is the one
computed with the two-fluid approximation, with no further approximation (i.e. it is the power spectrum shown in figure 3, that agrees
with the output of the Boltzmann codes apart from the fact of being in Newtonian limit). Blue lines show the effect of neglecting photons
in the background in combination with using the ΛCDM approximated growth rate f = Ω0.55

m ' 1 (scenario S1). Light blue lines show
the impact on the low redshift power spectrum of neglecting photons but using the correct, scale dependent growth rate (scenario S2).
Note that, in the left panel, besides photons, we do not take into account massless (hence relativistic) neutrinos. If we do the contrary and
we include photons in the background but use the ΛCDM parametrization for the growth rate (scenario S3a) we obtain the light green
lines, while a scenario with scale-independent growth rates where the value is the correct one within the horizon is shown as scenario
S3b (dark green lines). Orange lines show the impact of including the relativistic fraction of neutrinos in the background, but not in
the computation of the peculiar gravitational potential, an unavoidable approximation in particle-based simulations where neutrinos are
implemented as particles with constant mass (S4). Finally, red lines refer to S5, where we treat neutrinos as a completely non-relativistic
specie.

stant value of the growth rate is given by the approximation

fcb = fν = Ω0.55
m (zi) , scale− independent. (44)

which is valid in a ΛCDM cosmology with no radiation in
the background (though we do have radiation in the back-
ground). Here the approximation has actually three impli-
cations: (i) the scale independence does not account for rel-
ativistic effects on large scales, such as the contribution of
radiation perturbations, (ii) the scale independence does not
account for the suppression induced by neutrinos at small

scales, (iii) this approximate value is valid only with no ra-
diation in the background. The main discrepancy from the
correct low redshift power spectrum appears at near-horizon
scales, which are affected by about 5−6%. On the contrary,
for scales within the horizon this approximation results in a
discrepancy of ∼ 0.3% in the ΛCDM case, but becomes more
pronounced, and relevant, being above the percent level, in
presence of massive neutrinos.

It is possible, of course, to consider a similar scenario
in which the growth rates are again scale-independent, but
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they assume the correct asymptotic value of the cold mat-
ter growth rate within the horizon. To do so we numerically
compute the growth rate as in eq. (36), considering only the
asymptotic value towards small scales (therefore, well within
the horizon). We note that for the ΛCDM case, this proce-
dure corresponds to the approximation f ' Ω0.667

m . In this
case, that we name S3b, in the evolved z = 0 power spec-
trum, only scales above horizon show a discrepancy with
respect to the Boltzmann solution (of the same amplitude
as in S3a), while scales within the horizon agree at 0.01%
level. The slight difference between case S3a and S3b for
scales above horizon in the massive neutrino cosmologies is
due to the residual systematic error induced by the fact that
the asymptotic value for neutrinos ignores their scale depen-
dence.

S4: constant mass neutrino particles

This approximation, as the following one, is specific to
massive neutrinos models. In fact, at redshifts as high as
zi ' 100, there is still a significant tail of relativistic neutri-
nos that does not contribute to the gravitational potential.
Particle-based N-body simulations, however, assume mas-
sive neutrinos to be non-relativistic (i.e. matter) at all red-
shifts z 6 zi. Avoiding this approximation would require to
allow the mass of neutrino particles to vary in time. To the
best of our knowledge, however, no code in the literature
considered this possibility.

To reproduce this scenario, therefore, we modify the
function B(a) defined in eq. (32), which is the source of grav-
ity in the Newtonian approximation,

B(a) = −3

2
Ωm(a), (45)

using

Ωm(a) = (Ωcb,0 + Ων,0) a−3 (46)

instead of eq. (34). This means that in computing neutrino
overdensities all neutrinos are treated as non-relativistic par-
ticles. On the other hand, we do not modify the Hubble rate
H(a) and the function A(a) (which only depends on the
Hubble rate and its first derivative), defined in eq. (12) and
eq. (31) respectively, in order to fully account for relativistic
neutrinos in the background.

This approximation results in a negligible error on the
power spectrum of the CDM component at low redshift. The
effect is larger on the neutrino component, and therefore on
the total matter power spectrum. Nonetheless, as neutrinos
weight considerably less that CDM, even on the total matter
power spectrum the effect is sub-percent.

S5: no relativistic neutrinos

Finally we consider all effects of neglecting the relativistic
neutrino fraction, that is both on the perturbations (Poisson
equation) as on the Hubble expansion, treating neutrinos as
a non-relativistic species also in the background, as usually
done in the literature. To do so, we extend the approxima-
tions described in S4 to the computation of the Hubble rate
and of the function A(a) (eq. 31). This means that in this
case we always use

Ων(a) = Ων,0 a
−3 (47)

and

wν(a) = 0. (48)

The resulting error is only slightly larger than the one of S4,
however, our solution is affected by numerical instabilities
in the neutrino sector of the coupled differential equations.

From this exercise we conclude that, on the scales that
at z = zi were within the horizon, the greater impact (> 1%)
comes from neglecting the scale dependence in the initial
growth rate of the cold matter perturbations and neglect-
ing the radiation contribution to the Hubble function. We
should notice, in addition, that their combined effect can
sum up to an appreciable level, even when individual errors
are sub-percent.

4 INITIAL CONDITIONS FOR ACCURATE
N-BODY SIMULATION

4.1 Linear rescaling

A rather obvious but important application of the two-fluid
approximation is the proper, scale dependent rescaling of a
desired low-redshift power spectrum to the initial redshift of
a simulation. As shown in the previous section, this is pos-
sible in a fashion completely consistent with the dynamics
and approximations assumed by the simulation itself.

The initial power spectrum for the cold matter pertur-
bations would then be obtained as

Pcb(k, zi) =
D2
cb,2FA(k, zi)

D2
cb,2FA(k, 0)

PBcb(k, 0) (49)

where Dcb,2FA(z) is the growth factor obtained in the two-
fluid approximation while PBcb(k, 0) is the desired linear
power spectrum from a Boltzmann code at z = 0. In a sim-
ilar way one can obtain the initial power spectrum for the
neutrinos, although its accuracy is far less important.

In Fig. 5 we compare the set-up of the initial condi-
tions we are proposing to the method often applied in pre-
vious works. To do so, we fix the initial power spectrum,
at z = 99, in two different ways: the first one is obtained
by directly setting the CAMB output at z = 99 as the initial
power spectrum; the second one, which corresponds to our
approach, is obtained by rescaling the z = 0 power spectrum
from CAMB (but the same holds for CLASS) to the initial red-
shift zi with the two-fluid approximation. We then evolve
these two power spectra using our two-fluid approximation
scheme to mimic the linear evolution in a simulation, and
compare the different outcomes at lower redshifts. Notice
that the initial growth rate is the correct one in both cases.

In the first case (dashed lines in the plot) the power
spectrum, by construction, coincides with the Boltzmann so-
lution at zi, but then shows a lack of power on large scales as
we move towards lower redshifts. This is due to the fact that
most simulations – and our two-fluid approximation – work
in a Newtonian framework that cannot account for radia-
tion (photon) perturbations, and therefore cannot correctly
reproduce the scale dependent growth of perturbations on
large scales. Such discrepancy can be as large as 5− 6% and
especially affects scales with k . 0.01 hMpc−1, where we
would expect to recover linear predictions with great pre-
cision. On the other hand, in the second case (solid lines
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Figure 5. We compare the evolution of two different initial lin-
ear power spectra at z = 99: one is directly taken from CAMB,
the other one is obtained with our method, i.e. the z = 0 power
spectrum from CAMB has been rescaled to the initial redshift with
our two-fluid approximation. The two spectra are then evolved
forward using the two-fluid approximation, thus mimicking the
linear (Newtonian) evolution in a simulation. In the first case,
dashed lines, by construction at high redshift the evolved power
spectrum coincides with that from the Boltzmann code, but dif-
fers from it at low redshift (reaching a lack of power > 5% at
large scales at z = 0). On the other hand, our rescaling (solid
lines) introduces a discrepancy at high redshift and large scales
(due to the the fact that in our Newtonian approximation all
photon perturbations are inevitably neglected), but allows us to
recover a sub-percent agreement with the linear power spectrum
from a Boltzmann code at lower redshifts (z < 10).

in figure 5), we inevitably loose accuracy at very high red-
shift, but we are able to recover a sub-percent agreement for
z < 10.

The rescaling therefore introduces a spurious (but moti-
vated) excess of power at large scales and high redshift, that
allows us to recover the correct power spectrum at lower
redshifts. We note that, since nonlinearities introduce a cou-
pling between large and small scales, an excess of power on
the large scales could in principle alter the nonlinear evo-
lution; however, this potential error is very small since the
excess of power is confined to superhorizon modes and high
redshifts and, in the next session, we will show that this
method allows us to recover with sub-percent accuracy the
expected nonlinear power at redshifts below 10.

4.2 Test with N-body simulations

In order to validate our method we have run N-body simula-
tions with massless and massive neutrinos where the initial
conditions have been generated using the method described
above. We rescale a z = 0 power spectrum generated with
CAMB to the initial redshift of the simulation in the two sce-
narios presented above that can mimic the dynamics in the
simulations, namely S4 (in which the relativistic fraction of
neutrinos is taken into account in the Hubble function, but
not in the computation of the peculiar gravitational poten-

tial) and S5 (in which also in the background evolution we
treat all neutrinos as a non-relativistic species).

The simulations have been run using the TreePM-SPH
code GADGET-III (Springel 2005). The size of the periodic
simulation box in all our simulations is set to 2 h−1Gpc. We
have run simulations for three different cosmological models:
a massless neutrino cosmology and two models with massive
neutrinos corresponding to Mν = 0.15 eV and Mν = 0.3 eV.
The relatively large values ofMν are justified by the purpose
to test our method. All simulations share the value of the
following cosmological parameters: Ωm = Ωcb+Ων = 0.3175,
Ωb = 0.049, ΩΛ = 0.6825, h = 0.6711, ns = 0.9624 and
As = 2.13× 10−9. In the models with massive neutrinos we
set Ωc = Ωm−Ων , where Ων = Mν/(93.14 eV h2). We notice
that, since all models have the same normalization of the
amplitude of the linear power spectrum at the epoch of the
CMB, the value of σ8 will be different in each model: σ8 =
0.834, 0.801, 0.760 for the models withMν = 0.0, 0.15, 0.30
eV, respectively.

We follow the evolution of 7683 CDM particles, plus
7683 neutrino particles in the models with massive neutri-
nos, from z = 99 down to z = 0. In order to carry out con-
vergence tests, we have also run a second set of simulations
with 5123 CDM and neutrino particles. The gravitational
softening length is set to 1/40 of the mean inter-particle
distance, both for CDM and neutrino particles.

Initial conditions are generated at z = 99 by displacing
and assigning peculiar velocities to particles, that initially
are located in a regular grid, using the Zel’dovich approx-
imation. For neutrino particles we also add a thermal ve-
locity component. The amplitude of the thermal velocities
is determined by randomly sampling the Fermi-Dirac dis-
tribution of the corresponding model while the direction is
taken randomly within the sphere. Thermal velocities domi-
nate neutrino dynamics during the first time-steps, having a
dispersion roughly five orders of magnitude larger than the
dispersion of peculiar neutrino velocities. Instead of sam-
pling the modes amplitude in Fourier-space using a Rayleigh
distribution (as in a Gaussian distribution), we collapse the
distribution to its mean value. It can be shown that a simu-
lation run with the initial conditions generated in that way
will have the correct 2-point statistics with a lower variance
(Angulo & Pontzen 2016).

The displacements and peculiar velocities are computed
taking into account the scale-dependent growth factor and
growth rate using the procedure described in the previous
section. We have modified the N-GenIC code to achieve
this. In the simulations with massive neutrinos we have gen-
erated the initial conditions for the scenarios S4 and S5 (see
table 1). The simulations have been run using a tabulated
Hubble function, that is different for each model and sce-
nario, that controls the time evolution of the background in
the simulations.

In Fig. 6 we show the ratio of the measured power spec-
tra, Pm(k) and Pcb(k), to the corresponding nonlinear pre-
dictions for Mν = 0 (ΛCDM), 0.15 and 0.3 eV. Nonlinear
predictions are obtained with the code RegPT (Taruya et al.
2012) implementing the multipoint propagator expansion of
Bernardeau et al. (2008). We consider, in particular, the
2-loop approximation. In the case of massive neutrinos, we
follow Castorina et al. (2015) and consider non linear predic-
tions only for the CDM+baryon component, since both the
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Figure 6. Ratio of the power spectra measured in the simulations to nonlinear predictions for ΛCDM (left panels) and massive neutrinos,
Mν = 0.15 eV (middle panels) and Mν = 0.3 eV (right panels). Nonlinear predictions are computed from the linear outputs of CAMB,
applying 2-loop corrections computed with the code RegPT for the CDM+baryon component only. The top panels show the power spectra
of the cold dark matter component, while the bottom ones show the total matter power spectra. Colours from blue to red correspond
to different redshifts, namely z = 0, 1, 9, 99. Solid lines refer to the simulations with N = 2 × 7683 particles, while dotted lines to the
simulation with N = 5123 particles.

auto power spectrum of neutrinos and the cross power spec-
trum of cold matter and neutrinos can safely be described
with linear theory at all redshifts. We find an agreement at
the 1% level between the output of the simulation and the
predicted power spectra at all redshifts, except at z = 0,
for the simulations with N = 7683 particles (solid curves
in the figure). At z = 0, 2-loop regularised perturbation
theory is known to underestimate the nonlinear power spec-
trum (Taruya et al. 2012). The agreement is worsen at small
scales to a ∼ 2% for the simulations with N = 5123 particles
(dotted curves).

These results show that we are able to recover the same
level of agreement in the massive neutrino case between sim-
ulations and predictions as in the massless neutrino scenario
at low redshift. The residual differences between the two
models can be ascribed to two effects. The first is the lower
nonlinear evolution in the massive neutrino case (and there-
fore lower discrepancy with the nonlinear prediction). This
is due to the lower amplitude of matter fluctuations of the
neutrino model. The second is a larger resolution effect in
the massive neutrino simulations: for higher resolution sim-
ulations as those of Castorina et al. (2015) this discrepancy
disappears at mildly nonlinear scales.

The excess of power with respect to the predicted power
spectrum that appears at the initial redshift in the first k-bin
is expected from the Newtonian approximation assumed in
our rescaling, since we are completely neglecting radiation
(photon) perturbations. This approximation, being consis-

tent with the simulation dynamics, allows us to recover the
desired low-redshift power spectrum, that otherwise, accord-
ing to Fig. 5, would be suppressed by 5−6% on near-horizon
scales. However, given that the size of the simulation box is
close to the scale of the horizon at the initial redshift, we
are not able to study this feature on a significant range of
scales.

A peculiar feature of Fig. 6 is the behaviour of the total
matter power spectrum at the initial redshift of the simu-
lation. While the CDM power spectrum agrees with CAMB
at zi = 99, the total matter one shows an almost constant
discrepancy of about 1%. This is due to the fact that the
simulation considers neutrinos as a non-relativistic species
whose relative density with respect to CDM does not evolve,
fnrν = const. On the contrary, in the Boltzmann code the
evolution of neutrino density is properly taken into account
and the time-dependent fnrν (z) is considered at each redshift.
Moreover, the error in the case withMν = 0.15 eV is slightly
larger than for Mν = 0.3 eV, since neglecting the neutrino
relativistic tail has a greater effect for lighter neutrinos. We
checked that, by combining Pcb and Pν weighted with the
same neutrino fraction fnrν (z) used in CAMB (or CLASS), we are
able to recover the same level of agreement with the Boltz-
mann solution for the total matter power spectrum as for
the CDM. Nonetheless, the total matter in the simulation
is defined with a constant neutrino to CDM fraction and,
therefore, intrinsically exhibits a discrepancy, at high red-
shift, with respect to the output of a Boltzmann code. This
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feature is avoided is grid-based and hybrid simulation codes,
and could in principle be avoided also in particle-based codes
by implementing a time-dependent neutrino particle mass.
Still, even in our case, the agreement at low redshift is com-
parable to the ΛCDM case, being fnrν = const a good ap-
proximation at late times.

For the two massive neutrino simulations that we run, as
mentioned in the above paragraphs, we chose to compute the
rescaling in two different ways: in one case we implemented
the features of scenario S4 (see section 3), where neutri-
nos are treated as a non-relativistic species when computing
the gravitational potential but the Hubble function is com-
puted correctly. In the other case (S5), instead, neutrinos
are treated as non-relativistic particles both in the dynam-
ics and in the background. We therefore obtained two differ-
ent initial power spectra, with case S5 exhibiting a slightly
larger discrepancy with respect to CAMB at the initial red-
shift, because of the approximation assumed in the Hubble
function. Such difference at the initial redshifts amounts to
∼ 0.2% at k ∼ 0.1h Mpc−1, while for scenario S4 we have
an agreement of ∼ 0.05% at the same scale. The two power
spectra have then been evolved in the simulation, each with
its own tabulated Hubble function. We found that these two
methods give very similar results, both with Mν = 0.15 and
Mν = 0.3 eV, recovering at low redshift the same agreement
with the predicted power spectrum. As a matter of fact, the
z = 0 power spectra from the simulations run in scenario S4
and S5 differ by less that 0.05% between each other for both
neutrino masses.

5 CONCLUSIONS

Numerical N-body simulations are nowadays an indispens-
able tool in the study of the large-scale distribution of mat-
ter and galaxies in the Universe. While they capture the
complex nonlinear evolution of structures that characterises
gravitational instability, they nevertheless employ several
approximations that might affect our ability to predict key
quantities, like the matter power spectrum, at percent level
accuracy. The necessity to ensure highly accurate numerical
simulation for the next generation of galaxy and weak lens-
ing surveys is indeed a quite relevant challenge for contem-
porary cosmology (see e.g. Schneider et al. 2016; Garrison
et al. 2016).

In this work we quantified the errors resulting from
some of the approximations that numerical simulations typi-
cally employ, in some cases necessarily so, with a specific at-
tention to models including a massive neutrino component.
Until recently, these scenarios have often been considered,
rather oddly, as Beyond-the-Standard-Model, also because
of the significant complications that their correct description
would require. However, evidence for a neutrino mass, albeit
small, is now beyond dispute and the effect of the latter on
the matter power spectrum is quite significant. It is there-
fore crucial to look with renewed attention at these cosmolo-
gies for essentially two different reasons. First, an accurate
modelling of neutrino effects is necessary to avoid potential
systematic errors in the detection of possible, unexpected
dark energy effects motivating a great part of current ob-
servational efforts in cosmology. Secondly, cosmological ob-
servations provide an upper limit to the neutrino mass now

beyond reach for laboratory experiments and are potentially
capable to provide us with a determination of the mass itself
in the future.

As numerical simulations work within the Newtonian
approximation, completely neglecting radiation (in particu-
lar photon) perturbations, the set-up of the initial conditions
(and of the subsequent expansion history) cannot be given
by a direct match of the initial density and particle distribu-
tion to the linear prediction of a fully-relativistic Boltzmann
code, without introducing systematic errors on the scale of
the horizon. In fact, in simulations of ΛCDM cosmologies,
the desired linear power spectrum at low redshift (where
simulations are expected to provide the correct nonlinear
evolution) is typically rescaled to the initial redshift within
the same, Newtonian approximation assumed by the simula-
tion dynamics, consistently neglecting photon perturbations
in the rescaling procedure.

The main result of this work consists in showing how
a similar procedure can be extended to simulations of mas-
sive neutrino cosmologies. To this end, we have adopted a
two-fluid approximation to describe the linear evolution of
the coupled cold matter and neutrino perturbations, con-
sistently with the approximations adopted by the N-body
simulations.

Before testing our method on particle-based N-body
simulations, however, we have exploited the flexibility of the
two-fluid differential equations to quantify the systematic er-
rors on the linear evolution of perturbations that can result
from possible choices in the definition of the initial particle
positions and velocities, in addition to the expansion history
provided to the N-body code. To this end we have assumed
that the statistical properties of the initial density field are
provided by a Boltzmann code at the reference initial red-
shift zi = 99. We have then evaluated the error on the z = 0
linear power spectrum resulting from possible discontinuities
introduced at zi or approximations adopted for the following
evolution.

We have found, for instance, that the greatest effect is
due to neglecting the radiation contribution in the compu-
tation of the expansion rate and, at the same time, using
a scale-independent growth rate f = Ω0.55

m . This scenario
alone accounts for a nearly 4% mismatch with respect to
the reference z = 0 power spectrum if the assumed initial
redshift is zi = 100 (it decreases to a still significant 2% for
zi = 50). This mismatch amounts instead to a 1.5−2% level
when, still neglecting radiation, we use the correct, scale-
dependent growth rate in the initial conditions. When radi-
ation is included in the background, the largest error comes
from the approximated value f = Ω0.55

m , which results in
a 0.3% mismatch in a cosmology without massive neutrinos
and can reach ∼ 1% level when massive neutrinos are consid-
ered. On the other hand, including radiation and using the
asymptotic value of the growth rate (see case S3b of Tab 1)
significantly alleviates the systematic error, which becomes
negligible on small scales. Nonetheless, on scales approach-
ing the horizon, the mismatch on the evolved power spectra
still remains critical.

Other approximations are inevitably related to the way
massive neutrinos perturbations are described in the simula-
tion. For instance, particle-based simulations consider neu-
trinos as a fully non-relativistic species (described by par-
ticles with fixed mass) at all redshifts. If we do not correct
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for this in the initial conditions, the resulting error is of
order 0.1% on the CDM low-redshift power spectrum, but
can approach 0.8 − 0.9% on the total matter power spec-
trum. Clearly, a significant systematic error can be the con-
sequence of the combination of several of such approxima-
tions, even when their individual effect is in principle negli-
gible.

This exercise allowed us to identify the optimal choices
for setting up the initial conditions, in order to keep such
systematic errors under control. In addition, we have used
the Newtonian, two-fluid approximation for matter and neu-
trino perturbations to perform the proper, scale-dependent
rescaling of the input z = 0 linear power spectra to zi, in
order to avoid all errors related to approximations to the
expansion history (e.g. no radiation).

We have tested this method to compute the displace-
ments and velocities of particles in the initial conditions of
cosmological simulations, both with and without massive
neutrinos. We have found that, regardless of the choice of
neutrino total mass, we are able to recover subpercent agree-
ment between the total matter and cold dark matter power
spectra measured in the simulation at low redshift (z . 10,
and in the linear regime) and the Boltzmann, linear predic-
tion. A larger discrepancy at very high redshift is expected
from the approximations assumed, unavoidable for standard
N-body simulations.

We have implemented the methods presented in this
work in the public code REPS – rescaled power spectra for
initial conditions with massive neutrinos. We stress once
more that massive neutrino models do represent the current
“standard” cosmological models. Properly quantifying and
correcting systematic errors as we have done in this work
is crucial to ensure that N-body simulations will reach the
accuracy required by dark energy studies.
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