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We analyze the properties of a two- and three-dimensional quantum walk that are inspired by the idea of a
brane-world model put forward by Rubakov and Shaposhnikov [Phys. Lett. B 125, 136 (1983)]. In that model,
particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model
into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics
a domain wall solution. As in the original model, fermions (in our case, the walker) become localized in one of
the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization) but
from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the
“ordinary” dimensions.

DOI: 10.1103/PhysRevA.95.042112

I. INTRODUCTION

The quantum walk (QW) is the quantum analog of the
classical random walk. As in the case of random walks, QWs
can appear either under its discrete-time [1] or continuous-time
[2] form. We will concentrate here on discrete-time QWs, first
considered by Grössing and Zeilinger [3] in 1988, as simple
one-particle quantum cellular automata, and later popularized
in the physics community in 1993, by Aharonov [1]. The
dynamics of such QWs consists of a quantum particle taking
steps on a lattice conditioned on its internal state, typically
a (pseudo) spin one-half system. The particle dynamically
explores a large Hilbert space associated with the positions
of the lattice and thus allows one to simulate a wide range of
transport phenomena [4]. With QWs, the transport is driven by
an external discrete unitary operation, which sets it apart from
other lattice quantum simulation concepts where transport
typically rests on tunneling between adjacent sites [5]: all
dynamic processes are discrete in space and time. It has
been shown that any quantum algorithm can be recast under
the form of a QW on a certain graph: QWs can be used for
universal quantum computation, this being provable for both
the continuous [6] and the discrete version [7]. As models of
coherent quantum transport, they are interesting both for fun-
damental quantum physics and for applications. An important
field of applications is quantum algorithmic [8]. QWs were
first conceived as a natural tool to explore graphs, for example,
for efficient data searching (see, e.g., [9]). They are also useful
in condensed matter applications and topological phases
[10]. A totally new emergent point of view concerning QWs
concerns quantum simulation of gauge fields and high-energy
physical laws [11–13]. It is important to note that QWs can be
realized experimentally with a wide range of physical objects
and setups, for example, as transport of photons in optical
networks or optical fibers [14], or atoms in optical lattices
[15].

Within the context of diffusion processes in lattices, spatial
localization appears as a natural phenomenon. It can result
from random noise on the lattice sites, giving rise to Anderson
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localization [16], but it can also be driven by the action of
an external periodic potential (see, e.g., [17–19]). Similarly,
one obtains localization for the one-dimensional QW when
spatial disorder is included [20–22], via nonlinear effects [23],
or using a spatially periodic coin [24]. For higher dimensions,
localization may appear, even in the noiseless case, from the
choice of the coin operator [25].

In this paper, we propose a different variant of the QW
that gives rise to localization, by introducing a site-dependent
nonperiodic coin operator. The model is inspired on a brane-
world proposal with extra dimensions [26], where particles
are confined to live in the ordinary 3+1 dimensions by the
action of a potential well created by some additional scalar
field. In its simplest form, one accounts for massless fermions
which are confined in the brane. This idea can be translated
to describe a QW where the potential well manifests as a
position-dependent coin operator. Differently to the situations
described above, the confining field is not random nor periodic,
being instead a monotonous function of the position. As we
show, this kind of QW produces a dynamical localization of the
QW as in the original model. In fact, it can be shown that, in the
continuous space-time limit, one reproduces the dynamics of a
massless Dirac fermion. In this way, we establish an interesting
parallelism between a high-energy quantum field theory and a
QW model that results in localization.

The rest of this paper is organized as follows. In Sec. II we
briefly introduce the original brane model [26] that motivated
our work. In Sec. III we make use of this model to introduce
a QW on two dimensions with a position-dependent coin that
simulates the domain wall “scalar field” along the second (or
“extra dimension”). We show that this QW in fact results in a
confinement of the walker, and that the space-time continuous
limit indeed reproduces the dynamics of a Dirac particle
coupled to the scalar field. These ideas are generalized to
three dimensions in Sec. IV. Finally, Sec. V is devoted to
summarizing and discussing our results.

II. DOMAIN WALL MODEL FOR PARTICLE PHYSICS

The possibility of extra dimensions of space was first
suggested by Kaluza and Klein [27,28], seeking for a unified
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theory of electromagnetic and gravitational fields into a higher-
dimensional field, with one of the dimensions compactified.
However, experimental data from particle colliders restrict
the compactification radius to such small scales that they
become virtually impossible to access them experimentally.
A way to overcome this difficulty [29] makes use of the
ideas put forward by Rubakov and Shaposhnikov [26]. In
that paper, the authors propose a brane-world scenario in
which space-time has (3 + N + 1) dimensions, with ordinary
(low-energy) particles confined in a potential well which is
narrow along N spatial directions and flat along the remaining
three directions. The origin of this potential well is suggested to
have a dynamical origin. In the simplest case it can be created
by an extra scalar field in 4 + 1 dimensions, as described by the
Lagrangian

L = 1
2∂A∂Aϕ − 1

2m2ϕ − 1
4λϕ4, A = 0,1,2,3,4, (1)

with metrics gAB = (1, − 1, − 1, − 1, − 1). The classical
equations of motion derived from the above Lagrangian
admit a domain wall solution ϕ(x4) that depends only on the
coordinate x4 along the extra dimension and is given by

ϕ(x4) = m√
λ

tanh

(
mx4

√
2

)
. (2)

This model can account for left-handed massless fermions
living in 3 + 1 dimensions, if they are coupled to the scalar
fields, as in the following Lagrangian:

Lψ = i�̄�A∂A� + hϕ�̄�, (3)

where h is the coupling constant, and the 4 + 1-dimensional
γ matrices are �μ = γ μ, μ = 0, . . . 3, and �4 = iγ 5, with
γ μ,γ 5 the standard γ matrices. From Eq. (3) the corresponding
Dirac equation follows, which reads

i�A∂A� + hϕ� = 0. (4)

As discussed in [26], this equation has a solution that is
confined inside the domain wall, while the corresponding
particles are left-handed massless fermions in the 3 + 1-
dimensional world. In the next section, we make use of these
ideas to introduce a QW model in 1 + 1 + 1 dimensions that
leads to confined fermions in 1 + 1.

III. 2D QUANTUM WALKS INSIDE A 1+1
DOMAIN WALL

Consider a QW defined over discrete-time and discrete two-
dimensional (2D) space, with axis x, y. The discrete space
points are labeled by p and q, respectively, with p,q ∈ Z,
while time steps are labeled by j ∈ N. This QW is driven by
an inhomogeneous coin acting on the 2D Hilbert space Hspin.
The evolution equations read[

ψ
↑
j+1,p,q

ψ
↓
j+1,p,q

]
= SyQ

+(θq)SxQ
−(θq)

[
ψ

↑
j,p,q

ψ
↓
j,p,q

]
, (5)

with Q±(θq) defined as

Q±(θq) =
(

cos θ±
q i sin θ±

q

i sin θ±
q cos θ±

q

)
, (6)
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FIG. 1. Probability distribution ||�(tj ,xp,yq )||2 of the two-
dimensional QW for a value t = 10 of the time step and different
values of m. The rest of the parameters are fixed to λ = 60, h = 70,
with the lattice parameter ε = 0.04. The inset in the last subfigure
also shows the projected density profile along each direction of the
lattice (red dot-dashed line represents the x direction and blue dashed
line the y direction). The initial condition is a Gaussian wave packet
�(0,xp,yq ) = √

n(xp,yq ) ⊗ ( 1√
2
, 1√

2
)� centered at the point (64,64),

where the Gaussian distribution n(xp,yq ) has a width δ = 0.1.

where θ±
q = ±π

4 − εθ̄q is the coin angle, which depends
only on the coordinate q, and ε is a small parameter that
allows one to reach the appropriate continuous space-time
limit (see discussion below). The operators Sx and Sy are
the usual spin-dependent translations along the x direc-
tion and the y direction, respectively. They are defined as
follows:

Sx�j,p,q = (ψ↑
j,p+1,q ,ψ

↓
j,p−1,q )�, (7)

and

Sy�j,p,q = (ψ↑
j,p,q+1,ψ

↓
j,p,q−1)�. (8)

Equations (5) describe the evolution of a two-level system,
e.g., a fermion in two dimensions, and it has been shown
that each of them recover, in the continuous limit, the Dirac
equation [30], where the parameter θq corresponds to a
position-dependent potential. Let us now consider θ̄q of the
form

θ̄q = h
m√
λ

tanh

(
mq√

2

)
, (9)

and notice that it corresponds to a narrow potential in the
q direction when m, the “effective mass,” is sufficiently
large.

Figure 1 shows the evolved probability distribution of this
2D QW, starting from a symmetric Gaussian profile in both
directions. As the mass is increased, the probability becomes
strongly localized around the y axis, while it evolves as a
usual QW on the nonconfining x direction. These features are
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FIG. 2. Time evolution of the standard deviation divided by
the time step, i.e., σx(t)/t (in the inset) and σy(t)/t , calculated
independently along the x and y directions, for a localized (red
squares) and a free fermion (blue diamonds). The initial condition is
a Gaussian wave packet �(0,xp,yq ) = √

n(xp,yq ) ⊗ (0,1)� centered
around (128,128), and the parameters of the potential are λ = 60 and
h = 70, with the lattice parameter ε = 0.02.

clearly seen in Fig. 2, where we have represented the standard
deviation divided by the time step, i.e., σx(t)/t and σy(t)/t ,
calculated independently along the x and y directions. For
m = 0 (no confinement), both quotients tend to a constant,
which corresponds to the normal spreading of a 2D QW in
both directions. As m increases, localization acts on the y

direction and manifests as an exponential decay of σy(t)/t .
On the other hand, the standard deviation corresponding to
the x axis behaves as a free-evolving QW, with a spreading
velocity that depends on the parameters of the potential
well.

As we show below, in the continuous limit Eqs. (5) are in
correspondence with Eq. (4), describing the propagation of a
massless fermion in a space-time manifold M (1+N,1), the usual
Minkowski space with 1 + N spatial dimensions. When m is
nonvanishing, the fermion is confined inside a potential well,
which is sufficiently narrow along N directions and flat along
the other one (in our case N = 1).

Let us introduce new space-time coordinates tj , xp, and yq

such that tj = jε, xp = pε, and yq = qε. In the limit when
ε −→ 0, these coordinates become continuous, labeled by t ,
x, and y, respectively. If we Taylor expand Eqs. (5) around
ε = 0, we recover the following equation:

∂t�(t,x,y) = [σz∂x − σy∂y − iσx θ̄(y)]�(t,x,y), (10)

which can be recast in covariant form:

i�A∂A� + h
m√
λ

tanh

(
my√

2

)
� = 0, (11)

where �A = {γ μ,γ c}, μ = 0,1, and γ c = iγ 5 = iγ 0γ 1 =
−iσz. In this equation, γ 0 = −σx , γ 1 = −iσy . As can be

easily seen, Eq. (11) takes the same form as (4) if we make the
identification x4 −→ y and ϕ −→ m√

λ
tanh( my√

2
).

IV. 3D QUANTUM WALKS INSIDE A 2+1 DOMAIN WALL

The extension of the previous case to the higher-
dimensional case is straightforward. In this section we adopt
the same techniques introduced in the last section but we
double the spin Hilbert space, in order to recover the standard
Dirac equation in 3+1 space-time. Let us recall that in 3+1,
γ matrices appearing in Eq. (4) are four dimensional. In the
Weyl representation they read

γ 0 =
(

0 I
I 0

)
γ i =

(
0 σ i

−σ i 0

)
γ 5 =

(−I 0
0 I

)
. (12)

Now, consider the QW defined over discrete three-
dimensional (3D) space, with axes x, y, and z. The discrete
space points are labeled by p, q, and r , respectively, with
p,q,r ∈ Z. This QW is driven by an inhomogeneous coin
acting on the spinor (ψ1

j,p,q,r ,ψ
2
j,p,q,r )

�
, where each ψi

j,p,q,r

belongs to Hspin for i = 1,2.
The evolution equations read[

ψ1
j+1,p,q,r

ψ2
j+1,p,q,r

]
= �rSzRzSxRxSyRy

[
ψ1

j+1,p,q,r

ψ2
j+1,p,q,r

]
, (13)

where

�r =
(

cos θ̄r ε i sin θ̄r ε

i sin θ̄r ε cos θ̄r ε

)
⊗ I2 (14)

and

S i =
(

Si 0
0 Si †

)
Ri =

(
Ri 0
0 Ri

)
, (15)

where the operators Si are the usual spin-dependent transla-
tions along each direction of the cubic lattice, and each unitary
rotation Ri , for i = x,y,z, is an element of U(2).

Notice that �r encodes the coupling between the spinor
components, and θr is an arbitrary position-dependent func-
tion, which can model either the mass term or any other scalar
potential. If θr identically vanishes, Eq. (13) represents simply
a couple of independent split-step QW operators acting on
each component of the spinor. In the following, this mass
term is defined by Eq. (9) and will model the narrow potential
in the r direction, embedding a 3D QW in a 2D space-time
lattice.

In order to validate the model, we compute the formal con-
tinuous limit of Eq. (13) with the same technique introduced
in the previous section. Thus, let us introduce the new spatial
coordinate zr , such that zr = rε, and again assume that in the
limit when ε −→ 0, this coordinate, together with tj , xp, yq ,
become continuous, labeled by z and t , x, y, respectively. If we
Taylor expand Eqs. (13) around ε = 0, the zero order restricts
the four-dimensional coins, Ri = Ri ⊗ I2:[

ψ1

ψ2

]
= RzRxRy

[
ψ1

ψ2

]
+ O(ε), (16)

which leads to the condition

RzRxRy = I4. (17)
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FIG. 3. Density plot in 3D at time j = 12 with Gaussian initial
wave packet �(0,xp,yq,zr ) = √

n(xp,yq,zr ) ⊗ (1,i,1,i)� centered
around (0,0) and for m = 0.

Then the first-order term of the Taylor expansion reads

∂t

[
ψ1

ψ2

]
= [Bz∂z + Bx∂x + By∂y + iB0θ̄ (z)]

[
ψ1

ψ2

]
+ O(ε),

(18)
where

Bz = ZRzRxRy

Bx = RzZRxRy (19)

By = RzRxZRy,

and

B0 = σx ⊗ I2

Z = I2 ⊗ σz. (20)

Now, comparing Eq. (18) with Eq. (4), we derive—up to a U(2)
rotation—the explicit form of each rotation Ri . In particular,
we need to satisfy γ 0γ 1 = Bx , γ 0γ 2 = By , and γ 0γ 3 = Bz,
which leads to

Rx = 1√
2

(
1 1
1 −1

)
, Rz = 1√

2

(
1 −i

i −1

)
,

Ry = RxRz. (21)

Thus, numerical simulations of the above QW can model
the behavior of a fermion in a 3+1 space-time. In particular,
in Fig. 3, the quantum walker spreads on the 3D cubic lattice,
starting from a symmetric initial condition, recovering, in the
continuous limit, a massless fermion in vacuum (θ̄ = 0). In
contrast, Fig. 4 shows the evolved probability distribution
of this 3D QW when the mass term is different from zero
and is position dependent. As in the lower-dimensional case,
the probability dynamically localizes on the x-y plane and
corresponds to a standard 2D QW, while it possesses a finite
size on the z direction, which typically decreases with the
lattice parameter ε.

FIG. 4. Density plots in 3D at time j = 20 with Gaussian initial
wave packet �(0,xp,yq,zr ) = √

n(xp,yq,zr ) ⊗ (0,1,0,1)� centered
around (0,0). The parameters of the potential are λ = 90, h = 4, and
m = 11. The two subfigures at the bottom display the x-z side view
(left) and the x-y side view (right) of the 3D density plot.

V. DISCUSSION

In this paper we have studied the properties of a two- and
a three-dimensional QW that are inspired by the idea of a
brane-world model put forward by Rubakov and Shaposhnikov
[26]. In that model, particles are dynamically confined in the
brane due to the interaction with a scalar field. We translated
this model into an alternate QW with a coin that depends on
the external field, with a dependence which mimics a domain
wall solution. As in the original model, fermions (in our case,
the walker) become confined in one of the dimensions, while
they can move freely on the “ordinary” dimensions. In this
way, we can think of the QW as a possibility to simulate brane
models of quantum field theories. In the opposite direction of
thought, we obtain a QW that shows localization, not from
random noise on the lattice or from a periodic coin, as in
previous models, but from a coin which changes in space in
a regular, nonperiodic manner. In our opinion, this interplay
between QWs and high-energy theories can be beneficial for
both fields.
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Potoček, C. Hamilton, I. Jex, and C. Silberhorn, Science 336,
55 (2012).

[15] R. Côté, A. Russell, E. E. Eyler, and P. L. Gould, New J. Phys.
8, 156 (2006).

[16] P. W. Anderson, Phys. Rev. 109, 1492 (1956).
[17] S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 18 (1980).
[18] D. R. Grempel, S. Fishman, and R. E. Prange, Phys. Rev. Lett.

49, 833 (1982).
[19] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N.

Davidson, and Y. Silberberg, Phys. Rev. Lett. 103, 013901
(2009).

[20] A. Joye and M. Merkli, J. Stat. Phys. 140, 1025 (2010).
[21] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex,

and C. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011).
[22] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio,

L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, Nat.
Photonics 7, 322 (2013).

[23] C. Navarrete-Benlloch, A. Pérez, and E. Roldán, Phys. Rev. A
75, 062333 (2007).

[24] Y. Shikano and H. Katsura, Phys. Rev. E 82, 031122 (2010).
[25] N. Inui, Y. Konishi, and N. Konno, Phys. Rev. A 69, 052323

(2004).
[26] V. Rubakov and M. Shaposhnikov, Phys. Lett. B 125, 136

(1983).
[27] T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)

K1, 966 (1921).
[28] O. Klein, Eur. Phys. J. A 37, 895 (1926).
[29] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev. D

59, 086004 (1999).
[30] G. Di Molfetta, M. Brachet, and F. Debbasch, Phys. A (Amster-

dam, Neth.) 397, 157 (2014).

042112-5

https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1166/jctn.2013.3105
https://doi.org/10.1166/jctn.2013.3105
https://doi.org/10.1166/jctn.2013.3105
https://doi.org/10.1166/jctn.2013.3105
https://doi.org/10.1166/jctn.2013.3105
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1142/S0219749903000383
https://doi.org/10.1142/S0219749903000383
https://doi.org/10.1142/S0219749903000383
https://doi.org/10.1142/S0219749903000383
https://doi.org/10.1137/090745854
https://doi.org/10.1137/090745854
https://doi.org/10.1137/090745854
https://doi.org/10.1137/090745854
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1103/PhysRevA.94.012335
https://doi.org/10.1103/PhysRevA.94.012335
https://doi.org/10.1103/PhysRevA.94.012335
https://doi.org/10.1103/PhysRevA.94.012335
https://doi.org/10.1103/PhysRevLett.110.190601
https://doi.org/10.1103/PhysRevLett.110.190601
https://doi.org/10.1103/PhysRevLett.110.190601
https://doi.org/10.1103/PhysRevLett.110.190601
https://doi.org/10.1088/1367-2630/18/10/103038
https://doi.org/10.1088/1367-2630/18/10/103038
https://doi.org/10.1088/1367-2630/18/10/103038
https://doi.org/10.1088/1367-2630/18/10/103038
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1088/1367-2630/8/8/156
https://doi.org/10.1088/1367-2630/8/8/156
https://doi.org/10.1088/1367-2630/8/8/156
https://doi.org/10.1088/1367-2630/8/8/156
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.49.833
https://doi.org/10.1103/PhysRevLett.49.833
https://doi.org/10.1103/PhysRevLett.49.833
https://doi.org/10.1103/PhysRevLett.49.833
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1103/PhysRevLett.103.013901
https://doi.org/10.1007/s10955-010-0047-0
https://doi.org/10.1007/s10955-010-0047-0
https://doi.org/10.1007/s10955-010-0047-0
https://doi.org/10.1007/s10955-010-0047-0
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1103/PhysRevA.75.062333
https://doi.org/10.1103/PhysRevA.75.062333
https://doi.org/10.1103/PhysRevA.75.062333
https://doi.org/10.1103/PhysRevA.75.062333
https://doi.org/10.1103/PhysRevE.82.031122
https://doi.org/10.1103/PhysRevE.82.031122
https://doi.org/10.1103/PhysRevE.82.031122
https://doi.org/10.1103/PhysRevE.82.031122
https://doi.org/10.1103/PhysRevA.69.052323
https://doi.org/10.1103/PhysRevA.69.052323
https://doi.org/10.1103/PhysRevA.69.052323
https://doi.org/10.1103/PhysRevA.69.052323
https://doi.org/10.1016/0370-2693(83)91253-4
https://doi.org/10.1016/0370-2693(83)91253-4
https://doi.org/10.1016/0370-2693(83)91253-4
https://doi.org/10.1016/0370-2693(83)91253-4
https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01397481
https://doi.org/10.1103/PhysRevD.59.086004
https://doi.org/10.1103/PhysRevD.59.086004
https://doi.org/10.1103/PhysRevD.59.086004
https://doi.org/10.1103/PhysRevD.59.086004
https://doi.org/10.1016/j.physa.2013.11.036
https://doi.org/10.1016/j.physa.2013.11.036
https://doi.org/10.1016/j.physa.2013.11.036
https://doi.org/10.1016/j.physa.2013.11.036



