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It was recently proposed that the effects usually attributed to particle dark matter on galaxy scales are due
to the displacement of dark energy by baryonic matter, a paradigm known as emergent gravity. This
formalism leads to predictions similar to modified Newtonian dynamics (MOND) in spherical symmetry,
but not quite identical. In particular, it leads to a well defined transition between the Newtonian and the
modified gravitational regimes, a transition depending on both the Newtonian acceleration and its first
derivative with respect to radius. Under the hypothesis of the applicability of this transition to aspherical
systems, we investigate whether it can reproduce observed galaxy rotation curves. We conclude that the
formula leads to marginally acceptable fits with strikingly low best-fit distances, low stellar mass-to-light
ratios, and a low Hubble constant. In particular, some unobserved wiggles are produced in rotation curves
because of the dependence of the transition on the derivative of the Newtonian acceleration, leading, even
in the most favorable case, to systematically less good fits than MOND. Then, applying the predicted
transition from emergent gravity in a regime where it should a priori be applicable, i.e. in spherical
symmetry and outside of the bulk of matter, we show that the predictions for the secular advances of Solar
System planets’ perihelia are discrepant with the data by seven orders of magnitude, ruling out the present
emergent gravity weak-field formula with high confidence.

DOI: 10.1103/PhysRevD.95.064019

I. INTRODUCTION

There is overwhelming evidence that astrophysical and
cosmological observations on scales of dwarf galaxies and
above cannot be explained, in the framework of general
relativity, in terms of known elementary particles [1–3]. In
the standard cosmological model, the problem is solved by
postulating the existence of a new matter component,
dubbed dark matter, which is made of new, yet undiscov-
ered particles, possibly connected with extensions of the
standard model of particle physics proposed for completely
independent reasons, such as WIMPs (weakly interacting
massive particles), axions, and sterile neutrinos [4–8].
Despite a large theoretical and experimental effort,

however, there is no conclusive evidence for the existence
of any of those dark matter candidates. Furthermore, our
current models of galaxy formation in the standard cos-
mological model appear to struggle to reproduce observa-
tions e.g.[9]. This might be due to hard-to-model feedback
processes linked to the physics of baryons in galaxies e.g.
[10,11], or to the fact that the properties of dark matter
particles, and especially their interactions with themselves

[12] (see also [13] and references therein) or with baryons
e.g. [14], might be different from those currently assumed
in standard cosmology.
As long appreciated [15], an alternative solution to

explain cosmological observations is to introduce a suitable
modification of the laws of gravity e.g. [16,17]. The case
for such an effective modification of gravity is best
summarized by the fact that observed galaxy rotation curve
shapes are diverse at a given maximum velocity scale [18],
where they are expected to be uniform, and uniform at a
given baryonic surface density scale [19,20], where they
are expected to be diverse. The latter means that exponen-
tial disks of the same baryonic mass have similar rotation
curves only if the radius is renormalized by the disk scale-
length [21]. Such a behavior, which appears a priori
unnatural in the standard context, has long been predicted
by modified Newtonian dynamics MOND, [16], which
posits that

g ¼ ν

�
gN
aM

�
gN; ð1Þ

where g and gN are the effective and Newtonian gravita-
tional accelerations respectively, gN ¼ jgN j and ν is a
transition function verifying*ahees@astro.ucla.edu
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�
νðxÞ → 1 for x ≫ 1

νðxÞ → x−1=2 for x ≪ 1
: ð2Þ

This relation involves an acceleration scale aM ∼ c2=L ∼
10−10 ms−2 where L is the Hubble scale.,1 also roughly
corresponding to the curvature radius corresponding to the
z ¼ 0 dark energy content of the Universe. Note that,
outside of spherical symmetry, this formula cannot be
correct and classical MOND theories rather modify the
Poisson equation, following the stationary action principle
for a modified Lagrangian of gravitation involving this
acceleration constant [19], which allows us to make
detailed simulations outside of spherical symmetry e.g.,
[22,23]. Nevertheless, for galaxy rotation curves fits, the
difference between the pristine formula from Eq. (1) and
the actual modification of gravity prediction is small
enough [24], so that Eq. (1) is commonly used to predict
galaxy rotation curve shapes.
Inspired by the success of the MOND formalism on

galaxy scales, a framework in which a similar relation
naturally emerges was recently proposed [25]. The core
idea dates back to the realization by Milgrom [26] that a
redefinition of inertia as being proportional to the vacuum
temperature seen by an accelerated observer could
naturally lead to the MOND relation, since such an
observer in a de Sitter universe sees a nonlinear combi-
nation of the Unruh vacuum radiation and of the
Gibbons-Hawking radiation due to the cosmological
horizon. A slightly more fundamental (albeit currently
not really full-fledged, see [27]) approach was then
proposed by Verlinde [25], in which gravity emerges
from the entanglement entropy of the vacuum. In this
picture, de Sitter space corresponds to a set of metastable
quantum states carrying the entropy associated with the
cosmological horizon, and the positive dark energy is
caused by the slow thermalization of the emergent
spacetime. In the presence of baryonic matter, this dark
energy is slightly “displaced" which leads to an effective
modification of gravity in the low acceleration regime,
below ∼c2=L. In this regime, the apparent dark matter
mass MD appears as directly related to the baryonic one.
In spherical symmetry, this formalism leads to predictions
that are essentially similar to those of MOND, but not
quite identical. In particular, it predicts a well-defined
transition between the classical and the low-acceleration
modified gravitational regimes, a transition depending on
both the Newtonian acceleration and its first derivative
with respect to radius. This formalism has already been
successfully confronted with galaxy-galaxy lensing data
[28], distance luminosity and baryon acoustic oscillations
[29] and dwarf spheroidal galaxies [30], and has

encountered some problems in galaxy clusters [31], akin
to those of MOND at these scales [32,33].
Here, we set out to estimate the generic consequences

of emergent gravity for the predictions of galaxy rotation
curve shapes, with the caveat that the formalism might not
be fully applicable per se outside of spherical sym-
metry, and we also quantify criticisms already made at
the qualitative level [27] regarding its predictions in the
Solar System, where the predictive formula from emergent
gravity should be fully applicable.

II. THE MOND AND EMERGENT
GRAVITY TRANSITIONS

In MOND, neither the exact value of the acceleration
constant nor the shape of the transition function are
hardwired into the paradigm. Hence there is a little bit
of freedom in choosing those to best reproduce galaxy
rotation curves. In Hees et al. [34], we combined galaxy
rotation curves and Solar System data to put constraints on
the transition function ν, and showed that one class of
functions allowed us to fit rotation curves while escaping
Solar System constraints2 One function which is represen-
tative of this family is

νMONDðxÞ ¼ ð1 − e−x
2Þ−1=4 þ 3

4
e−x

2

; ð3Þ

and has been shown to reproduce galaxy rotation curves
well, especially when including the contribution of the
external field effect [34].
In emergent gravity, the apparent dark matter massMD is

directly related to the baryonic mass MB (see Eq. (7.40)
from [25]) through

Z
r

0

GM2
Dð~rÞ
~r2

d~r ¼ MBðrÞaMr; ð4Þ

with aM a constant acceleration scale in principle accu-
rately defined as aM ¼ c2=6L ¼ cH0=6. Within this
theory, the total gravitational acceleration can be written
in a MOND-like form using the following transition
function

νEGðx; x0; rÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

x
þ x0r

x2

r
; ð5Þ

which depends explicitly on the radius r and on the radial
derivative x0 of the Newtonian gravitational acceleration.
In the following sections, we will quantify the observa-

tional consequences of this transition function in galaxies
and the Solar System. One aspect of emergent gravity

1We adopt here notations consistent with those used in the
emergent gravity framework. In the MOND context, the accel-
eration constant is rather usually denoted as a0.

2Note that the empirically successful transition in Eq. (4) of
[35] is excluded by Solar System constraints in modified gravity
versions of MOND, as it corresponds to ν̂1 in Table 2 of [34].
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which is not completely clear is whether it would lead to an
external field effect similar to that of MOND. In the next
section, we will show the predictions for galaxy rotation
curves with and without such an effect.

III. ROTATION CURVE FITS

In this section, we produce traditional fits to rotation
curves [34,36–40] using the emergent gravity paradigm
described by the transition function from Eq. (5). We have
to assume here that, as is the case in MOND, the predictions
outside of spherical symmetry do not deviate too much
from the spherically symmetric solution. Three different
scenarios are then considered: (i) a scenario where the value
of the acceleration scale aM ¼ cH0=6 is fixed by using
existing local measurements of the Hubble constant [41];
(ii) a scenario where the acceleration scale aM is left free;
and (iii) a scenario where the external field effect is also
considered. In order to compare our results with results
obtained with theMOND phenomenology, we also produce
a fit using the MOND transition function from Eq. (3).
We use the same rotation curve data as in [34], for 27

dwarf and low surface brightness galaxies thoroughly
described in Swaters et al. [42]. Our fit includes one global
parameter, the acceleration scale aM, and two local galactic
parameters: the individual R-band stellar mass-to-light
(M/L) ratio ϒg and a relative rescaling of the distance to
the different galaxies dg (the indices g refer to a particular
galaxy and indicate that the parameters are local param-
eters) within the errors of the estimated distance. In
addition, the third scenario includes an additional external
Newtonian field gNeg for each galaxy.
The predicted rotation velocity V at radius Ri is given by

VðRidg; aM;ϒg; dgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RidggðRi; aM;ϒgÞ

q
; ð6Þ

where ϒg is the stellar M/L ratio, dg ¼ Dg=Dg;0 where Dg

is the distance used here and Dg;0 the distance given in
Table 1 of [42]. The norm of the gravitational field g is
determined by Eq. (1) with the transition function from
Eq. (5), and the Newtonian gravitational field can be
expressed in terms of the Newtonian velocities as

gNðRi;ϒgÞ ¼
V2
gasi

Ri
þϒg

V2⋆i
Ri

; ð7Þ

whereVgasi andV⋆i are the contribution of the gas and of the
stellar disk (at radius Ri) to the rotation curves calculated in
the Newtonian framework without dark matter. In what
precedes, we have used the fact that the Newtonian observed
velocities due to the gas and to the stellar disk are rescaled as
∝

ffiffiffi
d

p
with a distance rescaling. Similarly, the measured

radial distances Ri are rescaled proportionally to d. The
transition function from Eq. (5) requires an estimation of the
derivative of gN trivially given by

g0NðRi;ϒgÞ ¼ −
gNðRi;ϒgÞ

Ri
þ 2

VgasiV 0
gasi

Ri
þ 2ϒg

V⋆iV 0⋆i
Ri

:

ð8Þ

Note that the quantity Rig0N appearing in the expression of
the transition function from Eq. (5) is independent of the
rescaling factor d.
The procedure to analyze the data is identical to the ones

presented in details in [34]. In a first step, a least-square fit
of the global acceleration scale aM and of the local ϒg and
dg parameters is performed using a subset of 19 galaxies.
The galaxies not considered in this step have been
identified to experience a hypothetical external field effect
that may bias the estimation of aM (see the discussion in
[34]). In a second step, using the optimal value of aM
previously obtained, we perform a Bayesian inference for
the parameters ϒg and dg (the parameter gNeg is included in
the third scenario). During the analysis, we always impose
the scaling of the distance to be between 0.7 and 1.3 and the
stellar M/L ratios to have values included between 0.3 and 5
(in units of ðM=LÞ⊙). Furthermore, we also use a Gaussian
prior (characterized by a mean of 1 and a standard deviation
of 0.1) on the parameters dg.

A. Using a fixed value of the Hubble constant

In emergent gravity, the acceleration scale aM is directly
related to the Hubble constant through aM ¼ cH0=6. In this
section, we fix the value of the acceleration scale by using
the estimation H0 ¼ 73.24 km=s=Mpc obtained from local
galaxy distance scales in [41], which corresponds to
aM ¼ 1.2 × 10−10 m=s2. The optimal values and the
68% confidence intervals for the local parameters ϒg

and dg are presented in Table I. For the majority of the
galaxies, the distance scale factor is lower than unity,
indicating that within the emergent gravity paradigm, all
galaxies should be much closer than their current obser-
vational estimate. The reduced chi-square for the fit
including the 27 galaxies is equal to 7.1, i.e. unacceptably
high. The red, dashed curves in Fig. 1 show the optimal
rotation curves obtained for each galaxy. It is interesting to
note that emergent gravity produces too large wiggles in
some galaxy rotation curves: UGC7524, UGC8490, UGC
11707 are the most striking cases. This feature is due to the
contribution arising from the derivative of the Newtonian
gravitational acceleration in the transition function from
Eq. (5). When wiggles exist in the Newtonian rotation
curves, the derivative term tends to artificially amplify
those in the predicted emergent gravity rotation curves. The
conclusion from this fit is that using a value of aM coming
from local measurements of the Hubble constant is incom-
patible with observations of galactic rotation curves.
Therefore, in the following section, we will relax this
assumption.
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TABLE I. Best-fit local parameters obtained for the different scenarios considered in this analysis: emergent gravity using a fixed
value for aM (see Sec. III A), emergent gravity with aM as a free parameter (see Sec. III B), emergent gravity with an external field effect
(see Sec. III C) and the MOND transition function from Eq. (3) and the external field effect. The values reported are optimal values and
68% Bayesian confidence intervals for the parameters. For gNeg, only the values significantly different from 0 are reported.

νEG νEG νEG νMOND
With fixed aM No prior on aM With ext. field effect With ext. field effect

Opt. aM [m=s2] 1.2 × 10−10 6.9 × 10−11 6.9 × 10−11 8.1 × 10−11

χ2red 7.1 4.4 3.5 2.1

ϒg dg ϒg dg ϒg dg log gNeg ϒg dg log gNeg

ðM=LÞ⊙ ðM=LÞ⊙ ðM=LÞ⊙ (m=s2) ðM=LÞ⊙ (m=s2)

UGC731 1.74þ0.11
−0.21 0.70þ0.01

−0.00 3.21þ0.11
−0.44 0.70þ0.02

−0.00 3.71þ0.54
−0.51 0.88þ0.06

−0.14 −11.80þ0.34
−0.42 5.0þ0.00

−0.49 1.03þ0.04
−0.19 −11.80þ0.44

−1.12

UGC3371 1.24þ0.06
−0.09 0.70þ0.01

−0.00 2.10þ0.03
−0.24 0.70þ0.02

−0.00 2.32þ0.24
−0.27 0.86þ0.00

−0.16 −12.20þ0.49
−0.78 3.3þ0.35

−0.56 0.99þ0.00
−0.19 −12.50þ0.70

−5.46

UGC4173 0.30þ0.02
−0.00 0.70þ0.01

−0.00 0.30þ0.04
−0.00 0.70þ0.01

−0.00 1.05þ0.22
−0.53 1.00þ0.05

−0.14 −10.40þ0.06
−0.21 0.8þ0.53

−0.38 0.99þ0.10
−0.12 −11.20þ0.37

−0.22

UGC4325 1.46þ0.21
−0.22 0.76þ0.04

−0.05 1.70þ0.33
−0.26 0.88þ0.06

−0.08 1.70þ0.28
−0.26 1.07þ0.07

−0.16 −11.80þ0.42
−0.62 3.7þ0.48

−0.60 1.10þ0.07
−0.10 −11.30þ0.26

−0.39

UGC4499 0.30þ0.01
−0.00 0.70þ0.01

−0.00 0.30þ0.02
−0.00 0.70þ0.01

−0.00 0.30þ0.02
−0.00 1.02þ0.08

−0.12 −11.70þ0.22
−0.24 0.3þ0.05

−0.00 1.03þ0.00
−0.11 -

UGC5005 0.30þ0.09
−0.00 0.70þ0.03

−0.00 0.30þ0.19
−0.00 0.81þ0.03

−0.08 0.30þ0.20
−0.00 0.91þ0.00

−0.18 −13.20þ1.01
−4.93 0.9þ0.14

−0.56 1.01þ0.02
−0.16 −12.70þ0.76

−5.37

UGC5414 0.30þ0.01
−0.00 0.70þ0.01

−0.00 0.30þ0.03
−0.00 0.70þ0.01

−0.00 0.30þ0.24
−0.00 0.91þ0.11

−0.13 −11.90þ0.72
−0.28 1.0þ0.08

−0.55 0.93þ0.01
−0.18 −11.90þ1.60

−4.92

UGC5721 0.66þ0.06
−0.06 1.14þ0.03

−0.03 0.82þ0.05
−0.02 1.30þ0.00

−0.01 0.82þ0.06
−0.02 1.30þ0.00

−0.01 - 2.4þ0.29
−0.25 1.23þ0.07

−0.04 -

UGC5750 0.30þ0.03
−0.00 0.70þ0.02

−0.00 0.30þ0.07
−0.00 0.75þ0.02

−0.05 0.30þ0.14
−0.00 1.00þ0.07

−0.15 −12.30þ0.47
−0.32 0.3þ0.22

−0.00 1.02þ0.04
−0.13 -

UGC6446 0.50þ0.04
−0.05 0.70þ0.01

−0.00 0.96þ0.04
−0.10 0.70þ0.01

−0.00 1.19þ0.03
−0.22 0.70þ0.07

−0.00 −13.00þ0.75
−0.06 1.6þ0.37

−0.14 0.91þ0.00
−0.21 −12.20þ0.62

−1.53

UGC7232 0.30þ0.09
−0.00 0.84þ0.04

−0.09 0.30þ0.17
−0.00 0.96þ0.04

−0.12 0.30þ0.25
−0.00 1.00þ0.03

−0.15 −13.00þ0.00
−5.00 0.8þ0.43

−0.31 1.04þ0.09
−0.12 -

UGC7323 0.30þ0.02
−0.00 0.70þ0.01

−0.00 0.34þ0.06
−0.04 0.78þ0.02

−0.06 0.54þ0.03
−0.24 0.97þ0.01

−0.24 −11.60þ0.74
−1.30 0.6þ0.19

−0.12 1.01þ0.08
−0.09 -

UGC7399 1.84þ0.11
−0.06 1.30þ0.00

−0.01 3.16þ0.12
−0.10 1.30þ0.00

−0.00 3.16þ0.14
−0.08 1.30þ0.00

−0.01 - 5.0þ0.00
−0.08 1.30þ0.00

−0.01 -

UGC7524 0.30þ0.01
−0.00 0.70þ0.01

−0.00 0.53þ0.03
−0.05 0.70þ0.00

−0.00 1.52þ0.21
−0.15 0.88þ0.10

−0.18 −11.20þ0.41
−0.35 1.9þ0.28

−0.34 0.91þ0.03
−0.20 −11.70þ0.47

−0.72

UGC7559 - 0.70þ0.01
−0.00 - 0.70þ0.01

−0.00 - 0.98þ0.10
−0.12 −11.40þ0.21

−0.21 - 0.96þ0.00
−0.22 −12.50þ0.61

−4.27

UGC7577 - 0.70þ0.01
−0.00 - 0.70þ0.02

−0.00 - 1.00þ0.09
−0.11 −11.00þ0.30

−0.27 - 1.00þ0.11
−0.11 −12.00þ0.57

−0.29

UGC7603 0.30þ0.03
−0.00 0.73þ0.01

−0.03 0.30þ0.04
−0.00 0.91þ0.02

−0.05 0.30þ0.03
−0.00 0.91þ0.03

−0.05 - 0.4þ0.09
−0.08 1.17þ0.05

−0.08 -

UGC8490 0.39þ0.05
−0.05 1.11þ0.03

−0.03 0.48þ0.06
−0.03 1.30þ0.00

−0.01 0.48þ0.06
−0.03 1.30þ0.00

−0.01 - 1.4þ0.70
−0.00 1.30þ0.00

−0.14 -

UGC9211 0.97þ0.32
−0.53 0.71þ0.05

−0.01 1.17þ0.71
−0.55 0.85þ0.05

−0.08 1.42þ0.66
−0.70 0.98þ0.00

−0.19 −12.70þ0.80
−4.43 3.0þ0.56

−1.43 1.00þ0.03
−0.14 −12.70þ0.00

−5.78

UGC11707 0.33þ0.04
−0.03 0.70þ0.01

−0.00 0.83þ0.07
−0.09 0.70þ0.01

−0.00 1.55þ0.17
−0.20 0.70þ0.01

−0.00 −12.50þ0.25
−0.11 3.9þ0.28

−0.79 0.71þ0.10
−0.01 −12.10þ0.60

−0.13

UGC11861 0.97þ0.03
−0.04 0.70þ0.01

−0.00 1.41þ0.02
−0.08 0.70þ0.01

−0.00 1.76þ0.06
−0.23 0.70þ0.06

−0.00 −12.00þ0.53
−0.17 2.5þ0.27

−0.25 0.97þ0.06
−0.13 −11.30þ0.26

−0.39

UGC12060 0.98þ0.12
−0.13 0.70þ0.01

−0.00 1.69þ0.13
−0.24 0.70þ0.02

−0.00 2.66þ0.54
−0.40 0.98þ0.10

−0.12 −11.20þ0.29
−0.26 4.9þ0.07

−1.28 1.00þ0.09
−0.11 −10.80þ0.06

−0.47

UGC12632 1.24þ0.12
−0.16 0.70þ0.01

−0.00 2.49þ0.07
−0.43 0.71þ0.03

−0.01 2.47þ0.13
−0.44 0.71þ0.03

−0.01 - 5.0þ0.01
−0.78 0.95þ0.07

−0.17 −11.80þ0.38
−0.99

F568-V1 2.43þ0.30
−0.39 0.75þ0.03

−0.05 2.70þ0.51
−0.40 0.88þ0.06

−0.08 2.66þ0.44
−0.44 0.94þ0.02

−0.12 - 5.0þ0.00
−0.78 1.04þ0.03

−0.13 −12.10þ0.45
−5.18

F574-1 1.81þ0.08
−0.11 0.70þ0.01

−0.00 2.50þ0.11
−0.15 0.70þ0.01

−0.00 5.00þ0.00
−0.23 0.94þ0.04

−0.08 −10.30þ0.00
−0.17 5.0þ0.00

−0.80 0.98þ0.05
−0.17 −11.10þ0.21

−0.81

F583-1 1.15þ0.13
−0.24 0.70þ0.03

−0.00 1.64þ0.27
−0.36 0.75þ0.03

−0.05 1.84þ0.31
−0.37 0.96þ0.01

−0.23 −12.20þ0.54
−1.11 2.3þ0.50

−0.46 0.97þ0.00
−0.11 -

F583-4 0.41þ0.15
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FIG. 1. Results of the fit using the emergent gravity (νEG) without any external field effect. The red, dashed curves correspond to a fit
using a fixed value for aM motivated from local measurements of H0 [41] while the continuous green curves are related to a fit without
any prior on the aM parameter. Since the optimal fits do not necessarily produce the same distance scale factor, the radial scales may not
be the same. On the top of the plots we mention the radial scale obtained with the prior (corresponding to the dashed red lines), at the
bottom of the plots we mention the radial scale obtained without any prior (corresponding to the green solid lines).
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B. No prior on the acceleration scale

One can argue that the value of the Hubble constant
inferred from different data in the context of emergent
gravity may differ from its estimation assuming general
relativity. Alternatively, some small tweaks in the emergent
gravity formalism could perhaps change the 1=6 factor in
some smaller factor, while not changing the general formula.
This could for instance be a conceivable consequence of
moving from spherical symmetry to axisymmetry. If this
would be the case, the value of aM used in the previous
section may bias the result. Therefore, we produce a global
fit more favorable to emergent gravity, where the acceler-
ation scale is left as a free parameter. First, we use the local
estimate of the Hubble constant and its uncertainties as a
prior, and get a best-fit value aM ¼ 8.6 × 10−11 m=s2

corresponding to H0 ¼ 6aM=c ¼ 52.9 km=s=Mpc and a
reduced chi-square of 5.1. Then, we let the parameter aM as
completely free (no prior). The optimal acceleration scale is
then given by 6.9 × 10−11 m=s2, which corresponds to a
Hubble constant of H0 ¼ 42.6 km=s=Mpc. This value is
significantly lower than the ones obtained from local
measurements [41] or from Planck observations [43].
The reduced chi-square for this fit with no prior on aM is

4.4, showing an improvement with respect to the fit
presented in the previous section. The optimal values and
the 68% confidence intervals for the local parametersϒg and
dg are presented in Table I. Globally, these values are slightly
higher than the corresponding ones obtained in the previous
section, which is coming from a correlation with aM, but
they are still much lower than expected on average. The
optimal rotation curves are the green, solid curves displayed
on Fig. 1. Several curves are marginally improved with
respect to the fit produced using a prior on aM, like for
instance UGC4173, UGC4499, UGC5414, UGC5721,
UGC7559, or UGC7577. The inconvenient wiggles are still
present (UGC7524, UGC8490, UGC 11707).

C. Including an external field effect

Within the MOND paradigm, it is known that the
external field in which the system is embedded impacts
the local gravitational dynamics [16]. This external field
effect which appears even for a constant external field is
due to the nonlinearity of the MOND theory and is a
consequence of a violation of the strong equivalence
principle. While not mentioned in [25], and not taken into
account in, e.g., [28], a similar effect may in principle arise
in emergent gravity. This would be the most favorable
situation possible, as it should in principle allow to
significantly improve the fits, if combined with a low
value of aM.
Decomposing the total gravitational field into an internal

part g and an external field ge and using a similar
decomposition for the Newtonian gravitational acceleration
(gN þ gNe) allows us to generalize Eq. (1) taking into

account the external field contribution. As in [34], we can
use as first approximation the one-dimensional version of
Eq. (1), which becomes

g ¼ νEG

�
gN þ gNe

aM
;
g0N
aM

; R

�
ðgN þ gNeÞ

− νEG

�
gNe

aM
; 0; R

�
gNe; ð9Þ

where we assume the external gravitational field to be
constant over the system.
We produce a fit including a third local parameter for

each galaxy: the value of the external gravitational field
gNe. The reduced chi-square for the fit is now 3.5. Including
the external field effect thus improves significantly the
quality of the fit. The optimal rotation curves obtained for
this fit are presented as the green solid line in Fig. 2. As
thoroughly discussed in [34], the external field effect
improves significantly the outer part of the fitted rotation
curves for several galaxies like e.g. UGC4173, UGC499,
UGC7524, UGC7559, UGC7577, UGC12060 and F574-1.
Nevertheless, for the sake of comparison, we also

produce (red dashed line on Fig. 2) a similar fit with the
MOND transition function from Eq. (3). The reduced chi-
square for this MOND fit is 2.1, a traditionally acceptable
value for rotation curves, due to somewhat underestimated
systematics in error bars. Figure 2 clearly shows that
several fits with emergent gravity are significantly worse
than using the MOND transition function. The main reason
is the presence of wiggles in some fits (e.g. UGC7524,
UGC8490, UGC 11707) which deter significantly the
quality of the fit. These wiggles are due to the presence
of the derivative of the Newtonian gravitational acceler-
ation in the emergent gravity transition function from
Eq. (5). The local optimal parameters (ϒg, dg and the
external gravitational field gNeg) and their corresponding
68% confidence interval are given in Table I. The emergent
gravity produces fits with smaller stellar mass-to-light
ratios and systematically low distance scale factors.

IV. SOLAR SYSTEM CONSTRAINTS

As shown in the previous section, emergent gravity does
not produce high-quality fits to galaxy rotation curves, even
in the most favorable case. Nevertheless, this could be due
to the fact that the formula derived in spherical symmetry
differs significantly from the one that should be applied in
an axisymmetric case. We should thus also turn our
attention to a regime in which this formula is fully
applicable. The Solar System is a good test case since,
as a first approximation, it is reasonable to consider the Sun
as a spherically symmetric body. Moreover, because
planets are outside of the bulk of matter, the derivative
term in the transition function naturally cancels out, and
Eq. (1) with the transition function given by Eq. (5) leads to
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FIG. 2. Results of the fit using the emergent gravity (νEG) and the MOND transition function νMOND including the external field effect.
Since the optimal fits do not necessarily produce the same distance scale factor, the radial scales may not be the same. On the top of the
plots we mention the radial scale obtained with MOND (corresponding to the dashed red thick lines), at the bottom of the plots we
mention the radial scale obtained with the emergent gravity (corresponding to the thick green solid lines).
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g ¼ GM⊙
r2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aMGM⊙

p
r

; ð10Þ

with r the distance to the Sun. Considering a two-body
problem, the additional acceleration due to emergent
gravity will produce (amongst others) a time evolution
of the argument of perihelion ω given by the solution of

dω
dt

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aMGM⊙

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

nae
cos f
r

; ð11Þ

with a the semimajor axis, e the eccentricity, n ¼ 2π=P the
mean motion (P the period) and f the true anomaly. At first
order, one finds the expression of the secular advance of
perihelion produced by emergent gravity (see also Eq. (64)
from [44] for a similar calculation)

�
dω
dt

�
¼

ffiffiffiffiffiffi
aM
a

r
1 − e2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e2
: ð12Þ

The motion of planets around the Sun is inferred by
planetary ephemerides analyses from an impressive number
of different observations: radioscience observations of
spacecraft that orbited around Mercury, Venus, Mars and
Saturn, flyby tracking of spacecraft close to Mercury,
Jupiter, Uranus and Neptune and optical observations of
all planets [45–50]. Estimations of anomalous supplemen-
tary advances of perihelia have been derivedwith the INPOP
(Intégrateur Numérique Planétaire de l’Observatoire de
Paris) ephemerides [48] and are given in Table II. These
values correspond to the interval in which the differences of
postfit residuals in the ephemerides analysis are below 5%.
Similar results have also been obtained by the Ephemerides
of Planets and the Moon (EPM) [50].
The secular advance of the argument of perihelion for the

different planets produced by emergent gravity is seven
orders of magnitude larger than what is currently allowed
by observations, an unacceptable discrepancy. This is

shown in Table II where the value of the advance of
perihelion due to emergent gravity using an acceleration
scale of aM ¼ 6.9 × 10−11 m=s2 (determined from the fit to
galactic rotation curves in the most favorable case, see
previous section) is presented. Larger values of aM would
lead to an even larger discrepancy. Let us note that a
hypothetical Galactic external field effect would add a
quadrupole term to the problem, which is a severe con-
straint for MOND transition functions [34,46,51,52], but
would not reduce the reported discrepancy for emergent
gravity. Such a difference, already mentioned in [27], is
unacceptable and such an effect would have undoubtedly
been observed.

V. CONCLUSIONS

The emergent gravity developed by Verlinde [25] leads
to predictions similar to the MOND phenomenology, but
not quite identical. In this paper, we study its impacts on
galactic rotation curves and within the Solar System. At
galactic scales, the emergent gravity formula produces fits
to rotation curves that are less satisfactory than using
MOND, a conclusion also reached in a similar analysis
[53]. First of all, the Hubble constant that is demanded by
the data is extremely low compared to that inferred from the
cosmic microwave background or other measurements
(42.6 km=s=Mpc, see Sec. III B). Moreover, the preferred
distances are systematically low, and the best-fit stellar
mass-to-light ratios tend to be rather low too. And even by
letting all these parameters free, and with the help of a
putative external field effect, the fits produce reduced chi-
square significantly higher than the MOND ones. This is
due to the fact that emergent gravity produces wiggles in
the rotation curves that are unobserved in the data. We
caution that these conclusions rely on the assumption that
the transition between the Newtonian and emergent gravity
regimes derived in spherical symmetry is roughly appli-
cable to axisymmetric systems. Nevertheless, since the
problem is rooted in the dependence on the radial derivative
of the Newtonian acceleration, we suspect this generic
problem would not go away in a more rigorous axisym-
metric case. The general lesson from this is that the MOND
formula, whatever its origin, tends to produce a quite
reasonable description of the observed data in rotationally
supported galaxies, and that a force law deviating from it is
not guaranteed to be as successful, as illustrated here.
We then tested the predicted weak-field transition from

emergent gravity in a regimewhere it should a priori be fully
applicable, i.e. in the Solar System. There, emergent gravity
produces a deviation from Newtonian gravity seven orders
of magnitude larger than what is allowed by current
measurements. This rules out the present emergent gravity
weak-field formula with high confidence, unless a screen-
ing-like mechanism can be found to reduce strongly this
deviation in the Solar System. One example of such a
mechanism is actually proposed in [54]where a scenario of a

TABLE II. Col. 2: estimation of the secular advance of the
argument of perihelion ω for the different planets for the
emergent gravity (see Eq. (12) with aM ¼ 6.9 × 10−11 m=s2.
Col. 3: estimation of a secular advance of periastron from the
INPOP planetary ephemerides (from [48]). Emergent gravity
predicts effects on the planetary motion that are seven orders of
magnitude too large compared to observations.

hdωdt i from Eq. (12) hdωdt i from [48]
mas=cy mas=cy

Mercury −1.01 × 107 0.4� 0.6
Venus −0.82 × 107 0.2� 1.5
Earth −0.70 × 107 −0.2� 0.9
Mars −0.57 × 107 −0.04� 0.15
Jupiter −0.31 × 107 −41� 42
Saturn −0.23 × 107 0.15� 0.65
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field-like dark mass is suggested, with maximally aniso-
tropic pressure. As noticed in [54,55], this leads to devia-
tions much smaller in the Solar System. Nevertheless, this
scenariomight lead to aCatch-22 problem since theMOND-
like behavior is completely suppressed (this can be noticed
in Eq. (14) from [54] where the logarithmic term responsible
for theMOND-like behavior disappears in the casew0 ¼ −1
which corresponds to a field-like dark mass) and is therefore
not viable either to explain galaxy rotation curves.
The two problems addressed in this communication may

hypothetically be solved by altering the current predictions
from emergent gravity. For instance, a mechanism could be

found to reduce the expected deviation from general
relativity in the Solar System. Nevertheless, the nature
of the two problems which we uncovered is very different:
the discrepancy at galactic scales is rooted in the depend-
ence on the radial derivative of the Newtonian acceleration,
while this derivative has no impact in the Solar System
predictions. This fundamental difference may be an
obstacle for modifying the current formalism in order to
fit both types of observations. In the absence of an
alteration of the present formalism, we conclude that the
emergent gravity as developed in [25] is not viable
observationally.
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