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We calculate ionization energies and fundamental vibrational transitions for H2
þ, D2

þ, and HDþ

molecular ions. The nonrelativistic quantum electrodynamics expansion for the energy in terms of the fine
structure constant α is used. Previous calculations of orders mα6 and mα7 are improved by including
second-order contributions due to the vibrational motion of nuclei. Furthermore, we evaluate the largest
corrections at the order mα8. That allows us to reduce the fractional uncertainty to the level of 7.6 × 10−12

for fundamental transitions and to 4.5 × 10−12 for the ionization energies.

DOI: 10.1103/PhysRevLett.118.233001

The hydrogen molecular ions (HMIs) play an essential
role in testing molecular quantum mechanics [1,2]. From
the theoretical point of view, the HMI is one of the simplest
nonintegrable quantum systems, which still allows very
accurate numerical treatment. As has already been pointed
out, some time ago [3], and recently discussed more
extensively [4], if the theory would be sufficiently precise,
the spectroscopy of HMIs may be used for determining
fundamental physical constants such as the proton-to-
electron mass ratio. The ionization energy of HMIs is also
of high importance for the determination of ionization and
dissociation energies of the hydrogen molecule from
spectroscopic studies [5–7] as well as for the determination
of atomic masses of light nuclei [8–10].
On the experimental side, there are many new projects

started, which are now oriented towards Doppler-free
spectroscopy with accuracy targeted to 1 ppt (one part
per trillion) or better [4,11–13]. These perspectives bring
strong motivation for theory.
The aim of this Letter is to improve the theoretical

precision of spin-averaged energies and ro-vibrational
transition frequencies in HMIs. To this end, we consider
the largest QED contributions which had not been evalu-
ated in our previous works [14–16], namely, corrections to
ordersmα6 and mα7 due to the vibrational motion of nuclei
and the leading contributions to ordermα8. As was recently
shown [17], taking into account the vibrational motion of
nuclei is essential for accurate theoretical description. It has
allowed us to resolve the longstanding discrepancy between
theory and experiment in the hyperfine structure of Hþ

2

ions. These new achievements reduce the relative uncer-
tainty in the fundamental vibrational transitions of HMIs to
the level of 7.6 × 10−12 and allow us to obtain the most

precise theoretical values for the ionization energies of
H2

þ, D2
þ, and HDþ molecular ions. In conclusion, we

discuss how these new results may have an impact on
fundamental physical constants such as the Rydberg con-
stant, proton-to-electron mass ratio, and the proton charge
radius.
We use atomic units throughout this Letter.
The terms of mα6 and higher orders are calculated in the

adiabatic approximation. For this purpose, we use the
Born-Oppenheimer (BO) formalism. In this approach,
the states of the molecule are taken in the form

ΨBO ¼ ϕelðr;RÞχBOðRÞ: ð1Þ

The electronic wave function obeys the clamped nuclei
Schrödinger equation for a bound electron

½Hel − EelðRÞ�ϕel ¼ 0; ð2Þ

where Hel ¼ p2=ð2mÞ þ V þ Z1Z2=R is the electronic
Hamiltonian, V ¼ −Z1=r1 − Z2=r2, where Z1 and Z2 are
the charges of the nuclei and r1, r2 are the distances from
the electron to nuclei 1 and 2, respectively. The wave
function χBOðRÞ describes the relative nuclear motion and
is a solution of

ðHvb − E0ÞχBO ¼
�
−
∇2

R

2μn
þ EelðRÞ − E0

�
χBO ¼ 0; ð3Þ

where μn is the reduced mass of the nuclei.
Relativistic corrections of order mα6 to the energy of a

bound electron in the two-center problem are determined
[18,19] by the effective Hamiltonian
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Hð6Þ ¼ p6

16m5
þ ½∇V�2

8m3
−

3π

16m4
fp2ρþ ρp2g

þ 5

128m4
ðp4V þ Vp4Þ − 5

64m4
ðp2Vp2Þ; ð4Þ

and the second-order contribution of the Breit-Pauli (BP)
Hamiltonian

ΔEBP ¼ hHBPQðEel −HelÞ−1QHBPi: ð5Þ

Here, ρ ¼ ∇2V=ð4πÞ, Q is a projection operator onto a
subspace orthogonal to ϕel from Eq. (2). HBP is the Breit–
Pauli relativistic correction (RC) for a bound electron

HBP ¼ −
p4

8m3
þ πρ

2m2
þHso

BP; ð6Þ

Hso
BP is the electron spin-orbit contribution (see details in

[19]). Both terms are divergent, but their sum is finite

Eð6Þ
RCðRÞ ¼ α4½ΔEBPðRÞ þ hHð6ÞiðRÞ�: ð7Þ

The leading contribution was obtained in [14] by
averaging this effective potential over R

ΔEð6Þ
el ¼ hχBOjEð6Þ

RCðRÞjχBOi: ð8aÞ

The next step is to consider the three-body correction to
the energy E0 of a molecular state, which we derive within
the framework of the adiabatic approximation defined by
Eqs. (1)–(3). This correction stems from the insertion of the
Breit-Pauli effective potential EBPðRÞ ¼ α2hHBPi into
Eq. (3) and, in the order mα6, is expressed by

ΔEð6Þ
vb ¼ hχBOjEBPðRÞQ0ðE0 −HvbÞ−1Q0EBPðRÞjχBOi;

ð8bÞ

Q0 is a projection operator onto a subspace orthogonal
to χBOðRÞ.
Obviously, instead of the Born-Oppenheimer solution

χBOðRÞ, one may use the adiabatic solution χadðRÞ, which
includes, as well, the adiabatic corrections (see Ref. [20] for
definitions, or a review by Carrington et al. [1]).
A complete set of the contributions at order mα6 is

presented in Table I. Here, we include, as well, the
relativistic recoil contribution at order mðZαÞ6ðm=MÞ
[21] and the radiative recoil contribution [22,23]. In the
former case, the part which depends on the state wave
function was evaluated with the help of LCAO approxi-
mation and its value had been used as an error bar for the
recoil term.
The total contribution to the one-loop self energy

correction at order mα7 similarly should be written

ΔEð7Þ
el ¼ hχadjEð7Þ

1loop-SEðRÞjχadi;
ΔEð7Þ

vb ¼ hχadjEBPðRÞQ0ðE0 −HvbÞ−1Q0Eð5Þ
SE ðRÞjχadi; ð9Þ

where Eð7Þ
1loop-SEðRÞ is an effective potential of themα7-order

correction [see Eq. (11), in [15]], to the energy of the bound
electron in the two-center problem, and

Eð5Þ
SE ðRÞ ¼ α3

4

3

�
ln

1

α2
− βðRÞ þ 5

6
−
3

8

�

× hZ1δðr1Þ þ Z2δðr2Þi ð10Þ

is the one-loop self-energy correction of order mα5. βðRÞ is
the nonrelativistic Bethe logarithm for the bound electron
in the two-center problem, whose values as a function of R
may be found in the Supplemental Material to Ref. [24] or
in [25].
A similar separation between electronic and vibrational

contributions also occurs for the one-loop vacuum polari-
zation (VP) term, which was obtained in [26].
Contributions to order mα7 without the vibrational

second-order term were considered in [15,16]. Here, we
present final results, which appear in Table II. We have
managed to significantly improve precision of the relativ-
istic correction to the Bethe logarithm (see, for details,
[27]), which allowed us to reduce the theoretical uncer-
tainty in the one-loop self-energy by an order of magnitude.
Finally, we turn to the evaluation of mα8-order

corrections.
For hydrogenlike atoms, the two-loop correction at order

mα8 may be written in the form

Eð8Þ
2loop ¼

�
1

π

�
2 ðZαÞ6

n3
½B63L3ðZαÞ þ B62L2ðZαÞ

þ B61LðZαÞ þ B60�; ð11Þ

TABLE I. Summary of contributions at order mα6 to the
fundamental transitions in H2

þ, D2
þ, and HDþ (in kHz). The

first four contributions are defined as written in Eq. (1) of [14],
ΔErel-el is the electronic contribution from Eq. (8), ΔErel-vb is the
newly obtained vibrational contribution from Eq. (8b). The last
contribution is the sum of the recoil and radiative-recoil correc-
tions of order mα6ðm=MÞ (see text).

H2
þ D2

þ HDþ

ΔE1loop-SE −1881.2 −1362.3 −1647.0
ΔEanom 21.2 15.3 18.5
ΔEVP −66.3 −48.0 −58.0
ΔE2loop −55.9 −40.5 −48.9
ΔErel-el −15.1 −10.5 −13.0
ΔErel-vb 44.6 32.2 39.0
ΔErecoil 0.75(3) 0.27(1) 0.49(2)
ΔEtot −1952.0ð1Þ −1413.4ð1Þ −1708.9ð1Þ

PRL 118, 233001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
9 JUNE 2017

233001-2



where LðZαÞ≡ lnðZαÞ−2. It is useful to recall the numeri-
cal values of the various terms for the ground state of the
hydrogen atom [28]

ΔEð1SÞ ≈ ðZαÞ6
π2

½−282 − 62þ 476 − 61�:

This shows that the third term [linear in lnðZαÞ−2] is the
largest one, contrary to our intuition on the hierarchy of the
consecutive terms in the Zα expansion.
In the case of a two-center system, the corrections can

still be written in the form of Eq. (11) (with n ¼ 1 and
Z1 ¼ Z2 ¼ Z). The first three coefficients B6k can be
obtained from the results of [29] as

Z6B63 ¼ −
8

27
Z3πhδðr1Þ þ δðr2Þi;

Z6B62 ¼
1

9
h∇2VQðE0 −HÞ−1Q∇2Vifin þ

1

18
h∇4Vifin

þ 16

9

�
31

15
þ 2 ln 2

�
Z3πhδðr1Þ þ δðr2Þi; ð12Þ

and

Z6B61 ¼ −2
�
1

9
h∇2VQðE0 −HÞ−1Q∇2Vifin

þ 1

18
h∇4Vifin

�
ln 2þ 4

3
NðRÞ

þ 19

135
h∇2VQðE0 −HÞ−1Q∇2Vifin

þ 19

270
h∇4Vifin þ

1

24
h2iσijpi∇2Vpji

þ
�
48781

64800
þ 2027π2

864
þ 56

27
ln 2 −

2π2

3
ln 2

þ 8ln22þ ζð3Þ
�
Z3πhδðr2Þ þ δðr2Þi: ð13Þ

Among the terms presented in Eqs. (12) and (13), all
the distributions were determined and calculated in [15]

except N, which is defined in Eq. (4.21.a) of [29]. On the
other hand, the expression for N is similar to the one of
Eq. (10) in Ref. [24]. Using the same technique, which
has been used for calculations of the relativistic Bethe
logarithm, we were able to get N for the hydrogen atom
ground stateNð1SÞ ¼ 17.8556720362ð1Þ, which is in good
agreement with the value given in [29] and even adds two
more significant digits. Having validated our approach, we
then did calculations of the NðRÞ “effective” potential for
the two-center problem. Putting it into Eq. (13) and then
averaging over R, we get, for the ionization energy of H2

þ
(in kHz),

ΔEð8Þ
2loop ¼ α6½B63L3ðαÞ þ B62L2ðαÞ þ B61LðαÞ þ B60�

≈ 37.0 − 17.3 − 52.9þ 7.8:

The last term in the second line has been evaluated in the
LCAO approximation using the atomic hydrogen ground
state value for B60. We take the error bar on the two-loop
contribution as equal to this approximate value of the
nonlogarithmic term. In our previous studies, we used
the same kind of estimates for the uncertainty resulted from
the yet uncalculated terms, and further improvements of the
theory showed the good relevance of this approach.
Similarly, for the fundamental transition ðL ¼ 0;

v ¼ 0Þ → ðL0 ¼ 0; v0 ¼ 1Þ (in kHz),

Δνð8Þ2loop ¼ α6½Bν
63L

3ðαÞ þ Bν
62L

2ðαÞ þ Bν
61LðαÞ þ Bν

60�
≈ 0.97 − 1.68 − 0.84þ 0.21;

and for the uncertainty, we take urðE2loopÞ ¼ 0.21 kHz.
The other significant contribution at the mα8 order is the

one-loop self-energy,

Eð8Þ
1loop ¼

α6

πn3
Z7½A71 lnðZαÞ−2 þ A70�; ð14Þ

where the leading term has an analytic result [28,30]:
A71ðnSÞ ¼ π½139=64 − ln 2�. For the hydrogen atom, the
nonlogarithmic contribution A70 of order mαðZαÞ7 has
never been calculated directly. By extrapolation of the
Gseð1S; ZαÞ function [31] with the expansion over Zα
[see Eq. (5.1) from [31]], one may get A70 ¼ 44.4.
Similar to the two-loop corrections above, we take the
nonlogarithmic term as an estimate of the theoretical
uncertainty.
The second order contributions, due to vibrational

motion, both from one- and two-loop diagrams, were
evaluated as well. The total frequency shift is about
100 Hz and may be neglected for the time being.
Table III presents a set of calculated contributions at order
mα8 and estimates of error bars due to yet uncalcu-
lated terms.

TABLE II. Summary of contributions at order mα7 to the
fundamental transitions in H2

þ, D2
þ, and HDþ (in kHz). The first

two contributions are the one-loop self-energy and vacuum
polarization corrections, which include the vibrational contribu-
tion (see text). The third line is the Wichman-Kroll (WK)
contribution [28]. The last three contributions are defined in
Eqs. (23)–(25) of [15].

H2
þ D2

þ HDþ

ΔE1loop-SE 109.0(1) 78.8(1) 95.4(1)
ΔEVP 2.8 2.0 2.4
ΔEWK −0.08 −0.06 −0.07
ΔE2loop 10.1 7.3 8.9
ΔE3loop −0.06 −0.05 −0.05
ΔEtot 121.8(1) 88.1(1) 106.4(1)
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The main results of our work, frequencies for the
fundamental transitions ðL ¼ 0; v ¼ 0Þ → ð0; 1Þ and
ionization energies of the HMIs, are presented in
Tables IV and V, respectively. To get precision data for
the relativistic corrections of order mα4 we have used the
expectation values of the Breit-Pauli operators, which
were obtained in [32–34] with 15 or even more significant
digits. As may be extracted from the Tables, the new
theoretical relative uncertainty for the fundamental transition
frequency is ur(νðHþ

2 Þ) ¼ 0.5=ð66 × 109Þ ≈ 7.6 × 10−12,
and accordingly, for the ionization energy, one gets
urðEIÞ ¼ 4.5 × 10−12. The CODATA14 [35] uncertainty
of the Rydberg constant is urðR∞Þ ¼ 5.9 × 10−12. Since
this constant enters in the data of the Tables as a multiplier,
an uncertainty in the energies due to the uncertainty in
the Rydberg constant can be easily evaluated and is
not shown.
These results have direct impact on the potential deter-

mination of the fundamental constants. For example, the
theoretical uncertainty on the fundamental transition in H2

þ
sets the following limit on the achievable precision of the
proton-to-electron mass ratio (μp ¼ mp=me) to

Δμp=μp ¼ 1.5 × 10−11: ð15Þ

This uncertainty is smaller by a factor of 6 with respect to
the present CODATA, urðμpÞ ¼ 9.5 × 10−11 [10], which is
currently limited by uncertainty on the proton’s atomic
mass. The electron’s atomic mass has recently been
improved [ur(ArðeÞ) ¼ 3.1 × 10−11] by a high-precision
measurement of the g factor of a bound electron in a 12C5þ

ion [36]. In terms of ultimate accuracy limits, the 1.5×10−11

theoretical uncertainty that we have achieved for HMI
spectroscopy is comparable to the current theoretical uncer-
tainty of 1.3 × 10−11 on the g factor of 12C5þ [10,37].
The proton rms charge radius (rp) uncertainty as

determined in the CODATA14 adjustment has a much
smaller contribution ∼5 × 10−12 to the uncertainty in the
fundamental transitions. However, replacing the CODATA
value of rp with that obtained from muonic hydrogen
spectroscopy [38,39] leads to a 3 kHz blueshift of the
transition, i.e., a relative shift of 5 × 10−11. If we assume
that the muonic hydrogen adjusted Rydberg constant
should be used as a proper constant when using the muonic
hydrogen proton radius [40], then we get a global shift of
1.1 kHz, which is still feasible for detection (see, also, the
more detailed discussion in [4]).
Finally, since the fundamental transitions have the

potentiality to be used for adjustment of the fundamental
constants, here, we present, in explicit form, the frequency
dependence of transition lines on the masses and on the
proton and deuteron charge radii

νðHþ
2 Þ ¼ ν0ðHþ

2 Þ þ
ΔR∞

R∞
ν0ðHþ

2 Þ þ 2ðR∞cÞ

× ½−2.55528 × 10−6Δμp − 8.117 × 10−12Δrp�;
ð16aÞ

where ΔR∞ ¼ R∞ − R∞;0, Δμp ¼ μp − μp;0, and Δrp ¼
r2p − r2p;0, here, the subscript 0 stands for the CODATA14
value, and ν0 is the transition frequency presented in
Table IV, which was calculated with the CODATA14
values of the constants

νðD2
þÞ ¼ ν0ðD2

þÞ þ ΔR∞

R∞
ν0ðD2

þÞ þ 2ðR∞cÞ

× ½−9.37686 × 10−7Δμd − 5.877 × 10−12Δrd�;
ð16bÞ

here, Δμd ¼ μd − μd;0 and Δrd ¼ r2d − r2d;0,

TABLE III. Summary of contributions at order mα8 to the
fundamental transitions in H2

þ, D2
þ, and HDþ (in kHz).

H2
þ D2

þ HDþ

ΔE2loop −1.34ð21Þ −0.97ð15Þ −1.17ð18Þ
ΔE1loop-SE −0.97ð48Þ −0.70ð35Þ −0.85ð42Þ
ΔEVP − 0.017 −0.013 −0.015
ΔEtot −2.3ð5Þ −1.7ð4Þ −2.0ð5Þ

TABLE IV. Fundamental transition frequencies ν01 for H2
þ,

D2
þ, and HDþ molecular ions (in kHz). CODATA14 recom-

mended values of constants. The first error is the theoretical
uncertainty, the second error is due to the uncertainty in mass
ratios.

H2
þ D2

þ HDþ

νnr 65 687 511 047.0 47 279 387 818.4 57 349 439 952.4
να2 1 091 040.5 795 376.3 958 151.7
να3 −276 545.1 −200 278.0 −242 126.3
να4 −1952.0ð1Þ −1413.4ð1Þ −1708.9ð1Þ
να5 121.8(1) 88.1(1) 106.4(1)
να6 −2.3ð5Þ −1.7ð4Þ −2.0ð5Þ
νtot 65 688 323 710.1(5)(2.9) 47 279 981 589.8(4)(8) 57 350 154 373.4(5)(1.7)

TABLE V. Ionization energies EI for H2
þ, D2

þ, and HDþ

molecular ions (in cm−1). CODATA14 recommended values of
constants. The error is the theoretical uncertainty. The error due to
the uncertainty in mass ratio is below 10−7 cm−1.

H2
þ D2

þ HDþ

EI;nr 131 056.875 746 5 131 418.947 704 1 131 223.436 257 8
EI;α2 1.599 499 5 1.604 830 6 1.601 914 2
EI;α3 −0.350 930 0 −0.352 552 7 −0.351 679 1
EI;α4 −0.002 477 4ð1Þ −0.002 489 7ð1Þ −0.002 483 1ð1Þ
EI;α5 0.000 156 9(1) 0.000 157 6(1) 0.000 140 9(1)
EI;α6 −0.000 002 1ð6Þ −0.000 002 1ð6Þ −0.000 002 1ð6Þ
EI;tot 131 058.121 993 7(6) 131 420.197 648 0(6) 131 224.684 165 0(6)
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νðHDþÞ ¼ ν0ðHDþÞ þ ΔR∞

R∞
ν0ðHDþÞ þ 2ðR∞cÞ

× ½−1.49998 × 10−6Δμp − 3.75470 × 10−7Δμd
− 3.555 × 10−12Δrp − 3.550 × 10−12Δrd�:

ð16cÞ

In the last equation, Δrd may be, in principle, elimi-
nated since the measured H-D isotope shift of the 1S-2S
transition [41] determines the deuteron-proton charge
radius difference [10,42]

r2d − r2p ¼ 3.81948ð37Þ fm2;

with much smaller error than the CODATA14 uncertainties
for rp and rd.
In summary, we have considered several new contribu-

tions to the binding energies of HMIs, which result in an
essential improvement of the theoretical uncertainty both
for the ionization energies and for the transition frequencies
of the HMIs. This level of precision allows us to use the
HMI spectroscopy as an alternative way for determination
of the fundamental physical constants.
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