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Academic Editors: Mariusz P. Dąbrowski, Manuel Krämer and Vincenzo Salzano
Received: 7 April 2017; Accepted: 19 May 2017; Published: 24 May 2017

Abstract: We briefly review the basics of Weyl geometry and its natural extension by a general
linear ”distortion” of the metric connection by a vector field. A special class of the connections
has torsion but retains the Weyl’s semi-metricity condition. We present ghost-free gravitational
theories in this geometrical setup and highlight their possible cosmological applications, such as
new self-tuning solutions and new bouncing solutions found in the quadratic-curvature theories.
The vector distortion can mimic the cosmological effects of dark matter.
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1. Introduction

General Relativity (GR) provides a beautiful description of the gravitational interaction within
the framework of Riemannian geometry, as the curvature of the spacetime. A crucial assumption in
the traditional description of GR is the identification of the connection with the Christoffel symbol
of the metric, which therefore also determines the affine structure of the spacetime. However,
in geometry, this structure is a priori independent, and much of its richness is lost by stipulating
the connection as the Christoffel symbol of the metric. In physics, on the other hand, one usually
regards connections as fundamental dynamical objects (e.g., in Yang–Mills theories), so that depriving
it of independent dynamics in the case of gravity can jeopardise its gauge interpretation in the usual
manner. Thus, one is naturally led to consider more general connections also in the description of the
gravitational interaction.

Remarkably, the Einstein–Hilbert action with an independent connection is still equivalent
to GR because the Levi–Civita solution is recovered dynamically for the connection (up to an
irrelevant projective mode). However, more general actions with an independent connection lead
to different physical theories than with the metric connection [1,2], and the new effects reveal a
geometrical interpretation in terms of non-metricity and torsion [3–7]. An approach that lies between
the traditional metric restriction and unleashing the full affine connection (which in four dimensions
has 64 components), is to let the geometry go non-Riemannian only in specifically motivated forms.
An outstanding instance of this approach is the Weyl geometry [8] where a vector field is added
to the connection to make it invariant under local rescalings of the metric when the vector field
simultaneously transforms as a U(1) gauge field. If the (effective) action is not homogeneous of order
0 in the metric, however, the invariance is broken (unless one introduces additional ingredients).
In general then, the theory can have scales and the vector field in the connection participates in the
dynamics. Interesting aspects of such theories have been considered recently, e.g., [9–11]. In this note,
we will introduce a simple extension of the Weyl connection and discuss gravitational theories that can
be consistently formulated within the extended class of geometries. The generic quadratic-curvature
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action will be shown to reduce to a four-parameter vector-tensor theory that suggests a variety of
implementations in cosmology.

2. Geometry with Vector Distortion

In Weyl’s extension of the Riemannian geometry, the metric-compatibility condition is replaced by
the so-called semi-metricity condition, ∇̂µgαβ = −2Aµgαβ where Aµ is a new vector field introduced
to realise an invariance under a rescaling (usually called Weyl transformation) gµν → e2Λ(x)gµν with
the simultaneous U(1) transformation Aµ → Aµ − ∂µΛ(x). If we assume vanishing torsion, this new
condition can be easily solved to obtain the connection in the usual way as

Γ̂α
βγ = Γα

βγ −
(

Aαgβγ − 2A(βδα
γ)

)
, (1)

where Γα
βγ is the Levi–Civita connection. The vector field enters in such a way that the aforementioned

Weyl transformation leaves the connection invariant. This in turn means that the Riemann tensor of
this connection will also exhibit the Weyl invariance. If we momentarily forget about this invariance,
the connection (1) calls for a natural extension to include all the possible terms linear in the vector field
and with no derivatives, i.e., the Weyl connection can be extended to [12]

Γ̂α
βγ = Γα

βγ − b1 Aαgβγ + b2δα
(β Aγ) + b3δα

[β Aγ] (2)

with bi some constant parameters. The difference between this connection and the Levi–Civita
connection goes under the name of distortion and, in the present case, it contains both non-metricity
and torsion.

The analogous of the (in-)compatibility condition for the metric can be expressed as

∇̂µgαβ = (b3 − b2)Aµgαβ + (2b1 − b2 − b3)A(αgβ)µ . (3)

A remarkable case within this family of theories is 2b1 − b2 − b3 = 0, that makes Equation (3)
invariant under Weyl transformations. Thus, this particular case gives a generalisation of the Weyl
geometries where the connection also contains a torsion piece given by the same Weyl vector.
The extended geometries defined by Equation (2) will be our starting point to construct gravitational
theories, and we will see that the semi-metricity of the connection emerges as a crucial and rather
generic requirement for viable theories.

Let us note that in the context of metric-affine gauge theory, many of the exact solutions that have
been obtained in the past, would be described by an affine connection of the form (2). These “triplet”
solutions, which have only excited the vector modes, that are also all proportional to each other in
the three distinct sectors of geometry, have been mainly obtained for spherically symmetric ansätze,
see [13] for a summary. The triplet feature of those solutions was probably due to the difficulty
of finding more general exact solutions in metric-affine gauge theories, which, nevertheless, may
demonstrate the relevance of the simple parameterisation in the study of more elaborated theories.
Here, we take the connection in the form (2) to begin with, and aim to find cosmological solutions.

Before entering into the construction of the gravitational actions, let us introduce the key
geometrical object, namely the Riemann tensor defined as

Rµνρ
α ≡ ∂νΓ̂α

µρ − ∂µΓ̂α
νρ + Γ̂α

νλΓ̂λ
µρ − Γ̂α

µλΓ̂ν
νρ . (4)

From this object, we can define three different traces: the usual Ricci tensor Rµν ≡ Rµαν
α,

the co-Ricci tensor Pµ
α ≡ gνρRµνρ

α and the homothetic tensor Qµν ≡ Rµνα
α.
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3. Gravitational Lagrangians with Vector Distortion

In this section, we will discuss the theories that arise when considering general Lagrangians
depending on the curvature invariants associated with the vector-distorted connection. We review
two classes of gravitational theories, given by the f (R) actions and the most general (even-parity)
quadratic curvature actions, and end by briefly commenting on the cubic curvature actions.

3.1. f (R) Theories

We start by considering the popular theories described by an arbitrary function of the Ricci scalar.
Our connection with vector distortion yields

R = R− β1 A2 + β2∇ · A , (5)

where we have defined β1 ≡ −3[4b2
1 − 8b1(b2 + b3) + (b2 + b3)

2]/4 and β2 ≡ −3(2b1 + b2 + b3)/2 and
R denotes the Ricci scalar of the Levi–Civita part of the connection. Now, considering a Lagrangian
of the type f (R), we straightforwardly see that the field equations impose the vector field to be
a pure gradient. This means that, despite having a vector field, the theory only contains one scalar
propagating dof . The usual approach to these theories reveals that the Lagrangian can be expressed in
the equivalent form [12]

L = ϕR +
β2

2
4β1 ϕ

∂µ ϕ∂µ ϕ−V(ϕ) (6)

with ϕ the mentioned scalar dof and V(ϕ) a potential whose form depends on the original function f .
It is now apparent that we recover a Brans–Dicke theory. Interestingly, the semi-metric geometry with
b3 = 2b1 − b2 highlighted above gives β2

2 = 6β1 and the resulting theory describes a non-propagating
scalar field, similar to the case of f (R) theories within an affine approach [1,2]. The reason why the
scalar field does not propagate is that the kinetic term can be fully absorbed by performing a conformal
transformation and, thus, the scalar field only appears as an auxiliary field. If we consider a quadratic
function, the Einstein frame description of the theory is given by

L =
M2

pl

2
R̃− 1

2
g̃µνφ̃,µφ̃,ν −

3
4

M2
pl M

2

(
1− e

−
√

2
3α

φ̃
Mpl

)2

, (7)

where M2 stands for the new mass scale introduced and we have defined α ≡ 1− β2
2/(6β1). We have

thus obtained the one-parameter family of potentials that precisely corresponds to the generalisation
of the Starobinsky model (α = 1) dubbed the α−attractor [14]. In [15], this result was also obtained
by considering gravitational actions with auxiliary vector fields, whose relation with broken scale
symmetry has then been considered further [16,17].

3.2. Quadratic Actions

The previous section has shown that theories based on the Ricci scalar associated to connections
with vector distortion reduce to scalar-tensor theories of the Brans–Dicke type. Obtaining actual
vector-tensor theories requires going beyond the Ricci scalar to actions with more general geometrical
objects. A natural family of theories to contemplate is the class of Lagrangians that are quadratic in
curvature invariants. Let us then write down the most general quadratic action and D−dimensions
and respecting a parity symmetry
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S =µ
∫

dDx
√
−g
[
R2 +Rαβγδ

(
d1Rαβγδ + d2Rγδαβ − d3Rαβδγ

)
− 4
(

c1RµνRµν + c2RµνRνµ + Pµν (c3Pµν + c4Pνµ − c5Rµν − c6Rνµ)

+Qµν(c7Qµν + c8Rµν + c9Pµν)
) ]

. (8)

with µ a parameter of dimension 4− D and di, ci some dimensionless constants. To avoid ghosts
associated to higher than second-order field equations, it is crucial that the theory should reduce to
the usual Gauss–Bonnet term when the connection reduces to the Levi–Civita one, i.e., for Aµ = 0.
This imposes the following constraints for the parameters

d1 + d2 + d3 =
6

∑
i=1

ci = 1 . (9)

We can now express everything in terms of curvatures of the Levi–Civita connection and the
vector field as follows [12,18]:

L(2) = −
1
4

FµνFµν + ξ A2∇ · A− λA4 − βGµν Aµ Aν + γ1(∇ · A)2 +
(
γ2 A2 + γ3∇ · A

)
R (10)

where Fµν = ∂µ Aν− ∂ν Aµ is the usual field strength and the parameters ξ, λ, β and γi are given in terms
of the original parameters appearing in (8). Although we have been careful to guarantee that, in the
absence of the vector distortion, the theory is healthy, we see that the vector field in general propagates
four dofs due to the presence of kinetic terms breaking the U(1) gauge invariance so that all four
components of the vector field will be dynamical, one of which will be associated to an Ostrogradski
instability. Another way of seeing this pathology more clearly is by introducing a Stückelberg field χ

to restore the U(1) symmetry via the replacement Aµ → Aµ + ∂µχ so that the γ1-term (∇ · A)2 will
give rise to the higher order derivative term (�φ)2 that, again, will be responsible for the Ostrogradski
instability. Similarly, the non-minimal derivative couplings with γ2 and γ3 will lead to the presence
of ghosts. In order to render the theory stable, we thus need to impose that γ1 = γ2 = γ3 = 0.
Remarkably, these conditions lead directly to the class of semi-metric, or generalised Weyl geometries
with b3 = 2b1 − b2, discussed above (and in [18] in more detail). Thus, non-trivial quadratic-curvature
theories exist only for the semi-metric class of geometries. For completeness, we also include the usual
Einstein–Hilbert term so that the final vector-tensor theory reads

L(2) =
1
2

M2
PlR−

1
4

FµνFµν +
1
2

M2 A2 − λA4 + ξ A2∇ · A− βGµν Aµ Aν . (11)

where the Einstein–Hilbert term has additionally provided the vector field with a mass M. This action
was obtained for the case of purely Weyl geometry in [11], but the result can be extended to the whole
family of generalised Weyl geometries. One important feature of these theories is that ξ, λ and β are
actually proportional to D− 4 so that they vanish in four dimensions. In that case, the theory reduces
to a simple Proca field whose mass is parametrically given by the Planck mass. This would make
it an ideal candidate for dark matter, as suggested in [11]. Because its mass is typically very large,
the isotropy theorem of [19–21] naturally applies for the vector.

In order to obtain more general theories, a suitable limit of the original parameters together
with D → 4 should be taken. In that case, the ξ-term describes a vector Galileon interaction, which
represents one of the healthy non-gauge invariant derivative self-interactions for a vector field [22–25].
Similarly, the β−term is the only healthy coupling of the vector field to the curvature. The coupling to
the Einstein tensor could be relevant in the generation of cosmic magnetic fields [26], since the coupling
could provide a dynamical explanation for the old Schuster–Blackett phenomenological law that states
a proportionality between the angular momentum and the magnetic moment of astrophysical objects.
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The cosmological phenomenology of the full four-parameter action (11) was studied in [18].
The very rich phenomenology offered by these theories can be traced to the non-dynamical nature
of A0. This feature allows it to be algebraically solved in terms of H and, when plugged into the
Friedman equation, the resulting cosmology is driven by an effective Friedman equation with a
non-linear source depending on the energy density of the present matter (other than the vector). More
explicitly, we eventually obtain an equation of the form F(H2, ρ) = 0, with F some non-trivial function,
that determines the homogeneous cosmology (see Figure 1). Isotropic de Sitter solutions are common
attractor solutions in these theories, so they could naturally give cosmologies with dynamical dark
energy. In fact, for some choices of the parameters, the scale of the de Sitter solution is determined by
the theory parameters and is insensitive to the presence of a cosmological term. A minimal example
model is given by erasing the two last terms from (11): the effect of the vector distortion then reduces
to nothing but a cosmological constant (in the isotropic background). The model given by erasing
instead the middle two terms can realise self-tuning cosmologies, so that Minkowski is a solution even
if a cosmological constant is present. Another characteristic feature of these theories is the existence of
cosmologies with a sudden singularity where the derivative of the Hubble expansion rate diverges,
but the energy density and the Hubble parameter remain finite. Finally, the general theories (11) can
also accommodate non-singular bouncing cosmologies without a violation of the null energy condition,
or a re-collapsing phase without a spatial curvature. In Figure 1, we show the phase space of two
specific models where some of the discussed features are shown. Let us finally note that the coupling
to the Einstein tensor will lead to the generation of an anomalous propagation speed of gravitational
waves whenever around a non-trivial background of Aµ. In these cases, the parameter β will be subject
to the constraints obtained in [27] from the Hulse–Taylor binary pulsar.

Figure 1. In this figure, we show the cosmological evolution for two specific examples of the
vector-tensor theory described by (11). The left panel corresponds to β = 3, λ = 0.2, ξ = 1/3
and M2 = 0.5M2

Pl and the right panel to β = 0, λ = 1, ξ = 6 and M2 = 2.5M2
Pl. The arrows indicate the

flow generated by the time evolution. The blue points are the finite-H sudden singularities mentioned
in the main text, and the black points correspond to bouncing and re-collapsing universes. We also
show the de Sitter solutions that can be both attractor or repeller solutions. An interesting property of
the models, such as the one shown in the left panel, is the compactness of the phase space so that both
ρ and H are bounded.
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3.3. Cubic Theories

The theories constructed out of quadratic curvature terms give rise to an interesting class
of vector-tensor theories (11), but care had to be taken to sort out the healthy ones. In four
dimensions, the Gauss–Bonnet already saturates the Lovelock series of allowed healthy actions
for the Levi–Civita connection, and so one might expect that no healthy interactions for the
connection with vector distortion can be constructed. However, we can use the result found by
Horndeski [28], that second-order field equations result from the non-minimal coupling LµναβFµνFαβ

with Lµναβ = − 1
2 ε µνρσεαβγδRρσγδ the double dual Riemann tensor. This motivates consideration of

cubic terms involving the double dual Riemann tensor. It was shown in [11,18] that these terms give
rise to the following vector-tensor interactions:

L(3) = LµναβFµνFαβ + 2(2b1 + b2 + b3)F̃µα F̃ν
α∇µ Aν

+
1
2

[(
2b1 − b2 − b3

)2
A2gµν − 2

(
4b2

1 + (b2 + b3)
2
)

Aµ Aν
]

FµαFν
α . (12)

The first line is the aforementioned Horndeski vector-tensor interaction plus another non-gauge
invariant derivative self-interaction for the vector field. The second line has more standard harmless
self-interactions for the vector field. The cosmology of the pure Horndeski interaction was studied
in [29] and in [30], where it was shown that the Horndeski term typically introduces pathologies
whenever it dominates. The effects of the additional terms appearing in (12) remain to be studied
and it is possible that the pathologies found in the pure Horndeski case could be alleviated in the
general case.

4. Conclusions

A vector distortion of the affine connection provides a natural geometric framework wherein to
interpret existing vector-tensor theories and to derive consistent novel theories. The case of the f (R)
theory, where the vector effectively reduces to a scalar dof, presents one of the possible geometrical
realisations of the α-attractor generalisation of the Starobinsky inflation. We have also reviewed the
perhaps more interesting theories that are obtained by considering generic quadratic and cubic actions
in the curvature. These theories show a very rich cosmological phenomenology, including de Sitter
phases, bounces, re-collapsing universes without spatial curvature, and self-tuned solutions. However,
this required the assumption of a limiting procedure which retains the four types of vector interaction
terms in four dimensions. Without any such assumptions, the generic prediction is a viable massive
vector field candidate for dark matter.
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