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Abstract

Most existing theories of dark energy and/or modified gravity, involving a scalar degree of
freedom, can be conveniently described within the framework of the Effective Theory of Dark
Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective
approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the
lapse function. Although this dependence generically signals the presence of an extra scalar
degree of freedom, theories that contain only one propagating scalar degree of freedom, in
addition to the usual tensor modes, can be constructed by requiring the initial Lagrangian to
be degenerate. Starting from a general quadratic action, we derive the dispersion relations
for the linear perturbations around Minkowski and a cosmological background. Our analysis
directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST)
theories. For these theories, we find that one cannot recover a Poisson-like equation in the
static linear regime except for the subclass that includes the Horndeski and so-called “beyond
Horndeski” theories. We also discuss Lorentz-breaking models inspired by Horava gravity.

1 Introduction

The observation of the present cosmological acceleration has spurred the study of a wide range of
theories of dark energy and modified gravity. The number of existing models is now so large that
an effective approach encompassing as many models as possible is an efficient way to synthesize the
various predictions and to confront theoretical models with present and forthcoming data. Since
many models of dark energy and modified gravity, although not all of them, involve a scalar field
in an explicit or implicit way, an effective description based on ADM treatment in the so-called
unitary gauge where the scalar field is spatially uniform, is particularly useful and has been actively
developed in the last few years.

Often called Effective Theory of Dark Energy [1–7], this approach (see also [8–12] for other
effective approaches to scalar-tensor theories) is inspired by the Effective Field Theory of Infla-
tion [13,14] and is based on an action whose building blocks are the lapse N , the shift N i and the
spatial metric hij , which all appear in the ADM metric,

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) . (1.1)
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The shift N i and the spatial metric hij appear in the Lagrangian in combinations that behave as
three-dimensional tensors under time-dependent spatial diffeomorphisms. One such combination
is the “velocity” of the spatial metric, expressed by the extrinsic curvature tensor Kij . Another
one is the 3-dimensional Ricci scalar R.

The time derivative of the lapse is usually not included in the initial action because the presence
of Ṅ generically leads to an additional propagating degree of freedom. However, there are special
cases where the action depends on Ṅ without leading to an extra degree of freedom.1 For instance,
starting from an action whose ADM form in the unitary gauge does not contain any Ṅ and making
a conformal transformation of the metric that depends on the scalar field gradient leads to an action
with an Ṅ dependence. In that case, the presence of Ṅ terms is not problematic because there is
a degeneracy in the kinetic terms, which prevents the existence of a ghost-like degree of freedom
(see [7] and [15]).

In the present work, we consider systematically Lagrangians quadratic in linear perturbations
that contain time (and space) derivatives of δN , such as to include all possible terms containing
at most two (space or time) derivatives.2 The corresponding quadratic action, in an expansion
around the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric ds2 = −dt2 + a2(t)dx2,
can be written in the form

Squad =

∫
d3x dt a3M

2

2

{
δKijδK

ij −
(

1 +
2

3
αL

)
δK2 + (1 + αT)

(
R
δ
√
h

a3
+ δ2R

)
+H2αKδN

2 + 4HαBδKδN + (1 + αH)RδN + 4β1δKδṄ + β2δṄ
2

+
β3

a2
(∂iδN)2

}
,

(1.2)

where H ≡ ȧ/a is the Hubble rate and δ2R stands for the second order term in the perturbative
expansion of R. Although the spatially diff-invariant combination denoting the “velocity” of the
lapse is Ṅ −N i∂iN , the action above contains only δṄ , to which the full combination reduces at
linear order.

The above quadratic action extends the one derived in [4] and written in terms of the dimen-
sionless time-dependent functions αA (introduced in [16] and [17]) in [7], with the addition of
four new functions of time: the parameter αL, and the three parameters βA that characterize the
terms containing (time or space) derivatives of δN . These parameters can be given the following
interpretation:

• αL corresponds to a detuning of the extrinsic curvature terms. When αL = 0 one recovers the
combination KijK

ij −K2, which is part of the four dimensional Ricci scalar (via the Gauss-
Codazzi identity). This detuning appears in theories that already in their original formulation
assume a preferred time slicing, such as Horava gravity [18] and its extensions [19–22].

• β1 is analogous to the kinetic braiding αB for the additional degree of freedom present in
higher-order theories.

• β2, similarly, is the analogue of the kineticity αK.

• β3 is associated to the gradient energy of the additional degree of freedom. This comes from
the acceleration of the unit vector normal to the uniform scalar field hypersurfaces, which in
unitary gauge is given by ai = ∂iN/N .

1When higher time derivative terms can be treated perturbatively below some energy scale, the extra degree of
freedom is not excited. Here we consider higher time derivatives at the same level as the other terms.

2For instance, since R contains two spatial derivatives, we do not include a term such as RδṄ , which depends
on three derivatives.
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As will be shown explicitly in Sec. 2, one can obtain an action of the form (1.2) by starting from
a covariant scalar-tensor action and choosing a slicing where the scalar field φ depends only on time.
Whereas usual scalar-tensor Lagrangians, which depend only on φ and its first order gradient ∇µφ,
lead to effective perturbative actions where only αK can be nonzero, scalar-tensor Lagrangians that
depend as well on second-order derivatives ∇µ∇νφ, lead to a much richer phenomenology. Allowing
for higher-order derivatives in the Lagrangian is potentially dangerous as, in general, this yields
higher-order equations of motion requiring extra initial conditions, thus signalling the presence of
an extra scalar degree of freedom associated with instabilities.

However, it is possible to find higher-order scalar-tensor theories that contain a single scalar
degree of freedom (in addition to the tensor modes associated with gravity) by imposing some
appropriate restrictions on the initial Lagrangian. For instance, requiring that the associated
Euler-Lagrange equations are second order leads to Horndeski theories [23], associated with nonzero
αK, αB and αT (while αL, αH and the βA vanish). Overcoming the prejudice that second order
equations of motion were necessary to get only one propagating scalar mode, the introduction of
a larger class of models, often called “beyond Horndeski” theories, showed that the absence of
an extra scalar mode is compatible with third order Euler-Lagrange equations [17, 24].3 These
“beyond Horndeski” theories give a nonzero αH, but αL and the βA are still vanishing.

In [26,27], it was realized that all higher-order scalar-tensor theories that contain a single scalar
mode can be understood as degenerate theories, dubbed Degenerate Higher-Order Scalar-Tensor
(DHOST) theories.4 Here, degenerate means that the Hessian matrix obtained by taking the
second derivatives of the Lagrangian with respect to velocities5 is a degenerate matrix (see [30–32]
for recent considerations on the notion of degeneracy). All DHOST theories up to quadratic order,
i.e. whose Lagrangian depends quadratically on ∇µ∇νφ, were identified in [26]. The systematic
classification of DHOST theories up to cubic order was recently completed in [33].

Horndeski and “beyond Horndeski” theories are included in the class of DHOST theories.
In fact, they belong to the same subclass of DHOST theories and can be related to each other
via disformal transformations [17, 28, 29, 34, 35]. But, along this special subclass that contains
Horndeski and “beyond Horndeski” theories, DHOST theories include many other subclasses of
theories: six other subclasses in the purely quadratic case, eight in the purely cubic case and 24
other subclasses for theories with both quadratic and cubic terms.

The effective description of dark energy models is a powerful tool to confront models with
present and future observations, see for instance [36–49]. It is also an efficient way to classify the
phenomenology of various theories [50,51]. So far, the effective approach has mainly been used for
Horndeski and beyond Horndeski theories, although it has also been extended to include models
such as Horava gravity [39,52–54]. The purpose of this work is to generalize this effective approach
in order to include DHOST theories.

The layout of this paper and our main results can be summarized as follows. In the next
section, we briefly present the DHOST theories (up to cubic order) and derive their Lagrangian
in the unitary gauge. The degeneracy of DHOST theories implies that the parameters in action
(1.2) cannot be arbitrary but must satisfy some consistency relations. We find that there are two
such sets of degeneracy conditions, given in Sec. 2.3, which we name CI and CII: they relate the

3See also [25] for an earlier example based on the disformal transformation of the Einstein-Hilbert Lagrangian.
4The theories discovered in [26] were also named Extended Scalar-Tensor (EST) theories in [28]. We prefer to

use the more specific terminology of DHOST theories, introduced in [29].
5More precisely, as explained in detail in [26], one first introduces an auxiliary variable that includes the time

derivative of the scalar field φ̇, as well as the lapse and the shift, so that all second-order time derivatives φ̈ are
absorbed by the velocity of this auxiliary variable and there are no longer time derivatives of the lapse and of the
shift. Thus, the kinetic part of the resulting Lagrangian does not depend anymore on an acceleration but just on
velocities.
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parameters β1, β2, β3, with αL, αH and αT. The first set of conditions is characterized by αL = 0,
while β1 remains arbitrary. By contrast, in the second set, αL is arbitrary while all β’s are fully
determined in terms of αH, αT and αL. This implies that all the DHOST theories we investigate
can be regrouped into three main families: those satisfying only CI, those verifying only CII, and
finally the theories for which both sets of conditions CI and CII are valid.

In Sec. 2.4, we also study how the action (1.2) transforms under the most general conformal-
disformal transformation, allowing the conformal and disformal factors to depend on the scalar
field, as well as on X ≡ ∇µφ∇µφ. After the transformation, the action takes the same form as
(1.2), with its parameters related to those of eq. (1.2) by the transformations given in eq. (2.22).
In general, all the parameters, except αL, are modified but we show that both sets of conditions
CI and CII are preserved under these transformations. The two sets of conditions CI and CII share
a common condition, which implies that only one scalar mode appears in the unitary gauge, but
this condition is not enough to guarantee that this remains true in an arbitrary gauge.

The family of DHOST theories that satisfy CI but not CII coincides with theories that are related
to Horndeski via (conformal-) disformal transformations. For all the other theories, i.e. those
satisfying CII, we find that the effective Newton constant in the analog of the Poisson equation
becomes infinite, as a direct consequence of one of the conditions in CII. Therefore, one cannot
recover a Poisson-like equation in the static linear regime for these theories, in contrast with
theories verifying only CI, where β1 is unconstrained. If this peculiar behaviour persists at the
nonlinear level, this would indicate that only theories that are related to Horndeski via conformal
or disformal transformations are phenomenologically viable.

We examine the dispersion relation for scalar modes around Minkowski in Sec. 3 and in a cos-
mological background in Sec. 4. In both cases, we observe that the dispersion relation ω2 = ω2(k2)
is in general a rational function of k2. This drastically simplifies to a linear dispersion relation
ω2 = c2

sk
2 when the degeneracy conditions CI or CII are satisfied. In the cosmological context, we

also derive the quadratic action for the curvature perturbation on uniform field hypersurfaces ζ
and show that it is conserved on super-Hubble scales. Then, in Sec. 5 we discuss two classes of
Lorentz-breaking theories that have been introduced in the literature. Finally, we present some
conclusions in the final section. We have also added several appendices, where more technical
details are provided.

2 DHOST theories

In this section, we present a large class of scalar-tensor theories whose action, which depends on
a metric gµν and a scalar field φ, leads to a quadratic action of the form (1.2) when written in
the unitary gauge. More precisely, we assume that the Lagrangian depends not only on φ and its
gradient φµ ≡ ∇µφ as usual, but also on its second derivatives φµν ≡ ∇µ∇νφ.

2.1 Covariant action

Allowing for a dependence on φµν up to cubic order, we consider an action of the form

S[g, φ] =

∫
d4x
√
−g
[
P (X,φ) +Q(X,φ)2φ+ f2(X,φ) (4)R+ Cµνρσ(2) φµν φρσ

+f3(X,φ) (4)Gµνφ
µν + Cµνρσαβ(3) φµν φρσ φαβ

]
, (2.1)

where the functions f2 and f3 depend only on the scalars φ and X ≡ φµφµ; (4)R and (4)Gµν denote,
respectively, the usual Ricci scalar and Einstein tensor associated with the metric gµν .
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The tensors C(2) and C(3) are the most general tensors constructed from the metric gµν and
the first derivative of the scalar field φµ. It is easy to see that the quadratic terms can be written
as

Cµνρσ(2) φµν φρσ =
5∑

A=1

aA(X,φ)L
(2)
A , (2.2)

with

L
(2)
1 = φµνφ

µν , L
(2)
2 = (2φ)2 , L

(2)
3 = (2φ)φµφµνφ

ν ,

L
(2)
4 = φµφµρφ

ρνφν , L
(2)
5 = (φµφµνφ

ν)2 .
(2.3)

Similarly, the cubic terms can be written as

Cµνρσαβ(3) φµν φρσ φαβ =
10∑
A=1

bA(X,φ)L
(3)
A , (2.4)

where

L
(3)
1 = (2φ)3 , L

(3)
2 = (2φ)φµνφ

µν , L
(3)
3 = φµνφ

νρφµρ ,

L
(3)
4 = (2φ)2 φµφ

µνφν , L
(3)
5 = 2φφµφ

µνφνρφ
ρ , L

(3)
6 = φµνφ

µνφρφ
ρσφσ ,

L
(3)
7 = φµφ

µνφνρφ
ρσφσ , L

(3)
8 = φµφ

µνφνρφ
ρ φσφ

σλφλ ,

L
(3)
9 = 2φ (φµφ

µνφν)2 , L
(3)
10 = (φµφ

µνφν)3 .

(2.5)

In general, theories with an action of the form (2.1), which depends on second-order derivatives
of φ, contain two tensor modes and two scalar modes, one of which is associated with a so-called
Ostrogradsky instability [55, 56]. However, it is possible to choose special functions aA and bA in
the terms of the Lagrangian (2.2) and (2.4) so that the corresponding theory is degenerate and
contains at most one propagating scalar mode. This class of theories, also known as DHOST
theories, has originally been identified at quadratic order in φµν (i.e. with the functions f2 and
aA only) in [26] and further studied in [27–29, 57] (see also [58] for an approach to scalar-tensor
theories based on differential forms).

The identification of DHOST theories has recently been extended up to cubic order, i.e. by
including the second line of (2.1), in [33] and the interested reader will find the full classification
there (see Table 1 for a short summary). The DHOST theories include all Horndeski theories
but also new theories that lead to higher-order Euler-Lagrange equations even if no extra scalar
mode propagates. In summary, there exist seven classes of purely quadratic theories (four classes
with f2 6= 0 and three classes with f2 = 0) and nine classes of purely cubic theories (two with
f3 6= 0 and seven with f3 = 0). These quadratic and cubic classes can be combined to yield hybrid
theories, involving both quadratic and cubic terms, but all combinations are not possible: only 25
combinations (out of 63) lead to degenerate theories, often with extra conditions on the functions
aA and bA in the Lagrangian (see [33] for details).

2.2 (3+1) decomposition in the unitary gauge

We now wish to reexpress the action (2.1) in ADM form in the unitary gauge. For simplicity, we
discuss here only the quadratic case. More details about the calculations and their extension to
cubic theories are given in App. A.
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In order to write the (3 + 1) decomposition of the action (2.1), it is convenient to use the
notation of [26,27] and introduce the auxilary variables6

A ≡ 1

N
Dtφ ≡

1

N
(φ̇−N i∂iφ) , V ≡ 1

N
DtA . (2.6)

The action (2.1) can then be expressed in terms of V , corresponding to the velocity of A, and of
the extrinsic curvature tensor,

Kij ≡
1

2N

(
ḣij −DiNj −DjNi

)
, (2.7)

whereDi denotes the covariant derivative associated with the spatial metric hij . The full expression
for the action in an arbitrary gauge can be found in [27].

Here, we restrict our derivation to the so-called unitary gauge, where the scalar field is uniform,
i.e. such that

∂iφ = 0 (unitary gauge) . (2.8)

In the unitary gauge, the quantities A and V defined above reduce to

A =
φ̇

N
, V ≡ 1

N

(
Ȧ+A

N i∂iN

N

)
(unitary gauge) . (2.9)

Ignoring the P and Q terms of the Lagrangian, which do not play any role for the degeneracy,
we can compute the ADM form of the elementary quadratic and cubic Lagrangians (2.3) and (2.5)
in the unitary gauge. Their expressions are given in App. A. One can also obtain the analogous
expression for the terms f2

(4)R and f3
(4)Gµνφ

µν by using the Horndeski Lagrangians, as explained
in the appendix.

In the quadratic case, we find that the total ADM action in the unitary gauge is given by

S =

∫
d3x dtN

√
hL , (2.10)

with

L = f2R− 2f2φAK + (f2 + a1A
2)KijK

ij − (f2 − a2A
2)K2

+
[
a1 + a2 − (a3 + a4)A2 + a5A

4
]
V 2 +A(4f2X + 2a2 − a3A

2)KV

+
[
4f2XA

2 − (2a1 − a4A
2)A2

] ∂iN∂iN
N2

.

(2.11)

The full expression including the cubic terms is much more involved and is given in (A.13) of
App. A.

We can further simplify the above expressions by assuming that the scalar field is proportional
to the time coordinate t,

φ = µ2t , (2.12)

where µ is some mass scale, so that

A =
µ2

N
, V = − µ

2

N3
DtN . (2.13)

In this case, the dynamical quantities are the lapse N and the spatial metric.

6We have slightly changed the notation by using A and V instead of A∗ and V∗.
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Upon expanding the above action (2.10) around a cosmological background up to quadratic
order in perturbations, one obtains an expression of the form (1.2), with

M2

2
= f2 − a1X ,

M2

2
(1 + αT ) = f2 ,

M2

2
(1 + αH) = f2 − 2Xf2X ,

M2

2

(
1 +

2

3
αL

)
= f2 + a2X ,

M2

2
β2 = −X

(
a1 + a2 + (a3 + a4)X + a5X

2
)
,

2M2β1 =X(4f2X + 2a2 + a3X) ,
M2

2
β3 = −X(4f2X − 2a1 − a4X) ,

(2.14)

where the right-hand side quantities are evaluated on the homogeneous and isotropic background
(so that X = −µ4). Let us stress that the coefficients β1 and β2 correspond to the terms in front
of KV and V 2, respectively, in the unitary action. This means that all the Ṅ terms disappear
when β1 = β2 = 0.

The first two relations of (2.14) can be used to express M2 and αT in terms of f2 and a1.
Substituting into the other relations, one easily gets the other parameters, αH, αL, β1, β2 and
β3, in terms of f2, f2X and aA evaluated on the background. In App. A, we also give the full
expressions of the effective parameters when the action also contains the cubic terms, thus in
terms of f3 and the bA.

Let us briefly discuss the values of these parameters for the quadratic DHOST theories. The
classes Ib, IIb and IIIc are pathological, as noted in [27], because they do not contain propagating
gravitons. Indeed, one sees immediately that if a1 = f2/X, which is the case for these three
classes, the coefficient of the kinetic term for the gravitons KijK

ij disappears (since X = −A2 in
the unitary gauge), i.e. M = 0 and the theory does not contain tensor degrees of freedom.

The remaining theories, IIIa and IIIb, are also problematic, as pointed out in [57]. Indeed,
f = 0 implies that there is no gradient term for the gravitons since the spatial curvature R
disappears. This means that the propagation speed for gravitational waves is zero, or equivalently,
αT = −1. Note that the classes IIIa and IIIb also verify the property αH = −1.

From a phenomenological point of view, the classes Ia and IIa therefore appear to be the most
interesting.

2.3 Degeneracy conditions for the effective parameters

Among theories of the form (2.1), DHOST theories play a very special role as their Lagrangian
is degenerate, which implies that they contain at most three propagating degrees of freedom, i.e.
two tensor modes and one scalar degree of freedom.

Interestingly, the fully nonlinear degeneracy conditions boil down to two sets of very simple
conditions for the effective parameters appearing in the quadratic perturbative action. Depending
on the DHOST theory under consideration, we find that the effective parameters satisfy either

CI : αL = 0 , β2 = −6β2
1 , β3 = −2β1 [2(1 + αH) + β1(1 + αT )] , (2.15)

or the set of conditions

CII : β1 = −(1 + αL)
1 + αH
1 + αT

, β2 = −6(1 + αL)
(1 + αH)2

(1 + αT )2
, β3 = 2

(1 + αH)2

1 + αT
, (2.16)

where we have assumed that αT 6= −1 in the latter case (otherwise7 one should use a regular
version of the conditions obtained by multiplying both sides of the equalities by the denominator

7A model for which αT = −1 is very peculiar since the speed of gravitational waves vanishes.
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of the right hand side). It is immediate to see that both sets of conditions share the common
condition

CU : (1 + αL)β2 = −6β2
1 , (2.17)

which plays a special role in the unitary gauge, as we will see later. In the second set of conditions,
CII, the three parameters βA are completely determined by the parameters αL, αH and αT. By
contrast, in the set of conditions CI, β1 remains independent of the αA. Note that a theory that
satisfies αL = 0 and the conditions CII automatically verifies CI. One can also recover directly the
conditions CI and CII by rewriting the three degeneracy conditions involving f2, f2X and the five
functions aA, derived in [26], in terms of the seven parameters M2, αL, αH, αT and βA, as we
show in App. B.

The degeneracy conditions satisfied by each DHOST subclass are indicated in Table 1. Among
purely quadratic theories, the subclass8 Ia satisfies the conditions CI, while the subclass IIa satisfies
the conditions CII. As mentioned earlier, the effective coefficients cannot be defined for the theories
Ib, IIb and IIIc for which M2 = 0. Theories IIIa and IIIb satisfy αT = αH = −1 and verify the
regular version of conditions CII.

The situation with cubic DHOST theories is subtler. The reason is that there are more than
three degeneracy conditions for the 11 functions that parametrize the space of cubic scalar-tensor
theories, as shown in [33]. However, for linear perturbations about a cosmological background,
these degeneracy conditions simply “project” onto CI or CII. If we pushed the effective description
of a cubic DHOST theory up to higher order, we would expect the emergence of new degeneracy
conditions, which would be reminiscent of the full degeneracy conditions obtained in the complete
theory.

For the purely cubic theories, one can discard six subclasses out of nine, because they lead
to M2 = 0. Among the remaining three subclasses, the subclass 3N-I, which includes the quintic
Horndeski Lagrangian, satisfies the conditions CI, while the other two, 3M-I and 3M-II, obey the
conditions CII (see Table 1).

Finally, let us discuss the combinations of quadratic and cubic theories. As shown in [33], there
exist 25 subclasses of degenerate theories. Only one subclass, Ia & 3N-I, satisfies the conditions CI

only: this subclass contains the full Horndeski theory as well as the beyond-Horndeski extensions.
Leaving aside seven subclasses for which M2 = 0, we are left with 17 subclasses that satisfy the
conditions CII. Among these, one subclass also satisfies αL = 0 (and therefore the conditions CI

too): Ia & 3M-III. The other subclasses satisfy only the conditions CII.
It was shown in [29] that all subclasses of quadratic DHOST theories are stable with respect to

conformal-disformal transformations, by which we mean that any theory is mapped into another
theory belonging to the same subclass. One can conjecture that this should remain true for
the cubic DHOST theories, although it has been checked only for the subclass 3N-I containing
Horndeski. Given these considerations, it is instructive to explore how the effective coefficients are
transformed under conformal-disformal transformations.

2.4 Disformal transformations

Let us consider general (conformal-)disformal transformations, which define a new metric by using
the scalar field, according to the expression [59]

g̃µν = C(φ,X)gµν +D(φ,X)φµφν . (2.18)

8For quadratic theories, several names have been introduced in previous works. Here we use the names introduced
in [29] for quadratic theories. Other names have been used in [33] and are reported in Table 1.
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As shown explicitly in [29] for quadratic theories, any DHOST theory can be mapped into another
DHOST theory via this transformation. More precisely, if we start from a theory defined by the
action S̃[g̃, φ], one can define a new theory as

S[gµν , φ] := S̃[g̃µν = Cgµν +Dφµφν , φ] . (2.19)

The explicit transformation of the functions f2 and aA can be found in [33], where it is also shown
that all subclasses of quadratic DHOST theories are stable under disformal transformations. If
the disformal transformation is invertible, i.e. it satisfies the condition [59]

C −XCX −X2DX 6= 0 , (2.20)

then two disformally related theories are equivalent, provided matter is ignored. However, including
matter and assuming that it is minimally coupled to the metric that appears in the two disformally
related DHOST actions, one gets two physically distinct theories.

In order to compute the transformation of the effective parameters of the quadratic action, it
is convenient to introduce the dimensionless time-dependent parameters

αC ≡
φ̇

2HC

∂C

∂φ
, αY ≡ −

X

C

∂C

∂X
, αD ≡ −

D

D + C/X
, αX ≡ −

X2

C

∂D

∂X
, (2.21)

where the right-hand sides are evaluated on the background. These four dimensionless functions
characterize how the quadratic action (1.2) transforms under the transformation (2.18). The
functions αC and αD were introduced in [40,60] to characterize conformal and disformal transfor-
mations that depend only on the scalar field value. Indeed, the structure of the action restricted
to αH = αL = βA = 0 is invariant under this subset of transformations [60, 61]. The function αX

was introduced in [47] to describe the transformation of the action restricted only to αL = βA = 0.
The relations between the effective parameters αK, αB, αT, αM and αH in different frames were
given in these references.

Here we extend these results to the general action (1.2). In particular, as explicitly shown
in App. C, the effective parameters in the quadratic action derived from S̃ are related to those
associated with S via the transformations:

M̃2 =
M2

C
√

1 + αD
,

α̃L = αL ,

α̃T = (1 + αT)(1 + αD)− 1 ,

α̃H = Ξ (1 + αD)
[
1 + αH − αY(1 + αT)

]
− 1 ,

β̃1 = Ξ
[
αY(1 + αL) + β1

]
,

β̃2 = Ξ2
[
β2 − 6αY(αY(1 + αL) + 2β1)

]
,

β̃3 = Ξ2(1 + αD)
[
β3 + 2α2

Y(1 + αT)− 4αY(1 + αH)
]
,

(2.22)

where we have introduced

Ξ ≡ 1

(1 + αD)(1 + αX + αY)
. (2.23)

This function is always finite for an invertible transformation (2.18). Indeed, in terms of the
parameters (2.21), the condition (2.20) implies 1+αX +αY 6= 0, while one must impose 1+αD > 0
in order to conserve the metric signature. Here we focus our attention on the parameters that are
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directly involved in the degeneracy constraints and do not show the analogous transformations for
the other parameters αK and αB, whose explicit expressions are given in App. C. One can check
that the two sets of degeneracy conditions (2.15) and (2.16), as well as the common condition
(2.17), are all invariant under the above disformal transformations.

Interestingly, for degenerate theories satisfying either (2.15) or (2.16), it is possible to cancel
simultaneously all three βA via a conformal transformation verifying

αY = − β1

1 + αL
, (2.24)

provided αL 6= −1. One can also cancel αH via a disformal transformation such that

αX = αH − (2 + αT)αY . (2.25)

As a consequence, it is possible to cancel both βA and αH via a disformal transformation charac-
terized by

αY = − β1

1 + αL
, αX = αH +

2 + αT

1 + αL
β1 . (2.26)

Such a transformation is well defined for theories satisfying the conditions (2.15) but not theories
verifying (2.16) for which the quantity 1 +αX +αY vanishes. In the first case, one simply recovers
the property that theories belonging to the same subclass as Horndeski can be related to Horndeski
via a disformal transformation.

3 Dispersion relation for a Minkowski background

For simplicity, we first study the linear perturbations about a Minkowski background for theories
of the form (2.1). We thus specialize the quadratic action (1.2) to the limit a = 1 and H = 0: this
is equivalent to assuming that the typical frequencies and wave numbers are much higher than the
cosmological ones. For convenience, we redefine the coefficients of the δN2 and δKδN terms as

M2
K = H2αK , MB = HαB , (3.1)

and we assume that the mass parameters MK and MB can take any finite value in the Minkowski
limit.

The scalar type perturbations in the unitary gauge can be expressed in terms of the quantities
ψ and ζ, defined by

N i = δij∂jψ , hij = e2ζδij . (3.2)

Substituting into the quadratic action, we thus obtain an action that depends on the three per-
turbations ζ, δN , ψ and their derivatives. All the coefficients are constant since we are now in a
Minkowski background.

3.1 Dispersion relation and degeneracy

In order to derive the dispersion relation, one considers perturbations of the formδN(t,x)
ζ(t,x)
ψ(t,x)

 = e−iωt+ik·x

δN(ω,k)
ζ(ω,k)
ψ(ω,k)

 ≡ e−iωt+ik·x U , (3.3)

10



where U denotes the column vector of the three perturbations in Fourier space. The resulting
quadratic Lagrangian is of the form

L(2) = U †KUU , (3.4)

where KU is the 3× 3 kinetic matrix with components

KU = M2

 M2
K + β2ω

2 + β3k
2 2(1 + αH)k2 + 6β1ω

2 + 6iMBω 2(MB − iβ1ω)k2

2(1 + αH)k2 + 6β1ω
2 − 6iMBω −6(1 + αL)ω2 + 2(1 + αT)k2 2i(1 + αL)ωk2

2(MB + iβ1ω)k2 −2i(1 + αL)ωk2 −2
3αLk

4

 .

(3.5)
One finds the dispersion relation by imposing

detKU = 0 , (3.6)

which yields

E1 ω
4 +

(
E2k

2 + E3

)
ω2 + E4k

4 + E5k
2 = 0 , (3.7)

with the coefficients

E1 = 3
[
(1 + αL)β2 + 6β2

1

]
,

E2 = 6
[
2(1 + αH) + (1 + αT)β1

]
β1 + αL(1 + αT)β2 + 3(1 + αL)β3 ,

E3 = 3
[
(1 + αL)M2

K + 6M2
B

]
,

E4 =− αL

[
2(1 + αH)2 − (1 + αT)β3

]
,

E5 = (1 + αT)
(
αLM

2
K + 6M2

B

)
.

(3.8)

In the general case, the dispersion relation is a quartic polynomial in ω with only even powers,
which means that there are two solutions for ω2, corresponding to the presence of two scalar
modes, as expected. In particular, we note that the two parameters β1 and β2 contribute to the
highest order coefficient in ω, which is consistent with their interpretation given in the introduction.
Interestingly, the structure of the coefficient E1 is the same as that of E3 with β1 and β2 playing
the role of αB and αK, respectively (reminding that MB ≡ HαB and M2

K ≡ H2αK). Note also
that the highest term in spatial derivatives disappears when αL = 0.

If the condition E1 = 0 is satisfied, which is equivalent to the condition CU identified in (2.17),
then only a single scalar mode remains. However, the above statement is valid in the unitary gauge
for linear perturbations. In an arbitrary gauge, unless the theory is fully degenerate, i.e. it satisfies
the other conditions in (2.15) or (2.16), there still exists an extra scalar mode that simply does
not show up at the linear level (see discussion in App. B.2). In order to ensure the absence of this
extra scalar mode, it is sufficient to require either of the degeneracy conditions (2.15) and (2.16),
which implies E2 = 0 and E4 = 0. In this case, the dispersion relation takes the very simple form

ω2 − c2
sk

2 = 0, c2
s ≡ −

1

3

(1 + αT)(6M2
B + αLM

2
K)

M2
K(1 + αL) + 6M2

B

(degenerate) . (3.9)

3.2 Newtonian limit

One can also use the quadratic action to explore how the usual Poisson equation is modified. To
do so, we consider the static limit (i.e. ω = 0) of the quadratic action and we introduce a point
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mass m which is minimally coupled to the metric. If we work in the unitary gauge, we find that
the kinetic matrix (3.5) for the variables δN , ζ and ψ reads, in the limit ω = 0,

KV = M2

 β3k
2 +M2

K 2(1 + αH)k2 2MBk
2

2(1 + αH)k2 2(1 + αT)k2 0
2MBk

2 0 −2
3αLk

4

 . (3.10)

The second line implies

ζ = −1 + αH

1 + αT
δN , (3.11)

which is equivalent to the relation

Ψ =
1 + αH

1 + αT
Φ , (3.12)

between the gravitational potential Φ (which in general is related to the unitary gauge variables
by Φ = δN + ψ̇) and the spatial gravitational potential Ψ = −ζ.

We now distinguish the two cases αL 6= 0 and αL = 0. If αL 6= 0, the last line of the kinetic
matrix yields

k2ψ = 3
MB

αL
δN . (3.13)

Substituting into the first line and going back into real space, one finds the generalized Poisson
equation

M2

[
2

(1 + αH)2

1 + αT
− β3

]
∆Φ +M2

(
M2

K + 6
M2

B

αL

)
Φ = mδ(3)(x) , (3.14)

where ∆ ≡ δij∂i∂j denotes the Laplacian. The coefficient in front of ∆Φ in the generalized Poisson
equation (3.14) corresponds to (4πGN)−1, where GN is the effective Newton constant. For DHOST
theories with αL 6= 0, we see immediately that the coefficient in front of the Laplacian in the Poisson
equation vanishes, because of (2.16), which means that the effective Newton constant in the linear
regime is infinite for these theories.

If αL = 0, one obtains the generalized Poisson equation

M2

[
2

(1 + αH)2

1 + αT
− β3

]
∆Φ +M2M2

KΦ = mδ(3)(x) . (3.15)

For DHOST theories that satisfy the conditions (2.15) but not (2.16), one thus gets a finite Newton
constant GN in the linear regime

8πGN =
1

M2

[
(1 + αH)2

1 + αT
− β3

2

]−1

. (3.16)

These results seem to indicate that only theories that are related to Horndeski via conformal or
disformal transformations are phenomenologically viable. One should however investigate whether
this peculiar behaviour persists at the nonlinear level.

We can check that for β3 = 0 this effective Newton constant agrees with the one found for
Horndeksi and beyond Horndeski theories in the quasi-static regime. In our notation, the full
expression is given by eq. (3.24) of [47] (see also [62]). In the absence of background matter and
for a, M and αH = constants, this reads

8πGN =
1

2M2(1 + αH)2

[
1 + αT +

2ξ2

c2
s(αK + 6α2

B)

]
, (3.17)

with ξ ≡ αB(1 + αT) + αT − αM − αH(1 + αM). It is easy to check that, in the Minkowski limit,
the last term in the brackets becomes 1 + αT and eq. (3.16) with β3 = 0 is recovered.

12



4 Quadratic action in a cosmological background

In this section, we study the quadratic action for the propagating degrees of freedom in a cos-
mological background. Since none of the additional operators studied here contributes to tensor
modes, we restrict our analysis to scalar perturbations. A derivation of the quadratic action for
tensor perturbations, which depends only on the parameters M2 and αT, can be found for instance
in [4, 7]. Using the usual expressions for the scalar perturbations in unitary gauge,

N i = δij∂jψ , hij = a2(t) e2ζδij , (4.1)

we can express the action (1.2) as a functional of ζ, δN and ψ and their derivatives. It is convenient
to distinguish the two cases αL = 0 and αL 6= 0.

4.1 Case αL = 0

Let us assume αL = 0, i.e. the first condition of eq. (2.15). Using eq. (4.1) and noticing that the
terms quadratic in ∆ψ cancel up to a total derivative, action (1.2) becomes

Squad =

∫
d3x dt a3M

2

2

{
− 6ζ̇2 + 12β1ζ̇δṄ + β2δṄ

2 + 12H
[
(1 + αB)ζ̇ − β1δṄ

]
δN

+H2(αK − 6− 12αB)δN2 + 4
[
ζ̇ − β1δṄ −H(1 + αB)δN

]
∆ψ

+
1

a2

[
2(1 + αT)(∂iζ)2 + 4(1 + αH)∂iζ∂iδN + β3 (∂iδN)2

]}
.

(4.2)

The kinetic Lagrangian is given by the first three terms on the right-hand side,

Lquad
kin = a3M

2

2
(−6ζ̇2 + 12β1ζ̇δṄ + β2δṄ

2) . (4.3)

Thus, without any assumption on the time dependent functions βA, the action above describes in
general two propagating scalar modes, ζ and δN , while ψ, which appears without time derivatives,
can be treated as a Lagrange multiplier. In this general case, the full analysis, including matter,
extends our analysis of the previous section and is discussed in App. D.

The expression (4.3) is degenerate if the determinant of the kinetic matrix vanishes, i.e. if

β2 = −6β2
1 , (4.4)

where one recognizes the second condition in eq. (2.15), or the condition (2.17) with αL = 0. In
this case the kinetic Lagrangian can be written as

Lquad
kin = −6a3M

2

2
(ζ̇ − β1δṄ)2 , (4.5)

which suggests that the time derivatives of δṄ can be eliminated by replacing the variable ζ with
the new variable

ζ̃ ≡ ζ − β1δN . (4.6)

This variable describes the propagating scalar degree of freedom in the degenerate case.
To find the associated quadratic action, we can proceed similarly to what was done in [4, 6].

Varying the action with respect to ψ yields the scalar component of the momentum constraint. In
terms of the new variable, it reads

δN =
˙̃
ζ

H(1 + αB)− β̇1

. (4.7)
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Substituting this expression for δN into the action and performing some integration by parts,
we finally find the quadratic action for the propagating degree of freedom ζ̃,

Squad =

∫
d3x dt a3M

2

2

[
Aζ̃

˙̃
ζ2 +Bζ̃

(∂iζ̃)2

a2
+ Cζ̃

(∂i
˙̃
ζ)2

a2

]
. (4.8)

Here Aζ̃ , Bζ̃ and Cζ̃ are background-dependent functions whose explicit expressions are

Aζ̃ =
1

(1 + αB − β̇1/H)2

[
αK + 6α2

B −
6

a3H2M2

d

dt

(
a3HM2αBβ1

) ]
, (4.9)

Bζ̃ = 2(1 + αT)− 2

aM2

d

dt

[
aM2

(
1 + αH + β1(1 + αT)

)
H(1 + αB)− β̇1

]
, (4.10)

Cζ̃ =
4(1 + αH)β1 + 2(1 + αT)β2

1 + β3

(1 + αB − β̇1/H)2
. (4.11)

As the above action implies that ζ̃ is conserved in the long wavelength limit, i.e.
˙̃
ζ ≈ 0 for

k � aH, and eq. (4.7) implies that δN vanishes in the same limit, it follows that ζ is conserved
on large scales,

ζ̇ ≈ 0 (k � aH) , (4.12)

as in the more standard case of Horndeski and beyond Horndeski theories [7].
Up to now we have imposed only the first two conditions in eq. (2.15). Since only β1 enters in

the above expressions for Aζ̃ and Bζ̃ , these definitions remain unchanged when the full degeneracy
conditions CI are imposed, while the function Cζ̃ vanishes. In this case the action takes the usual
form,

Squad =

∫
d3x dt a3M

2

2

[
Aζ̃

˙̃
ζ2 +Bζ̃

(∂iζ̃)2

a2

]
. (4.13)

Absence of instabilities requires that the coefficients in the action satisfy

Aζ̃ ≥ 0 , Bζ̃ ≤ 0 . (4.14)

In particular, the first condition is equivalent to

α ≡ αK + 6α2
B −

6

a3H2M2

d

dt

(
a3HM2αBβ1

)
≥ 0 . (4.15)

The dispersion relation is standard, ω2 = c2
sk

2/a2, with a sound speed given by

c2
s = −Bζ̃/Aζ̃ . (4.16)

It is straightforward to check that for β1 = 0 one recovers the sound speed derived for theories
belonging to the Horndeski (see eg. [63]) and beyond Horndeski classes in [4,7,17]. Moreover, in the
Minkowski limit, we recover eq. (3.9) in the case αL = 0. One can also verify that under a general
transformation (2.18), the above expression for the sound speed transforms like the lightcone,
i.e. c̃2

s = (1 + αD)c2
s, as expected.
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4.2 Case αL 6= 0

We now consider the case αL 6= 0. Varying the action with respect to ψ yields the scalar component
of the momentum constraint, which reads

αL

3

∆ψ

a2
+ (1 + αB + αL)HδN + β1δṄ − (1 + αL)ζ̇ = 0 . (4.17)

Using this expression to eliminate ψ from the action, one obtains

Squad =

∫
d3x dt a3M

2

2

{
1

αL

[
6(1 + αL)ζ̇2 − 12β1δṄ ζ̇ + (6β2

1 + αLβ2)δṄ2

+ 12H
(
β1 (1 + αB) δṄ − (1 + αB + αL) ζ̇

)
δN

+H2
(

6α2
B + 12αB + αLαK + 6(1 + αL)

)
δN2

]
+

1

a2

[
2 (1 + αT) (∂iζ)2 + 4 (1 + αH) ∂iζ ∂

iδN + β3 (∂iδN)2
]}

.

(4.18)

Once again, in the absence of any assumption on the βA, this action describes in general two
propagating scalar modes, ζ and δN .

The kinetic matrix is degenerate for

β2 = −6
β2

1

1 + αL
, (4.19)

which corresponds to the condition of eq. (2.17). It can be diagonalized by introducing the variable

ζ̃ = ζ − β1

1 + αL
δN , (4.20)

which represents the propagating degree of freedom in this case.
Using these two relations in action (4.18) and performing some integrations by parts, the action

takes the form

Squad =

∫
d3x dt a3M

2

2

{
6

1 + αL

αL

˙̃
ζ2 + 2V12

˙̃
ζδN +M22 δN

2

+
1

a2

[
2(1 + αT)(∂iζ̃)2 + 2S12 ∂iζ̃ ∂

iδN + S22(∂iδN)2
]}

,

(4.21)

with

S12 = 2
[
1 + αH + β1

1 + αT

1 + αL

]
,

S22 = 4β1
1 + αH

1 + αL
+ 2β2

1

1 + αT

(1 + αL)2
+ β3 .

(4.22)

The explicit expressions of V12 andM22 above are not relevant for this discussion and can be found
in App. D. Variation of action (4.21) with respect to δN gives then the Hamiltonian constraint
equation,

V12
˙̃
ζ +M22δN =

1

a2

[
S12∆ζ̃ + S22∆δN

]
. (4.23)

The constraint equation (4.23) can be solved for δN as a function of ζ̃ and
˙̃
ζ and plugged back

into eq. (4.21), which yields the quadratic action for the propagating degree of freedom ζ̃. If S12
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and S22 do not vanish, this action contains higher spatial derivatives and Laplacian operators in
the denominator, resulting in a nonstandard dispersion relation for ζ̃. We have written its explicit
expression in App. D, including also matter perturbations for completeness. Analogously to what
happens in the previous section, there is no mass term in the action and thus ζ̃ and ζ are conserved
in the long wavelength limit.

We now derive the action for ζ̃ when the full set of degeneracy conditions (2.16) is imposed.
In this case, S12 = 0 = S22 and the constraint equation (4.23) simplifies,

δN = − V12

M22

˙̃
ζ (CII) , (4.24)

while the expressions for V12 and M22 take the following form

V12 = − 6

αL

[
H(1 + αB + αL) + (1 + αL)

d

dt

(
1 + αH

1 + αT

)]
(CII) ,

M22 =
αL

6(1 + αL)
V2

12 +H2

(
αK +

6α2
B

1 + αL

)
+

6

a3M2

d

dt

(
a3M2HαB

1 + αH

1 + αT

)
(CII) .

(4.25)

Replacing δN into action (4.21) using the above constraint, one obtains a quadratic action of the
form of eq. (4.13), with

Aζ̃ = 6
1 + αL

αL
− V

2
12

M22
, Bζ̃ = 2(1 + αT) (CII) . (4.26)

In the limit αL = 0 these expressions reduce to those in eqs. (4.9) and (4.10), with the function
β1 given by eq. (2.16), i.e.

Aζ̃ =
αK + 6α2

B + 6
a3H2M2

d
dt

(
a3HM2αB

1+αH
1+αT

)
[
1 + αB + d

dt

(
1+αH
1+αT

)]2 , Bζ̃ = 2(1 + αT) (CI ∩ CII) . (4.27)

5 Lorentz-breaking theories

In this section, we show how our analysis can also be applied to theories already proposed in
the literature, such as Lorentz-breaking theories inspired by Horava’s gravity and khronometric
theories.

5.1 Lorentz-breaking theories

In our analysis of DHOST theories, we have started from a covariant formulation of the action and
then derived the Lagrangian in the unitary gauge. Several models that explicitly break Lorentz
invariance have been proposed in the literature and their action is often given directly in the
unitary gauge. An illustrative example is Horava gravity [18], with several of its extensions. A
general presentation of these models can be found in [21], which we will follow in our discussion
below. The actions studied in [21] are of the form9

Sunitary =

∫
d3x dt

√
hN

{
M2

2

(
KijK

ij − λK2 +
λ2

N6

(
Ṅ −N i∂iN

)2
− λ3

∂iN∂
iN

N2
− V

)

+
λ0

4
µ4

(
1

N2
− 1

)2
}
,

(5.1)

9The notation for the coefficients in the action differs from the one of [21].
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and V is some potential term which is not relevant for us and will be ignored below. As one can see,
the action contains an explicit dependence on Ṅ . In [21], different cases are considered, depending
on the values of the parameters in the Lagrangian. The case λ2 = 0 and λ3 = 0 corresponds
to Horava’s projectable model in the limit λ0 → ∞. The healthy extension of Horava’s non
projectable model [19] corresponds to λ0 = λ2 = 0. Finally, [21] also considers an extension with
λ0 and λ2 non zero.

It is always possible to rewrite the unitary action (5.1) as a covariant action by using the
Stueckelberg formalism, where the time coordinate of the unitary gauge is replaced by a scalar
field φ. This leads to the covariant action [21]

Scov =

∫
d4x
√
−g

{
M2

2

[
(4)R+

λ− 1

X

(
�φ− 1

X
φµφµνφ

ν

)2

+
λ2

µ4X2
(φµφµνφ

ν)2

+
λ3

X2

(
φµφµνφ

νλφλ −
1

X
(φµφµνφ

ν)2

)]
+

λ0

4µ4
(X + µ4)2

}
. (5.2)

One immediately sees that this action is of the form (2.1) with no cubic terms and

a1 = 0 , a2 =
(λ− 1)M2

2X
, a3 =

(1− λ)M2

X2
,

a4 =
λ3M

2

2X2
, a5 = M2

(
λ− λ3 − 1

2X3
+

λ2

2µ2X2

)
,

(5.3)

P (X) = λ0(X +µ4)2/(4µ4) and Q(X) = 0. This corresponds to the following effective parameters

αT = αH = 0, αL = 3(λ− 1)/2 , β1 = 0 , β2 = λ2 , β3 = λ3 . (5.4)

and αK = λ0µ
4/(2H2M2).

When λ2 = 0, one has β1 = β2 = 0 and the condition (2.17) is verified. This means that
one finds a single propagating scalar mode in the unitary gauge. However, even if λ2 = 0, the
parameters do not satisfy the full degeneracy conditions, unless λ3 = 2. The covariant theory (5.2)
(with λ2 = 0) is not a DHOST theory and thus contains an extra degree of freedom, although it
is not directly visible in the unitary gauge (see discussion in App. B.2). This is an example of
theory that looks degenerate in the unitary gauge but is not degenerate. In order to get rid of this
dangerous extra degree of freedom, one can either define the theory directly in the unitary gauge
or consider the covariant action but only for a restricted range of solutions, as discussed in [21].

5.2 Khronometric theories

In khronometric theories [21], the scalar field Lagrangian is invariant under the field redefinition
φ → φ̃(φ). At lowest order in derivatives, the action can be written in terms of the unit vector
field uµ ≡ ∂µφ/

√
−X as

S =
M2
∗

2

∫
d4x
√
−g
(

(4)R+Kµνρσ∇µuρ∇νuσ
)
, (5.5)

with
Kµνρσ ≡ c1g

µνgρσ + c2δ
µ
ρ δ

ν
σ + c3δ

µ
σδ

ν
ρ + c4u

µuνgρσ , (5.6)

where M∗ is a constant with mass dimension and the ci are dimensionless constants. Without loss
of generality, we can set c1 = 0 in the action [64]. Moreover, by using the Gauss-Codazzi relation
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and that ∇µuν = Kµν − uµuρ∇ρuν , the above Lagrangian can be rewritten as

Sunitary =
M2
∗

2

∫
d3x dt

√
hN

[
R+ (c2 − 1)K2 + (c3 + 1)KijK

ij + c4
∂iN∂

iN

N2

]
. (5.7)

In the following we will assume that c3 > −1, which ensures that

M2 = M2
∗ (1 + c3) > 0 , (5.8)

i.e. that gravitons have a strictly positive kinetic term. Expanding at second order and comparing
with eq. (1.2), one finds

αT = αH = − c3

1 + c3
, αL = −3

2

c2 + c3

1 + c3
, β1 = β2 = 0 , β3 =

c4

1 + c3
. (5.9)

To compute the action for the propagating scalar degree of freedom, we can use action (4.18)
with αH = αT and β1 = β2 = 0. Using the Hamiltonian constraint to replace δN , and performing
an integration by parts, the quadratic action for ζ can be written in Fourier space as

Squad =

∫
d3k

(2π)3
dt a3M

2

2

k2
H

6(1 + αL) + αLβ3k2
H

{
6(1 + αL)β3ζ̇kζ̇−k

+
2a2H2(1 + αT)

6(1 + αL) + αLβ3k2
H

(
cζ2 + cζ4k

2
H + cζ6k

4
H

)
ζkζ−k

}
,

(5.10)

where

cζ2 = 36(1 + αL)2Ḣ , cζ4 = −6αL(1 + αL)

[
β3

(
1 +

Ḣ

H2

)
+ 2(1 + αT)

]
,

cζ6 = α2
L β3 [β3 − 2(1 + αT)] ,

(5.11)

and kH ≡ k/(aH). This action can be also derived from (D.11) in App. D.
If we now restrict our discussion to degenerate khronometric theories, the degeneracy conditions

(2.15) and (2.16) impose constraints on the parameters of actions (5.10) and (5.5). We find,
respectively,

αL = 0 , β3 = 0 , ⇔ c2 + c3 = 0 , c4 = 0 , (CI) , (5.12)

for conditions (2.15), and

αL = −1 , β3 = 2(1 + αT) , ⇔ 3c2 = 2− c3 , c4 = 2 , (CII) , (5.13)

for conditions (2.16). These two families of degenerate khronometric theories were already iden-
tified in [29], together with two other families that lead to M2 = 0 and are thus not relevant
here.

As shown in [29], the first family (5.12) is conformally-disformally related to general relativity,
which means that there is no dynamical scalar degree of freedom in the absence of matter. The
second family (5.13) is conformally-disformally related to the theory (in units where M2

∗ /2 = 1)

f2 = 1, a1 = − 2

X
, a2 = a3 = 0, a4 =

6

X2
, a5 = − 4

X3
. (5.14)

Substituting into the unitary gauge expression (2.11), one finds

L = R+ 3KijK
ij −K2 + 2

∂iN∂
iN

N2
, (5.15)

and the trace part of Kij automatically cancels, which means that there is no propagating scalar
mode. Note that theories of this family possess the peculiar property that β1 = β2 = 0 while
β3 6= 0. This is not in contradiction with our discussion in Sec. 2.4 as αL = −1 here.
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6 Conclusions

In this work, we have studied the effective description of quadratic and cubic Higher-Order Scalar-
Tensor theories, focusing in particular on the degenerate ones, i.e. DHOST theories. We considered
the quadratic action of linear perturbations about a homogeneous and isotropic background, writ-
ten in the unitary gauge where the scalar field is spatially uniform. In general, the quadratic action
contains time and spatial derivatives of the lapse perturbation, which requires the introduction
of three new (time-dependent) parameters which we denote β1, β2 and β3. We also need another
parameter, αL, in front of the trace of the extrinsic curvature (squared), in order to cover all
DHOST theories.

The presence of time derivatives of the lapse is not in contradiction with the property that
DHOST theories contain a single scalar degree of freedom, because of the existence of degeneracy
conditions that ensure that the effective parameters β1, β2 and β3 in the quadratic action are not
arbitrary but instead must be linked via three relations. One of these relations, (2.17), can easily
be inferred from the requirement that the unitary gauge action is manifestly degenerate, but the
other two relations cannot be immediately guessed within the unitary gauge, because they come
from the degeneracy imposed at the level of the covariant action. However, as we have shown,
they can be deduced from the requirement that the dispersion relation is linear.

Remarkably, all cases can be summarized by only two different sets of degeneracy conditions
at the level of the linear perturbations in the unitary gauge. The first set, (2.15), is characterized
by the condition αL = 0, while β1 is left arbitrary and the other two coefficients β2 and β3

are constrained in terms of β1, αT and αH. By contrast, with the alternative set of degenerate
conditions (2.16), the parameter αL remains arbitrary while the three coefficients β1, β2 and β3

are determined in terms of αL, αT and αH. Among all quadratic and cubic DHOST theories,
the subclass containing Horndeski, beyond-Horndeski and the theories conformally-disformally
related to them stands out as satifying (2.15) only. By contrast, all the other subclasses verify the
conditions (2.16), including one that satisfies αL = 0 as well, i.e. both CI and CII (see Table 1).

Let us turn to phenomenology. Our analysis shows that all DHOST subclasses, except the
one containing Horndeski and beyond-Horndeski, suffer from the problem that the effective New-
ton’s constant becomes infinite in the linear regime. This analysis, which is restricted to linear
perturbations, thus seems to indicate that one cannot recover standard gravity in these theories,
although a fully nonlinear treatment would be necessary for a definite conclusion. Even if they
cannot account for gravity as we know it, such theories could still be interesting for other contexts,
such as in the early Universe.

In cosmology, we derived the quadratic action governing the dynamics of the linear scalar mode.
By imposing only the condition CU, defined in (2.17), we obtained an action with a nonlinear
dispersion relation and we checked that the curvature perturbation ζ is conserved on large scales.
When the full degeneracy conditions are imposed, the dispersion relation simplifies and becomes
linear.

We have also studied the impact of a fully general conformal-disformal transformation, with
both functions depending on X and φ, on the quadratic perturbative action, thus extending pre-
vious results on the transformation of the effective parameters. This expresses, at the level of
linear perturbations, the underlying structure of transformations within DHOST theories, which
enlarges those for Horndeski theories, where C and D are restricted to be independent of X, and
those for beyond Horndeski, where D can depend on X but not C.

In the main body of this paper, we have implicitly assumed that matter is minimally coupled to
the metric. In this case, two conformally-disformally related theories are not physically equivalent.
It is also possible to relax the assumption of minimal coupling and attribute to each matter species
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four parameters that characterize, at the linear level, the non-minimal coupling to the metric.
These four parameters transform under a general conformal-disformal transformation, similarly to
the parameters of the scalar-tensor action. In App. D, we derived the dispersion relation for the
scalar mode in the presence of matter, which enables to verify that the dispersion relation remains
the same in all frames. Moreover, the mixing between matter and scalar perturbations can be
quantified with a frame-invariant parameter. If we consider NS matter species, their coupling to
the metric is described by 4NS parameters, which add to the 6 independent parameters for the
gravitational sector (9 parameters minus three degeneracy constraints). Taking into account frame
transformations, characterized by 4 parameters, we end up with 2(2NS+1) physically independent
parameters.

Note that one can use the disformal transformations to simplify the scalar-tensor action, al-
though at the price of complicating the coupling between matter and the metric. For example, for
DHOST theories in the first subclass, one can use a conformal-disformal transformation to rewrite
the scalar-tensor sector as a Horndeski theory, i.e. with αL = 0, αH = 0 and β1 = β2 = β3 = 0,
while matter has a complicated coupling to the metric and scalar field. This choice between the
Jordan frame (where matter is minimally coupled) and the Horndeski frame is analogous to the
choice between the Jordan frame and the Einstein frame for ordinary scalar-tensor theories.

Finally, we have also discussed Lorentz-breaking theories inspired by Horava’s gravity, as well
as khronons. In particular, for the former, we have shown that the covariant formulations of these
models lead to nondegenerate theories. Therefore, they contain an extra degree of freedom even if
it is not visible at the linear level in the unitary gauge; see discussion in App. B.2.

Acknowledgements. M.M. and F.V. acknowledge financial support from “Programme National
de Cosmologie and Galaxies” (PNCG) of CNRS/INSU, France. We thank the Galileo Galilei
Institute, Florence, and the organizers of the Workshop “Theoretical Cosmology in the Era of
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A (3 + 1) decomposition of scalar-tensor Lagrangians in the uni-
tary gauge

In the unitary gauge, specified by eq. (2.8), each of the elementary Lagrangians defined in eqs. (2.3)
and (2.5) can be expressed in terms of the velocities V and Kij . For the quadratic Lagrangians,
eq. (2.3), one finds

L
(2)
1 = A2KijK

ij + V 2 − 2∂iA∂
iA ,

L
(2)
2 = (AK + V )2 ,

L
(2)
3 =−A2V (AK + V ) ,

L
(2)
4 = A2

(
−V 2 + ∂iA∂

iA
)
,

L
(2)
5 = A4V 2 .

(A.1)
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Moreover, the cubic Lagrangians in eq. (2.5) read

L
(3)
1 =− (AK + V )3 ,

L
(3)
2 =− (AK + V )(A2KijK

ij + V 2 − 2∂iA∂
iA) ,

L
(3)
3 =−A3Ki

jKilK
lj + 3AKij∂iA∂jA+ 3V ∂iA∂

iA− V 3 ,

L
(3)
4 = A2V (AK + V )2 ,

L
(3)
5 =−A2

(
−V 2 + ∂iA∂

iA
)

(AK + V ) ,

L
(3)
6 = A2V

(
A2KijK

ij + V 2 − 2∂iA∂
iA
)
,

L
(3)
7 =−A3Kij∂iA∂jA− 2A2V ∂iA∂

iA+A2V 3 ,

L
(3)
8 = A4V

(
−V 2 + ∂iA∂

iA
)
,

L
(3)
9 =−A4V 2(AK + V ) ,

L
(3)
10 = A6V 3 .

(A.2)

The terms that depend on the Ricci tensor can also be expressed in the unitary gauge. The sim-
plest way to do this is to rewrite them in terms of the quartic and quintic Horndeski Lagrangians,
respectively defined as

LH
4 = f2

(4)R− 2f2X(2φ2 − φµνφµν) , (A.3)

LH
5 = f3

(4)Gµνφ
µν +

1

3
f3X(2φ3 − 32φφµνφ

µν + 2φµνφ
µσφνσ) . (A.4)

In our terminology, they correspond to a quadratic and a cubic Lagrangian, respectively. Indeed,
they are of the form (2.1), with

a1 = −a2 = 2f2X , a3 = a4 = a5 = 0 , (A.5)

and

3b1 = −b2 =
3

2
b3 = f3X , bi = 0 (i = 4, ..., 10) . (A.6)

Therefore, the full action (2.1) can be rewritten as

S[g, φ] =

∫
d4x
√
−g

(
LH

4 + C̃µνρσ(2) φµν φρσ + LH
5 + C̃µνρσαβ(3) φµν φρσ φαβ

)
, (A.7)

where the tensors C̃µνρσ(2) and C̃µνρσαβ(3) are defined with the new functions

ã1 = a1 − 2f2X , ã2 = a2 + 2f2X , (A.8)

b̃1 = b1 −
1

3
f3X , b̃2 = b2 + f3X , b̃3 = b3 −

2

3
f3X , (A.9)

while all the other functions remain unchanged.
For the ADM decomposition of the Horndeski Lagrangians we make use of the results of Ref. [4].

In particular, LH
4 and LH

5 can be rewritten, respectively, as

LH
4 = f2R− (f2 + 2A2f2X)

(
K2 −Ki

jK
j
i

)
− 2Af2φK , (A.10)
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and

LH
5 =−AF3

(
KijRij −

1

2
KR

)
− 1

3
A3f3X

(
K3 − 3KKi

jK
j
i + 2Ki

jK
j
kK

k
i

)
− 1

2
A2(f3φ − F3φ)R− 1

2
A2f3φ

(
K2 −Ki

jK
j
i

)
, f3X ≡ F3X +

F3

2X
.

(A.11)

In the unitary gauge, we can use the relations

A =
φ̇

N
, V ≡ 1

N
DtA , ∂iA = −Aai , ai ≡

∂iN

N
. (A.12)

Combining all previous results, the ADM decomposition of the full Lagrangian in the unitary
gauge leads to the following expression:

L =−A3(b1K
3 + b2KK

i
jK

j
i + b3K

i
jK

j
kK

k
i )

+A2
[
(−3b1 + b4A

2 + f3X)K2 + (−b2 + b6A
2 − f3X)Ki

jK
j
i

]
V

−A
[
3b1 + b2 −A2(2b4 + b5) +A4b9

]
KV 2

−
[
b1 + b2 + b3 −A2(b4 + b5 + b6 + b7) +A4(b8 + b9)− b10A

6
]
V 3

+

(
f2 + a1A

2 +A2 f3φ

2

)
KijK

ij −
(
f2 − a2A

2 +A2 f3φ

2

)
K2

+A(4f2X + 2a2 − a3A
2)KV +

[
a1 + α2 − (a3 + a4)A2 + a5A

4
]
V 2

− 2f2φAK −AF3

(
KijRij −

1

2
KR

)
+A3(3b3 − b7A2 − 2f3X)Kijaiaj +A3(2b2 − b5A2 + 2f3,X)Kai a

i

+A2
[
2b2 + 3b3 −A2(b5 + 2b6 + 2b7) +A4b8

]
V ai a

i

+

[
f2 −

1

2
A2(f3φ − F3φ)

]
R+

[
4f2XA

2 − (2a1 − a4A
2)A2

]
ai a

i .

(A.13)

One can then expand this Lagrangian at quadratic order around a FLRW background and obtain
an expression of the form (1.2). One finds that the effective coefficients of the quadratic action are
given by

M2 = 2f2 −X[2a1 + f3φ − 6(b2 + b3)Hµ2] ,

αT =− 1 +
2f2 +Xf3φ

M2
,

αH =− 1 +
1

M2

[
2f2 −X

(
4f2X + 2f3XHµ

2 + f3φ

)]
,

αL =
3X

M2

[
a1 + a2 − (9b1 + 5b2 + 3b3)Hµ2

]
,

β1 =
X

2M2

{
4f2X + 2a2 +Xa3 + 2 [2f3X − 9b1 − b2 −X(3b4 + b6)]Hµ2

}
,

β2 =− 2X

M2

{
a1 + a2 +X(a3 + a4) +X2a5 − 3

[
3b1 + b2 +X(2b4 + b5) +X2b9)

]
Hµ2

}
,

β3 =− 2X

M2

{
4f2X − 2a1 −Xa4 + [4f3X + 6b2 + 3b3 +X(3b5 + b7)]Hµ2

}
.

(A.14)

When the cubic terms are absent, these relations are equivalent to the expressions (2.14).
Using the terminology of [29] and [33], all the subclasses of DHOST theories are summarized in

Table 1. For each subclass, we indicate the number of free functions and the degeneracy conditions
verified by the effective parameters.
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B Degeneracy conditions

In this appendix, we concentrate on the full nonlinear action of quadratic DHOST theories. Their
kinetic Lagrangian can be written in the form [26]

Lkin = A(φ,X,A)Ȧ2 + 2Bij(φ,X,A)ȦKij +Kijkl(φ,X,A)KijKkl , (B.1)

where A(φ,X,A) is a polynomial in the variable A and

Bij(φ,X,A) = B1h
ij + B2D

iφDjφ ,

Kijkl(φ,X,A) = κ1h
i(khj)l + κ2h

ijhkl + K̂ijkl .
(B.2)

Here B1, B2, κ1, κ2 are polynomials in A, and the tensor K̂ijkl vanishes when ∂iφ = 0.
The Lagrangian is degenerate when the determinant of the kinetic matrix,

D(φ,X,A2) ≡ A−K−1
ijklB

ijBkl = D0(φ,X) +A2D1(φ,X) +A4D2(φ,X) , (B.3)

vanishes for any value of A. This gives the three independent relations

D0(φ,X) = 0 , D1(φ,X) = 0 , D2(φ,X) = 0 , (B.4)

The expressions for D0, D1 and D2 depend on the functions f2 and aA, (A = 1, ..., 5) and on X,
and can be found in eqs. (4.30)–(4.32) of [26].

B.1 Degeneracy conditions in terms of the effective parameters

For quadratic theories, one can express f2 and ai in terms of αT, αH, αL, β1, β2 and β3:

f2 =
M2

2
(1 + αT) , f2X =

M2

4X
(αT − αH) ,

a1 =
M2

2X
αT , a2 = −M

2

6X
(3αT − 2αL) ,

a3 = −M
2

3X2
(2αL − 3αH − 6β2) , a4 = −M

2

2X2
(2αH − β3) ,

a5 = −M
2

6X3
(−2αL + 3β1 + 12β2 + 3β3) .

(B.5)

Substituting these expressions into (B.4), one gets

X

M6
D0 =

αL

3

[
2(1 + αH)2 − (1 + αT)β3

]
, (B.6)

X2

M6
D1 =

αL

3

[
4(1 + αH)2 − (1 + αT)β2 − (5 + 2αT)β3

]
−
[
4(1 + αH)β1 + 2(1 + αT)β2

1 + β3

]
, (B.7)

X3

M6
D2 =

αL

3

[
2(1 + αH)2 − (4 + αT)β2 − (4 + αT)β3

]
−
[
β2 + 4(1 + αH)β1 + 2(4 + αT)β2

1 + β3

]
. (B.8)

One can distinguish two cases, which yield the conditions CI and CII, given respectively in (2.15)
and (2.16).
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Subclass (see [33]) # free functions Degeneracy Remarks
2N-I/Ia 3 I H, bH & conf-disf transf
2N-II/Ib 3 0

2N-III/IIa 3 II
2N-IV/IIb 3 0
2M-I/IIIa 3 II αT = αH = −1

2M-II/IIIb 3 II αL = αT = αH = −1
2M-III/IIIc 4 0

3N-I 3 I H, bH & conf-disf transf
3N-II 4 0
3M-I 4 II αT = αH = −1
3M-II 3 II αT = αH = −1
3M-III 1 0
3M-IV 5 0
3M-V 2 0
3M-VI 6 0
3M-VII 4 0

2N-I/Ia & 3N-I 4 I H, bH & conf-disf transf
2N-II/Ib & 3N-II 7 0
2N-I/Ia & 3M-I 5 II
2N-I/Ia & 3M-II 4 II
2N-I/Ia & 3M-III 3 I & II
2N-I/Ia & 3M-V 3 II

2N-II/Ib & 3M-VII 6 0
2N-III/IIa & 3M-I 6 II
2N-III/IIa & 3M-II 5 II
2N-III/IIa & 3M-III 4 II
2N-III/IIa & 3M-V 4 II
2N-IV/IIb & 3M-I 5 II
2N-IV/IIb & 3M-II 4 II
2N-IV/IIb & 3M-III 3 0
2N-IV/IIb & 3M-V 4 0

2M-I/IIIa & 3M-I 6 II αT = αH = −1
2M-I/IIIa & 3M-II 5 II αT = αH = −1
2M-I/IIIa & 3M-III 4 II αT = αH = −1
2M-I/IIIa & 3M-V 4 II αT = αH = −1

2M-II/IIIb & 3M-III 4 II αL = αT = αH = −1
2M-II/IIIb & 3M-IV 8 II αL = αT = αH = −1
2M-II/IIIb & 3M-VII 6 II αL = αT = αH = −1
2M-III/IIIc & 3M-V 6 0
2M-III/IIIc & 3M-VI 10 0
2M-III/IIIc & 3M-VII 7 0

Table 1: Subclasses of DHOST theories, using the classification of Ref. [33]. Second column:
number of free functions among f2, aA, f3 and bA. In the degeneracy column, 0 stands for
M2 = 0, i.e. there are no tensor modes. If f3φ 6= 0, only 3N-I and 2N-I/Ia & 3N-I are degenerate.
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• αL = 0: The condition (B.6) is automatically satisfied. From (B.7) and (B.8) we obtain

β3 = −4β1(1 + αH)− 2β2
1(1 + αT) , β2 = −6β2

1 . (B.9)

• αL 6= 0: The three conditions can be solved for β1, β2 and β3, obtaining

(1 + αT)β1 = −(1 + αL)(1 + αH) , (1 + αT)2 β2 = −6(1 + αL) (1 + αH)2 ,

(1 + αT)β3 = 2(1 + αH)2 .
(B.10)

B.2 Unitary gauge and extra degree of freedom

In the unitary gauge, we have ∂iφ = 0 and therefore X = −A2 so that the vanishing of the
determinant (B.3) is guaranteed by the single condition

D(φ,X,−X) = 0 . (B.11)

This condition is obviously satisfied if the three conditions of (B.4) are verified, but the converse
is not true: there exist theories that look degenerate in the unitary gauge but are in fact not
degenerate.

An important consequence of the above discussion is that for a nondegenerate theory that
satisfies (B.11), the extra scalar degree of freedom, which is known to be present because the theory
is nondegenerate, does not show up in the linear perturbations about a homogeneous background.
Indeed, in this case the kinetic Lagrangian quadratic in perturbations is given by

Lquad
kin = Ā δȦ2 + 2B̄ij δȦδKij + K̄ijkl δKijδKkl , (B.12)

where all quantities are decomposed into a background component, denoted by a bar, and a
perturbative component: φ = φ+δφ, X = X+δX and A = A+δA. Note that δX and δA involve
δφ̇ and ∂iδφ. Since X̄ = −Ā2, we see that the degeneracy of the above quadratic Lagrangian is
automatically guaranteed when the condition (B.11) is verified, even if the conditions (B.4) are
not. The condition can be written as

Ā − 3

κ̄1 + 3κ̄2
B̄2

1 = 0 . (B.13)

In that case, it means that only one scalar degree of freedom shows up at the level of linear
perturbations, independently of the gauge choice. However, the extra degree of freedom remains
present and would show up at the nonlinear level or in an inhomogeneous background.

C Disformal transformations

Here we study how action (1.2) transforms under a conformal and disformal redefinition of the
metric, eq. (2.18). For simplicity, following [17] we work in the unitary gauge and set φ = t
(i.e. µ = 1 in eq. (2.12)), so that X = −1/N2. In the unitary gauge, the disformal transformation
(2.18) is of the form

g̃µν = C(t,N)gµν +D(t,N)δ0
µδ

0
ν . (C.1)

The ADM components of the metric g̃µν are related to those of gµν by

Ñ i = N i , h̃ij = Chij , Ñ2 = CN2 −D . (C.2)
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Moreover, the other relevant geometrical quantities in the action transform as√
−g̃ =

√
−g C3/2

√
C −D/N2 , (C.3)

R̃ = C−1

(
R− 2DiDi logC − 1

2
(∂i logC)2

)
, (C.4)

K̃i
j =

N

Ñ

[
Ki
j +

1

2NC

(
Ċ + CN (Ṅ −N i∂iN)

)
δij

]
. (C.5)

The dimensionless time-dependent parameters defined in eq. (2.21) become

αC ≡
Ċ

2HCN
, αY ≡

N

2C

∂C

∂N
, αD ≡

D

CN2 −D
, αX ≡ −

1

2CN

∂D

∂N
, (C.6)

where all the quantities on the right-hand side are evaluated on the background. Using these
definitions, from eq. (C.2) the homogeneous components of the metric and the lapse transform as

ã =
√
Ca , Ñ0 =

√
C

1 + αD
N0 . (C.7)

Moreover, the Hubble rate changes accordingly, i.e.,

H̃ ≡ 1

Ñ0ã

dã

dt
= H(1 + αC)

√
1 + αD

C
. (C.8)

Furthermore, to compute how the action transforms we are interested in the following relations,
derived from linearizing eqs. (C.2)–(C.5) and valid at linear order,

δN = Ξ
N

Ñ
δÑ ,

δ
√
h =

a3

ã3
δ
√
h̃− 3a3ΞαY

δÑ

Ñ
,

R = CR̃+ 4αY
Ξ

a2

∆δÑ

Ñ
,

δKi
j =

Ñ

N
δK̃i

j − αY
Ξ

N

d

dt

(
δÑ

Ñ

)
δij + δij HΥ

δÑ

Ñ
,

(C.9)

where

Ξ ≡ 1

(1 + αD)(1 + αX + αY)
, (C.10)

and

Υ ≡ Ξ

{
αX + αY + αD(1 + αX + αY) + αC [(1 + αD)(1 + αX) + αY(3 + αD)]

− 1

2HC

∂2C

∂t∂N
− αY

Ξ̇

ΞH
+

Ṅ0

HN0

[
αXαY + 3α2

Y + αDαY(1 + αX + αY)− N2
0

2C

∂2C

∂N2

]}
.

(C.11)

The last ingredient is the transformation of the second-order perturbation of R, i.e.

δ2R = Cδ2R̃+ 2CαYΞR̃
δÑ

Ñ
− 4ΞαY

δ
√
h̃

ã3

∆δÑ

a2Ñ
+

(
2

C

∂2C

∂N2
− 18Ξ2α2

Y

)
(∂iδÑ)2

a2Ñ2

+
δÑ ∆δÑ

a2Ñ2

(
2

C

∂2C

∂N2
− 8α2

Y

)
.

(C.12)
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Replacing all the geometrical terms in action (1.2) by their transformed quantities using
eqs. (C.9) and (C.12) and making use of eqs. (C.7) and (C.8) for the homogeneous quantities,
one obtains an action in terms of the metric g̃µν . The last step is to make a time redefinition,

t→ t̃ =

∫ √
C

1 + αD
dt , (C.13)

which sets the homogeneous “00” component of the metric to unity, i.e. Ñ0 = 1. The obtained
action S̃ has the same form as the original one, eq. (1.2), with the transformed α̃K and α̃B given
by

α̃K =
αKΞ2 + 12ΞΥαB − 6Υ2(1 + αL)

(1 + αC)2
+ 12Υβ1

Ξ̇

H(1 + αC)2
+ β2

Ξ̇2

H2(1 + αC)2

− 1

2M̃2ã3H̃2

d

dt

{
M̃2ã3 12ΞH

Ñ0

[
Υ(αY(1 + αL) + β1)− ΞαBαY +

Ξ̇

6H

(
β2 − 6αYβ1

)]}
,

α̃B =
αBΞ− (1 + αL)Υ

1 + αC
+

β1 Ξ̇

H(1 + αC)
.

(C.14)

The remaining time-dependent functions α̃A and β̃A are given by eq. (2.22).

D Quadratic Lagrangian and dispersion relation in the presence
of matter

We describe matter using a scalar field σ with a k-essence type action [65],

Sm =

∫
d4x
√
−gP (Y ) , Y ≡ ǧµν∂µσ∂νσ , (D.1)

where matter is coupled to a metric of the form

ǧµν = C(φ)
m (φ,X)gµν +D(φ)

m (φ,X)∂µφ∂νφ . (D.2)

In unitary gauge, this reads

ǧµν = Cm(t,N)gµν +Dm(t,N)δ0
µδ

0
ν , (D.3)

with

Cm(t,N) = C(φ)
m

(
φ(t),−φ̇(t)2/N2

)
, Dm(t,N) = φ̇2(t)D(φ)

m

(
φ(t),−φ̇(t)2/N2

)
. (D.4)

Then, in analogy with equation (2.21), we introduce the parameters

αC,m ≡
Ċm

2HCm
, αY,m ≡

1

2Cm

∂Cm

∂N
, αX,m ≡ −

1

2Cm

∂Dm

∂N
, αD,m ≡

Dm

Cm −Dm
, (D.5)

where the right-hand sides are evaluated on the background. The first two parameters in the above
equations, αC,m and αD,m, were introduced in Ref. [60], while the third in [47]. The total action
is the sum of the gravitational action, eq. (1.2), and the matter action above. We will first discuss
the case αL 6= 0; the case αL = 0 can be obtained by taking the smooth limit αL → 0, as we will
discuss below.
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Variation of the total action with respect to ψ yields the scalar component of the momentum
constraint, which reads

2αL
∆ψ

a2
+ 6HδN(1 + αB + αL) + 6β1δṄ − 6(1 + αL)ζ̇ = 3(1 + αD,m)c2

mσ̇0Am δσ (D.6)

where σ0 = σ0(t) and δσ = δσ(t,x) respectively denote the homogeneous component of the scalar
field and its perturbation. We also introduced the matter equation of state and sound speed
squared including a lightcone-changing factor (1 + αD,m) for later convenience,

wm =
P

(1 + αD,m) (2Y PY − P )
, c2m =

PY
(1 + αD,m) (PY + 2Y PY Y )

, (D.7)

as well as the combination

Am ≡ −
2Cm

√
1 + αD,m

M2
(PY + 2Y PY Y ) . (D.8)

Substituting ψ into the total action using equation D.6 yields

S =

∫
d3x dt a3M

2

2

{
1

αL

[
6(1 + αL)ζ̇2 − 12β1δṄ ζ̇ + (6β2

1 + αLβ2)δṄ2

+ 12H
(
β1 (1 + αB) δṄ − (1 + αB + αL) ζ̇

)
δN

+H2

(
6α2

B + 12αB + αLαK + 6(1 + αL) +
αLM(m)

22

H2

)
δN2

]
+

1

a2

[
4 (1 + αH) ∂iζ∂iδN + 2 (1 + αT) (∂iζ)2 + β3 (∂iδN)2

]
+Am

[
δσ̇2 − c2

m

a2
(∂iδσ)2 + 6σ̇0c

2
m(1 + αD,m)

(
ζ δσ̇ +

1 + αL

αL
ζ̇ δσ

)
− 2σ̇0(1 + αD,m)

(
δN δσ̇

(
1 + αX,m + αY,m(1− 3c2

m)
)

+
3c2

mβ1

αL
δṄ δσ

)
−

6H(1 + αB + αL)σ̇0c
2
m(1 + αD,m)

αL
δNδσ + 3

c4
mσ̇

2
0(1 + αD,m)2

2αL
Amδσ

2

]}
,

(D.9)

where we have defined

M(m)
22 = 3Ω̂mH

2αeff
D,m + σ̇2

0(1 + αD,m)2Am

[
(1 + αX,m + αY,m)− 3c2

m(β1 + αY,m)
]2
,

Ω̂m =
C2

m

√
1 + αD,m (2Y PY − P )

3M2H2
,

αeff
D,m ≡ αD,m(1 + αX,m + αY,m)2 + 2(αX,m − αY,m) + (αX,m + αY,m)2 +

1

2Cm

∂2(Dm − Cm)

∂N2

+
[
1 + wm(1 + αD,m)

][
6β1(1 + αX,m + αY,m)− 9c2

m(β1 + αY,m)2
]

+ 3wm

[
2αY,m(1 + αD,m)(1 + αX,m) + α2

Y,m(3 + 2αD,m)

+ 2β1(1 + αD,m)(1 + αX,m + αY,m) +
1

2Cm

∂2Cm

∂N2

]
.

(D.10)
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Let us now impose the unitary degeneracy condition, eq. (4.19). As discussed in Sec. 4, it is
convenient to introduce ζ̃ defined in eq. (4.20). Replacing ζ in terms of this variable in action
(D.9) eliminates time derivatives of the lapse δN . In particular, the quadratic action takes the
form

S =

∫
d3x dt a3M

2

2

[
6(1 + αL)

αL

˙̃
ζ2 +Am

˙δσ
2

+ 2ẊTVX +
1

a2
∂iX

TS ∂iX + XTMX

]
, (D.11)

where XT ≡ (ζ̃, δN, δσ) and V denotes the matrix of elements

V12 = − 6

αL

[
H(1 + αB + αL)− β̇1 +

β1α̇L

1 + αL

]
, V13 =

3(1 + αL)

αL
σ̇0(1 + αD,m)c2

mAm ,

V32 = −σ̇0(1 + αD,m)Am

[
1 + αX,m + αY,m − 3c2

m

(
β1

1 + αL
+ αY,m

)]
,

V11 = V21 = V22 = V23 = V31 = V33 = 0 .

(D.12)

Moreover, M and S are symmetric matrices with elements given by

S11 = 2(1 + αT) , S12 = 2

[
1 + αH +

(1 + αT)β1

1 + αL

]
, S13 = S23 = 0 ,

S22 = 4
(1 + αH)β1

1 + αL
+ 2

(1 + αT)β2
1

(1 + αL)2
+ β3 , S33 = −c2

mAm ,

(D.13)

and

M22 =
αLV12

1 + αL

(
V12

6
−HαB

)
+H2

[
αK − 6αB

(
1 +

3 + αM

1 + αL
β1

)]
− 6

(αBH)·

1 + αL
β1 +M(m)

22 ,

M23 =
1

2
σ̇0(1 + αD,m)c2

mAmV12 , M33 =
3

2αL
σ̇2

0(1 + αD,m)2c4
mA

2
m ,

M11 = M12 =M13 = 0 .

(D.14)

Variation of (D.11) with respect to δN gives the Hamiltonian constraint,

V12
˙̃
ζ + V23

˙δσ − S21∆ζ̃ − S22∆δN +M22δN +M23δσ = 0 . (D.15)

This can be solved for δN and plugged back into action (D.11). After a spatial Fourier transform
we get, denoting k̂ = k/a:

S =
1

2(2π)3

∫
dtd3k

a3M2

M22 + k̂2S22

[(
c1,0 + c1,2k̂

2
)

˙̃
ζk

˙̃
ζ−k +

c2,2k̂
2 + c2,4k̂

4 + c2,6k̂
6

M22 + k̂2S22

ζ̃k ζ̃−k

+
(
c3,0 + c3,2k̂

2
)

˙δσk ˙δσ−k +
c4,0 + c4,2k̂

2 + c4,4k̂
4 + c4,6k̂

6

M22 + k̂2S22

δσk δσ−k

+ 2c5,0
˙̃
ζk ˙δσ−k + 2c6,2k̂

2 ζ̃k ˙δσ−k + 2
(
c7,0 + c7,2k̂

2
)
δσk

˙̃
ζ−k + 2c8,2k̂

2 ζ̃k δσ−k

]
,

(D.16)
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where

c1,0 =
6(1 + αL)

αL
M22 − V2

12 , c1,2 =
6(1 + αL)

αL
S22 ,

c2,2 = S11M2
22 +HS12M22V12(3 + αM) +M22V12Ṡ12 − V12S12Ṁ22 + S12M22V̇12 ,

c2,4 =− S2
12M22 + S22

(
2S12M22 + V12Ṡ12

)
+ S12

(
HS22V12(3 + αM)− V12Ṡ22 + S22V̇12

)
,

c2,6 = S22

(
S11S22 − S2

12

)
, c3,0 = AmM22 − V2

32 , c3,2 = AmS22 ,

c4,0 =−M22

[
M2

23 +
(
M33M22 + V32Ṁ23

)]
+M23

[
HM22V32

(
3 + αM

)
− V32Ṁ22 +M22V̇32

]
,

c4,2 = S33M2
22 −M23V32Ṡ22 + S22

[
2M33M22 −M2

23 + V32Ṁ23 +M23

(
HV32(3 + αM) + V̇32

)]
,

c4,4 = S22

(
2S33M22 + S22M33

)
, c4,6 = S2

22S33 , c5,0 = −V12V32 ,

c6,2 =− V32S12 , c7,0 = V13M22 − V12M23 , c7,2 = V13S22 , c8,2 = −S12M23 .

(D.17)

Let us focus on theories satisfying the degeneracy conditions CI. By imposing the remaining
degeneracy conditions, the limit αL → 0 is finite and for the kinetic part of the action we find

S =

∫
d3x dt a3M

2

2

{
A

(m)

ζ̃

˙̃
ζ2 +

Bζ̃
a2

(∂iζ̃)2 +Am

[
δσ̇2 − c2

m

a2
(∂iδσ)2

]
+Aζ̃m

˙δσ
˙̃
ζ +

Bζ̃m
a2

∂iζ̃ ∂iδσ

}
,

(D.18)

where

A
(m)

ζ̃
= Aζ̃ +

M(m)
22[

H(1 + αB)− β̇1

]2 , (D.19)

Aζ̃m =
2σ̇0(1 + αD,m)Am

[
1 + αX,m + αY,m − 3c2

m(β1 + αY,m)
][

H(1 + αB)− β̇1

]2 , (D.20)

Bζ̃m = −
2σ̇0(1 + αD,m)c2

mAm

[
1 + αH + β1(1 + αT)

][
H(1 + αB)− β̇1

]2 , (D.21)

and Aζ̃ , Bζ̃ are respectively defined in eqs. (4.9) and (4.10). Requiring that the time kinetic matrix
is positive definite gives the no-ghost conditions

Am ≥ 0 , α+ 3Ω̂mα
eff
D,m ≥ 0 , (D.22)

where α was defined in equation (4.15). Requiring that the determinant of the kinetic matrix
vanishes gives the dispertion relation

(ω2 − ĉ2
sk

2)(ω2 − c2
mk

2) = λ2ĉ2
sω

2k2 , (D.23)

where

λ2 ≡
3
[
1 + wm(1 + αD,m)

]
Ω̂mH

2

α+ 3Ω̂mαeff
D,m

[
αH − αX,m − αY,m + 3c2

m(αY,m + β1) + β1(1 + αT)
]2

(D.24)

is a frame-independent parameter giving the amount of kinetic mixing between matter and the
scalar field, which generalizes the one introduced in [47] (and to which it reduces in the limit
αY,m = β1 = 0). Moreover, in equation (D.24), ĉ2

s is defined as

ĉ2
s ≡

α

α+ 3Ω̂mαeff
D,m

c2
s −

3
[
1 + wm(1 + αD,m)

]
Ω̂m

α+ 3Ω̂mαeff
D,m

[
1 + αH + β1(1 + αT)

]2
, (D.25)
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where c2
s is the sound speed in the absence of matter, defined in eq. (4.16).
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