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The transition from weak to strong turbulence when passing from large to small scales in magneto-

hydrodynamic (MHD) turbulence with guide field is a cornerstone of anisotropic turbulence theory. We

present the first check of this transition, using the Shell-RMHD, which combines a shell model of

perpendicular nonlinear coupling and linear propagation along the guide field. This model allows us to

reach Reynolds numbers around 106. We obtain surprisingly good agreement with the theoretical

predictions, with a reduced perpendicular energy spectrum scaling as k�2
? at large scales and as k�5=3

?
at small scales, where critical balance between nonlinear and propagation time is reached. However, even

in the strong regime, a high level of excitation is found in the weak coupling region of Fourier space,

which is due to the rich frequency spectrum of large eddies. A corollary is that the reduced parallel

spectral slope is not a definite test of the spectral anisotropy, contrary to standard belief.

DOI: 10.1103/PhysRevLett.109.025004 PACS numbers: 52.30.Cv, 47.27.�i, 52.35.Ra

Introduction.—Plasma turbulence plays an important
role in solar corona, solar wind, fusion devices, and inter-
stellar medium. The knowledge of turbulent energy spectra
is a basic step to solving problems like cosmic ray trans-
port, the turbulent dynamo, and solar corona or solar wind
heating. In this Letter, we focus on incompressible mag-
netohydrodynamics (MHD) turbulence with strong guide
field. A first theory has been first proposed in the limit of
small relative magnetic fluctuation b=B0, assuming iso-
tropy of the cascade [1,2]. This theory is based on the
weak coupling of Alfvén waves, the Alfvén decorrelation
time ta decreasing more rapidly than the nonlinear time tNL
with wave number. However, numerical and experimental
evidence point to an anisotropic cascade, mainly in the
directions perpendicular to the guide field [3–7]. This
prompted [8] to include the anisotropy within the definition
of the turbulence strength as � ¼ ta=tNL ’ k?b=ðkkB0Þ,
where the Alfvén and nonlinear times now involve respec-
tively the parallel and perpendicular components of wave
vectors. They thus proposed that the weak anisotropic
cascade proceeds from large scales with � � 1 toward
smaller perpendicular scales with the parallel scales re-
maining fixed, so that � would increase and reach unity at
some scale. The cascade would then be weak at large scales
and strong at smaller scales where time scales would
remain equal � ¼ 1 (critical balance or CB). This change
of regime should be characterized by a clear-cut change of

spectral scaling with wave number k, from k�2 to k�5=3.
The status of the weak and strong cascades are not

identical: while an analytical approach of the weak cascade
is possible [9,10], the strong cascade theory remains a
phenomenology. The ansatz on weak or strong transition
is a fundamental assumption in theories of anisotropic

MHD turbulence [11], but it seems to contradict numerical
results of reduced MHD (RMHD) simulations. In RMHD,
nonlinear couplings along the guide field are suppressed,
which is a valid approximation when the guide field is
strong enough [12,13]. When �0 was decreased starting
from 1, the spectral slope was found to vary smoothly,
between �3=2 and �2 (with volume forcing [14]) or
between �5=3 and �3 (with boundary forcing [15,16]).
In no case was the spectrum found to exhibit the predicted
break between two inertial ranges. The �3=2 spectral
slope (instead of the�5=3 value) was ascribed to a system-
atic weakening of interactions due to a local dominance of
one Elsässer species over the other [17]. These results
indicate that the concepts of strong and weak cascades
might not be as robust as generally believed, although the
low Reynolds numbers reached in direct numerical simu-
lations of RMHD might be the cause of the discrepancy.
We, thus, revisit this issue here, using the shell model for

RMHD [18,19], in which the perpendicular coupling terms
are simplified compared to RMHD, allowing us to reach
Reynolds numbers Re ’ 106. In this model, the duality
between the perpendicular spectrum and the parallel space
is retained, allowing us to test the transition from weak to
strong cascade. We consider, here, Shell-RMHD with vol-
ume forcing and periodic boundaries, varying the parame-
ter �0 in order to compare with [14]. We will first obtain
the coexistence of the strong (� 5=3) or weak (� 2) slopes
along the inertial range when forcing large eddies with
�0 < 1, in complete agreement with CB theory.
Accordingly, the eddy correlation time will be found to
agree either with the nonlinear time (in the strong coupling
range) or with the Alfvén propagation time (in the weak
coupling range). We will also show that high-frequency
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fluctuations of the large eddies induce an unexpected
excitation level in the high kk region of the spectrum.

Equations.—The RMHD equations with mean field B0

parallel to Ox axis read for the variables z� ¼ u� b,
with r:z� ¼ 0

@z�?
@t

� B0

@z�?
@x

¼ �ðz � rzÞ � 1

�0

r?ðpTÞ þ �r2
?z

�
?;

(1)

where viscosity and resistivity (�) are assumed equal. The
shell-RMHD is obtained from RMHD by replacing the
perpendicular nonlinear couplings at each point x by a
dynamical system defined in Fourier space. The perpen-
dicular Fourier plane is paved with N þ 1 concentric
shells, the model retaining one wave number kn per shell,
and one complex scalar mode z�n ðx; tÞ per shell, with
jz�n j2=2 being the total energy in the shell n. The equations
read [18,19]:

k?n ¼ 2nk0 n ¼ 0 . . .N (2)

@tz
�
n � B0@xz

�
n ¼ T�

n � �k2nz
�
n þ f�n (3)

where fþn ¼ f�n ¼ fnðx; tÞ represent the large scale
(kinetic) forcing, non zero for n ¼ 0, 1, 2 (see below),
and the T�

n are the nonlinear terms. These are made of a
discrete sum of terms of the form: T�

n ¼ Akmz
�
p z

�
q with

m, p, q being close to n, which replace the convolution
terms resulting from the Fourier transform with respect to
the perpendicular coordinates of the original RMHD equa-
tions Eq. (1). The control parameter is the time ratio �0

imposed by the forcing term f�n :

�0 ¼ t0a=t
0
NL ¼ kf?brms=ðkfkB0Þ; (4)

where kfk and k
f
? are the characteristic wave numbers of the

forcing, respectively, in the parallel and perpendicular
directions (note that brms ’ urms).

Numerical method and parameters.—We choose, as in

Perez and Boldyrev [14], the forcing correlation time tfcor to

be smaller than the large scale Alfvén time t0a ¼ ðkfkB0Þ�1,

B0 ¼ 5, and the aspect ratio of the domain to be L?=Lz ¼
1=5. We define K0 ¼ 2�=Lz and k0 ¼ 2�=L?. The small-

est perpendicular forced wave number is always kf? ¼ k0
(for a spectrum to develop, the Shell model needs to be
excited at least in three consecutive shells k0, 2k0, and 4k0).
Adding larger scales above forced scales doesn’t modify

the results. We consider two forcings, varying kfk: a narrow
one or strong forcing (kfk ¼ 2K0, �0 ¼ 1), and a wide one

or weak forcing (kfk 2 ½2; 64�K0, �0 ¼ 1=32), estimating

a priori in both cases brms ¼ 1, kf? ’ 2, and kfk ¼ maxðkfkÞ
in Eq. (4).

Starting from the solutions z�n ðx; tÞ � z�ðx; k?; tÞ of
Eq. (3) (hereafter, we drop the index n in k?n), we define

three time scales that will be used to verify if turbulence
satisfies the critical balance (CB) condition. We focus on
the zþ signal and check that using z� leads to the same
results. The correlation time tcorðk?Þ is defined as the full-
width-half-maximum (FWHM) of the autocorrelation
function in time AðzþÞt of the signal zþðx; k?; tÞ, computed
at each position x and then averaged over the spatial
domain (which is homogeneous). The correlation length

Lk
corðk?Þ is defined in a similar way, as the FWHM of the

autocorrelation function in space AðzþÞx computed at each
time t and then averaged on 25tNL (statistically stationary
time series). Definitions are summarized below, as well as
the turbulence strength �ðk?Þ:

tcorðk?Þ ¼ hFWHM½AðzþÞt�ix; (5)

taðk?Þ ¼ hFWHM½AðzþÞx�it=B0 ¼ Lk
corðk?Þ=B0; (6)

tNLðk?Þ ¼ 1=ðk?z�rmsðk?ÞÞ; (7)

�ðk?Þ ¼ taðk?Þ=tNLðk?Þ; (8)

where hzis ¼ 1=S
R
zds stands for the average, AðzÞs ¼

1=S
R
zðsÞzðs� s0Þds0 for the autocorrelation function,

and s ¼ t, x indicate the coordinate over which the average
or correlation function are computed (time and space,
respectively). With the above definitions, the CB condition
reads � ¼ 1 or ta ¼ tNL. Note that the quantity ta is the

lifetime of a signal of coherence size Lk
cor propagating at

the Alfvén speed, which should also be equal to tcor: this
will be checked as well.
Finally we give the expressions for the energy spectra.

Denoting by ẑ�ðkk; k?; tÞ the Fourier transforms with

respect to x of the signals z�, we compute the 3D time-
averaged spectra, E�

3 , the 1D reduced parallel and

perpendicular spectra E�
?;k as

E�
3 ðkk; k?Þ ¼ k�2

? hjẑ�ðkk; k?; tÞj2it; (9)

E�
?ðk?Þ ¼ 2�

Z
dkkk?E�

3 ðkk; k?Þ
¼ k�1

? hjz�ðx; k?; tÞj2ix;t; (10)

E�
k ðkkÞ ¼ 2�

Z
dk?k?E�

3 ðkk; k?Þ: (11)

Note that E� ¼ R
E�
3 d

3k ¼ R
E�
?dk? ¼ R

E�
k dkk.

For further comparison, we define the theoretical 3D
angular spectrum resulting from the strong cascade as [8]

ECBðkk; k?Þ ¼ k�m�q�1
? fð�Þ; (12)

wherem is the slope of the 1D perpendicular spectrum and
q follows from the CB condition (assuming m ¼ 5=3 we
have q ¼ 2=3). The boundary of the excited spectrum is
given by the � ¼ 1 curve, its parallel extent is given by the

CB condition: kk / k2=3? . This is expressed by fðj�j�1Þ’1
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and fðj�j 	 1Þ ’ 0. Applying the definitions Eqs. (10) and

(11), one obtains the familiar reduced spectra E�
? / k5=3?

and E�
k / k�2

k . Eq. (12) requires adopting a frame attached

to the local propagation axis, i.e., the local mean field.
However, here, the propagation axis is always B0, in the
absence of nonlocal terms in the shell model. This allows
us to consider Eq. (12) to be valid in the absolute frame.

Results.—In Fig. 1 we show the reduced perpendicular
total energy spectrum for the strong (�0 ¼ 1) and weak

(�0 ¼ 1=64) forcing cases, compensated by k5=3? . With

strong forcing (left panel), the scaling is close to k�5=3
? in

the interval 100 	 k? 	 104. With weak forcing (right
panel), one sees two power laws, the scaling being k�2

? at

large scales and k�5=3
? at small scales. Long integration

times (25t0NL) as well as large Reynolds number are needed

to reveal this composite spectrum. We found equipartition
between magnetic and kinetic energies in the weak k�2

?
range, while magnetic energy dominates by a uniform
factor ’ 2 in the strong range (not shown).

We now examine the time scales defined in Eqs. (5)–(7).
They are plotted versus k? in Fig. 2. Except at the forcing
scales (gray band) and a bit below, the autocorrelation and
the Alfvén times (dashed and solid lines, respectively) are
superposed, showing coherence of the method. In the
strong forcing case [Fig. 2(a)], the correlation time is about
twice the nonlinear time (dotted line) in the whole inertial
�5=3 range (CB condition). In the weak forcing case
[Fig. 2(b)], the correlation time is constant at large scales,
being given by the Alfvén time based on the parallel
forcing scale. Then, at small scales, it switches to a value
which is again about twice the nonlinear time. This is
compatible with the CB theory, which predicts the change
in perpendicular spectral slope observed previously in
Fig. 1(b), the CB condition holding for k? * 103.

In Fig. 3, we show the reduced parallel total energy
spectra, again for the strong and weak forcing cases [panel

(a) and (b), respectively] compensated by k5=3k . With strong

forcing, the parallel spectrum scales as ’ k�1:8
k . Hence, it

is steeper than the perpendicular spectrum but flatter than
the CB prediction (slope �2). With weak forcing, the
spectrum at low wave numbers is shaped by the forced
parallel modes (gray band on top). Their signature persists
because the cascade is weak there [tA � tNL in Fig. 2(b)].
For higher wave numbers, one expects to find the strong
cascade scaling as in panel (a); on the contrary, the slope
is steeper, even steeper than the �2 predicted by the CB
phenomenology.
The different parallel slopes found in the reduced

spectra can be understood by considering the underlying
3D angular spectrum. We first examine the strong forcing
case, Fig. 4. Isocontours of time-averaged 3D spectrum
E3ðkk; k?Þ are plotted in the left panel. We give two

representations of the CB: a theoretical � ¼ 1 contour,

adopting strictly the scaling kk / k2=3? (dotted line) and an

effective � ¼ 1 contour, using the computed brmsðk?Þ
(dashed line). They differ significantly only when enter-
ing in the perpendicular dissipation range. The CB con-
dition, � ¼ 1, separates two regions: strong coupling is
found on the left of the � ¼ 1 line, weak coupling on the
right. One can see that the energy isocontours are mostly
horizontal in the strong region �> 1; the spacing
between successive contours corresponds nearly to the

scaling k�10=3
? (Eq. (12)) in the range 102 < k? < 104.

FIG. 1. (a) �0 ¼ 1. (b): �0 ¼ 1=32. Reduced perpendicular
(total) energy spectra compensated by k�5=3 (solid lines).
Perpendicular forcing scales are indicated as shaded areas in
each panel. Dotted lines: reduced spectra built from the E3

spectrum with � < 1=2 excitation suppressed. The dot-dashed
line is the k�2

? scaling.

FIG. 3. (a) �0 ¼ 1. (b) �0 ¼ 1=32. Same format as Fig. 1 but
for the reduced parallel energy spectra. The dot-dashed line is
the k�2

k scaling.

FIG. 2 (color online). (a) �0¼1. (b) �0¼1=32. Characteristic
times tA, tcor, and tNL for the signal zþðx; k?; tÞ as defined in
Eqs. (5)–(7). Forcing scales are marked in gray.
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A remarkable feature is that, contrary to the usual as-
sumption, the energy density doesn’t drop abruptly when
entering the weak coupling region (�< 1), at least for
large perpendicular scales. This is best seen in the hori-
zontal cuts (right panel of Fig. 4), where again the CB is
overplotted. For E3 * 10�13 (corresponding to k?&104),
the energy density E3 decreases as k

�2
k . The extent of this

scaling decreases progressively with increasing k?. In the
CB phenomenology, the reduced parallel scaling in k�2

k is

due to the contribution of parallel wave numbers satisfy-
ing � ¼ 1, which occurs only at small perpendicular
scales since parallel excitation is assumed to be negligible
for �< 1. Here, on the contrary, the dominant contribu-
tion to the reduced parallel scaling is due to the large
perpendicular scales (with � � 1). This is demonstrated
in Fig. 3(a) where the dotted line, with the typical scaling
k�2
k , represents the equivalent CB spectrum, i.e. the re-

duced parallel spectrum obtained from E3 after suppress-
ing excitation in the region �< 1=2: one sees that the
resulting spectrum is much closer to the k�2

k scaling than

the full solution.
We consider, now, the weak forcing case in Fig. 5. The

energy isoncontours for k? < 103 reveal a cascade at
constant parallel wave number (kk & 102). Then, at higher
k?, the parallel spectrum widens according to the scaling

kk / k2=3? . Horizontal cuts of the 3D spectrum (right panel)

have features similar to the strong forcing case: an inertial
strong cascade and a steep spectrum at intermediate and
large perpendicular scales respectively, but now shifted to

the last parallel forced mode (kfk ’ 102). Again, there is no

abrupt energy decrease when passing the � ¼ 1 boundary;
however, the scaling is now / k�3

k , thus explaining the

steeper spectral slope found in the reduced parallel spec-
trum in Fig. 3(b).

Discussion.—In Reduced MHD, parallel structures re-
flect directly the temporal structure of the perpendicular

nonlinear excitations via the linear propagation of Alfvén
waves. Hence, the k�2

k scaling of the large perpendicular

scales should result from a f�2 spectrum of the low per-
pendicular wave numbers (in the weak case, the slope �3
plays the same role). We have checked that the f�2 spec-
trum is indeed present (see also [16,19–21]). This scaling is
not due to forcing since suppressing nonlinear couplings
leads to a steeper spectrum (slope k�4

k ). The k�2
k scaling

develops in the unforced case after a few nonlinear times
and lasts for more than ten nonlinear times. We conjecture
that the high frequencies in large eddies are due to an
inverse transfer from small to large scales, which may
occur even in absence of a proper inverse cascade associ-
ated with a definite invariant [22].
Critical balance tests gave good results, with tcor about

twice tNL in the strong inertial range (Fig. 2).We have found
that, although globally balanced, the two Alfvén species
spectral amplitudes show also a local imbalance of a factor
3. This might explain the factor two in time scales, which as
well may be due to arbitrariness in defining the nonlinear
time. It is worthwhile noting that reduced spectra in the
solarwind agreewith the formdictated by theCB condition,
but that an excess of parallel energy may be required [23],
consistent with our findings.Much is to be gained by testing
turbulence theories using the Shell-RMHD model, espe-
cially with respect to the two points just mentioned: the
conditions of appearance for the local scaling (local zþ=z�
imbalance), which controls the global spectral scaling, and
the origin of the frequency spectrum of large eddies, which
controls the anisotropy of turbulence.
We thank W.-C. Müller, M. Velli, and Ö. Gürcan for

useful discussions. A.V. acknowledges support from the
Belgian Federal Science Policy Office (ESA-PRODEX
program).
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