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1 Introduction

The importance of mixed-symmetry fields (i.e. fields whose physical components carry

representations of the little group described by Young diagrams of height greater than one)

is no longer to be emphasised: whether motivated by string theory — where they make

up most of the spectrum — or, more generically, by quantum field theory in arbitrary

dimensions — where they are the central objects of interest in the sense that they are

the most general fields one may consider.1 At the free level, equations of motions for

massless mixed-symmetry fields in flat spacetime were spelled out by Labastida [1, 2]2

(see [4, 5] for a proof that his equations and trace constraints describe the right propagating

degrees of freedom and [6] for the fermionic case), and later given in the unfolded form [7].

In anti-de Sitter (AdSd+1) spacetime, the study of massless mixed-symmetry fields was

mostly driven by Metsaev [8–10] who gave both the group theoretical description of the

corresponding so(2, d) module and (partially) gauged fixed equations, similar to Fronsdal’s

equation for totally symmetric fields [11] in the De Donder gauge, i.e. the action of the wave

operator on the field is equal to a critical mass square, together with divergencelessness

and tracelessness conditions, and completed by similar equations on the gauge parameters.

Again, those equations were later revisited using the unfolded approach in [12, 13] for the

unitary cases and in [14, 15] for the non-unitary cases, thereby generalizing the Lopatin-

Vasiliev equations [16] that describe the propagation of free massless, totally-symmetric

fields around (A)dS spacetime. The generalised Bargmann-Wigner equations for arbitrary

mixed-symmetry (partially)-massless gauge fields, both unitary and non-unitary, were given

in [12, 13] in a framework where both spacetime signatures are treated on the same footing.

Notice that the presentation of the equations of motion for massless fields in the form of a

Fierz-Pauli system was given by Metsaev [8–10] for the AdS signature. This being said, the

only difference with the dS signature, as far as the form of the Fierz-Pauli-like equations

is concerned, resides in the sign of the eigenvalue of the Laplace-Beltrami operator in the

wave equation for the mixed-symmetry gauge potential. However, a nontrivial difference

between the positive and negative cosmological constant cases is the question of unitarity

of the fields and their corresponding (irreducible) representations, which is one of the main

issues investigated in the present paper.

In deriving all these equations, the constraints imposed by gauge symmetry were cru-

cial. At the group theoretical level, the presence of this symmetry in AdSd+1 translates into

1They anyway appear upon electric-magnetic duality transformation of fields of spin two (or higher) in

spacetime dimensions greater than four.
2See also [3] for an earlier, non minimal formulation (starting from the light-cone gauge).

– 2 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
1

the fact that the representation corresponding to the gauge field is constructed as a quo-

tient: the gauge parameter module forms a submodule to be modded out from the gauge

field module in order to obtain an irreducible representation (irrep) of the isometry algebra

so(2, d). Unitary and irreducible representations (UIRs) of so(2, d) are well known by now,

and the correspondence with fields in AdSd+1 is also well established, in the physically im-

portant cases of bounded energy. However, a similar dictionary between (d+1)-dimensional

de Sitter spacetime (dSd+1) fields and the UIRs of its isometry algebra, so(1, d+ 1), is still

missing in full generality. A first step in this direction was made in [17, 18] where the

authors studied UIRs of the de Sitter group corresponding to massive and massless scalars.

Arbitrary spin, and especially mixed-symmetry massless fields remain elusive in this re-

spect. In the present paper, we fill this gap and relate arbitrary mixed-symmetry fields in

de Sitter spacetime to UIRs of so(1, d+1) given in the mathematical [19, 20] and Euclidean

Conformal Field Theory (CFT) literature [21, 22].

On top of that, mixed-symmetry gauge fields in AdSd+1 were shown to have quite an

interesting flat limit [23]: starting from a gauge field in AdSd+1 with symmetry encoded

by an arbitrary so(d) Young diagram Y and sending the cosmological constant Λ to zero

yields a spectrum of massless fields in flat spacetime composed of all possible fields labelled

by so(d− 1) Young diagrams obtained from Y by removing boxes in each of the last rows

of each block (until it reaches the length of the row just below), leaving the first (upper)

block untouched. For proofs of this spectrum, see [12, 13, 24]. This property can be

reformulated as the group theoretical statement that a massless, mixed-symmetry, irrep of

so(2, d) contracts to a direct sum of massless Poincaré irreps, the spectrum of massless fields

on Minkowski spacetime being given by a truncation of the branching of Y with respect to

so(d−1) ⊂ so(d). We show that a similar situation occurs in dSd+1, the difference being that

the spectrum is given by a truncated branching of Y where the last block (i.e. the lowest one)

is left untouched in the unitary case. In light of the recent revival of interest for higher-spin

theories formulated around flat spacetime [25–29], such a mechanism relating massless fields

of arbitrary spin in either AdSd+1 or dSd+1 (which are more natural backgrounds for higher-

spin gravity) to their flat spacetime counter parts can be of great help in understanding

the subtleties of these flat spacetime formulations as limits of theories in curved spacetime.

This paper is organised as follows:

• In section 2 we expose the classification of the UIRs of so(1, d+ 1) that can be found

in the literature,

• In section 3 we use the previously derived character formulae to investigate the flat

limit of (massive and) massless field/representations of so(1, d+ 1),

• We conclude in section 4 with some considerations on the possibility of a singleton

type representation for so(1, d+ 1) and a corresponding Flato-Fronsdal theorem,

• Finally, we include a few technicalities in several appendices.

– 3 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
1

2 so(1, d+ 1) unitary irreducible representations

We begin this section by reviewing the classification of the UIRs of so(1, d+1) and spelling

out their characters (derived in appendix D). With the latter at hand, we try to establish

a dictionary between these UIRs and massive or massless fields in de Sitter space.

The Lie algebra so(1, d + 1) is spanned by antisymmetric and Hermitian generators

MAB = −MBA , (MAB)† = MAB , (A,B = 0, 1, . . . , d, d + 1) subject to the commutation

relations:

[MAB,MCD] = i (ηBCMAD + ηADMBC − ηACMBD − ηBDMAC) (2.1)

with ηAB = diag(−1,+1, . . . ,+1). One can perform the following redefinitions:

D := −iM0 d+1 , Pi := M0i +Md+1 i , Ki := M0i −Md+1 i , (i = 1, 2, · · · , d) , (2.2)

thereby leading to the commutation relations for the conformal algebra of the d-dimensional

Euclidean space:3
[Mij ,Mkl] = i δjkMil + . . . , [Ki, Pj ] = 2 (iMij + δijD) ,

[Mij , Pk] = 2 i δk[jPi], [Mjk,Ki] = 2 i δi[jKk],

[D,Pi] = Pi, [D,Ki] = −Ki.

(2.3)

In this interpretation, the subalgebra so(d) = span {Mij} corresponds to infinitesimal ro-

tations of the Euclidean space Rd. Let r :=
[
d
2

]
denote the rank of so(d) (with [x] denoting

the integer part of x). The remaining generators D,Pi and Kj correspond respectively to

infinitesimal dilations, translations and special conformal transformations of the Euclidean

space Rd.

2.1 Classification

Let us start by recalling the classification of the generalised Lorentz (or de Sitter) group

UIRs, established in [21, 22] (see also [19, 20, 30, 31]). As was originally shown by Harish-

Chandra, for non-compact semisimple Lie groups these representations can be classified in

different series called “principal”, “complementary” and “discrete” (see [32, 33] for more

details). As in the more familiar case so(2, d) (see appendix B for a summary of the relevant

irreps of so(2, d) ), each highest-weight irrep of so(1, d+ 1) is labelled by an so(d) highest-

weight ~s = (s1, . . . , sr) corresponding to the spin (where the entries si ∈ 1
2N,4 are such that

s1 > s2 > · · · > sr and5 2s1 = · · · = 2sr mod 2 ) and an additional so(1, 1) weight ∆c ∈ C
corresponding to the “conformal weight” of the representation.6 The Young diagram Y has

rows of lengths [ si ] (with i = 1, 2, · · · , r). For tensorial representations, the entries of ~s

3The above generators of so(1, d + 1) are related to those of [21] by Xij = iMij , Ci = Ki , Tj = Pj .
4Strictly speaking, for d = 2r the last entry sr can be negative as well, and the irreps where the last two

entries only differ by a sign are related by a discrete transformation. For this reason, this subtlety will be

ignored in this subsection but taken into account later on.
5In other words, the components of the so(d) highest-weight are either all integer or all half-integer.
6Notice that the conformal weight ∆ is always a real number in the case of UIRs of so(2, d), as the

corresponding Hermitian generator (the energy) spans so(2).

– 4 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
1

are integers, thus [ si ] = si for bosonic fields. In order to have a simpler uniform treatment

(including the fermionic case), with a slight abuse of notation the lenghts of the rows of the

Young diagram corresponding to a (tensor)-spinor representation of so(d) with half-integer

entries will nevertheless be denoted si, as in the bosonic case (although strictly speaking

they are equal to [ si ] = si − 1
2). The list of UIRs of so(1, d+ 1) is as follows:

• Principal series: ∆c = d
2 + iρ , with ρ ∈ R and ~s arbitrary.

• Complementary series: si = 0 for p+1 6 i 6
[
d−1

2

]
, where p ∈ {0, 1, 2, · · · , r−1}

is the number of nonvanishing entries in ~s (thus, when d is even, at least one entry

vanishes) ∆c = d
2 + c with c ∈ R such that 0 < |c| < d

2 − p .

• Exceptional series: si = 0 for p+ 1 6 i 6 r where p ∈ {1, 2, · · · , r} and ∆c = d− p
or ∆c = p . They are essentially the boundary points of the complementary series.

• Discrete series (only for d = 2r + 1): ∆c = d
2 + k with k ∈ 1

2N and 0 < k 6 sr
(thus all entries in ~s are non-vanishing).

Notice that an irrep labelled by [∆c ;~s ] is (partially) equivalent to the irrep labelled by

[d−∆c ;~s ] [34]. In Euclidean CFT literature, the representation for [d−∆c ;~s ] is usually

referred to as the “shadow” of the one for [∆c ;~s ].

Remark. The existence of a whole series of UIRs, the discrete one, only in even spacetime

dimensions (i.e. odd d) can seem a bit strange at first sight, but it can actually be explained

by a standard result due to Harish-Chandra. Indeed, he proved that a real semisimple Lie

group possesses a discrete series of UIRs if and only if it has a compact Cartan subgroup.

In the case of SO(1, d+ 1) of interest for us, which is of rank r + 1, the maximal compact

subgroup is SO(d+1), which has rank
[
d+1

2

]
. In even spacetime dimensions (i.e. d = 2r+1),

the group SO(1, d+1) has the same rank r+1 as its maximal compact subgroup SO(d+1)

and therefore has a compact Cartan subgroup, namely the one of the subgroup SO(d+ 1).

In odd spacetime dimensions (i.e. d = 2r ) however, the rank of SO(d + 1) is r and does

not match that of SO(1, d + 1), which means that there is no compact Cartan subgroup,

hence the absence of a discrete series for d = 2r.

2.2 Structure and characters of the corresponding modules

The above listed UIRs were constructed and classified using the method of induced repre-

sentations (see [22], Chap. IV, appendix B), a construction that we will briefly outline for

the sake of completeness.

First of all, we need to introduce a few subalgebras of g = so(1, d + 1) (and the

corresponding subgroups of G = SO(1, d+ 1) ):

• K = so(d+ 1) is its maximal compact subalgebra;

• a = so(1, 1) = span {D} is the abelian subalgebra generated by the dilation operator;

• m = so(d) = span {Mij} is the centraliser of a in K , generated by the d-dimensional

rotations;

– 5 –
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• n = Rd = span {Ki} is the nilpotent (and abelian) subalgebra generated by the

special conformal transformations.

Starting with the Iwasawa decomposition (i.e. the decomposition of a semisimple Lie al-

gebra into its maximal compact subalgebra, an abelian and a nilpotent subalgebra) of g,

one can introduce the corresponding Iwasawa decomposition at the group level G = KAN ,

with K, A and N the Lie subgroups of which K, a and n are respectively the Lie algebras.

One can further introduce the centraliser M ≡ SO(d) of A in K, and define the parabolic

subgroup P = MAN of SO(1, d+ 1) in terms of its Langlands decomposition (the product

of semisimple, abelian, and nilpotent subgroups). This might be better understood at the

algebra level, where a parabolic subalgebra p of some semisimple Lie algebra g is defined

as any subalgebra containing the Borel subalgebra b of g, the latter being the subalgebra

made out of the Cartan subalgebra together with the subalgebra generated by the raising

(or lowering) operators (or equivalently the subalgebra dual to the space of positive, or

negative, roots). In our case, the Cartan subalgebra of g = so(1, d + 1) that we will con-

sider is composed of the Cartan subalgebra of m = so(d) and a = so(1, 1). The parabolic

subalgebra we are interested in here is p = so(1, 1) A iso(d) := span {Mjk,Ki, D} , with

iso(d) = so(d) A n := span {Mjk,Ki} .

Secondly, consider a finite-dimensional UIR (Vλ, ρλ) of the corresponding parabolic

subgroup P . It is labelled by the weight λ = [∆c ;~s ] , since a standard lemma (cf. Lemma

1 in section 19 of [35]) ensures that the nilpotent subgroup N acts trivially in such a case.

This irrep induces a representation (C (G,Vλ),Rλ) of G on the space C (G,Vλ) of functions

on the group G with value in Vλ and subject to the covariance condition:

f(gx) = ρλ(x−1)f(g) , ∀f ∈ C (G,Vλ), g ∈ G, x ∈ P , (2.4)

via: (
Rλ(g)f

)
(g′) = f(g−1g′) , ∀f ∈ C (G,Vλ), g, g′ ∈ G . (2.5)

Following [21], these induced representations, where one uses the action of the group on

itself, will be called the elementary representations. The “subrepresentation theorem” (see

e.g. [21], p.47) supports this terminology: every UIR of SO(1, d + 1) is (infinitesimally)

equivalent to an irreducible component of an elementary representation.

In order to classify the UIRs of SO(1, d+1), one thus has to decompose the elementary

representation into its irreducible and unitary components, which gives rise to the above

mentioned series of representations.7 The principal series corresponds to a continuum of

UIRs of G that are induced by a UIRs of P in which the nilpotent part N is represented

trivially, and are already irreducible as constructed above. The discrete series corresponds

to, as their name suggests, a discrete set of UIRs induced by P and appearing in the

decomposition of the elementary representation. As mentioned in the previous subsection,

7Note that the construction sketched here has no claim at providing an exhaustive picture of the theory

of induced representations, nor at complete mathematical rigor. Our only purpose is to give an intuitive

picture of the way the SO(1, d + 1) UIRs discussed in this paper were classified and their relation with the

corresponding algebra representations.

– 6 –
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the exceptional series, singled out in the classification of so(1, d+ 1) UIRs actually consists

of irreps with a conformal weight ∆c at the unitarity bound of the complementary series.

At the algebra level, this construction corresponds to generalised Verma modules,

reviewed in more details in appendix C. At the level of Lie algebras, induced representations

are constructed as follows:

• Given a Lie subalgebra h ⊂ g and a finite-dimensional h-module V, the module

U(g)⊗U(h) V (where U(g) is the universal enveloping algebra of g) makes up a repre-

sentation of g;

• To see that, recall that an element x of U(g) ⊗U(h) V reads (y1 . . . yk) ⊗ v with

y1, . . . , yk ∈ g and v ∈ V, hence there exists a natural action of g on this module,

namely ρ(z)x := (zy1 . . . yk)⊗ v for z ∈ g, induced by the associative product in the

universal enveloping algebra;

• Finally, the subscript U(h) on the tensor product symbol simply means that ∀x ∈
U(h) , ρ(x)(1)⊗ v = (x)⊗ v = (1)⊗ (ρ̃(x)v) where ρ̃ is the representation of U(h)

on V (arising from the one of h on V).

Here we are interested in h = p = so(1, 1) A iso(d) and g = so(1, d + 1). We will consider

generalised Verma modules based on this algebra: Vλ := U(g)⊗U(p)Vλ, where as previously

λ = [∆c ;~s] is an so(1, 1)⊕ so(d) highest-weight and Vλ the corresponding so(1, 1)⊕ so(d)

highest-weight module. Using the Poincaré-Birkhoff-Witt theorem, the generalised Verma

module Vλ can be equivalently defined as: Vλ = U(t)⊗Vλ, as t = span {Pi} is the comple-

ment of p in so(1, d+1). In other words, one can think of a generalised Verma module as the

module obtained by acting with all the lowering operators of the algebra that do not belong

to the chosen parabolic subalgebra (in our case, the translation generators) on a finite-

dimensional highest-weight space Vλ of the parabolic subalgebra p instead of a highest-

weight vector, as would be the case in the (more standard) context of Verma modules.

The character of a generalised Verma module V[∆c ;~s ] reads:

χdS
[∆c;~s ](q, ~x) = q∆cχ

so(d)
~s (~x)P(d)(q, ~x) , (2.6)

where the function P(d)(q, ~x) is the character of the elementary representation of trivial

weight [0 ;~0 ] (i.e. an so(2, d) scalar function) and is given by:

P(d)(q, ~x) =
r∏
i=1

1

(1− qxi)(1− qx−1
i )
×


1 if d = 2r

1

1− q
if d = 2r + 1

(2.7)

2.2.1 Principal series

The representations of the principal series are induced from irreps of p with complex so(1, 1)

weight ∆c = d
2 + iρ , where ρ ∈ R and arbitrary so(d) highest-weight (i.e. arbitrary spin).

The corresponding generalised Verma modules are irreducible as so(1, d+1)-modules. The

– 7 –
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following character was derived originally in [36], where the author computed it working

at the SO(1, d+ 1) group level:

χdS
[∆c;~s ](q, ~x) =

(
q
d
2

+iρχ
so(d)
~s+

(~x) + q
d
2
−iρχ

so(d)
~s−

(~x)
)
P(d)(q, ~x) , (2.8)

where ~s± denotes “chiral” pairs of so(d) highest-weights (when the distinction is relevant),

i.e.

~s± = (s1, . . . , sr−1,±sr ) for d = 2r,

and

~s+ = ~s− = ~s for d = 2r + 1 .

Notice that, as a consequence of working at the group level, both chiralities (accompanied

with a conjugation of the so(1, 1) weight) appear in the above expression. The principal

series of representations is known to describe massive fields in dSd+1 (see for instance [17,

37]) which complies with the fact that their definition does not involve any quotient of

elementary representations and therefore do not exhibit any gauge invariance.

2.2.2 Complementary series

The elementary representations of the complementary series are also irreducible from the

start, and as such their SO(1, d+ 1) characters [36] read:

χdS
[∆c;~s ](q, ~x) =

(
q
d
2

+cχ
so(d)
~s+

(~x) + q
d
2
−cχ

so(d)
~s−

(~x)
)
P(d)(q, ~x) . (2.9)

For the same reason as in the principal series, these UIRs should correspond to massive

fields. One may phrase the difference between those two series of massive fields as follows:

those in the principal series describe “very massive” fields whereas those in the complemen-

tary series correspond to “not-so-massive” fields. Let us expand a little bit: when writing

down a wave equation for a field in (A)dS, one would refer to the eigenvalue m2 of the

Laplace-Beltrami operator as the mass squared of this field, for lack of a group-theoretical

invariant concept as in Minkowski space where it is exactly the quadratic Casimir operator

of the Poincaré group. However, this mass term is also related to the value of the quadratic

Casimir operator for so(1, d+ 1) or so(2, d) and thereby it can be expressed in term of the

conformal weight ∆c . Having at hand the relation between ∆c, m and the spin of this field

(encoded in the so(d) part of the Casimir operator), principal series fields have a higher

corresponding mass squared m2. This distinction is illustrated in the simple example of a

massive scalar field, detailed in appendix A and sketched in figure 1.

2.2.3 Exceptional series

The representations of the exceptional series are those irreps induced by UIRs of p with

conformal weight at the unitary bound of the complementary series, i.e. ∆c = d − p or

∆c = p, with p the height of the Young diagram Y labeling the so(d) part of the irrep. As

a consequence, the corresponding generalised Verma module contains null vectors, i.e. these

elementary representations are reducible. One therefore has to find all submodules con-

tained in the generalised Verma module constructed from the p-irrep [d−p;~s ]. This survey

– 8 –
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dSd+1

•
0

•
d2

4
(mR)2

Principal series

Complementary series
AdSd+1

•
−d2

4

•
0 (mR)2

Figure 1. Unitary (blue and green), and non-unitary (red) regions for the squared mass of a scalar

field in de Sitter (left) and anti-de Sitter space (right).

was done in [31, 38] at the group level. At the algebra level, one can rely on the so-called

Bernstein-Gel’fand-Gel’fand (BGG) resolutions to perform the same analysis. The idea

is the following: given a generalised Verma module Vλ, where λ = [∆c;~s ] represents the

highest-weight characterising the irrep of p from which it is built, the BGG theorem gives a

criterion for an element of the Weyl group of so(1, d+ 1) to yield a highest-weight defining

a submodule, when applied to λ. It furthermore provides a resolution of the irreducible

module Dλ in the form of an exact sequence involving Vλ and its submodules. This analysis

and the BGG resolution is known in the case of the complex algebra so∗(d+2) and was used

in [39] to classify the possible systems of unfolded equations invariant under the conformal

algebra so(2, d). Using these resolutions, one can derive the character of an irreducible rep-

resentation in the exceptional series in terms of characters of p, as detailed in appendix D

(see also the appendix F of [40] for an earlier derivation of such a dictionary for characters).

In order to be able to write the characters in a more compact way, we will use the

following notation:

• Yp will represent a Young diagram of height p (with p 6 r), i.e.

Yp := (s1, . . . , sp
↑
pth

, 0, . . . , 0) = ~s , (2.10)

with sp > 0 ;

• (Yp,1m) will represent a Young diagram of height p+m obtained by adding m rows

of length one below Yp, i.e.

(Yp,1m) := (s1, . . . , sp
↑
pth

, 1, . . . , 1, 0, . . .
↑

(p+m)th

, 0) ; (2.11)

• Y̌(i)
p will represent the diagram obtained from Yp after having (i) removed its ith row

and (ii) removed one box in each of the row below the previously removed one, i.e.

Y̌(i)
p := (s1, . . . , si−1, si+1 − 1

↑
ith

, . . . , sp − 1
↑

(p−1)th

, 0, . . . , 0) . (2.12)

Depending on the parity of d, the structure of the irreducible module obtained from

V[d−p;Yp] is slightly different, which is why we need to treat both cases separately.
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• Even spacetime dimension (d = 2r + 1):

χdS
[d−p;Yp](q, ~x) =

r−p∑
m=0

(−1)m(qp+m − qd−p−m)χ
so(d)
(Yp,1m)(~x)P(d)(q, ~x) (2.13)

−
p∑
`=1

(−1)p+1+`qs`+d−` χ
so(d)

Y̌(`)
p

(~x)P(d)(q, ~x) ;

• Odd spacetime dimension (d = 2r):

χdS
[d−p;Yp](q, ~x) = 2

p∑
`=1

(−)p+`+1qs`+d−`χ
so(d)

Y̌(`)
p

(~x)P(d)(q, ~x)

+

r−p−1∑
n=0

(−)n(qd−p−n + qp+n)χ
so(d)
(Yp,1n)(~x)P(d)(q, ~x) (2.14)

+(−)r−p qd/2
(
χ
so(d)

(Yp,1r−p+ )
(~x) + χ

so(d)

(Yp,1r−p− )
(~x)
)
P(d)(q, ~x) .

Remark. In even spacetime dimensions, the character (2.13) exactly reproduces the formula

for the SO(1, d+1) character derived in [36], upon rewriting it in way that makes the so(d)

part of the character explicit. However, in odd spacetime dimensions, (2.14) differs from

the formula given in [36], namely the first line of our formula is not recovered from the

expression of [36]. Nevertheless, we want to stress that we have derived the expression (2.14)

as well as all the characters of the Lie algebra so(1, d+ 1) presented in this paper using the

BGG resolutions recalled in appendix D.

Knowing the structure of the corresponding modules, we can now propose a field

theoretical interpretation. First of all, the presence of submodules in the generalised Verma

module V[∆c ;~s ] suggests the presence of gauge invariance for the corresponding fields, i.e.

the exceptional series UIRs should correspond to massless fields in dSd+1. However, the

simplest massless fields that one could think of, which are the totally symmetric, spin-s

gauge fields, seem to be either absent of this series of irreps or do not have the expected

conformal weight: being labelled by the single row Young diagram Y = (s, 0, . . . , 0), the

associated conformal weight in this series would be ∆c = d− 1 and not the usual s+ d− 2.

Our interpretation of this apparent contradiction is that the conformal weight and Young

diagram characterising a UIR in the exceptional series actually corresponds to that of the

curvature (see our definition below) of the massless field that it describes.

In order to discuss gauge field and curvatures for arbitrary Young diagrams, we will

use the following notation:

• A Young diagram will be generically seen as composed of B blocks, each of the them

being of individual length `I and height hI (1 6 I 6 B);

• We will write the cumulated height of the first I blocks pI :=
∑I

J=1 hJ (thus p1 = h1),

and hence the total height of the Young diagram is pB that we will denote p hereafter;

– 10 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
1

• Therefore, the Young diagram will be written as

~s = (`1, . . . , `1︸ ︷︷ ︸
h1

, `2, . . . , `2︸ ︷︷ ︸
h2

, . . . , `B, . . . , `B︸ ︷︷ ︸
hB

, 0, . . . , 0) ≡ (`h11 , `h22 , . . . , `hBB ) , (2.15)

In the case of B = 3 blocks:

← `1 →

← `2 →

← `3 →

↑

p3

↓

↑
h1↓
↑ h2↓

↑

↓

p2

− − −−

Recall that a massless gauge field ϕY of mixed symmetry8 described by the Young

diagram Y is subject to gauge transformations of the form:

δ(I)
ε ϕY = ∇(I)εY′I + traces, (2.16)

where Y′I is the Young diagram obtained from Y by removing one box in the last row of

its Ith block, and ∇(I) means that the derivative acting on ε is projected, in the sense that

the resulting object has the symmetry of Y. In this paper, what we call the curvature9 is

obtained by acting on ϕY with as many derivatives as the length of the “activated” block,

the Ith one, and projecting them so that the resulting object has the symmetry of Y to

which one extra row was added to the activated block. The above described objects are

illustrated in the figure 2.

The previous discussion should be refined a little bit, taking into account partial mass-

lessness, initially introduced in [41–44] for totally symmetric gauge fields (see also [45–49]

for recent works). These fields are subject to higher derivative gauge transformations, and

inherit their name from the fact that they propagate an intermediate number of degrees

of freedom between those of a bona fide massless field and a massive one (the canonical

example being that of a spin-s partially massless field of depth t in 4 dimensions, which

propagates 2 t helicities, namely ±s,±(s− 1), . . . ,±(s− t+ 1), with t ∈ {1, 2, · · · , s}). The

generalization of partially massless fields to mixed-symmetries was considered in [12, 13].

These fields are subject to gauge transformations of the form:

δ(I)
ε ϕY = ∇ . . .∇︸ ︷︷ ︸

t

ε
Y
′(t)
I

+ traces , (2.17)

8Recall that such a field corresponds to a Lorentz tensor whose spacetime indices have the symmetry

properties of the so(1, d) Young diagram Y (i.e. it is completely traceless), and subject to a divergencelessness

condition which ensures that the field only propagates the degrees of freedom corresponding to the little

group representation, i.e. the so(d) Young diagram Y.
9The “primary Weyl tensor” [12, 13] is obtained by acting with `I − `I+1 derivatives on the gauge field

ϕY and by projecting the resulting object on the symmetries of the so(1, d) Young diagram obtained by

adding `I − `I+1 boxes to Y in the (pI + 1)th row, i.e. the row below the activated Ith block is completed

with derivative until its length reaches that of the row above (i.e. `I). The terminology is justified by the

fact that the primary Weyl tensor is the gauge-invariant quantity of lowest order in derivatives.
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Potential

Yu

Yd

activated →
block

Gauge

Yu

×

Yd

Curvature

Yu

∇ . . .∇

Yd
∇ . . .∇

Figure 2. Young diagrams corresponding, from left to right, to a mixed-symmetry massless field, its

gauge parameter acting in the isolated middle block with the cross indicating the removed cell, and

finally its curvature built by acting with derivatives in the same block. Yu and Yd represent arbitrary

Young diagrams that can be glued respectively above (up) and below (down) the middle block.

where Y
′(t)
I is the Young diagram obtained from Y after having removed t boxes in the last

row of the Ith block, and where, as in the previous case, all derivatives should be projected

so as to reconstruct an object with the symmetry of Y. Notice that the depth of the partially

massless field, that is, the number of derivatives involved in its gauge transformation, is

now bounded by sI − sI+1, i.e. the difference between the length of the Ith block and that

of the block below (if any). The quantity that we called here curvature is built by acting

upon the gauge field with sI − t+ 1 derivatives and projecting it on the symmetry of the

Young diagram obtained from Y by adding a row with sI− t+1 boxes under the activated,

Ith block. Notice that the depth of a partially massless field can be read off either from its

conformal weight, which is ∆c = sI + d− pI − t, or from the difference between the length

of the Ith block and the next one, in its curvature Young diagram YpI+1.

Now with this picture in mind, the Young diagrams appearing in (2.13) and (2.14) can

be interpreted as follows:

• Yp corresponds to the curvature of the gauge field, the latter having the so(d) sym-

metry Y = Y̌(p)
p , i.e. described by the Young diagram obtained after removing the

last row of Yp.

• The last block is activated for this gauge field, i.e. it is subject to gauge transfor-

mations generated by a gauge parameter with the symmetry of the Young diagram

obtained after removing t boxes, for a depth t partially massless field (keeping in mind

that t = 1 corresponds to the massless case), from the last row of Y̌(p)
p . It happens

to be exactly the shape of the next diagram appearing in (2.13) and (2.14), namely

Y̌(p−1)
p , which therefore corresponds to the gauge parameter of our gauge field.

• Using the same rationale, one can convince oneself that the remaining Young diagram

of the type Y̌(`)
p , ` = 1, . . . , p− 2 describe the higher order reducibilities of the gauge

parameter with shape Y̌(p−1)
p .

• The last class of diagrams appearing in (2.13)–(2.14) are of the form (Yp,1m) , m =

1, . . . , r−p, and describe a chain of Bianchi identities: they are obtained from Yp, the

curvature of the gauge field, by adding a box under the last row repeatedly. The van-

ishing of such tensors would be obtained by acting repeatedly with ∇ on the curvature.
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Notice that, according to this dictionary, only fields where the last block is “activated”

are described by UIRs from the exceptional series. This fact complies with the expectation

that, in opposition with the anti-de Sitter case where only mixed-symmetry fields whose

first block is activated are unitary, in de Sitter unitary mixed-symmetry fields are those

whose last block is touched by gauge transformations. This observation is also supported

by the fact that, if one forget about unitarity, then irreps in the exceptional series seem

to describe mixed-symmetry fields whose activated block is not necessarily the last one

(see appendix G). Finally, it appears from the previous discussion that totally symmetric,

partially massless, fields are unitary in de Sitter spacetime, in any dimension, as was

expected [50]. Notice that the depth-t partially massless fields are those whose curvature

Young diagram Yp last row is shorter than the preceding one, i.e. sp < sp−1.

2.2.4 Discrete series

Finally, in even spacetime dimensions (i.e. when d = 2r + 1), UIRs in the discrete series

arise from reducible generalised Verma module induced by an irrep of p of highest-weight

[k+ d
2 ;~s ] where k is an half-integer that we will rewrite as k = k′− 1

2 , with k′ and positive

integer for bosonic fields,10 setting a lower bound on the last component of ~s : 0 < k′ 6 sr,
i.e. ~s describes a maximal height Young diagram, as they also can be found in the BGG

resolutions detailed in [39] (see appendix D). Their character [36] reads:

χdS
[k+ d

2
;~s ]

(q, ~x) = qk
′+rχ

so(d)
~s (~x)P(d)(q, ~x) +

r∑
i=1

(−1)r+1+i qsi+d−i χ
so(d)

Y̌(i)

~s,k′
(~x)P(d)(q, ~x) (2.18)

where Y̌(i)
~s,k′ is the Young diagram obtained from ~s after (i) having removed the ith row

as well as one box in all rows below the ith one and (ii) filling the last row with k′ − 1

boxes, i.e.11 Y̌(i)
~s,k′ = (s1, . . . , si−1, si+1 − 1, . . . , sr − 1, k′ − 1). Writing k′ = sr − t+ 1 with

1 6 t 6 sr, we can recognise the conformal weight of a partially massless mixed-symmetry

field with a maximal-height Young diagram (i.e. p = r) and whose last block is activated,

in the exponent of the variable q in the first term: ∆k = k′ + r = sr + d − r − t. Then,

looking at the sum backward (i.e. at the last term with i = r) we recognise as a second

term the conformal weight and Young diagram associated with the gauge parameter of the

maximal-height partially massless field: ∆k = sr + d− r and Y̌(r)
~s,k′ = (s1, . . . , sr−1, sr − t).

As usual, the removal of t boxes in the last row together with the increase in the conformal

weight by t units represents the gauge symmetry enjoyed by the depth-t partially massless

field. With this picture in mind, the r − 1 remaining terms in the above expression are

naturally interpreted as the reducibilities of the gauge parameter.

It may seem surprising that, contrarily to the exceptional series, irreps of the discrete

series correspond to a description of a massless field only in terms of the potential and its

gauge symmetry, and does not involve its curvature. This can be understood a posteriori

10For fermionic fields, k′ should be a half-integer, as it is eventually related to the conformal weight of a

partially massless field which depends on its spin.
11Notice that t has to be an integer (resp. an half-integer) if the components si’s are also integers (resp.

half-integers).
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by the fact that those irreps are labelled by a maximal height so(d) Young diagram, and

therefore the curvature is described by a Young diagram with r + 1 rows, which vanishes

identically as an so(d) representation and is thus absent in (2.18).

Remark. The 4-dimensional case appears to be somewhat degenerate, in the sense that

it can only accommodate totally symmetric fields (the isometry algebra is so(1, 4) and

therefore the relevant rotation subalgebra is so(3) which has rank 1), hence all massless

fields fall in the discrete series (as they are described by maximal height Young diagram).

As a consequence, their character only contain the potential part (and not the curvature

part) of the gauge field, and therefore are similar to those of massless fields in AdS4.

2.3 Masslessness: AdS vs dS

In curved spacetime for fields with spin one or more, the definition of mass (and, therefore,

of masslessness) is ambiguous. A standard modern criterion for “masslessness”12 of fields

on de Sitter or anti-de Sitter spacetimes is that the corresponding irrep is not a generalised

Verma module (or elementary representation) but arises as a quotient of such modules.

In (d+1)-dimensional anti-de Sitter spacetime, (unitary) massive and massless fields are

organised quite simply with respect to their conformal weight: given an so(d) highest-weight

Y of height p − 1 corresponding to the potential, whose first row is of length s := `1 and

first block of height h1, massive fields are those irreps with ∆ > s+d−h1−1 and massless

fields lie at the boundary of this spectrum, being characterised by ∆s,h1 := s+ d− h1 − 1.

The reason for this repartition is the following: for a large conformal weight, ∆ > ∆s,h1 ,

no negative norm vector are present in the module. Then, lowering ∆, some null vectors

will appear when reaching the critical value ∆s,h1 , that one should get rid of by modding

out the submodule they define. Finally, negative state norm start appearing for ∆ < ∆s,h1

so these irreps are non-unitary.

In (d+ 1)-dimensional de Sitter spacetime, there seems to be a similar distribution of

(unitary) massive and massless fields as a function of their conformal weight in de Sitter

spacetime, with the important difference that both types of field are further split into two

subcategories at the group theoretical level. Given the same so(d) highest-weight Y as

considered previously, there is a first continuum of massive fields — the principal series

— labelled by a purely complex conformal weight ∆c = d
2 + iρ (ρ ∈ R, together with

a second marginal continuum of massive fields — the complementary series — with real

conformal weight p < ∆c < d − p (taking into account the partial equivalence between

representations with ∆c and d−∆c). Then at the boundary of the complementary series,

∆c = d − p and ∆c = p, (partially) massless fields appear as UIRs from the exceptional

series. Finally, for d = 2r + 1, another class of gauge fields is possible, belonging to the

discrete series of UIRs. They correspond to (partially) massless fields labelled by Young

diagrams of maximal-height.

This repartition is illustrated in the following figure.

Remark. Notice that, because the conformal weight of a field in the exceptional series does

not depend on the length of the first row of its Young diagram but on p, the height of its first

12This criterion has the advantage to incorporate in a natural way the partially massless fields.
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dSd+1

•
0

•]
p d

2

•
<(∆c)

=(∆c)

[
d− p
•

AdSd+1

••
0 ∆s,h1 ∆

Figure 3. Repartition of massive and massless fields in dSd+1 (left) and AdSd+1 (right) as a function

of the conformal weight ∆c/∆, for a fixed diagram Y of total height p− 1, and first block of height

h1 and length s. On the left / de Sitter side, massive field in the principal and complementary

series are depicted respectively by a red and a green line, the massless field is represented by a blue

dot. On the right / anti-de Sitter side, massive fields correspond to the green line and the massless

fields are the blue dots.

column, the difference between massless and partially massless fields with the same spin is

no longer encoded in the conformal weight of the two corresponding representations, like

in AdSd+1, but into the Young diagram labeling the irreps. As this diagram corresponds

to that of the curvature of the field, a massless and a partially massless field are labelled

by a Young diagram whose last row are of different length but of same height, hence both

are unitary in dSd+1. In contradistinction, in AdSd+1 the conformal weight of a partially

massless field is lower than that of the corresponding massless field and therefore falls below

the unitarity bound.

3 Flat limit

One can recover from the (anti-)de Sitter spacetime (A)dSd+1 the flat Minkowski spacetime

Md+1 by just sending its curvature radius to infinity, R → ∞, or equivalently by sending

to zero the reduced cosmological constant λ2 := −σ 2Λ
d(d−1) where σ = −Λ/|Λ|, making

this quantity always positive for both sign of the cosmological constant Λ (since σ = −1

corresponds to dSd+1, and σ = +1 to AdSd+1). The flat limit λ = 1/R→ 0 corresponds to

a contraction of the (A)dSd+1 isometry algebras to that of Minkowski spacetime, i.e. the

Poincaré algebra iso(1, d) = so(1, d) A Rd+1. Indeed, exhibiting the Lorentz subalgebra,

common to these three isometry algebras, they can be presented as:

[Mab,Mcd] = i ηbcMad + . . . , [Mab, Pc] = 2 i ηc[bPa] , [Pa, Pb] = i σλ2Mab . (3.1)

It is clear from this presentation that sending the inverse radius λ of (A)dS to zero, the

transvection generators Pa become the usual flat spacetime translation generators, which

span the abelian ideal Rd+1 of the Poincaré algebra. On the (A)dS side, one of these gen-

erators belongs to the Cartan subalgebra, and the “energy” label (∆c or ∆ for respectively

dSd+1 or AdSd+1) is the eigenvalue of this particular generator. However, on the flat side,
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there is no longer a Cartan subalgebra, since the Poincaré algebra is not semisimple but a

semi-direct sum.

A heuristic way to translate this feature on the characters is to rescale the variable

carrying the weight coming from the corresponding transvection generator:

q → e−ιβλ (3.2)

with ι :=
√
σ and β ∈ R some constant (that we could sometimes interpret as the inverse

temperature in the case of negative cosmological constant) with dimension of length; and

then to send λ→ 0 :

χ
(A)dS
[∆(c);~s ](e

−ιβλ, ~x)  
λ→0

∑
[m;~σ]∈Σ([∆(c);~s ])

χPoinc.
[m;~σ] (β, ~x) , (3.3)

where [m ;~σ ] denotes a UIR of the Poincaré group labelled by its mass m and a little group

(i.e. SO(d) for massive irreps, SO(d− 1) for massless helicity ones) highest-weight ~σ and

Σ([∆(c), ~s ]) denotes the set of Poincaré irreps resulting from the flat limit (or contraction)

of the (A)dS representation labelled by [∆(c), ~s ]. Before going into more details on the de

Sitter case, which is the main purpose of the present paper, we will start by revisiting the

by-now well understood case of mixed-symmetry fields in anti-de Sitter spacetime whose

flat limit is controlled by the Brink-Metsaev-Vasiliev (BMV) mechanism.

3.1 Anti-de Sitter case: the Brink-Metsaev-Vasiliev mechanism

Brink, Metsaev and Vasiliev conjectured in [23] that a single massless mixed-symmetry

fields in anti-de Sitter spacetime is mapped to a set of mixed-symmetry massless fields in

flat space; conjecture later proven in [12, 13, 24].

Consider a unitary mixed-symmetry gauge field on AdSd+1 of symmetry charac-

terised by the conformal weight ∆`1,h1 := `1 + d − h1 − 1 and the Young diagram

Y = (`h11 , `h22 , . . . , `hBB ) where `hII represents the Ith block of length `I and height hI , and

B stands for the number of blocks of the diagram. The total height of Y is p =
∑B

I=1 hI .

The flat limit of this single massless mixed-symmetry field on AdSd+1 is the following:

Y = (`h11 , `h22 , . . . , `hBB ) −→
λ→0
{(`h11 , `h2−1

2 , `2 − n2, . . . , `
hB−1
B , `B − nB)} , (3.4)

where the set of massless fields on Md+1 is determined by the numbers nI of boxes removed

from the `Ith column with n1 = 0 and

0 6 nI 6 `I − `I+1 , ∀I ∈ {2, 3, · · · , B} . (3.5)

This limit is essentially13 a branching rule of the orthogonal group: on the AdSd+1 side, the

spin is given by the highest-weight of the so(d) subalgebra of so(2, d) whereas in flat space-

time, the spin is given by the highest-weight of the orthogonal (sub)algebra of the little

algebra, that is so(d− 1) for massless fields in (d+ 1)-dimensional Minkowski space. When

13The important distinction with a genuine branching rule of the orthogonal group is that the first block

is not touched here.

– 16 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
1

performing the flat limit from AdSd+1 to Md+1, one basically trades the energy/conformal

weight for the mass which is obviously zero for massless fields, meaning that they are

entirely characterised by their spin. As a consequence, one needs to relate the so(d) part

of the representation of so(2, d) leftover after having sent λ to zero by branching them onto

so(d − 1) in order to have a proper interpretation in terms of flat massless fields. To un-

derstand the structure of the massless mixed-symmetry representations of so(2, d) in more

details, it is quite convenient to have a look at their characters (recalled in appendix B):

χAdS
[∆s,h1

;~s ](q, ~x) = q∆s,h1

(
χ
so(d)
~s (~x) +

h1∑
k=1

(−q)kχso(d)
~sk

(~x)

)
P(d)(q, ~x) . (3.6)

The above formula should be read as follows: the module corresponding to a massless

mixed-symmetry field in AdSd+1 described by the so(d) highest-weight ~s is obtained

by a succession of quotients of generalised Verma modules with so(d) highest-weight ~sk
(k = 1, . . . , h1) obtained from the Young diagram ~s by removing from it the last box on

the k last rows in the first block (of height h1), and increasing the conformal weight by one

unit each time a box is removed. This structure is the group-theoretical description under-

lying the gauge symmetry available for unitary mixed-symmetry fields: they have gauge (for

gauge) parameters with the symmetry of each of the (h1−1) diagrams in the chain obtained

from removing a box from the previous diagram. Schematically, this can be depicted as:

q∆s,h1

Yd

−q∆s,h1
+1

×

Yd

+q∆s,h1
+2

×
×

Yd

− · · ·+(−1)h1q∆s,h1
+h1

×

|
×

Yd

(∗)

Now, as mentioned above, when taking the flat limit this becomes an alternated sum

of so(d) characters. Branching each one of these h1 diagrams will produce a number of

so(d − 1) Young diagrams but this precise sequence is such that only those obtained by

deleting boxes in the last rows (until reaching the length of the row just below) in each one

of the blocks except the first one. Indeed, branching the first diagram will yield:

← `1 →
↑
h1

↓`2← →

Yd

−→
so(d) ↓ so(d−1)

`1⊕
n=`2

↑
h1 − 1
↓

n

Yd↓
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where `1 is the length of the first block, `2 is the length of the first row of the second block.

The diagram below the first block is represented by Yd, while Yd↓ represents all diagrams

obtained from branching Yd. Branching the second Young diagram in (∗) will produce

exactly the same sum of diagrams, but with n running now from `2 to `1− 1 instead of `1.

As a consequence, only the diagrams where the first block is left intact and the second is

branched onto so(d− 1) will survive, which is exactly what the BMV limit tells us. At this

stage, one has to notice that the branching of the second diagram will also produce another

sum of diagrams, similar to the previous one with n = `2, . . . , `1−1 but where one extra box

is removed in the first block, at the (h1−1)th row. It turns out that those diagrams will be

suppressed when branching the third diagrams, and this mechanism of cancellation will re-

peat itself until the last (the h1th) diagram, so that in the end one is left only with diagrams

produced by the branching rule of so(d) onto so(d− 1) except that the first block is intact.

Example 1. Let us consider the example of a mixed-symmetry field in AdSd+1 (in di-

mension greater or equals to 8) with ~s = (s, s, 2, 1, 0, . . . , 0), and look at its flat limit.

From the above discussion, it appears that it contracts to the following sequence of so(d)

representation:

D(s+ d− 3;~s) −→
λ→0

s
s

− s
s− 1 ×

+ s− 1 ×
s− 1 ×

(3.7)

where the boxes containing a × symbol should be considered as absent (this notation

is intended to remind us of the fact that these quotients signify the presence of gauge

symmetry). When branching the so(d) Young diagrams onto so(d− 1) ones, one produces

all Young diagrams obtained by deleting boxes in the last row of each block, until reaching

the length of the next rows. For instance, the first diagram branches as:

s
s

−→
so(d) ↓ so(d−1)

s⊕
n=2

(
s
n

⊕ s
n

⊕ s
n

⊕ s
n

)
, (3.8)

whereas the second and third diagrams yield:

s
s− 1 ×

−→
so(d) ↓ so(d−1)

s−1⊕
n=2

(
s

n
⊕ s

n
⊕ s

n
⊕ s

n

⊕ s− 1
n

⊕ s− 1
n

⊕ s− 1
n

⊕ s− 1
n

)
, (3.9)

and

s− 1 ×
s− 1 ×

−→
so(d) ↓ so(d−1)

s−1⊕
n=2

(
s− 1
n

⊕ s− 1
n

⊕ s− 1
n

⊕ s− 1
n

)
. (3.10)
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The first line of diagrams in (3.9) obtained after branching the second diagram in the

original sequence cancels all those appearing in (3.8), the branching of the first diagram

of the sequence, with less than s boxes in the second line, i.e. where the first block is left

untouched. The second line of diagrams in (3.9) is identical to those appearing in (3.10),

the branching of the third diagram of the sequence, thereby leaving as expected all Young

diagrams obtained from branching the original so(d) Young diagram (s, s, 2, 1, 0, . . . , 0)

onto so(d− 1) leaving the first block (composed of the first two rows in this case) intact.

3.2 Principal and complementary series

It was shown in [37] that the principal series of representations of the Lorentz group

SO(1, d + 1) contracts to the direct sum of two massive representations of the Poincaré

group ISO(1, d) of left and right chirality (when it exists, i.e. for d = 2r), where the mass

is given by ρ . In practice, we consider the limit process (3.3), keeping finite the product

λρ = m (in accordance with [37]) :

χdS
[ d
2

+iρ;~s ]
(q, ~x) = qd/2P(d)(q, ~x)

(
qiρχ

so(d)
~s+

(~x) + q−iρχ
so(d)
~s−

(~x)
)

(3.11)

−→
λ→0

χPoinc.
[m;~s ] (β, ~x) =

(
e−βmχ

so(d)
~s+

(~x) + eβmχ
so(d)
~s−

(~x)
)

P(d)(~x) (3.12)

and

P(d)(~x) :=

r∏
i=1

1

(1− xi)(1− x−1
i )


1 if d = 2r ,

1

1− α

∣∣∣∣
α→1

if d = 2r + 1 ,
(3.13)

The resulting expression coincides with the Poincaré characters computed in any di-

mensions in [27], reviewed in appendix E. The situation is similar for the complementary

series of representations, where ∆c = d
2 + c (0 <|c| < d

2 − p) except that the product

λc −→
λ→0

0 vanishes in the flat limit, so one should set m = 0 in (3.12) and branch the so(d)

characters appearing onto so(d− 1) (using the branching rules for the orthogonal algebra

recalled in appendix F).

3.3 Exceptional series

The flat limit of UIRs in the exceptional series is a bit more subtle, but at the same time

richer. It is to be excepted, if our identification of this series of irreps with massless fields in

de Sitter spacetime is correct: having the BMV mechanism in mind, one would anticipate

that the spectrum of massless fields in flat space resulting from the flat limit of a mixed-

symmetry field in de Sitter spacetime to be composed of a plethora of fields falling into

irreps of so(d − 1) related to those appearing in the branching rule of the so(d) Young

diagram of the original field. In order to see if these expectations are met, we will perform

the flat limit of the characters slightly differently than before: after having set q = 1, or

equivalently sent λ → 0, we will branch all so(d) irreps onto so(d − 1), as it characterises

entirely the massless Poincaré irreps of helicity type.
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3.3.1 Even spacetime dimensions

For d = 2r + 1, the flat limit of (2.13) yields:

χdS
[d−p;Yp](q, ~x) −→

λ→0

s1∑
σ1=s2

s2∑
σ2=s3

· · ·
sp−1∑

σp−1=sp

χ
so(2r)
(σ1,...,σp−1)(~x)P(d)(~x) (3.14)

Proof. After having set q = 1 in (2.13), only the following alternating sum of so(d) char-

acters is left:

χdS
[d−p;Yp](q, ~x) −→

λ→0

p−1∑
`=0

(−1)`χ
so(2r+1)

Y̌(p−`)
p

(~x)P(d)(~x) (3.15)

where Y̌(i)
p was defined in (2.12). Notice that we deliberately used Y̌(p−`)

p instead of Y̌(`)
p

in the above sum so that the first diagram is the one where the last row was deleted, and

consequently the last diagram is the one where the first row was removed. As mentioned

previously, in order to figure out the actual field content in flat spacetime, one should

branch these diagrams onto so(2r) , the massless little algebra. Because the branching

rules for so(2r + 1), given in appendix F, do not involve any additional factors on top of

the characters of the irreps appearing in the branching (contrarily to the so(2r) case), we

can trade the characters for the corresponding Young diagrams without loss of information.

We will look at the Young diagrams appearing in (3.15) in three groups: we will start by

treating the first two diagrams together, then we will look at the last two diagrams, and

finally an arbitrary triplet of consecutive diagrams appearing in the above alternate sum.

Let the last three rows (the (p − 2)th, (p − 1)th and pth) of Yp be respectively of

length s, t and v. Starting with the first two diagrams in (3.15), i.e. Y̌(p)
p and Y̌(p−1)

p and

branching them onto so(d− 1), we obtain on the one hand for Y̌(p)
p :

Y′

s
t

−→
so(d) ↓ so(d−1)

s⊕
σ=t

(
t⊕

ν=v

Y′↓
σ
ν

⊕
v−1⊕
ν=0

Y′↓
σ
ν

)
(A)

where Y′ designates the first p− 3 rows from the Young diagram of total height p that we

are considering and Y′↓ all the Young diagrams onto which it branches; and on the other

hand Y̌(p−1)
p :

Y′

s
v − 1

−→
so(d) ↓ so(d−1)

v−1⊕
ν=0

(
t−1⊕

σ=v−1

Y′↓
σ
ν

⊕
s⊕
σ=t

Y′↓
σ
ν

)
(B)

The second parts of the above branched diagrams in figure A and B are common to

both of them, and therefore will disappear in the alternating sum (3.15). The first part of

the branching from the first diagram describes exactly the field content left after the flat

limit, and indeed, we will see that the other parts all cancel each other.

Next, we can have a look at the last two diagrams in the sum (3.15), which both have

the form:
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m

Y′

← y →

−→
so(d) ↓ so(d−1)

m⊕
n=y

n

Y′↓

with respectively m = s2− 1 (for the last diagram Y̌(1)
p ) and m = s1 (for the second to last

diagram Y̌(2)
p ), and where now Y′ is the Young diagram made out of the p − 2 last rows

of Y̌(1)
p (or Y̌(2)

p , as they only differ by their first row), and y = s3 − 1 is the length of the

first row of Y′ for these two diagrams. Because the first row of the last diagram in (3.15)

is shorter than the one of the preceding diagram (since s2 − 1 < s1), all the diagrams

resulting from the branching of the last diagram Y̌(1)
p will also be a part of the branching

of the preceding diagram Y̌(2)
p . Hence, all diagrams produced by the branching of the last

one in (3.15) are cancelled by the branching of the second to last one.

Finally, let us consider a triplet of diagrams appearing in the sum (3.15):

Yu
t1
t2

Yd

Yu
t1

t3 − 1

Yd

Yu
t2 − 1
t3 − 1

Yd

The second diagram in this triplet branches as follows:

Yu
t1

t3 − 1

Yd

← yd →

−→
so(d) ↓ so(d−1)

t3−1⊕
i=yd

(
t2−1⊕
j=t3−1

Yu ↓
j
i

Yd ↓

⊕
t1⊕
j=t2

Yu ↓
j
i

Yd ↓

)

where yd is the length of the first row of Yd. Now one can notice that the second part

of this sum will be contained in the branching of the first diagram of the above triplet,

whereas the first part of the sum will be contained in the branching of the third diagram

in the triplet. As a consequence, every diagrams in the sequence (3.15), obtained by

branching onto so(d−1), is cancelled by those coming from the branching of the preceding

and following diagram, leaving only those announced above (coming from branching the

first diagram in (3.15)).

As explained in appendix E, the characters of massless helicity Poincaré UIRs, in even

d+ 1 = 2(r + 1) dimensions have the form:

χPoinc.
[0;Y] (~x) = χ

so(2r)
Y (~x) P(d)(~x) , (3.16)
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hence the character obtained from the flat limit of the character of an UIR in the exceptional

series of so(1, d+ 1) associated to an so(d)-weight Yp = (s1, . . . , sp) can be rewritten as:

χdS
[d−p;Yp](q, ~x) −→

λ→0

∑
Y′∈Σ(Yp)

χPoinc.
[0;Y′] (~x) , (3.17)

with

Σ(Yp) :=
{
Y′ = (σ1, . . . , σp−1) | si+1 6 σi 6 si, i ∈ {1, 2, · · · , p− 1}

}
, (3.18)

describing the spectrum of massless fields appearing in the flat limit. Just as the BMV

spectrum in AdSd+1, this set of fields is a truncation of the branching rule of the Young

diagram of the gauge potential, i.e. Y̌(p)
p .

• Massless fields: in the particular case of massless fields, one block is left untouched

as in the BMV case, but this time it is the last block instead of the first one. Indeed,

the Young diagram Yp describes the shape of the curvature of the gauge field with

symmetry Y̌(p)
p , thus the last row has the same length as the previous, i.e. sp = sp−1

for massless fields. As a consequence, no box can be removed in the last row of Y̌(p)
p ,

and its last block is “protected”.

In order to emphasise the analogy with the BMV mechanism, the spectrum Σ(Yp)
of massless fields in flat spacetime can be rewritten in a way closer to (3.4) so as

to make explicit the blocks of the Young diagram of the massless fields: let Y̌(p)
p =

(`h11 , . . . , `hB−1
B ), then

Σ(Yp) =
{
Y′ = (`h1−1

1 , n1, . . . , `
hB−1−1
B−1 , nB−1, `

hB−1
B ) ,

`I+1 6 nI 6 `I , I ∈ {1, 2, · · · , B − 1}
}
. (3.19)

• Partially massless fields: for depths t strictly higher than one, the situation is

similar, up to a minor modification: additional fields can contribute to the above flat

spacetime spectrum, namely massless fields with Young diagrams of the same shape

as those contained in Σ(Yp) and in which up to t− 1 boxes were removed on the last

line. More precisely, the spectrum of fields is given by the set:

Σ(Yp; t) =
{
Y′ = (`h1−1

1 , n1, . . . , `
hB−1−1
B−1 , nB−1, `

hB
B − k) | (3.20)

`I+1 6 nI 6 `I , I ∈ {1, 2, · · · , B − 1} , k = 0, 1, . . . , t− 1
}
.

In particular, this proves what was conjectured in eq. (3.78) of [13].

3.3.2 Odd spacetime dimensions

Unfortunately, for even d the situation is not as neat as the previous one. It seems that

taking the flat limit at the character level in the same fashion as was done for odd dimen-

sions previously does not produce a natural spectrum of fields in flat space. Indeed, in odd
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spacetime dimension, the flat limit of (2.14) yields:

χdS
[d−p;Yp](q, ~x) −→

λ→0
(−)r−p

r∑
k=1

A(r)
k (~x)

(
2− ξk(1)

) s1∑
σ1=s2

· · ·
sp−1∑

σp−1=sp

sp∑
σp=1

χ
so(2r−1)
(σ1,...,σp,1r−1−p)

(~̂xk)P
(2r)(~x) (3.21)

where ξk and ~̂xk are defined in appendix F.

Let us first show how it is obtained, before discussing its significance (or present lack

thereof).

Proof. After setting q = 1 in (2.14), what is left is the following sum of so(2r) characters:

χdS
[d−p;Yp](q, ~x) −→

λ→0
2

r−p−1∑
n=0

(−)nχ
so(2r)
(Yp,1n)(~x) P(2r)(~x)

+(−)r−p
(
χ
so(2r)

(Yp,1r−p+ )
(~x) + χ

so(2r)

(Yp,1r−p− )
(~x)
)

P(2r)(~x)

−2

p−1∑
`=0

(−1)`χ
so(2r)

Y̌(p−`)
p

(~x)P(2r)(~x) (3.22)

The second line in the above equation will produce the same expression as in the odd-

dimensional case (though with a multiplicity two) once all irreps of so(2r) are branched

onto so(2r−1). Therefore, what we need to look is the sequence of so(2r) Young diagrams

appearing in the first line.

Let us start with the first two diagrams and their branching, for Yp:

Yu
s

−→
so(d) ↓ so(d−1)

s⊕
n=0

Yu ↓
n

where Yu represents the Young diagram made out of the p − 1 first rows of Y, and for

(Yp, 1)

Yu
s

−→
so(d) ↓ so(d−1)

s⊕
n=1

(
Yu ↓
n

⊕ Yu ↓
n

)

From the branching of the first diagram, only the part with n = 0 of the sum survives

in the reduction of (3.22), that is all diagrams obtained from branching Yp and removing

its last row. This makes all up the diagrams appearing in the flat limit for d = 2r + 1.

They will therefore cancel exactly those coming from branching the second line of (3.22).

Just as in the previous odd-dimensional case, the rest of the sequence is such that all

other diagrams, when branched, produce a set of diagrams that will, for the most part, be

cancelled. Indeed, in general a diagram of the form (Yp,1m) branches as:

Yu
s

−→
so(d) ↓ so(d−1)

s⊕
n=1

(
Yu ↓
n

⊕ Yu ↓
n

)
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The first sum of diagrams in the right hand side is exactly the second sum of diagrams

that appear when branching the Young diagram (Yp,1m−1), therefore it will be cancelled.

The last thing to check is that the last diagram, the one with maximal height r will not

bring diagrams that cannot be cancelled by previous terms. As the branching process here

is to go from so(2r) to so(2r− 1), a Young diagram with maximal height will branch only

onto diagrams where the last row was removed (so that it has the correct height for an

so(2r − 1) Young diagram). Concretely:

Yu
s

↑
r

↓

−→
so(2r) ↓ so(2r−1)

s⊕
n=1

Yu ↓
n

However, taking into account the fact that the branching rule for an so(2r) character

of a Young diagram of maximal height involves an additional factor compared to the non-

maximal Young diagrams, see (F.18), the so(2r − 1) diagrams produced by branching the

so(2r) diagram (Yp,1r−p) are not cancelled, rather they come with a factor 2 − ξ(1).

In order to illustrate the mechanism explained above, let us detail a concrete case in

the example below.

Example 2. Let us consider a massless, totally symmetric, spin-s field in dSd+1 when

d = 2r , for the sake of simplicity. Its character reads:

χdS
[d−2;s,s](q, ~x) =

r−3∑
m=0

(−)m(qd−2−m + q2+m)χ
so(2r)
(s,s,1m)P

(d)(q, ~x)

−2 qs+d−2
(
χ
so(2r)
(s) (~x)− q χso(2r)

(s−1) (~x)
)
P(d)(q, ~x)

+ (−)r qr
(
χ
so(2r)

(s,s,1r−2
+ )

(~x) + χ
so(2r)

(s,s,1r−2
− )

(~x)

)
P(d)(q, ~x) (3.23)

In the flat limit considered so far in this paper, q → 1, it becomes:

χdS
[d−2;s,s](q, ~x) −→

λ→0

(
2

r−3∑
m=0

(−)mχ
so(2r)
(s,s,1m) − 2

[
χ
so(2r)
(s) (~x)− χso(2r)

(s−1) (~x)
]

(3.24)

+(−)r
[
χ
so(2r)

(s,s,1r−2
+ )

(~x) + χ
so(2r)

(s,s,1r−2
− )

(~x)

])
P(d)(~x)

Now using the branching rules derived in appendix F:

χ
so(2r)
(s) (~x)− χso(2r)

(s−1) (~x) =
r∑

k=1

A(r)
k (~x)

(
s∑

σ=0

χ
so(2r−1)
(σ) (~̂xk)−

s−1∑
σ=0

χ
so(2r−1)
(σ) (~̂xk)

)
(3.25)

=
r∑

k=1

A(r)
k (~x)χ

so(2r−1)
(s) (~̂xk) , (3.26)
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as was observed in, for instance, [27]. Now turning to the curvature and Bianchi identities

contributions:

χ
so(2r)
(s,s) (~x) =

r∑
k=1

A(r)
k (~x)

s∑
σ=0

χ
so(2r−1)
(s,σ) (~̂xk) (3.27)

χ
so(2r)
(s,s,1m)(~x)=

r∑
k=1

A(r)
k (~x)

s∑
σ=1

(
χ
so(2r−1)
(s,σ,1m) (~̂xk)+χ

so(2r−1)
(s,σ,1m−1)

(~̂xk)
)
, (m=1, . . . , r−3) (3.28)

χ
so(2r)

(s,s,1r−2
+ )

(~x) + χ
so(2r)

(s,s,1r−2
− )

(~x) =
r∑

k=1

A(r)
k (~x) ξk(1)

s∑
σ=1

χ
so(2r−1)
(s,σ,1r−3)

(~̂xk) (3.29)

Making use of these 3 equations, one ends up with:

2
r−3∑
m=0

(−)mχ
so(2r)
(s,s,1m) + (−)r

[
χ
so(2r)

(s,s,1r−2
+ )

(~x) + χ
so(2r)

(s,s,1r−2
− )

(~x)

]
(3.30)

=

r∑
k=1

A(r)
k (~x)

(
2χ

so(2r−1)
(s) (~̂xk) + (−)r

(
2− ξk(1)

) s∑
σ=1

χ
so(2r−1)
(s,σ,1r−3)

(~̂xk)

)
(3.31)

Putting all the pieces together, the flat limit now reads:

χdS
[d−2;s,s](q, ~x) −→

λ→0
(−)r

r∑
k=1

A(r)
k (~x)

(
2− ξk(1)

) s∑
σ=1

χ
so(2r−1)
(s,σ,1r−3)

(~̂xk) , (3.32)

which is, to say the least, confusing, having nothing to do with the quite coherent and

expected spectrum produced by the flat limit of so(1, d+ 1) characters when d = 2r + 1.

As announced at the beginning of this subsection, this flat limit is a bit puzzling,

as it cannot be interpreted naturally as a BMV-type spectrum in de Sitter. Although

the characters of exceptional series representations have the same structure (that is, as

explained in section 2, it contains information about the gauge fields, its gauge parameter

and their reducibility, as well as the curvature and its Bianchi identities), there are two

problems arising when considering their flat limit as we proposed:

(i) The two sequences of so(d) Young diagrams appearing in the character and describing

on one side the gauge field and its gauge parameter, and on the other side the

curvature and its Bianchi identities, both produce the expected spectrum Σ(Yp)
when branched onto so(d−1) but come with a relative minus sign, hence they cancel

each other.

(ii) In the “Bianchi” sequence, the presence of maximal height so(2r) Young diagram

of the form (Yp,1r−p± ) whose characters, when branched onto so(2r − 1) involve an

additional factor ξ(1) with respect to non-maximal Young diagrams (see appendix F).

As a consequence, we are left with some maximal height diagrams of so(2r−1) which

have, to our knowledge, no interpretation as massless fields resulting from a flat limit

of the original gauge field.
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A possible resolution of these difficulties could be brought by the following argument:

as mentioned in section 2, the classification of UIRs — classification that we related to a field

theoretic classification of massive and massless fields in de Sitter — was obtained at the Lie

group SO(1, d+1) level. To obtain such a dictionary, we looked for the corresponding UIRs

at the Lie algebra so(1, d+ 1) level, UIRs for which we could write down the corresponding

characters. In turn, these characters gave us some insight into the structure of each of these

representations. This being said, it is a well known fact that not all Lie algebra representa-

tions extend to group representations. Therefore one could speculate that the reason why

we did not find the irrep in the known classification of SO(1, d+ 1) UIRs that would corre-

spond to the potential module only (i.e. the module made out of the potential, quotiented

by its gauge parameter and its higher-order reducibilities) is precisely because this repre-

sentation of the Lie algebra does not extend to a unitary representation of the Lie group.

If this happens to be correct, then in both odd (d = 2r) and even (d = 2r+1) spacetime

dimension, for a (partially) massless field of given so(d) type, we prescribe to consider only

the gauge potential part of the module for which the character in dS is exactly the same as

the character for so(2, d) irreps corresponding to the same so(d) type. Therefore, the flat

limit of the purely potential so(1, d+1) module will produce the sum of iso(1, d) characters

corresponding to the BMV spectrum Σ we found in (3.19) for the unitary case in dS. For

the non-unitary cases in both dS and AdS, see appendix G. The only difference is the

protected block for unitary fields (the first one in AdSd+1, the last one in dSd+1).

Our above interpretation is supported by the fact that the technique of the proof pre-

sented in [12, 13] holds for both AdS and dS , irrespectively of the parity of the dimension.

Actually, in [12, 13] the whole procedure was presented for both signs of the cosmological

constant. Only the computations of the critical masses were performed for the AdS sig-

nature, though there is nothing that would prevent one to compute the critical masses for

the other signature.

3.4 Discrete series

The flat limit of UIRs in the discrete series is quite similar to that of exceptional series

representations in odd spacetime dimensions. Indeed, the “Bianchi-identity part” (i.e.

containing the Young diagrams (Yp,1m) , m = 0, . . . , r− p ) of the character of exceptional

series irreps vanishes (due to the factor q∆c − qd−∆c
q→1→ 0 coming in front of it), therefore

we are only left with the usual14 set of Young diagrams corresponding to the field, its

gauge parameter and its reducibility. As a consequence, one has to branch the same

type of sequence of so(d) characters as for exceptional series characters in odd spacetime

dimensions, with the only difference that here the first Young diagram (corresponding to the

massless field itself) is of maximal height. This last specifity does not change the argument

presented in the previous section for the flat limit of UIRs in the exceptional series. Thence,

we obtain the following flat limit of UIRs in the discrete series or, equivalently, (partially)

14Usual in the sense that it is the only one AdSd+1 characters appearing and is therefore the part that

dSd+1 characters have in common with the former.
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massless fields with maximal-height Young diagrams:

χdS
[sr+d−r−t;Y~s,t](q, ~x) −→

λ→0

s1∑
σ1=s2

· · ·
sr∑

σr=sr−t+1

χ
so(2r)
(σ1,...,σr)

(~x) P(2r+1)(~x) =
∑

Y′∈Σ(Y~s,t)

χPoinc.
[0;Y′] (~x) .

(3.33)

with, upon rewriting Y~s,t as (`h11 , . . . , `hBB ) to exhibit its various blocks (with
∑B

I=1 hI = r

and `B = sr), the flat space spectrum:

Σ(Y~s,t) :=
{
Y′ = (`h1−1

1 , `1 − n1, . . . , `
hB−1−1
B−1 , `B−1 − nB−1, `

hB−1
B , `B −m) , (3.34)

0 6 nI 6 `I − `I+1 , I = 1, . . . , B − 1 , m = 0, . . . , t− 1
}
.

As previously, it appears that for massless fields (i.e. t = 1) the last block is protected

whereas for partially massless fields, the corresponding flat spacetime spectrum can also

contain fields where up to t− 1 boxes are removed from the last block.

4 Conclusions

In this paper, we investigated the representation theory of so(1, d + 1) and tried to give

a field theoretic interpretation of the list of UIRs known for this algebra. We proposed

a dictionary between (partially) massless mixed-symmetry fields of arbitrary shape and

representations in the exceptional and discrete series, thereby extending and completing

the work of [17, 18] concerning scalar fields. A byproduct of this identification is to confirm

the anticipated unitarity of partially massless fields in de Sitter. More precisely, we found

for gauge fields of arbitrary shape, that unitary fields in dSd+1 are those whose gauge

symmetry involves the lowest block of their Young diagram. This generalises the analysis

of unitarity of mixed-symmetry partially massless fields on de Sitter spacetime from the

case of two-column Young diagrams [51, 52] to the generic case; see also [53–56] where

some types of massive mixed-symmetry fields in (A)dS and various massless limits were

analysed starting from Lagrangian formulations.

In the process of studying so(1, d + 1) irreps, we were able to derive their character,

which gives us some insight into the structure of the corresponding modules. Inspired by

the BMV mechanism in anti-de Sitter spacetime [12, 13, 23, 24], we proposed a way of

taking the flat limit of those characters and read off the resulting flat spacetime spectrum

by recognising characters of the Poincaré group. Although this procedure fails for UIRs

in the exceptional series when d is even, this method yields a fairly coherent picture of

the flat limit of massless fields in de Sitter. In AdSd+1, the BMV spectrum of unitary

massless mixed-symmetry fields in flat spacetime is given by the so(d) branching rules of

the field’s Young diagram, where the first block, activated by the gauge transformations, is

left untouched. A similar situation occurs in de Sitter spacetime, but instead of the upper

block being protected, it is now the lowest one that is left untouched when branching the

field’s Young diagram onto so(d− 1). As argued in appendix G, this BMV-type spectrum

should hold for generic massless fields, even non unitary ones: mixed-symmetry fields

whose block affected by gauge transformations is not the first one in AdSd+1 or the last
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one in dSd+1, should produce in the flat limit all massless field labeled by a Young diagram

contained in the branching rule of the original (A)dSd+1 field’s diagram, leaving the block

activated by the gauge symmetry untouched.

Our proposition should, however, be considered with caution. Despite the quite coher-

ent landscape of fields described by UIRs of so(1, d+1) according to our identifications and

the consistent BMV-type spectrum obtained in even spacetime dimensions, the failure to

obtain a similar one in odd spacetime dimensions is puzzling, and definitely calls for further

investigation. As we explained in section 3, we think that the resolution of this puzzle

(namely the fact that from the field theory point of view the parity of the spacetime dimen-

sion does not bring any difference in the treatment or behaviour of massless fields, whereas

we observe a drastic distinction at the group theoretical level) is the distinction between

group and algebra irreps. In order to make contact with the known classification of UIRs of

SO(1, d+1), we had to look at the group irreps which seem to be formulated in terms of the

curvature of the massless fields, but at the level of the algebra it may be possible to consider

irreps describing only the gauge field (as we are used to in AdSd+1). Nevertheless, having

at hand this proposed dictionary of so(1, d + 1) irreps and the corresponding characters

opens several possibilities, such as the construction of a Flato-Fronsdal theorem [57] for de

Sitter. The decomposition of the product of two “shortest representations” (that are the

Dirac scalar and spinor singletons) into irreducible representations, as a tower of massless

spin-s fields in AdSd+1, is at the heart of the higher-spin AdS/CFT correspondence [58, 59].

A similar theorem in de Sitter spacetime would provide a similar kinematical evidence in

favour of the proposal [60] of a higher-spin dS/CFT correspondence. Even though we did

not find an obvious unitary singleton-type representation in the list of known so(1, d + 1)

irreps, one would expect that such UIRs exist because of their rôle in the definition of the

higher-spin algebra in (A)dSd+1 (see for instance [61–63] for nice overviews), which is insen-

sitive to the signature. In fact, we identified a natural candidate for the contragredient of

the singleton representation and their higher-order generalisations [64]. Another potential

evidence in this direction is the fact that in dS4, massless totally symmetric fields have

the same character as their AdS4 counter part, and therefore summing the characters of

massless spin-s fields on all spins will yield the square of the scalar singleton character. It

is therefore natural to expect this type of decomposition to remain true in any dimensions.
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A Massive scalar field on (anti) de Sitter spacetime

Let us consider a massive scalar field in de Sitter spacetime, subject to Klein-Gordon’s

equation: (
∇2

dSd+1
−m2

)
φ = 0 (A.1)

where ∇2 := gµν∇µ∇ν is the Laplace-Beltrami operator in (d + 1)-dimensional de Sitter

spacetime. Using the “inflationary coordinates” (covering only half of dSd+1), in which the

metric looks like:

ds2
dSd+1

= −dt2 + e2t/Rd~y2 (A.2)

where R is the curvature radius and d~y2 is the line element of the d-dimensional Euclidean

space Rd, one can obtain a patch similar to the Poincaré patch in AdSd+1 by the following

change of coordinate: √
R

ρ
= et/R ⇒ dt = −Rdρ

2ρ
(A.3)

after which the metric has the form:

ds2
dSd+1

= R2

(
−dρ

2

4ρ2
+

1

Rρ
d~y2

)
. (A.4)

The only difference with the AdSd+1 case is, as could be expected, the signature of the line

element d~y2 and of the coordinate ρ. In these coordinates, the Klein-Gordon equation reads

∇2
dSd+1

φ(ρ, ~y) =
1

R2

[
−4ρ2∂2

ρ + 4

(
d

2
− 1

)
ρ∂ρ +Rρ∆Rd

]
φ(ρ, ~y) = m2φ(ρ, ~y) (A.5)

with ∆Rd = δij ∂
∂yi

∂
∂yj

is the Laplacian on d-dimensional Euclidean space. Using the same

ansatz as for AdSd+1, i.e.

φ(ρ, ~y) = ρ∆c/2ϕ(ρ, ~y) (A.6)

with ϕ(ρ, ~y) a scalar field, well-behaved at the conformal boundary of dSd+1 (located at

ρ→ 0⇔ t→∞). Plugging this into (A.5), and evaluating it at the boundary, we deduce:

(mR)2 = ∆c(d−∆c) ⇒ ∆c,± =
d

2
±
√
d2

4
−m2R2 (A.7)

Contrarily to the AdSd+1 case,15 it appears that one can have complex conformal weight

∆c compatible with unitarity when the scalar field is “very massive”, i.e. when mR > d/2.

In this case, we recognise a conformal weight corresponding to a representation in the prin-

cipal series: ∆c = d
2 ± i

√
m2R2 − d2

4 . For “not-so-massive” fields, i.e. 0 6 mR < d/2, the

conformal weight is real and within the boundary of the complementary series: d
2 < ∆c < d.

15Because of the signature difference, in AdSd+1 one gets m2 = ∆(∆ − d) which leads to ∆± = d
2
±√

d2

4
+ m2R2, therefore ∆ is never complex in the unitary case. For scalar fields satisfying the Breitenlohner-

Freedman unitarity bound (mR)2 > − d
2

4
[65, 66] corresponding to ∆ > 0 and real (as eigenvalue of the

U(1) energy operator).
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If we have 0 6 mR < d/2, we can keep on our analysis in the same manner as in

AdSd+1, when performing the holographic reconstruction of a scalar fields (see e.g. [67, 68]).

The next step is then to expand ϕ in powers of ρ:

ϕ(ρ, ~y) =
∞∑
n=0

ρnϕn(~y) (A.8)

where ϕn(~y) are also well-behaved fields. By plugging this expansion in (A.5) and using

m2 = ∆c(d−∆c), we obtain the following recurrence relation among the modes of ϕ:

2n
(
2n+ 2∆c,± − d

)
ϕn(~y) = R∆Rdϕn−1(~y) (A.9)

As in the AdSd+1 case, this recurrence relation can break down if ∆c = d
2 − ` for some

integer ` > 1, which is possible for ∆c,− if
√

d2

4 −m2R2 = ` ∈ N0. In this case, a possible

solution is [68] to impose the polywave equation as a constraint (∆Rd)
`ϕ0(~y) = 0 on the

lowest order term. The power series expansion in this case reads:

φ(ρ, ~y) = ρ∆c,−/2
(
ϕ0(~y) + ρϕ1(~y) + . . .

)
+ ρ∆c,+/2

(
ϕ̃0(~y) + ρ ϕ̃1(~y) + . . .

)
(A.10)

Notice that, as in AdSd+1, see e.g. [68], it is the branch ϕ that is the leading one when ρ→ 0.

Recall that in AdSd+1, the fact that this branch was the subleading one toward the bound-

ary, added to the fact that this part of the series exapansion of the field is always a solution

to (A.5) leads to the conclusion that, for the space of solution of (A.5) to be an irreducible

so(2, d) module, one has to quotient by the subspace of subleading solutions. Effectively,

only subleading solutions remain in the module, which thereby defines a (higher-order) sin-

gleton: a scalar field propagating no local degrees of freedom in the bulk (i.e. “confined” at

the conformal boundary) and defining a boundary conformal scalar obeying the (poly)wave

equation �`φ = 0. It complies with the fact that one would expect a would-be de Sitter sin-

gleton to be the fundamental field of the conformal field theory dual to the higher-spin the-

ory in dSd+1. According to the proposed duality in [60], the field should fall in a non-unitary

irrep of so(1, d+1). In our case, the field reconstructed previously should belong to the uni-

tary component of complementary series. This UIR was actually studied originally in [64].

The generic landscape of the scalar field is summarised in figure 4.

B Classification of so(2, d) unitary irreducible representations & their

characters

We will focus on highest-weight representations, which are the physically most relevant

ones. Indeed, their energy spectrum is, by construction, bounded from above or below.16

They are characterised by a highest-weight: λ = (∆, ~s) with ∆ the conformal weight,

or minimal energy in AdSd+1, and ~s = (s1, s2, . . . , sr) a so(d) highest-weight labeling the

spin of the representation. The highest-weight UIRs of so(2, d) can be described fields on

AdSd+1 and classified as follows:

16However, remember that there are no such representations for the de Sitter case since there is no global

timelike Killing vector field on de Sitter spacetime.
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dSd+1

•
d
2

•
<(∆c)

=(∆c)

× × × × × ×•
d0

Figure 4. Repartition of the massive scalar fields in dSd+1 discussed above, as a function of

the conformal weight ∆c. Massive field in the principal and complementary series are depicted

respectively by a red and a green line, whereas the blue dots indicate a discrete collection of

representations in the complementary series with ∆c = d
2 ±` that would correspond to higher order

singletons and their shadows in AdSd+1.

• Massive representations: ∆ > s1 + d − h1 − 1 with s1 = · · · = sh1 > sh1+1, or

∆ > d−2
2 for ~s = ~0 and ∆ > d−1

2 for ~s = (1
2 , · · · ,

1
2), whose character reads:

χAdS
[∆;~s ](q, ~x) = q∆ χ

so(d)
~s (~x)P(d)(q, ~x) (B.1)

with P(d)(q, ~x) given by (2.7).

• Massless representations: ∆ = ∆s,h1 := s + d − h1 − 1, with ~s such that s1 =

· · · = sh1 ≡ s > sh1+1 > · · · >|sr|, analysed in [8, 9] and whose character is given

by [69]:

χAdS
[∆s,h1

;~s ](q, ~x) = q∆s,h1

(
χ
so(d)
~s (~x) +

h1∑
k=1

(−q)h1+1−kχ
so(d)
~sk

(~x)

)
P(d)(q, ~x) (B.2)

with ~sk = (s, . . . , s, s− 1
↑

kth entry

, s− 1, . . . , s− 1
↑

h1th entry

, sh1+1, . . . , sr)

Example 3. Usually, totally symmetric massless fields are considered, i.e. massless fields

with ∆ = ∆s := s + d − 2 and ~s = (s, 0, . . . , 0) for s ∈ 1 + N or ~s = (s, 1
2 , . . . ,

1
2) for

s ∈ 1
2 +N, that we will both denote (s). Accordingly, their character is given by the above

formula in the special case h1 = 1:

χAdS
[∆s;(s)]

(q, ~x) = q∆s

(
χ
so(d)
(s) (~x)− q χso(d)

(s−1)(~x)
)
P(d)(q, ~x) (B.3)

Another class of physically interesting representations (although not unitary on AdS,

contrarily to the above irreps) are the so-called (totally symmetric) partially-massless fields

of spin s and depth t, with ∆ = ∆
(t)
s := s+ d− t− 1 and s > t > 1. Their character reads:

χAdS

[∆
(t)
s ;(s)]

(q, ~x) = q∆
(t)
s

(
χ
so(d)
(s) (~x)− qtχso(d)

(s−t)(~x)
)
P(d)(q, ~x) (B.4)
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C Verma interlude

In this section, we recall some basic definitions on Verma module and generalised Verma

modules, as well as BGG resolutions in both context. Once again, we make no attempt

at full mathematical rigor, but hope to give an intuitive picture of these concept to the

unfamiliar reader (for more details, see for instance [70]).

C.1 Verma module

Definition C.1 (Verma module). Let g be a semisimple Lie algebra, with Cartan sub-

algebra h ⊂ g, ∆ (resp. ∆± ⊂ ∆) its root (resp. positive/negative root) system, g± the

subalgebra dual to the positive/negative root system ∆± and b := h⊕g+ its Borel subalge-

bra. Furthermore, let U(g) denote the universal enveloping algebra of g and λ ∈ ∆ denote

a weight. Let vλ be a one-dimensional b-module, then the Verma module Vλ is defined as:

Vλ := U(g)⊗U(b) vλ ∼= U(g−)⊗ vλ . (C.1)

In other words, a Verma module is a representation space of g constructed from a

highest-weight vector, i.e. an eigenvector of the Cartan subalgebra which is annihilated by

all raising operators. In the language of the above definition, this highest-weight vector is

a one-dimensional representation of the Borel subalgebra, which is composed of the Cartan

subalgebra and the subalgebra spanned by raising operators, as they have a definite action

on it. In turn, any elements of Vλ is of the form
∏
α∈∆−

(Eα)nαvλ , nα ∈ N where Eα is a

lowering operator associated to the negative root α.

The BGG theorem for Verma modules gives a criterion for a Verma module to contain

a submodule, namely it gives a condition on the highest-weight defining a submodule in

a given Verma module for it to be a proper submodule. This criterion is given in the

following theorem:

Theorem C.1 (Bernstein-Gel’fand-Gel’fand). Let g be a Lie algebra and Vµ a Verma

g-module with highest-weight µ, then the two following statements are equivalent:

• Vµ ⊂ Vλ,

• ∃α1, . . . , αn ∈ ∆+ such that µ = wαn . . . wα1 · λ and(
α∨k , wαk−1

. . . wα1(λ+ ρ)
)
∈ N, ∀ k ∈ {1, 2, · · · , n} . (C.2)

In the above definition, wα ·λ denotes the affine action of an element of the Weyl group

of g associated to a root α ∈ ∆, i.e. wα ·λ := λ−α(α∨,λ+ρ) = wα(λ+ρ)−ρ , α∨ := 2α
(α,α) ,

where (· , ·) denotes the Killing form on g, and ρ its Weyl vector.

Example 4. Let us consider a very simple case to illustrate this theorem. Taking sl(2) ∼=
so(3) and a Verma module based on the highest-weight λ = s ∈ 1

2N, we can start looking

for submodules using the BGG theorem. The Weyl group of so(3) is Z2 and its Weyl vector

ρ = 1
2 . As a consequence, the only non trivial element of the Weyl group, that we will note

w, is the one flipping the sign of the weight on which it will act and is associated to the
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positive root (the unit basis vector of the root space, as so(3) is of rank 1, that we do not

bother writing), and therefore the only weight that can be obtained from an action of the

Weyl group on λ is w ·λ = λ− 2(λ+ρ) = −(λ+ 1). Having looked at a particularly simple

case of rank 1, the relevance of the criterion (C.2) cannot be fully seen, however, we were

able to recover the standard result that J+(J−)s+1 vλ = 0 (where vλ is the highest-weight

vector defining the Verma module), i.e. (J−)s+1vλ defines a submodule that needs to be

modded out in order to obtain an irreducible representation of so(3), without having to

compute explicitly the action of the ladder operators.

Recall that an integral dominant weight λ is defined to be a weight such that, for all

positive root α ∈ ∆+, it verifies (λ, α∨) ∈ N. An important property for us is that for

integral dominant weights, every element of the Weyl group verifies the condition (C.2).

Finally, we need to introduce the notion of length of a Weyl group element, in order

to define the BGG resolution of an irreducible Verma module.

Definition C.2 (Length of a Weyl group element). Let g be a Lie algebra, and w ∈ W
an element of its Weyl group. The length of w, noted `(w) is defined to be the minimal

number of reflections wα(i) associated to simple root α(i) such that w is given as a product

of these reflections, i.e. w = wα(i1) . . . wα(in) and n = `(w).

Theorem C.2 (Bernstein-Gel’fand-Gel’fand resolution). Let λ be an integral dominant

highest-weight and Dλ the corresponding finite-dimensional and irreducible highest-weight

module. There exists a long exact sequence:

0→
⊕

w∈W, `(w)=n

Vw·λ → · · · →
⊕

w∈W, `(w)=1

Vw·λ → Vλ → Dλ → 0 (C.3)

where n is the maximal length of elements of W.

C.2 Generalised Verma module

Now we can turn to the case of a generalised Verma module, which is the one relevant for

this paper, and we start by recalling the definition of such modules:

Definition C.3 (Generalised Verma module). Let g be a finite dimensional Lie algebra, p

a parabolic subalgebra and Vλ a finite dimensional representation space of p with highest-

weight λ. Then the generalised Verma module Vλ is defined as:

Vλ := U(g)⊗U(p) Vλ (C.4)

The BGG resolution for generalised Verma modules is then quite similar to the one

previously exposed for Verma modules. The main difference comes from a decomposition

of the Weyl group induced by the choice of a parabolic subalgebra. A convenient way

to parametrise such a subalgebra is to choose a subset ∆p of the root space of g: ∆p :=

span
{
α(i) ∈ ∆(s)|i = 1, . . . ,m ;m 6 r

}
, with ∆(s) the set of simple roots and r the rank of

g. Then one can define the subalgebra ḡ dual to subspace of the weight space generated

by ∆p and decompose it as ḡ := h̄
⊕

α(i)∈∆p

g±α
(i)

, where h̄ and g±α
(i)

are the space spanned

– 33 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
1

by, respectively, the Cartan generators and ladder operators associated to the roots in ∆p.

Then, the parabolic subalgebra defined by the choice of ∆p is the subalgebra generated by ḡ

and the full Cartan subalgebra of h of g together with all the positive ladder operators of g.

In other words, the parabolic subalgebra p is the Borel subalgebra augmented with a part of

the negative ladder operators so that this set of generators spans a proper subalgebra of g.

With this decomposition at hand, one can define the subgroup W of the Weyl group

of g generated by reflections associated to the subset of simple roots of ∆p. This subgroup

corresponds to the Weyl group of ḡ. Another subgroupW ′ is the one composed of elements

of W such that any of the positive roots of ∆p can be obtained by applying a element of

W ′ to a positive root in ∆+: W ′ :=
{
w ∈ W|∆(+)

p ⊂ w∆+

}
. A property is that every

element of the full Weyl group W can be decomposed as a product of elements of those

two subgroups: ∀w ∈ W , ∃ w̄ ∈ W , w′ ∈ W ′ such that w = w̄ w′.

The BGG resolution for a generalised Verma module with highest-weight λ being an

integral dominant weight, is defined almost as in the case of Verma module, except for the

fact the the full Weyl group should be substituted with the subgroup W ′: the long exact

sequence is

0→
⊕

w∈W ′, `(w)=n

Vw·λ → · · · →
⊕

w∈W ′, `(w)=1

Vw·λ → Vλ → Dλ → 0 . (C.5)

D Characters from Bernstein-Gel’fand-Gel’fand resolutions

In [39], the structure of so∗(2 + d) modules (where ∗ denotes the complexified algebra)

was spelled out using BGG resolutions for generalised Verma modules (see [31, 38] for

earlier similar results at the group level). On the representation theory side (as recalled

in appendix C), they consist of a series of homomorphisms between generalised Verma

modules, induced by particular elements of the Weyl group and such that the module in

the image of each of these maps is a submodule of the previous one.

Let us also introduce the following notations:

• A height-p Young diagram, with p 6 r will be denoted:

Yp := (s1, s2, . . . , sp
↑
pth

, 0, . . . , 0) = ~s (D.1)

• An important operation on Young diagrams when dealing with the exceptional series

is to remove one row from it and to delete one box in each of the following rows (i.e.

situated below the one that was just removed). We will denote the diagram obtained

from Yp after having performed the above modifications as:

Y̌(i)
p := (s1, . . . , si−1, si+1 − 1

↑
i−th

, . . . , sp − 1
↑

(p−1)−th

, 0, . . . , 0) (D.2)

• A generalised Verma module based on the so(2)⊕ so(d) highest-weight λ will generi-

cally be denoted Vλ, except when it is irreducible in which case we will write Dλ. The
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translation rule from this so(2)⊕so(d) highest-weight to the conformal-weight/lowest-

energy ∆ and the so(d) highest-weight ~s is:

[∆ ;~s ] = λ = (λ0, λ1, · · · , λr) = (−∆, s1, · · · , sr) (D.3)

• Finally, our elementary building block in writing characters for so∗(2 + d) are the

characters of irreducible so(2) ⊕ so(d) modules. We will introduce for them the

notation:

Y[∆ ;~s ](q, ~x) = q∆χ
so(d)
~s (~x) . (D.4)

The character of the generalised Verma module induced by the irrep [∆; ~s ] of so(2)⊕
so(d) is

Y[∆;~s](q, ~x)P(d)(q, ~x) ,

with P(d)(q, ~x) given by (2.7).

For the sake of self-containedness, for each relevant case we summarise the results

of [39] on generalised Verma modules and then deduce the corresponding character:

Odd d = 2r+1. Defining the sequence of so∗(2+d) weights, where the first entry is the

so(2) weight and the r following entries are the components of the so(d) highest-weight:

(λ)N=(λN −N,λ0 + 1, . . . , λN−1 + 1, λN+1, . . . , λr), (N=0, . . . , r) , (D.5)

(λ)K+r=(−λr+1−K−K−r, λ0+1, . . . , λr−K+1, λr+2−K , . . . , λr), (K=1, . . . , r) , (D.6)

(λ)2r+1=(−λ0 − 2r − 1, λ1, . . . , λr) , (D.7)

the following sequence is exact:

0→ V(λ)2r+1
→ V(λ)2r → · · · → V(λ)1 → V(λ)0 → 0 (D.8)

It can be shown that in odd dimensions, no subsingular module can arise. In other words,

the above exact sequence implies the following short exact sequences:

0→ V(λ)2r → D(λ)2r+1
→ 0 , (D.9)

and

0→ D(λ)N+1
→ V(λ)N → D(λ)N → 0 , (N = 0, . . . , 2r) . (D.10)

This implies that the irreducible highest-weight module in the above sequence with weight

(λ)N is given by the quotient:

D(λ)N =
V(λ)N

D(λ)N+1

. (D.11)

At the character level, this translates as:

χ(λ)N (q, ~x) = Y(λ)N (q, ~x)P(d)(q, ~x)− χ(λ)N+1
(q, ~x) (D.12)

=

2r+1−N∑
k=0

(−1)kY(λ)N+k
(q, ~x)P(d)(q, ~x) (D.13)

– 35 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
1

Even d = 2r. The sequence of weights is modified in this case:
(λ)−k=(λr−k − r + k , λ0 + 1, . . . , λr−k−1 + 1, λr−k+1, . . . , λr) , (k=1, . . . , r)

(λ)0 =(λr − r, λ0 + 1, . . . , λr−1 + 1) ,

(λ)0′=(−λr − r, λ0 + 1, . . . ,−λr−1 − 1) ,

(λ)+k=(−λr−k − r − k, λ0, . . . , λr−k−1 + 1, λr−k+1, . . . ,−λr) , (k=1, . . . , r)

(D.14)

which differs from the odd-dimensional case by the presence of non-standard (NS) homo-

morphisms and by a rhombus17 in the middle of the sequence, yielding:

(λ)0

0 −→ (λ)−r . . . (λ)−2 (λ)−1 (λ)1 (λ)2 . . . (λ)r −→ 0

(λ)0′

NS

NS

The main difference with the odd-dimensional case is the possibility of subsingular

modules, but no subsubsingular ones. The above sequence leads to the following short

exact sequences:{
0→ U(λ)N+1

→ V(λ)N → D(λ)N → 0 ,

0→ V∗(λ)−N
→ U(λ)N+1

→ D(λ)N+1
→ 0 ,

(N = −1, . . . ,−r) , (D.15)

together with

0→ D(λ)N+1
→ V(λ)N → D(λ)N → 0 , (N = 0, . . . , r) , (D.16)

and

0→ V∗(λ)1
→ U(λ)0 → D(λ)0 ⊕D(λ)0′

→ 0 , (D.17)

where V∗(λ) denotes the contragradient module. The sequence (D.15) expresses the irre-

ducible module D(λ)N for N = −1, . . . ,−r + 1 as two different quotients:

D(λ)N =
V(λ)N

U(λ)N+1

=
U(λ)N

V∗(λ)−N+1

(N = −1, . . . ,−r + 1) (D.18)

which can be translated into characters, yielding:

Y(λ)N (q, ~x)P(d)(q, ~x)− C(λ)N+1
(q, ~x) = C(λ)N (q, ~x)− Y(λ)−N+1

(q, ~x)P(d)(q, ~x) (D.19)

17The appearence of this rhombus is due to the fact that there exist two elements of the Weyl group W ′

with the same length for d = 2r. This can be seen in (A.16) of [39].
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where C(λ)N is the character of the reducible module U(λ)N . This can be used to compute

C(λ)−k (k = 1, . . . , r − 1):

C(λ)−k(q, ~x) =
(
Y(λ)−k(q, ~x) + Y(λ)k+1

(q, ~x)
)
P(d)(q, ~x)− C(λ)−k+1

(q, ~x) (D.20)

=
k−1∑
n=0

(−)n
(
Y(λ)−k+n(q, ~x) + Y(λ)k+1−n(q, ~x)

)
P(d)(q, ~x) + (−)kC(λ)0(q, ~x) . (D.21)

Using (D.17), we can express C(λ)0(q, ~x) as:

C(λ)0(q, ~x) = χ(λ)0(q, ~x) + χ(λ)0′
(q, ~x) + Y(λ)1(q, ~x)P(d)(q, ~x) . (D.22)

Now as both modules D(λ)0 and D(λ)0′
are resolved by the same short sequence as in the

odd-dimensional case, there character can be straightforwardly computed:

χ(λ)0(q, ~x) =

r∑
N=0

(−)NY(λ)N (q, ~x)P(d)(q, ~x) , (D.23)

idem for χ(λ)0′
(q, ~x) with the sum starting at N = 0′. Plugging this back into (D.21), we

finally obtain the explicit expression of C(λ)−k in terms of the factors Y(λ)N and P(d). This

formula can then be used to express the character of the irreducible module D(λ)−k :

χ(λ)−k(q, ~x) = Y(λ)−k(q, ~x)P(d)(q, ~x)− C(λ)−k+1
(q, ~x) (D.24)

=

k∑
n=0

(−)k+n
(
Y(λ)n(q, ~x) + Y(λ)−n(q, ~x)

)
P(d)(q, ~x)

+2
r∑

n=k+1

(−)k+nY(λ)n(q, ~x)P(d)(q, ~x)

where the term Y(λ)−n for n = 0 has to be understood as Y(λ)0′
, and the last sum is absent

when k = r.

Identifying the exceptional series. Starting from:

(λ0, λ1, . . . , λr) = (s1 − 1, s2 − 1, . . . , sp − 1, 0, . . . , 0) = (s1 − 1, Y̌(1)
p ) , (D.25)

as the weight of the long exact sequence, then the different weights enumerated above for

d = 2r + 1 take the form:

(λ)N =


(sN+1 − (N + 1), Y̌(N+1)

p ), 0 6 N 6 p− 1

(−N,Yp,1N−p), p 6 N 6 r

(−N,Yp,1d−p−N ), r + 1 6 N 6 d− p

(−(sd+1−N +N + 1), Y̌(d+1−N)
p ), d+ 1− p 6 N 6 d

(D.26)
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Now let us show that the character of the module at level N = p reproduces the formula

of characters for the exceptional series in [36]:

χ(λ)p(q, ~x) =
2r+1∑
k=p

(−1)p+kY(λ)k(q, ~x)P(d)(q, ~x) (D.27)

=
r∑

k=p

(−1)k+pqk χ
so(d)

(Yp,1k−p)
(~x)P(d)(q, ~x) +

d−p∑
k′=r+1

(−1)k
′+pqk

′
χ
so(d)

(Yp,1d−p−k′ )
(~x)P(d)(q, ~x)

+
d∑

k′′=d+1−p
(−1)k

′′+pqsd+1−k′′+k
′′−1 χ

so(d)

Y̌(d+1−k′′)
p

(~x)P(d)(q, ~x) (D.28)

=

r−p∑
i=1

(−1)iqp+i χ
so(d)

(Yp,1i)(~x)P(d)(q, ~x) +

r−p∑
j=1

(−1)d+j︸ ︷︷ ︸
=−(−1)j

qd−p−j χ
so(d)

(Yp,1j)(~x)P(d)(q, ~x) (D.29)

+
(
qp χ

so(d)
Yp (~x)−qd−p χso(d)

Yp (~x)
)
P(d)(q, ~x)+

p∑
`=1

(−1)d+1+h+`︸ ︷︷ ︸
=−(−1)p+1+`

qs`+d−` χ
so(d)

Y̌(`)
p

(~x)P(d)(q, ~x)

= (qp − qd−p)χso(d)
Yp (~x)P(d)(q, ~x)−

p∑
`=1

(−1)p+1+`qs`+d−` χ
so(d)

Y̌(`)
p

(~x)P(d)(q, ~x)

+

r−p∑
m=1

(−1)m(qp+m − qd−p−m)χ
so(d)
(Yp,1m)(~x)P(d)(q, ~x) (D.30)

where we used i = k − p, j = d− p− k′ and ` = d+ 1− k′′ when going from the second to

the third equality.

Turning to the d = 2r case, we now have the following series of weights:



(λ)−n = (sr−n+1 − 1− (r − n), Y̌(r−n+1)
p ), n = r, . . . , r − p+ 1

(λ)−n = (−(r − n),Yh,1r−n−p), n = r − p, . . . , 1
(λ)0 = (−r,Yp,1r−p+ ), (λ)0′ = (−r,Yp,1r−p− )

(λ)n = (−(r + n),Yp,1r−n−p), n = 1, . . . , r − p

(λ)n = (−sr−n+1 − (r + n) + 1, Y̌(r−n+1)
p ), n = r − p+ 1, . . . , r

(D.31)

where 1m± denote the m last components of the so(2r) weight, these components all being

egal to 1 except for the last one which can be ±1.

Using (D.24), we can write the character of the irreducible module corresponding to

the highest-weight (λ)−(r−p) which we identified as the character of the exceptional series
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in odd spacetime dimension:

χ(λ)−(r−p)(q, ~x) =

r−p∑
n=0

(−)r−p+n
(
Y(λ)n(q, ~x) + Y(λ)−n(q, ~x)

)
P(d)(q, ~x) (D.32)

+2

r∑
n=r−p+1

(−)r−p+nY(λ)n(q, ~x)P(d)(q, ~x)

=

r−p∑
n=1

(−)r−p+n(qr+n + qr−n)χ
so(d)
(Yp,1r−p−n)

(~x)P(d)(q, ~x)

+(−)r−p qr
(
χ
so(d)

(Yp,1r−p+ )
(~x) + χ

so(d)

(Yp,1r−p− )
(~x)
)
P(d)(q, ~x)

+2

r∑
n=r−p+1

(−)r−p+nqsr−n+1+r+n−1χ
so(d)

Y̌(r−n+1)
p

(~x)P(d)(q, ~x) (D.33)

=

r−p−1∑
n=0

(−)n(qd−p−n + qp+n)χ
so(d)
(Yp,1n)(~x)P(d)(q, ~x)

+2
h∑
`=1

(−)p+`+1qs`+d−`χ
so(d)

Y̌(`)
p

(~x)P(d)(q, ~x)

+(−)r−p qd/2
(
χ
so(d)

(Yp,1r−p+ )
(~x) + χ

so(d)

(Yp,1r−p− )
(~x)
)
P(d)(q, ~x) (D.34)

Identifying the discrete series. Starting in d = 2r + 1 from:

(λ)0 = (λ0, λ1, . . . , λr) = (s1 − 1,Yr,k) , (D.35)

with

Yr,k = (s2 − 1, s3 − 1, . . . , sr − 1, k − 1) , (D.36)

leads to the following sequence of weights:

(λ)r+1 = (−k − r, s1, . . . , sr) , (D.37)

and

(λ)r+K =(−sr+2−K−r−K+1, s1, . . . , sr+1−K , sr+3−K−1, . . . , sr−1, k−1) , K=2, . . . , r+1 .

(D.38)

It turns out that the character corresponding to the irreducible model at the level r + 1

in this sequence, computed with (D.13), exactly reproduces the one given by Hirai in [36]

for the direct sum of two discrete series representations based on the highest-weight vector
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~s = (s1, . . . , sr) and whose conformal weight is determined by the integer k:

χ(λ)r+1
(q, ~x) =

r∑
j=0

(−1)jY(λ)r+1+j
(q, ~x)P(d)(q, ~x)

= qk+rχ
so(d)
~s (~x)P(d)(q, ~x)

+

r∑
j=1

(−1)j qsr+1−j+r+j χ
so(d)
(s1,...,sr−j ,sr+2−j−1,...,sr−1,k−1)(~x)P(d)(q, ~x)

= qk+rχ
so(d)
~s (~x)P(d)(q, ~x)+

r∑
i=1

(−1)r+1+i qsi+d−i χ
so(d)

Y̌(i)
~s,k

(~x)P(d)(q, ~x) (D.39)

where we introduced the notation Y̌(i)
~s,k = (s1, . . . , si−1, si+1 − 1, . . . , sr − 1, k − 1) in the

last line.

E Poincaré characters revisited

As clearly recalled in [27, 71], the characters of the Poincaré group ISO(1, d) = SO(1, d) n
Rd+1 follow from Frobenius formula for semi-direct product groups:

χ[(Λ, α)] =

∫
Op
dµ(k) δµ(k,Λ · k) ei〈k,α〉 χR(g−1

k Λgk) (E.1)

where (Λ, α) ∈ ISO(1, d), with Λ ∈ SO(1, d) and α ∈ Rd+1, is a generic element of the

Poincaré group. The integral (E.1) is defined over the orbit of the momentum p ∈ (Rd+1)∗:

Op = {Λ · p |Λ ∈ SO(1, d)} ⊂ (Rd+1)∗ (E.2)

In the integral (E.1), the symbols dµ(k) and δµ(k, k′) denote, respectively, the invariant

measure on Op and the associated Dirac distribution, χR is the character of an irreducible

representation R of the little group labeled in what follows by the highest-weight ~s, and

〈k, α〉 := kµα
µ. The map

g : Op −→ SO(1, d) : q 7−→ gq (E.3)

is such that gq ·p = q , ∀q ∈ Op. Notice that when integrating over the orbit Op, because of

the delta function forcing Λ to be an element of the little group of p, g−1
k Λgk runs through

the equivalence class of such elements.

E.1 Massive representations

In this case, the orbit is Op =
{
k ∈ (Rd+1)∗| −m2 = ηµνk

µkν
}

. The corresponding little

group is SO(d). The mass-m spin-~s massive UIR will be denoted [m;~s ].

When d = 2r, we can take Λ of the form:

Λ =



1 0 . . . 0 0

0 R(θ1) 0 . . . 0
... 0

. . . 0
...

0
... 0 R(θr−1) 0

0 0 . . . 0 R(θr)


(E.4)
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where the matrices R(θi), i = 1, . . . , r − 1 are usual SO(2) elements:

R(θi) =

(
cos(θi) − sin(θi)

sin(θi) cos(θi)

)
(E.5)

When d = 2r + 1 however, we will consider an element Λ of the form:

Λ =



1 0 . . . 0 0

0 R(θ1) 0 . . . 0
... 0

. . . 0
...

0
... 0 R(θr−2) 0

0 0 . . . 0 R′(θr, ϕ)


(E.6)

with R′(θr, ϕ) the SO(3) matrix:

R′(θr, ϕ) =

cos(θr) − sin(θr) 0

sin(θr) cos(θr) 0

0 0 1


1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)


=

cos(θr) − cos(ϕ) sin(θr) sin(θr) sin(ϕ)

sin(θr) cos(ϕ) cos(θr) − cos(θr) sin(ϕ)

0 sin(ϕ) cos(ϕ)

 (E.7)

This differs slightly from [27] where ϕ = 0 from the beginning. We believe this provides a

convenient regularisation of the character, adapted to the flat limit. We can now compute

the character:

χPoinc.
[m;~s ] ([f, α]) =

∫
Op
ddk δ(d)([1− Λ] k)ei〈k,α〉χ

so(d)
~s (g−1

k Λgk) (E.8)

= e−βm
1

det |1− Λ|
χ
so(d)
~s (Λ) (E.9)

= e−βm χ
so(d)
~s (~θ)

r∏
j=1

1∣∣1− eiθj ∣∣2


1 , if d=2r

1

1−cosϕ

∣∣∣∣
ϕ→0

, if d=2r+1
(E.10)

where β := iα0 and, to derive the last equality when d = 2r + 1, we used:

det
∣∣1−R′(θ, ϕ)

∣∣ = (1−cosϕ)
(
(1−cos θ)(1−cosϕ cos θ)+cosϕ sin2 θ

)
(E.11)

− sinϕ
(
(1− cos θ) cos θ sinϕ− sinϕ sin2 θ

)
(E.12)

⇒ 1

det |1−R′(θ, ϕ)|

∣∣∣∣
ϕ→0

=
1

2(1−cos θ)

1

1−cosϕ

∣∣∣∣
ϕ→0

=
1

|1−eiθ|2
1

1−cosϕ

∣∣∣∣
ϕ→0

(E.13)

Remark. When ϕ = 0, Λ is an element of the Cartan subgroup of SO(d). At the algebra

level, the character is defined as:

χV (µ) =
∑
τ∈∆V

e〈τ, µ〉 (E.14)
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where ∆V is the set of weights of the representation V , 〈·, ·〉 is the scalar product on weight

space and µ is an arbitrary weight. For semisimple algebras, the weight space has the

structure of an Euclidean space, therefore one can write e〈τ, µ〉 =
∏r
j=1 x

τj
j where r is the

dimension of the weight space (i.e. the rank of the algebra), τj the jth component of the

weight τ and xj := eµj . Hence, by definition, the above character encodes all the weights

(i.e. eigenvalues of the Cartan subalgebra generators when acting on vectors in V ) occurring

in V . To compare the group character, one has to evaluate the latter on an element of the

Cartan subgroup. The Cartan subalgebra being abelian, elements of the Cartan subgroup

are of the form
∏r
i=1 exp(θiHi), where Hi are the Cartan generators. Seeing the character

as (a generalization of) the trace of a group element, it is clear that the character of an

element of the Cartan subgroup will coincide with the Lie algebra character (E.14), upon

identifying the parameter θi with the components µi of the weight µ on which the latter

character is evaluated.

E.2 Massless representations

The massless case is a bit more subtle: in this case, the little group is the Euclidean group

ISO(d−1). However, for “discrete” spin (or “helicity”) representations, the translation are

represented trivially and therefore the corresponding representation of ISO(d− 1) reduces

to a representation of SO(d − 1). The characters corresponding to these massless, totally

symmetric, spin-s representations were also computed in [27], however, when deriving

them, one encounters a few difficulties in the form of divergences to be regularised. Even

tough, as could be expected, the resulting formulae essentially contain the information

about the irrep of the little group labeling these Poincaré UIRs in the form of a character

of so(d− 1), some regularising factors complicate the expression obtained and make their

interpretation somewhat elusive. As the authors of [27] pointed out, the characters derived

by the purely group theoretical approach do not exactly coincide with the corresponding

flat spacetime partition functions computed using heat kernel method, despite the well

known fact that the two objects are identical. It turns out that the character part of the

partition functions spelled out in [27] are not plagued with as severe regularising factors

as the corresponding ones obtained with the Frobenius formula outlined previously, and

on top of that, arise naturally as flat limit of AdSd+1 characters. Having these facts in

mind, we will assume that for massless Poincaré irreps, the characters are given by the

result coming from partition function calculations, which reads:

χPoinc.
[0;~s ] (β, ~θ) =

r∏
j=1

1∣∣1− eiθj ∣∣2


r∑
k=1

A(r)
k (~θ)χ

so(d−1)
~s (θ̂k), if d = 2r

χ
so(d−1)
~s (~θ)

1− cos(ϕ)

∣∣∣∣∣
ϕ→0

, if d = 2r + 1 .

(E.15)

where θ̂k in the first line indicates that θk is removed. Making the identification q = e−β

and xj = eiθj , we recognise in the above formula the function P(d)(~x) defined in (3.13) and

appearing as the flat limit of P(d)(q, ~x) (the factor 1
1−cos(ϕ) |ϕ→0 should only be understood

as a way of treating the divergence appearing in the expression of the character for

– 42 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
1

d = 2r + 1, and as such can be traded for 1
1−q |q→1 appearing in the flat limit of (A)dSd+1

character, as both encode the same type of divergence to be regulated). We can therefore

rewrite the Poincaré characters for massless irreps as:

χPoinc.
[0;~s ] (q, ~x) = P(d)(~x)


r∑

k=1

A(r)
k (~x)χ

so(d−1)
~s (~̂xk), if d = 2r

χ
so(d−1)
~s (~x) , if d = 2r + 1 ,

(E.16)

where P(d)(~x) is defined by (3.13) and ~̂xk := (x1, . . . , xk−1, xk+1, . . . , xr).

F Branching rules for so(d)

In this appendix, we derive the branching rules obeyed by so(d) characters. Before doing

so, let us recall the expression of so(d) characters, written in terms of the ξ and ζ variables,

as well as the Vandermonde determinant ∆(r)( ~ξ ), used for instance in [72]:

ζi(α) := xαi − x−αi , ξi(α) := xαi + x−αi , ∆(r)( ~ξ ) =
∏

16i<j6r

(ξi − ξj) . (F.1)

Then, in terms of these building blocks, the characters of a so(d) irrep labelled by the

highest-weight ~s = (s1, . . . , sr) are:

• d = 2r + 1:

χ
so(2r+1)
~s (x1, . . . , xr) =

∏r
k=1 ζ

−1
k (1

2)

∆(r)( ~ξ )

∣∣∣∣∣∣∣
ζ1(s1+r− 1

2) ζ1(s2+r− 3
2) . . . ζ1(sr+

1
2)

...
...

. . .
...

ζr(s1+r− 1
2) ζr(s2+r− 3

2) . . . ζr(sr+ 1
2)

∣∣∣∣∣∣∣ (F.2)

=
1

∆(r)( ~ξ )
∏r
k=1 ζk(

1
2)

det

(
ζj

(
si + r − i+

1

2

))
(F.3)

• d = 2r:

χ
so(2r)
~s (x1, . . . , xr) =

1

2 ∆(r)( ~ξ )

{∣∣∣∣∣∣∣
ξ1(s1 + r − 1) . . . ξ1(sr−1 + 1) ξ1(sr)

...
. . .

...
...

ξr(s1 + r − 1) . . . ξr(sr−1 + 1) ξr(sr)

∣∣∣∣∣∣∣ (F.4)

+

∣∣∣∣∣∣∣
ζ1(s1 + r − 1) . . . ζ1(sr−1 + 1) ζ1(sr)

...
. . .

...
...

ζr(s1 + r − 1) . . . ζr(sr−1 + 1) ζr(sr)

∣∣∣∣∣∣∣
}

=
1

2 ∆(r)( ~ξ )

(
det
(
ξj(si + r − i)

)
+ det

(
ζj(si + r − i)

))
(F.5)

The branching rules for so(d), that we want to rederive at the character level, are at

the level of irreps:

Dso(2r+1)
~s =

⊕
s1>λ1>s2>···>λr−1>sr>|λr|

Dso(2r)
~λ

(F.6)

Dso(2r)
~s =

⊕
s1>λ1>s2>···>λr−1>|sr|

Dso(2r−1)
~λ

(F.7)
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In the second formula, we denoted, with a slight abuse of notation, the so(2r − 1) weight

by ~λ altough it actually stands for (λ1, . . . , λr−1), i.e. a vector with r−1 components (since

this is the rank of so(2r − 1) ). We will consider the two cases separately, starting with

the odd dimensional one, and the main things we will need are the two identities gathered

hereafter in a lemma.

Lemma F.1.

λ′∑
µ=λ

ζ(µ+ α) = ζ−1

(
1

2

)(
ξ

(
λ′ + α+

1

2

)
− ξ

(
λ+ α− 1

2

))
(F.8)

λ′∑
µ=λ

ξ(µ+ α) = ζ−1

(
1

2

)(
ζ

(
λ′ + α+

1

2

)
− ζ

(
λ+ α− 1

2

))
(F.9)

F.1 so(2r + 1) ↓ so(2r)

In odd dimensions, the branching rules at the character level reads:

χ
so(2r+1)
~s (~x) =

s1∑
λ1=s2

· · ·
sr−1∑

λr−1=sr

sr∑
λr=−sr

χ
so(2r)
~λ

(~x) (F.10)

Proof. Having in mind the character of the so(2r + 1) irrep ~s:

χ
so(2r+1)
~s (~x) =

1

∆(r)( ~ξ )

∑
σ∈Sr

ε(σ)

r∏
i=1

ζ−1
σ(i)

(
1

2

)
ζσ(i)

(
si + r − i+

1

2

)
, (F.11)

with ε(σ) the signature of the permutation σ, let us rewrite the sum of so(2r) of the irreps

appearing in the branching rule of ~s:

s1∑
λ1=s2

· · ·
sr−1∑

λr−1=sr

sr∑
λr=−sr

χ
so(2r)
~λ

(~x)

=
1

2 ∆(r)( ~ξ )

∑
σ∈Sr

ε(σ)
r∏
i=1

 sr∑
λr=−sr

· · ·
s1∑

λ1=s2

ξσ(i)(λi + r − i)

 (F.12)

=

∏r
k=1 ζ

−1
k (1

2)

2 ∆(r)( ~ξ )

∑
σ∈Sr

ε(σ)

r−1∏
i=1

(
ζσ(i)

(
si + r − i+

1

2

)
− ζσ(i)

(
si+1 + r − i− 1

2

))
×
(
ζσ(r)

(
sr +

1

2

)
− ζσ(r)

(
−sr −

1

2

))
, (F.13)

where we used Lemma F.1 to obtain the final line. Notice that ζ(−x) = −ζ(x), as fol-

lows from the definition, therefore only the determinant involving the variables ξ in (F.5)

survives in the expression of the so(2r) characters in the sum to begin with, and the last

factor above becomes 2 ζσ(r)(sr + 1
2). Finally, only the term

∏r
i=1 ζσ(r)(si + r − i + 1

2) in

the product of the previous expression remains. Indeed, the second terms of the differ-

ence inside this product, namely ζσ(i)(si+1 + r − i − 1
2) gives rise to terms of the form
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ζσ(i)(si+1 +r− i− 1
2)ζσ(i+1)(si+1 +r− i− 1

2) when expanding the product. These terms will

automatically be cancelled when summing over all permutations, as there will always be two

permutations σ and σ′ such that for a fixed i ∈ {1, 2, · · · , r}, σ(i) = σ′(i+1) , σ(i+1) = σ′(i)

and σ(j) = σ′(j) , ∀j 6= i, and by definition the signature of σ and σ′ differ by a minus

sign. As a consequence, the above equation yields:

s1∑
λ1=s2

· · ·
sr∑

λr=−sr

χ
so(2r)
~λ

(~x) =
1

∆(r)( ~ξ )
∏r
k=1 ζk(

1
2)

∑
σ∈Sr

ε(σ)

r∏
i=1

ζσ(i)

(
si + r − i+

1

2

)
= χ

so(2r+1)
~s (~x) , (F.14)

which proves (F.10).

Example 5. Consider the simple, low rank, case of so(5) ↓ so(4):

• On the one hand,

χ
so(5)
(s,t) (x1, x2)=

1

∆(2)(~ξ)ζ1

(
1
2

)
ζ2

(
1
2

) (ζ1

(
s+

3

2

)
ζ2

(
t+

1

2

)
−ζ1

(
t+

1

2

)
ζ2

(
s+

3

2

))
(F.15)

• On the other hand,

s∑
σ=t

t∑
τ=−t

χ
so(4)
(σ,τ)(x1, x2) =

1

2∆(2)(~ξ)

s∑
σ=t

t∑
τ=−t

(
ξ1(σ + 1)ξ2(τ)− ξ2(σ + 1)ξ1(τ)

)
=

1

2∆(2)(~ξ)ζ1(1
2)ζ2(1

2)

[(
ζ1

(
s+

3

2

)
− ζ1

(
t+

1

2

))(
ζ2

(
t+

1

2

)
− ζ2

(
−t− 1

2

))
−
(
ζ1

(
t+

1

2

)
− ζ1

(
−t− 1

2

))(
ζ2

(
s+

3

2

)
− ζ2

(
t+

1

2

))]
(F.16)

The terms ζ1(t+ 1
2)ζ2(t+ 1

2) cancel, and using ζ(−x) = −ζ(x), we are left with:

χ
so(5)
(s,t) (x1, x2) =

s∑
σ=t

t∑
τ=−t

χ
so(4)
(σ,τ)(x1, x2) (F.17)

F.2 so(2r) ↓ so(2r − 1)

In even dimensions, the branching rule at the character level reads:

χ
so(2r)
~s+

(~x) + χ
so(2r)
~s−

(~x) =
r∑

k=1

A(r)
k,~s(~x)

s1∑
λ1=s2

· · ·
sr−1∑

λr−1=sr

χ
so(2r−1)
~λ

(~̂xk) , (F.18)

with ~s± = (s1, . . . ,±sr), ~̂xk := (x1, . . . , xk−1, xk+1, . . . , xr) and

A(r)
k,~s(x1, . . . , xr) := ξk(sr)

∆(r)( ~ξ )
∣∣
ξk=2

∆(r)( ~ξ )
(F.19)

Notice that when sr = 0, ξk(sr) = 2 and the above identity reduces to a statement involving

only one character.
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Proof. We can rewrite the sum of the characters for ~s+ and ~s−, by explicitly expanding

the only remaining determinant, the one involving the variables ξ. Indeed, either the last

component sr of s± vanishes, hence a whole column in det(ζj(sr + r − i)) vanishes and

thereby the whole determinant vanishes; or the two determinants involving the variables

ζ will cancel each other as the last column of one will be ζi(sr) and ζi(−sr) = −ζi(sr) for

the other one. The resulting sum of characters reads:

χ
so(2r)
~s+

(~x) + χ
so(2r)
~s−

(~x) =
1

∆(r)( ~ξ )

∣∣∣∣∣∣∣
ξ1(s1 + r − 1) . . . ξ1(sr−1 + 1) ξ1(sr)

...
. . .

...
...

ξr(s1 + r − 1) . . . ξr(sr−1 + 1) ξr(sr)

∣∣∣∣∣∣∣ (F.20)

=
1

∆(r)( ~ξ )

r∑
k=1

(−)k+rξk(sr)

 ∑
σ∈Sr−1

ε(σ)
∏

i∈{1,2,··· ,r} , i 6=k

ξσ(i)(si + r − i)

 , (F.21)

One the other hand, the sum of the so(2r − 1) characters corresponding to the irreps

appearing in the branching rule of ~s± reads:

sr−1∑
λr−1=0

sr−2∑
λr−2=sr−1

· · ·
s1∑

λ1=s2

χ
so(2r−1)
~λ

(~x)

=
1

∆(r−1)(~ξ)

∑
σ∈Sr−1

ε(σ)
r−1∏
i=1

ζ−1
σ(i)

(
1

2

) sr−1∑
λr−1=0

sr−2∑
λr−2=sr−1

. . .

s1∑
λ1=s2

ζσ(i)

(
λi+r−

1

2

)
(F.22)

=
1

∆(r−1)( ~ξ )

∑
σ∈Sr−1

ε(σ)
r−1∏
i=1

ζ−2
σ(i)

(
1

2

)(
ξσ(i)(si+r−i)−ξσ(i)(si+1+r−[i+1])

)
(F.23)

At this point, one can notice the following identities:

ζ2

(
1

2

)
= (x1/2 − x−1/2)2 = x+ x−1 − 2 = ξ(1)− 2 , (F.24)

and

∆(r)(~ξ)|ξk=2 =
∏

16i<j6r , i,j 6=k
(ξi − ξj)

k−1∏
n=1

(ξn − 2)

r∏
m=k+1

(2− ξm) (F.25)

= (−)r+k
∏

16i6r , i 6=k
(ξi−2)∆(r−1)(~̂ξk)=(−)k+r

∏
16i6r , i 6=k

ζ2
i

(
1

2

)
∆(r−1)(~̂ξk) (F.26)

The above sum of so(2r − 1) can therefore be rewritten as:

sr−1∑
λr−1=0

sr−2∑
λr−2=sr−1

· · ·
s1∑

λ1=s2

χ
so(2r−1)
~λ

(~x) = (F.27)

=
1

∆(r)(~ξ)|ξr=2

∑
σ∈Sr−1

ε(σ)

r−1∏
i=1

(
ξσ(i)(si+r−i)−ξσ(i)(si+1+r−[i+1])

)
(F.28)
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Now taking the following linear combination, and using (F.26):

r∑
k=1

∆(r)(~ξ)|ξk=2

∆(r)(~ξ)
ξk(sr)

sr−1∑
λr−1=0

· · ·
s1∑

λ1=s2

χ
so(2r−1)
~λ

(~̂xk) = (F.29)

=
1

∆(r)(~ξ)

r∑
k=1

(−)k+rξk(sr)
∑

σ∈Sr−1

ε(σ)

×
∏

i∈{1,2,··· ,r} , i 6=k

(
ξσ(i)(si + r − i)− ξσ(i)(si+1 + r − [i+ 1])

)
,

one can easily recognise the sum χ
so(2r)
~s+

(~x) + χ
so(2r)
~s−

(~x) by isolating the contribution∏
i∈{1,··· ,r} , i 6=k ξσ(i)(si + r − i) in the expansion of the final product. It turns out that

all the other terms in this expansion cancel one another for the same reason as in the

previous case so(2r+1) ↓ so(2r): the remaining terms are of the form ξσ(i)(kj)ξσ(l)(kj) and

one can check that there will always be two permutations σ and σ′ only exchanging i and

l and whose signature differs by a minus sign.

Example 6. Consider the simple, low rank, case of so(4) ↓ so(3):

• On the one hand:

χ
so(4)
(s,t) (x1, x2) + χ

so(4)
(s,−t)(x1, x2) =

1

∆(2)( ~ξ )

(
ξ1(s+ 1) ξ2(t)− ξ1(t) ξ2(s+ 1)

)
(F.30)

=
1

∆(2)( ~ξ )

(
[ξ1(s+ 1)− ξ1(t)] ξ2(t)− ξ1(t) [ξ2(s+ 1)− ξ2(t)]

)

• On the other hand:

χ
so(3)
(σ) (x) =

ζ(σ + 1
2)

ζ(1
2)

⇒
s∑
σ=t

χ
so(3)
(σ) (x) = ζ−2

(
1

2

)(
ξ(s+ 1)− ξ(t)

)
. (F.31)

Putting this altogether, we end up with:

χ
so(4)
(s,t) (x1, x2) +χ

so(4)
(s,−t)(x1, x2)=

s∑
σ=t

∆(2)( ~ξ )ξ1=2

∆(2)( ~ξ )
ξ2(t)χ

so(3)
(σ) (x2) +

∆(2)( ~ξ )ξ2=2

∆(2)( ~ξ )
ξ1(t)χ

so(3)
(σ) (x1)

(F.32)

G Non-unitary mixed-symmetry massless fields

In this appendix we spell out the characters corresponding to the non-unitary massless

mixed-symmetry fields in both de Sitter and anti-de Sitter, and comment on their flat

limit as well.
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G.1 Anti-de Sitter case

As shown by Metsaev [8, 9], massless mixed-symmetry fields in anti-de Sitter are unitary

only when their first block is “activated” by gauge transformations, i.e. its gauge parameter

takes values in the so(d) Young diagram obtained by removing one box in the last row of

the first block of the Young diagram of the gauge field. However, if one ignores the unitarity

of the representation and is only interested in its irreducibility, all intermediary block of

the gauge field’s Young diagram can be activated.

The conformal weight of a gauge field with symmetry Y = (`h11 , . . . , `hBB ) (a diagram

with B blocks of respective lengths `I) whose Ith block is activated is ∆I := `I +d−pI−1,

where pI :=
∑I

J=1 hJ is the cumulated height of the I first blocks. This so(2) ⊕ so(d)

highest-weight can be found in the BGG sequences for so(2, d) detailed in appendix D at

level (λ)d−pI for d = 2r + 1 and at level (λ)r−pI for d = 2r. Using the general formulae

derived in appendix D, we can therefore write down the corresponding character:

χAdS
[∆I ,Y](q, ~x) = q∆Iχ

so(d)
Y (~x)P(d)(~x) +

pI∑
k=1

(−1)pI+k+1q`k+d−kχ
so(d)

Y̌
(k)
I

(~x)P(d)(~x) . (G.1)

where Y̌(k)
I is obtained from Y by (i) adding an additional row to the Ith block (of the same

length, i.e. `I) and (ii) deleting the kth row in this new diagram together with removing

one box in each of the rows under the one just removed and until the pIth (i.e. the end of

the Ith block). More explicitly:

Y̌(k)
I = (s1, . . . , sk−1, sk+1 − 1

↑
kth

, . . . , spI − 1, spI − 1
↑

pIth

, spI+1, . . . , sr) . (G.2)

Again, when taking the flat limit of these characters one obtains first a sequence of so(d)

irreps to branch onto so(d−1), corresponding to the Young diagrams of the massless fields,

its gauge parameter and its reducibility. This precise combination of so(d)-irreps in (G.1) is

such that, when branched onto so(d−1), it produces all possible Young diagrams resulting

from the branching rule of the gauge field Young diagram where the block activated by

the gauge symmetry is left untouched. The proof is identical to the analysis performed in

subsection 3.3 when deriving the flat limit of exceptional series UIRs, and therefore we will

not reproduce it here. The spectrum of massless fields produced by taking the flat limit

of a single non-unitary mixed-symmetry field with Young diagram Y = (`h11 , . . . , `hBB ) in

AdSd+1 whose Ith block is touched by gauge symmetry is therefore:

Σ(Y)=
{
Y′=(`h1−1

1 , `1−n1, . . . , `
hI−1

I−1 , `I−1−nI−1, `
hI
I , `

hI+1

I+1 , `I+1−nI+1, . . . , `
hB−1
B , `B−nB) ,

0 6 ni 6 si − si+1 , i ∈ {1, 2, · · · , B} , i 6= I
}
. (G.3)

Example 7. Let us consider a gauge field with mixed-symmetry given by Y = whose

second block is activated, thus with conformal weight ∆I=2 = d−2 since `2 = 2 and p2 = 3.
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Its character reads:

χAdS
[d−2; ](q, ~x)=

(
qd−2χ

so(d)
(~x)−qd−1χ

so(d)
(~x)+qdχ

so(d)
(~x)−qd+2χ

so(d)
(~x)
)
P(d)(q, ~x) (G.4)

−→
λ→0

(
χ
so(d)

(~x)− χso(d)
(~x) + χ

so(d)
(~x)− χso(d)

(~x)
)
P(d)(~x) (G.5)

Branching all diagrams appearing in the previous formula (and sorting the result by lexi-

cographic ordering):

−→
so(d) ↓ so(d−1)

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ (G.6)

−→
so(d) ↓ so(d−1)

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ (G.7)

−→
so(d) ↓ so(d−1)

⊕ ⊕ ⊕ ⊕ ⊕ (G.8)

−→
so(d) ↓ so(d−1)

⊕ (G.9)

One is therefore left with:

χAdS
[d−1; ](q, ~x) −→

λ→0

(
χ
so(d)

(~x) + χ
so(d)

(~x) + χ
so(d)

(~x) + χ
so(d)

(~x)
)
P(d)(~x) (G.10)

= χPoinc.
[0; ](~x) + χPoinc.

[0; ](~x) + χPoinc.
[0; ](~x) + χPoinc.

[0; ](~x) , (G.11)

i.e. as expected, only appear massless fields with Young diagrams obtained from branching

Y from so(d) onto so(d− 1) with the exception of leaving the second block untouched.

G.2 de Sitter case

Irreducible representations of so(1, d+1) were (to our knowledge) first spelled out in [19, 73]

then completed in [20, 31, 38]. In these early papers, one can find the classification of irreps,

irrespectively of their unitary character.

Irreps of the exceptional series are labeled by [19, 73] the conformal weight ∆c =

d + n − pI − 1, and a Young diagram YpI = (s1, . . . , sr), such that spI+1 > n >
spI+2 , n ∈ N. This set of data should describe a gauge field with symmetry Yn,pI :=

(s1, . . . , spI , n, spI+2, . . . , sB) whose Ith block is activated (having in mind that as in the

previous subsection, pI is the cumulated height of the first I blocks of this diagram, whose

total height is pB) whose gauge parameter has symmetry Y̌(pI)
n,pI := (s1, . . . , spI−1, spI+1 −

1, spI+2, . . . , spB ). Those representations are unitary only for n = 0, that is when the acti-

vated block is the last one. More generically, the characters of the exceptional series are:
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• Odd spacetime dimensions:

χdS
[d+n−pI−1;Yn,pI ](q, ~x) = (qpI+1−n − qd−pI−1+n)χ

so(d)
YpI

(~x)P(d)(q, ~x)

+

pB−pI∑
m=1

(−1)m(qpI+1+m−spI+1+m − qd−pI−1−m+spI+1+m)χ
so(d)

Ŷ(m)
n,pI

(~x)P(d)(q, ~x)

+

r−pB∑
m=1

(−)pB+pI+m(qpB+pI+m − qd−pB−pI−m)χ
so(d)

(Ŷ(pB−pI )
n,pI

,1m)
(~x)P(d)(q, ~x)

+

pI+1∑
`=1

(−)`+pI+1qs`+d−`χ
so(d)

Y̌(`)
n,pI

(~x)P(d)(q, ~x) , (G.12)

where Ŷ(m)
n,pI is the Young diagram obtained by adding one box in each of the m row

under the (pI + 1)th of Yn,pI , i.e.

Ŷ(m)
n,pI

= (s1, . . . , spI , n+1, spI+2+1, . . . , spI+m+1, spI+m+1, . . . , spB , 0, . . . , 0) (G.13)

and Y̌(`)
n,pI is the diagram obtained by removing the `th row together with one box in

each of the rows after the `th one until the (pI + 1)th from Yn,pI ,

Y̌(`)
n,pI

= (s1, . . . , s`−1, s`+1 − 1, . . . , spI+1 − 1, n, spI+2, . . . , spB , 0, . . . , 0) . (G.14)

Taking the flat limit (q → 1) of the above expression, one is left with an alternating

sum of so(d) characters of the same type as in the unitary case or the above detailed

AdSd+1 case:

χdS
[d+n−pI−1;Yn,pI ](q, ~x) −→

λ→0

pI+1∑
`=1

(−)`+pI+1χ
so(d)

Y̌(`)
n,pI

(~x) (G.15)

The Young diagrams appearing in this sum correspond to a gauge field with symmetry

Yn,pI , its gauge parameter having symmetry Y̌(pI)
n,pI and its reducibility parameters,

and therefore by the same arguments used in subsection 3.3 one is left with the

following spectrum of massless fields in flat space:

Σ(Yn,pI )

=
{
Y′ = (`h1−1

1 , `1 − n1, . . . , `
hI−1−1
I−1 , `I−1 − nI−1, `

hI
I , n− np, `

hI+1−1
I+1 ,

`I+1 − nI+1, . . . , `
hB−1
B , `B − nB) ,

0 6 si − si+1 , i ∈ {1, · · · , B} , i 6= I , 0 6 np 6 n− sI+1

}
(G.16)

Remark. From our earlier analysis of the unitary irreps of the exceptional series,

we learned that the character obtained from resolving the module of the shadow of

what we called the gauge field’s curvature (using the BGG sequences recalled in ap-

pendix D) matches the character obtained in [36]. We therefore applied the same

technique for non-unitary representation, i.e. we computed the character correspond-

ing to generalized Verma module with highest-weight [∆c ;~s ] = [pI + 1 − n ;YpI ]
(remember that the curvature is characterized by the same Young diagram and con-

formal weight d−∆c).

– 50 –



J
H
E
P
0
5
(
2
0
1
7
)
0
8
1

• Even spacetime dimensions:

χdS
[d+n−pI−1;Yn,pI ](q, ~x) = (qpI+1−n + qd−pI−1+n)χ

so(d)
Yn,pI

(~x)P(d)(q, ~x)

+

pB−pI∑
m=1

(−1)m(qpI+1+m−spI+1−m + qd−pI−1−m+spI+1−m)χ
so(d)

Ŷ(m)
n,pI

(~x)P(d)(q, ~x)

+

r−pB−1∑
m=1

(−)pB+pI+m(qpB+m + qd−pB−m)χ
so(d)

(Ŷ(pB−pI )
n,pI

,1m)
(~x)P(d)(q, ~x)

+(−)r+pI qd/2
(
χ
so(d)

(Ŷ(pB−pI )
n,pI

,1
pB−r
+ )

(~x) + χ
so(d)

(Ŷ(pB−pI )
n,pI

,1
pB−r
− )

(~x)
)
P(d)(q, ~x)

−2

pI+1∑
`=1

(−)`+pI+1qs`+d−`χ
so(d)

Y̌(`)
n,pI

(~x)P(d)(q, ~x) , (G.17)

For the same reason as in the case of UIRs in the exceptional series in even spacetime

dimensions treated in subsection 3.3, the flat limit of the character of their nonunitary

counterpart does not appear to produce a result that can be interpreted as a sum of

Poincaré characters for massless fields that could be part of a BMV-type mechanism.
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