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1 Introduction

Magnetic flux plays a crucial role in the compactification of field theories and string the-

ories1 in several ways. First of all, it leads to a multiplicity of fermion zero modes, which

can be used to explain the number of quark-lepton generations [4]. Moreover, it is an

important source of supersymmetry breaking [5] and, together with a non-perturbative su-

perpotential, it can stabilize the compact dimensions [6] consistent with four-dimensional

Minkowski or de Sitter vacua [7, 8].

In this paper we study the effect of flux on quantum corrections. We consider the

simplest case, a six-dimensional (6d) gauge theory with N = 1 supersymmetry compactified

to four dimensions (4d) on a torus T 2. Following techniques developed in [9, 10], we start

from the 6d Lagrangian written in terms of 4d chiral and vector superfields. Before we

consider the constant magnetic flux background we derive a supersymmetric effective action

for the Kaluza-Klein (KK) states of a 6d Abelian gauge theory and show how the KK

excitations of the vector multiplet obtain their masses from a supersymmetric Stückelberg

mechanism. In the flux background the covariant derivatives of the charged fields satisfy

a harmonic oscillator algebra [5, 6, 11–13], which allows to encode their dynamics in the

compact dimensions via ladder operators. Applying this harmonic oscillator analogy to

1For a review and references see, for example [1–3].
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the full superfields we derive a 4d supersymmetric effective action that incorporates the

complete tower of charged states. Even though the explicit form of the field profiles in

the flux background is known [5, 14] our analysis only uses their orthonormality. The 4d

effective action contains the masses of all charged fields, which are reminiscent of Landau

levels, as well as their interactions, see also [15]. A similar treatment is carried out for

non-Abelian flux where also components of the gauge field are charged and affected by

the flux.

Internal magnetic fields were largely discussed in the string literature, see e.g. [16,

17], starting with [5], followed by its T-dual interpretation of D-branes at angles [18–20].

Global string theory models of this type with 4d supersymmetry or completely broken

supersymmetry were constructed in [21]. In the case where 4d supersymmetry is broken

by the internal magnetic flux, however, a NS-NS tadpole appears at the disk level, which

signals a change of the ground state of the theory (see e.g. [22]). As a result, most quantum

corrections at the string theory level cannot be reliably computed. On the other hand, the

effective field theory action we construct in this paper is adapted to compute quantum

corrections, as we will exemplify in the following.

Our main interest concerns the effect of flux on the quantum corrections to massless

scalar particles. Without flux it is well-known that the mass of Wilson lines, i.e. the

scalar zero modes associated with the higher-dimensional gauge field, are protected from

quadratic divergences by the invariance under a discrete shift symmetry, a consequence of

the higher-dimensional gauge invariance on the torus [23, 24]. For 6d gauge theories the

one-loop effective potential has been explicitly computed in [24], and it has been shown

that the squared mass of the Wilson line is proportional to the volume of the compact

dimensions.

In the following we compute the one-loop correction to the Wilson line mass for an

Abelian gauge theory in the magnetic flux background. As we shall see, due to the effect

of the flux on the KK spectrum and couplings various cancellations occur, and the total

one-loop mass vanishes. The same is true for the one-loop quartic coupling. This result

can be understood by considering the 6d Lagrangian rather than the 4d Lagrangian: the

Wilson lines are the Goldstone bosons of symmetries of the 6d Lagrangian, which are

spontaneously broken by the background gauge field.

The paper is organized as follows. To introduce some formalism we first consider a

supersymmetric Abelian 6d gauge theory without flux and derive the 4d Lagrangian of all

KK modes in terms of chiral and vector superfields in section 2. The 4d Lagrangian in the

case of flux is derived for an Abelian and a non-Abelian gauge theory in sections 3 and 4,

respectively. Section 5 deals with the one-loop effective potential for the Wilson line of

an Abelian gauge theory, and the mass and the quartic coupling of the Wilson line are

computed in the case with flux. The role of Wilson lines as Goldstone bosons is discussed

in section refsec:goldstone, and we conclude with an outlook in section 7.

2 Abelian effective action without flux

We consider a globally supersymmetric U(1) gauge theory in six dimensions. Two of the

dimensions are compactified on a square torus T 2 of area L2. Following [10], we decompose
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the 6d vector multiplet into an N = 1 vector multiplet V and a chiral multiplet φ. The

scalar part of φ contains the internal components of the vector field,

φ|θ=θ=0 =
1√
2

(A6 + iA5) . (2.1)

The six-dimensional gauge action can then be written in 4d superspace as [10]

S6 =

∫
d6x

{
1

4

∫
d2θWαWα + h.c. +

∫
d4θ

(
∂V ∂V + φφ+

√
2V
(
∂φ+ ∂φ

))}
, (2.2)

with ∂ = ∂5 − i∂6. Note that compared to [10] we have performed an integration by parts

in the last term. We further include a hypermultiplet of charge q that decomposes into two

4d chiral multiplets of opposite charge, Q and Q̃. The corresponding matter action can be

written as

S6 =

∫
d6x

{∫
d2θ Q̃(∂ +

√
2gqφ)Q+ h.c. +

∫
d4θ

(
Qe2gqVQ+ Q̃e−2gqV Q̃

)}
. (2.3)

It is straightforward to compute the 4d effective action, keeping the full KK tower in

the gauge sector as well as the matter sector. The superfields, which depend on all six

coordinates, can be decomposed in terms of modes of fixed internal momenta,

φ(xM , θ, θ) =
∑
n,m

φn,m(xµ, θ, θ)ψn,m(xm) ,

V (xM , θ, θ) =
∑
n,m

Vn,m(xµ, θ, θ)ψn,m(xm) ;
(2.4)

here the index M runs over all spacetime dimensions, whereas µ and m only run over

non-compact and compact dimensions, respectively. The ψn,m are a complete set of mode

functions that we choose as

ψn,m(xm) =
1

L
exp

[
2πi

L
(nx5 +mx6)

]
; (2.5)

they satisfy the orthonormality condition∫
T 2

d2x ψn,mψk,l = δn,kδm,l . (2.6)

The reality of the vector field, V = V , implies for the mode functions V n,m = V−n,−m.

Using the expansion (2.4) for vector and chiral superfields and integrating over the compact

dimensions we obtain from eq. (2.2) the equivalent 4d gauge action containing the full KK

tower,

S4 =

∫
d4x

∑
n,m

{∫
d2θ

1

4
Wα
n,mWα,−n,−m + h.c. +

∫
d4θ
(
|Mn,m|2Vn,mV n,m

+ φn,mφn,m −
√

2
(
Mn,mV n,mφn,m +Mn,mVn,mφn,m

) )}
,

(2.7)
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where

Mn,m =
2π

L
(m+ in) . (2.8)

The vector bosons of the KK tower acquire mass via the Stückelberg mechanism. At each

KK level they absorb the imaginary part of of the complex field φ whereas the real part

corresponds to the mass degenerate scalar that is needed to complete the massive vector

multiplet. This can be made manifest by means of a shift of the vector field2 (Mn,m 6= 0),

Vn,m → Vn,m +
1√
2

(
1

Mn,m
φn,m −

1

Mn,m

φ−n,−m

)
. (2.9)

Performing the shift of Vn,m and neglecting a total derivative, one obtains for the 4d

gauge action

S4 =

∫
d4x

∑
n,m

{∫
d2θ

1

4
Wα
n,mWα,−n,−m + h.c.

+

∫
d4θ

(
|Mn,m|2Vn,mV n,m + ϕϕ

)}
.

(2.10)

This is the standard N = 1 supersymmetric action for a massless vector multiplet together

with a tower of massive KK vector multiplets. A massless chiral multiplet ϕ ≡ φ0,0 remains

since the vector multiplet can only be shifted if Mn,m 6= 0.

In order to include the matter sector we have to evaluate integrals of three and four

mode functions. This yields the couplings of the different KK levels and guarantees mo-

mentum conservation in the internal space. The relevant integrals are∫
T 2

d2xψn,mψk,lψr,s =
1

L
δn,k+r δm,l+s ,∫

T 2

d2xψn,mψk,lψr,sψu,v =
1

L2
δn,k+r+u δm,l+s+v .

(2.11)

The complete effective 4d action, including gauge and matter KK towers, is given by

S4 =

∫
d4x

∑
n,m

{∫
d2θ

(
1

4
Wα
n,mWα,−n,−m +Mn,mQ̃n,mQn,m

)
+ h.c.

+

∫
d4θ

(
|Mn,m|2V n,mVn,m + φn,mφn,m +Qn,mQn,m + Q̃n,mQ̃n,m

)}
+

∫
d4x

∑
n,m,k,l

{∫
d2θ
√

2qg Q̃n+k,m+lφk,lQn,m + h.c.

+

∫
d4θ 2qg

(
Qn+k,m+lVk,lQn,m − Q̃n,mVk,lQ̃n+k,m+l

)}
+

∫
d4x

∑
n,m,k,l,r,s

{∫
d4θ 2q2g2

(
Qn+k+r,m+l+sVk,lVr,sQn,m

+Q̃n,mVk,lVr,sQ̃n+k+r,m+l+s

)}
.

(2.12)

2For a discussion in component form see, for example [25].
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In addition to the gauge field Vn,m and ϕ, it describes massless and massive matter fields

that are formed from pairs of chiral multiplets Q̃ and Q with Dirac mass terms Mn,m. At

all KK levels the vector and matter fields are mass degenerate.

In the following sections we shall restrict the discussion to massless fields in the un-

charged sector, which are denoted by V0 and ϕ. The action then takes the simplified form

S∗4 =

∫
d4x

{∫
d2θ

(
1

4
Wα

0 Wα,0 +
∑
n,m

(
Mn,m +

√
2qgϕ

)
Q̃n,mQn,m

)
+ h.c.

+

∫
d4θ

(
ϕϕ+

∑
n,m

(
Qn,me

2qgV0Qn,m + Q̃n,me
−2qgV0Q̃n,m

))}
.

(2.13)

Note that the zero mode ϕ, the complex Wilson line of the gauge field, couples to matter

like the mass terms.

3 Abelian effective action with flux

Now we turn the attention to the flux background in the internal dimensions. Since they

are compact the flux is quantized. Moreover, the mass spectrum and field profiles of

charged fields will be changed drastically and resemble that of Landau levels. Due to

the magnetic field the charged fields will be localized in the extra dimensional space. A

harmonic oscillator analogy, based on the work of [5] and used in [6, 11, 13], allows to

explicitly construct the shape of the charged field profiles [5, 14]. In this way we obtain the

four-dimensional effective action in terms of 4d superfields, restricted to the zero modes of

the uncharged fields.

3.1 Flux and the harmonic oscillator

Before we derive the full supersymmetric effective action we want to elucidate the har-

monic oscillator approach in a minimal example. For that reason we only consider the

six-dimensional gauge field AM as a background for a charged scalar field Q of charge q.

Consequently, the 6d action reads

S6 =

∫
d6x

(
−DMQDMQ

)
, (3.1)

with the gauge covariant derivative acting as DMQ = (∂M + iqg AM )Q. The gauge field

background accounts for a constant flux density f in the internal dimensions, which in our

choice of gauge reads3

A5 = −1
2fx6 , A6 = 1

2fx5 , F56 = ∂5A6 − ∂6A5 = f . (3.2)

As mentioned above, for the square torus of volume L2 the flux is quantized. In the presence

of particles with charge q the flux density can take the values

qg

2π

∫
T 2

F =
qg

2π

∫
T 2

dx5dx6 F56 =
qg

2π
L2f ∈ Z (3.3)

3The calculations in the following sections are equally valid for other gauge choices.
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Using a product space metric for M4 × T 2, and splitting the kinetic terms into 4d and 2d

parts, the six-dimensional action (3.1) decomposes as

S6 =

∫
d6x

(
−ηµνDµQDνQ−QH2Q

)
, (3.4)

where after integration by parts in the internal coordinates we define the 2d Hamiltonian

H2 = −D2
5 −D2

6 = −
(
∂5 −

i

2
qgfx6

)2

−
(
∂6 +

i

2
qgfx5

)2

. (3.5)

In analogy to the quantum harmonic oscillator with Hamiltonian H = 1
2mp

2 + 1
2mω

2x2 and

the standard commutator relation [x, p] = i~, we identify

p = iD6 , x = iD5 , m =
1

2
, ω = 2 , (3.6)

with the commutator relation

[iD5, iD6] = −iqgf . (3.7)

This leads to the further identification ~ = −qgf [6], since we choose f to be negative for

left-handed zero modes, cf. [26]. One now defines the ladder operators

a =

√
1

−2qgf
(iD5 −D6) ,

a† =

√
1

−2qgf
(iD5 +D6) ,

(3.8)

which satisfy the canonical commutator relation [a, a†] = 1. The internal Hamiltonian can

be written in terms of the ladder operators as

H2 = −qgf
(
a†a+ aa†

)
= −2qgf

(
a†a+

1

2

)
. (3.9)

Therefore, the energy eigenvalues of H2 and thus the 4d KK masses show the typical

spectrum of an harmonic oscillator. All levels are |N |-fold degenerate, with N the number

of flux quanta on the torus, in analogy to Landau levels. We denote the internal field

profiles as ψn,j , see [14], where n refers to the Landau level and j accounts for the |N |-fold

degeneracy. The field profiles corresponding to the lowest mass can then be constructed

from the condition

aψ0,j = 0 , a† ψ0,j = 0 . (3.10)

Applying the ladder operator we obtain the higher mode functions

ψn,j =
1√
n!

(a†)n ψ0,j , ψn,j =
1√
n!

(a)n ψ0,j . (3.11)

– 6 –
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The explicit form of the lowest wave function was obtained in [5, 14]. In our consideration

the specific form of the field profile is irrelevant and we will only need the orthonormality

condition4 ∫
T 2

d2xψñ,̃ψn,j = δn,ñδj,̃ . (3.12)

Instead of the KK decomposition in section 2 we now decompose the charged fields

with respect to the Landau levels,

Q(xM ) =
∑
n,j

Qn,j(xµ)ψn,j(xm) =
∑
n,j

Qn,j(xµ)
1√
n!

(
a†
)n
ψ0,j(xm) ,

Q(xM ) =
∑
n,j

Qn,j(xµ)ψn,j(xm) =
∑
n,j

Qn,j(xµ)
1√
n!

(a)n ψ0,j(xm) .

(3.13)

The 6d action (3.1) then becomes

S6 =

∫
d4x

∑
n,j,m,k

{
−ηµνDµQn,jDνQm,k

∫
T 2

d2xψn,jψm,k

−Qn,jQm,k
∫
T 2

d2x (−2qgf)ψn,j

(
a†a+

1

2

)
ψm,k

}
.

(3.14)

The four-dimensional effective action is derived by using the harmonic oscillator algebra

and the orthonormality of the internal field profiles in the gauge field background,

S4 =

∫
d4x

∑
n,j

(
−DµQn,jDµQn,j + (2qgf)

(
n+

1

2

)
Qn,jQn,j

)
. (3.15)

The masses for the 4d fields are given by

m2
n,j = −2qgf

(
n+

1

2

)
=

2π|N |
L2

(2n+ 1) , (3.16)

as discussed in [5]. For fields with an internal helicity the mass formula is supplemented by

a term (−2qgf)Σ, where Σ is the internal helicity, see [5]. This leads to the appearance of

|N | chiral fermion zero modes as predicted by the index theorem for the flux background

(Σ = 1
2) and a tachyonic mode in the presence of charged gauge fields with Σ = 1, as

discussed in section 4.

3.2 Supersymmetric effective action for Abelian flux

The field profiles for charged fermions and bosons are identical because both arise as

solutions to the gauge covariant Laplace equation on the torus. Therefore, instead of

decomposing only the component fields with respect to the Landau levels we can decompose

the superfield as a whole, similar to the procedure for the standard KK tower in section 2.

4Note that the charged wave functions in the flux background are not orthonormal with respect to the

standard KK states discussed in section 2. Therefore, to discuss the interaction of the charged states with

higher excitations of the uncharged sector one has to evaluate the overlaps explicitly, see e.g. [15].

– 7 –
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As mentioned above, the six-dimensional hypermultiplet can be written in terms of two

chiral multiplets with opposite charge,

Q(xM , θ, θ) =
∑
n,j

Qn,j(xµ, θ, θ)ψn,j(xm) ,

Q̃(xM , θ, θ) =
∑
n,j

Q̃n,j(xµ, θ, θ)ψn,j(xm) .
(3.17)

Furthermore, the index theorem guarantees |N | fermion zero modes. In our convention,

cf. [26], we choose f to be negative which corresponds to zero modes contained in the Q̃

multiplet.

The uncharged 6d vector multiplet has the usual KK expansion on the torus, see sec-

tion 2. Here, we concentrate on its background value and the zero mode, which are encoded

in V0 and φ0. The scalar component of φ0 contains the internal component of the gauge field

and therefore encodes the magnetic flux on the torus. We split this contribution into the

background gauge field generating the flux and perturbations ϕ, which are constant with

respect to the internal dimensions. Hence, ϕ corresponds to the continuous Wilson lines

on the torus, ϕ = 1√
2
(a6 + ia5). In the symmetric gauge (3.2) the scalar component reads

φ0|θ=θ=0 =
f

2
√

2
(x5 − ix6) + ϕ . (3.18)

The coupling of the hypermultiplet to the internal components of the 6d gauge field can

then be written in N = 1 notation as in eq. (2.3). Plugging in the expressions for the

ladder operators (3.8) and the mode expansion (3.17), we obtain

S6 ⊃
∫
d6x

∫
d2θ Q̃(∂ +

√
2qgφ0)Q+ h.c.

=

∫
d6x

∫
d2θ

(
−i
√
−2qgf Q̃a†Q+

√
2qg Q̃ ϕQ

)
+ h.c. (3.19)

=

∫
d4x

∫
d2θ

∑
n,ñ,j,̃

Q̃ñ,̃Qn,j

∫
T 2

d2x
(
ψñ,̃ (−i

√
−2qgf a† +

√
2qgϕ)ψn,j

)
+ h.c.

After using the orthonormality condition (3.12) of the states, we find the contribution to

the 4d effective action after integration over the torus,

S∗4 ⊃
∫
d4x

∫
d2θW + h.c.

=

∫
d4x

∫
d2θ

∑
n,j

(
−i
√
−2qgf(n+ 1)Q̃n+1,j Qn,j +

√
2qg Q̃n,j ϕQn,j

)
+ h.c.

(3.20)

The superpotential contains a mass term for the charged superfields and an interaction

term which couples them to the internal components of the gauge field, i.e. the Wilson

lines. The kinetic terms of the charged fields can be treated similarly, and yield

S∗4 ⊃
∫
d4x

∫
d4θ

∫
T 2

d2x
(
Qe2qgV0Q+ Q̃e−2qgV0Q̃

)
=

∫
d4x

∫
d4θ

∑
n,j

(
Qn,je

2qgV0Qn,j + Q̃n,je
−2qgV0Q̃n,j

)
.

(3.21)
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Finally, the 4d zero modes of the gauge field are included, leading to the same effective

action as in section 2,

S∗4 ⊃
∫
d4x

∫
T 2

d2x

(∫
d2θ

1

4
WαWα + h.c.

)
=

∫
d4x

(∫
d2θ

1

4
Wα

0 Wα,0 + h.c.

)
.

(3.22)

The last contribution we have to add leads to a kinetic term for the complex Wilson line

ϕ as well as a Fayet-Iliopoulos (FI) term5

S∗4 ⊃
∫
d4x

∫
T 2

d2x

∫
d4θ

(
∂V0∂V0 + φ0φ0 +

√
2V0∂φ0 +

√
2V0∂φ0

)
=

∫
d4x

∫
d4θ (ϕϕ+ 2fV0) .

(3.23)

Note again that compared to [10] our action differs by an integration by parts. This is

important since the boundary terms do not vanish in the flux background. In summary,

the 4d effective action with the complete tower of charged states and a restriction to the

zero modes in the uncharged sector reads

S∗4 =

∫
d4x

[∫
d4θ

(
ϕϕ+

∑
n,j

(
Qn,je

2gqV0Qn,j + Q̃n,je
−2qgV0Q̃n,j

)
+ 2fV0

)
(3.24)

+

∫
d2θ

(
1

4
Wα

0 Wα,0+
∑
n,j

(
−i
√
−2qgf(n+ 1)Q̃n+1,jQn,j+

√
2qgQ̃n,j ϕQn,j

))
+h.c.

]
.

In order to obtain the mass spectrum of the charged fields and their interactions with

the uncharged field ϕ one has to integrate out the auxiliary fields. The bosonic mass terms

receive contributions from F - and D-terms, whereas only the F -terms enter for the fermion

masses. The couplings of the auxiliary field D are given by

LD = fD + |Qn,j |2qgD − |Q̃n,j |2qgD +
1

2
D2 , (3.25)

yielding

D = −f − qg
∑
n,j

(
|Qn,j |2 − |Q̃n,j |2

)
. (3.26)

Similarly, the F -terms appear in the component action as

LF =|Fϕ|2 +
∑
n,j

(
|Fn,j |2 + |F̃n,j |2

)
+
∑
n,j

[
−i
√
−2qgf(n+ 1)

(
F̃n+1,jQn,j + Q̃n+1,jFn,j

)
+
√

2qg
(
F̃n,j ϕQn,j + Q̃n,jFϕQn,j + Q̃n,j ϕFn,j

)]
+ h.c. ,

(3.27)

5Here, we use ∂φ = ∂φ = f/
√

2 in the flux background, since ∂ϕ = 0 = ∂ϕ, and ∂V = 0 = ∂V .
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leading to

Fn,j = −i
√
−2qgf(n+ 1) Q̃n+1,j −

√
2qg Q̃n,j ϕ ,

F̃n+1,j = −i
√
−2qgf(n+ 1)Qn,j −

√
2qgQn+1,j ϕ ,

Fϕ = −
√

2qg
∑
n,j

Q̃n,jQn,j .

(3.28)

Plugging the F - and D-terms back into the component Lagrangian we find the bosonic

mass terms

LbM = −
∑
n,j

[
−2qgf(n+ 1)

(
|Q̃n+1,j |2 + |Qn,j |2

)
+ qgf |Qn,j |2 − qgf |Q̃n,j |2

]
. (3.29)

Therefore, the two scalars of different charge have the same tower of massive states due to

a charge dependent shift induced by the D-term, leading to the bosonic masses evaluated

in eq. (3.16),

m2
Q̃n,j

= −2qgfn− qgf = −qgf(2n+ 1) =
2π|N |
L2

(2n+ 1) ,

m2
Qn,j

= −2qgf(n+ 1) + qgf =
2π|N |
L2

(2n+ 1) .

(3.30)

The fermionic mass terms can be directly read off the superpotential (3.20),

LfM =
∑
n,j

[
−i
√

2qgf(n+ 1)χ̃n+1,jχn,j + h.c.
]
. (3.31)

We find the |N | chiral zero modes χ̃0,j predicted by the index theorem. The rest of the

chiral fermions pair up to form massive Dirac fields

Ψn,j =

(
χ̃n+1,j

χn,j

)
, (3.32)

with masses

m2
Ψn,j

= −2qgf(n+ 1) =
4π|N |
L2

(n+ 1) . (3.33)

Including the interactions among fermions and bosons we arrive at the full component

Lagrangian

Leff = Lkin + LM + Lint − 1
2f

2 , (3.34)

with the bilinear kinetic and mass terms

Lkin =− ∂µϕ∂µϕ−
1

4
FµνF

µν −
∑
n,j

(
DµQn,jDµQn,j +DµQ̃n,jDµQ̃n,j

)
− i
(
λ1σ

µ∂µλ1 + λ2σ
µ∂µλ2

)
− i
∑
n,j

(
χn,jσ

µDµχn,j + χ̃n,jσ
µDµχ̃n,j

)
, (3.35)

LM =−
∑
n,j

(−2qgf)
(
n+ 1

2

) (
|Qn,j |2 + |Q̃n,j |2

)
+ i
∑
n,j

√
−2qgf(n+ 1)χ̃n+1,jχn,j + h.c. , (3.36)
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and the cubic and quartic interaction terms

Lint =− g2q2

2

∑
n,j

(
|Qn,j |2 − |Q̃n,j |2

)2

− 2q2g2

∑
n,j

Q̃n,jQn,j

∑
m,k

Q̃m,kQm,k


− i
√

2qg
∑
n,j

√
−2qgf(n+ 1)

(
Q̃n+1,j ϕ Q̃n,j −Qn,j ϕQn+1,j

)
+ h.c.

− 2q2g2
∑
n,j

|ϕ|2
(
|Qn,j |2 + |Q̃n,j |2

)
+
√

2qg
∑
n,j

(
iQn,jλ1χn,j − iQ̃n,jλ1χ̃n,j −Qn,jλ2χ̃n,j − Q̃n,jλ2χn,j

)
+ h.c.

−
√

2qg
∑
n,j

ϕχ̃n,jχn,j + h.c. (3.37)

Note that the fermions χ̃0,j , j ∈ {1, . . . , |N |}, are the only charged massless fields.

4 Non-Abelian flux background

In the case of non-Abelian flux we proceed very similar to the Abelian case above. In

the following we will consider a six-dimensional super Yang-Mills theory with gauge group

SU(2). The generalization to higher rank gauge groups and the inclusion of charged matter

fields is straightforward. Again, the starting point is the 6d action expressed in 4d super-

fields as given in [10]. Moreover, we will always work in the Wess-Zumino (WZ) gauge.

The fields of the 6d non-Abelian theory are contained in a vector multiplet V and a chiral

multiplet φ that both transform in the adjoint representation,

S6 =

∫
d6x

{
1

2

∫
d2θ tr (WαWα) + h.c. (4.1)

+

∫
d4θ

2

g2
tr
((√

2 ∂ + gφ
)
e−gV

(
−
√

2 ∂ + gφ
)
egV + ∂e−gV ∂egV

)}
,

with the trace convention tr (TaTb) = 1
2δab. Expanding the exponentials, integrating some

of the terms by part, and bearing in mind that V 3 = 0 in the WZ gauge, this action can

be written as

S6 =

∫
d6x

{
1

2

∫
d2θ tr (WαWα) + h.c.

+

∫
d4θ

[
2 tr

(
φφ+

√
2
(
∂φ+ ∂φ

)
V
)

(4.2)

+ 2 tr

(
g
[
φ, φ

]
V +

(
∂V − g√

2

[
V, φ

])(
∂V +

g√
2

[V, φ]

))]}
.

In order to evaluate the group structure we define a new basis of generators {T3, T+, T−},
where Ti are the properly normalized Pauli matrices and T± = T1 ± iT2. In this basis

one has

tr
(
T 2
±
)

= 0 , tr (T+T−) = 1 , tr (T±T3) = 0 , tr
(
T 2

3

)
=

1

2
,

[T+, T−] = 2T3 , [T3, T±] = ± T± .
(4.3)
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The chiral field φ decomposes as

φ = φ3T3 + φ+
1√
2
T− + φ−

1√
2
T+ ,

φ = φ3T3 + φ+

1√
2
T+ + φ−

1√
2
T− ,

(4.4)

and analogously the vector field, whose reality condition leads to V 3 = V3 and V ± = V∓.

The flux will be encoded as non-trivial background for the field φ3 corresponding to the

Cartan generator T3, similar to the Abelian case (3.2),

φ3 =
f

2
√

2
(x5 − ix6) + ϕ3 . (4.5)

The commutator identities (4.3) show that the components φ+, V+ and φ−, V− have pos-

itive and negative charge with respect to V3, respectively. Consequently, their internal

field profiles will be the same as the charged wave functions in the Abelian case. In our

normalization convention the charge of the chiral fields φ± is q = ±1
2 . The fields V3 and

φ3 are uncharged and we will only take their 4d zero modes into account.6 Since the wave

functions are identical to the Abelian framework we can also adopt the harmonic oscillator

analogy and define the ladder operators in terms of the background gauge field, cf. (3.8)

a† =
i√
−gf

(
∂ +

g√
2

(φ3 − ϕ3)

)
, a =

i√
−gf

(
∂ − g√

2
(φ3 − ϕ3)

)
. (4.6)

The full six-dimensional action can then be expressed in the basis (4.4). After integration

by parts one obtains

S6 =

∫
d6x

{∫
d2θ

(
1

4
Wα

3 Wα,3 +
1

2
Wα

+Wα,−

)
+ h.c.

+

∫
d4θ

(
ϕ3ϕ3 + φ+e

gV3φ+ + φ−e
−gV3φ− + 2fV3

+ V−

(
i
√
−gfa† − g√

2
ϕ3

)(
−i
√
−gfa− g√

2
ϕ3

)
V+

+ V−

(
i
√
−gfa+

g√
2
ϕ3

)(
−i
√
−gfa† +

g√
2
ϕ3

)
V+

(4.7)

−
√

2V−

(
1− g√

2
V3

)(
i
√
−gfa† − g√

2
ϕ3

)
φ−

−
√

2φ−

(
1− g√

2
V3

)(
−i
√
−gfa− g√

2
ϕ3

)
V+

−
√

2φ+

(
1 +

g√
2
V3

)(
−i
√
−gfa† +

g√
2
ϕ3

)
V+

−
√

2V−

(
1 +

g√
2
V3

)(
i
√
−gfa+

g√
2
ϕ3

)
φ+

+
g2

2
(V+φ− − V−φ+)

(
V−φ− − V+φ+

))}
.

6In the following the restriction to the zero mode for V3 is understood and we do indicate this with a

subscript 0. The zero mode of φ3 is denoted by ϕ3 similar to the previous sections.
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We clearly identify the kinetic term for ϕ3 as well as the gauge covariant kinetic terms for

the charged chiral multiplets φ± of charge ±1
2 . Also the FI-term for the vector multiplet

aligned with the flux V3 is present, as in the Abelian case. The remaining contributions

will lead to interaction and mass terms connecting charged states. Except the last term,

that contains four charged fields, we can derive the 4d effective action along the lines of

section 3, where φ± now correspond to the charged chiral multiplets Q and Q̃. The final

result is

S∗4 =

∫
d4x

{∫
d2θ

(
1

4
Wα

3 Wα,3 +
1

2

∑
n,j

Wα
+,n,jWα,−,n,j

)
+ h.c.

+

∫
d4θ

[
ϕ3ϕ3 + 2fV3 +

∑
n,j

(
φ+,n,je

gV3φ+,n,j + φ−,n,je
−gV3φ−,n,j

)
+
∑
n,j

(
(2n+ 1)(−gf)V−,n,jV+,n,j + i

√
2n(−gf)gϕ3V−,n−1,jV+,n,j

−i
√

2(n+ 1)(−gf)gϕ3V−,n+1,jV+,n,j + g2ϕ3ϕ3V−,n,jV+,n,j

)
+
∑
n,j

((
1− g√

2
V3

)(
−i
√

2(n+ 1)(−gf)V−,n+1,jφ−,n,j (4.8)

+i
√

2n(−gf)φ−,n−1,jV+,n,j + gϕ3V−,n,jφ−,n,j + gϕ3φ−,n,jV+,n,j

)
+

(
1 +

g√
2
V3

)(
i
√

2(n+ 1)(−gf)φ+,n+1,jV+,n,j

−i
√

2n(−gf)V−,n−1,jφ+,n,j − gϕ3φ+,n,jV+,n,j − gϕ3V−,n,jφ+,n,j

))
+
∑
I

g2

2
CI (V+,n,jφ−,ñ,̃ − V−,ñ,̃φ+,,n,j)

(
V−,m̃,l̃φ−,m,l − V+,m,lφ+,m̃,l̃

)]}
,

with I = {n, j, ñ, ̃,m, l, m̃, l̃} and

CI =

∫
T 2

d2x
(
ψn,jψñ,̃ψm,lψm̃,l̃

)
. (4.9)

Integrating out the auxiliary fields in (4.8) we can work out the masses of the charged fields.

The charged vector boson masses in 4d can be evaluated using θσµθθσνθ = −1
2θθθθη

µν .

They are given by

m2
A±,n,j =

1

2
(−gf)(2n+ 1) =

2π|N |
L2

(2n+ 1) . (4.10)

Hence, the charged vector fields have to absorb part of the charged scalar fields via the

Stückelberg mechanism, cf. section 2. The necessary couplings of the charged gauge fields
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to the derivative of the scalars can be extracted from the action (4.8)

S∗4 ⊃
∫
d4x

∫
d4θ

∑
n,j

[
−i
√
−2gf

(√
nφ−,n−1,j +

√
n+ 1φ+,n+1,j

)
V−,n,j

+ i
√
−2gf

(√
nφ−,n−1,j +

√
n+ 1φ+,n+1,j

)
V+,n,j

]
⊃
∫
d4x

∑
n,j

√
−gf

2

[(
−
√
n∂µφ−,n−1,j +

√
n+ 1 ∂µφ+,n+1,j

)
Aµ−,n,j

+
(
−
√
n∂µφ−,n−1,j +

√
n+ 1 ∂µφ+,n+1,j

)
Aµ+,n,j

]
.

(4.11)

This identifies the eaten complex Goldstone mode7

Φn,j =−
√

n+ 1

2n+ 3
φ−,n,j +

√
n+ 2

2n+ 3
φ+,n+2,j , (4.12)

for the charged vector bosons Aµ±,n+1,j . The modes Aµ±,0,j eat the complex bosons φ+,1,j .

To determine the mass spectrum for the remaining two real charged degrees of freedom

we need to evaluate the D-terms. The solutions of the D-term equations read

D3 = − f − g

2

∑
n,j

(
|φ+,n,j |2 − |φ−,n,j |2

)
, (4.13)

D+,n,j = i

√
−gf

2

√
2n+ 1

(√
n

2n+ 1
φ−,n−1,j +

√
n+ 1

2n+ 1
φ+,n+1,j

)
,

D−,n,j = − i
√
−gf

2

√
2n+ 1

(√
n

2n+ 1
φ−,n−1,j +

√
n+ 1

2n+ 1
φ+,n+1,j

)
. (4.14)

Substituting the D-terms into the component action we can extract the quadratic part of

the scalar Lagrangian and identify the mass terms

LM ⊃−
gf

2

{
|φ+,0,j |2

−
∑
n,j

(
φ−,n,j , φ+,n+2,j

)( n+ 2
√

(n+ 1)(n+ 2)√
(n+ 1)(n+ 2) n+ 1

)(
φ−,n,j
φ+,n+2,j

)
(4.15)

Since we chose f < 0, we see that there are |N | tachyonic modes φ+,0,j that will acquire vac-

uum expectation values in the true vacuum (see the comments at the end of this section).

This corresponds to the helicity dependent mass shift one expects, as pointed out in sec-

tion 3.1. The states φ+,1,j have vanishing mass as should be the case for a Stückelberg field

for the first level of massive gauge bosons. The rest of the tower has masses corresponding

to the eigenvalues of the matrix in (4.15). Clearly, the determinant of the mass matrix

7Here, we denote the scalar component of the superfields φ± with the same letter as the superfield.
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vanishes, which indicates the massless Goldstone modes (4.12). The remaining complex

scalar degree of freedom corresponds to the linear combination orthogonal to (4.12),

Φ̃n,j =

√
n+ 2

2n+ 3
φ+,n+2,j +

√
n+ 1

2n+ 3
φ−,n,j , (4.16)

with mass eigenvalues

m2
Φ̃n,j

=
1

2
(−gf)(2n+ 3) =

2π|N |
L2

(2n+ 3) . (4.17)

Note that the physical mass spectrum differs from the one given in [5]. The states with mass

squared 2π|N |/L2 are absorbed by charged vector bosons. The fermion mass terms are

LM ⊃ −
∑
n,j

√
(n+ 1)(−gf)

(
λ+,n+1,j λ̃−,n,j − λ−,n,j λ̃+,n+1,j

)
+ h.c. , (4.18)

where λ and λ̃ denote the gauginos contained in the vector multiplet and chiral multiplets,

respectively. We find 2|N | fermion zero modes λ+,0,j and λ̃+,0,j and a tower of Dirac

fermions Ψ±,n,j with masses

m2
Ψ±,n,j

= (−gf)(n+ 1) =
4π|N |
L2

(n+ 1) . (4.19)

Some comments are in order. The Abelian flux background is perturbatively stable,

which means that all fields have a non-negative mass in the background field (3.2). This

situation is different for non-Abelian flux. The flux background can be associated with

a gauge field in the Cartan subalgebra. The non-Cartan elements will accordingly be

charged under the flux and some of the extra dimensional gauge field components become

tachyonic. Therefore, the effective action below does not correspond to an expansion around

the ground state of the system but rather around an extremal point. Nevertheless, it might

be very interesting to study tachyon condensation in this framework and its interplay with

the internal flux background. The study of tachyon condensation should reveal the true

ground state of the theory, and the properties of the theory in the ground state could

then be studied by shifting the vacuum accordingly, with possible applications to string

theory [27, 28].

5 Quantum corrections

In the previous sections we have derived four-dimensional effective actions for six-

dimensional gauge theories compactified on a torus without or with magnetic flux, keeping

the complete tower of charged excitations. This is a good starting point for computing

quantum corrections, in particular for scalar masses which generically are not protected by

symmetries. In the case without flux the one-loop effective potential of a Wilson line has

been computed, and after subtraction of a divergent contribution a finite mass squared is

obtained which is proportional to the inverse volume of the compact dimensions [24, 29–

31]. Our main interest concerns quantum corrections to the Wilson line mass for a torus

compactification with magnetic flux, but for comparison we first reconsider the case with-

out flux.
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ϕ ϕ

Qn,m

ϕ ϕ

Qn,m

Qn,m

Figure 1. Bosonic contributions to the Wilson line mass without flux.

ϕ ϕ

χn,m

χ̃n,m

Figure 2. Fermionic contribution to the Wilson line mass without flux.

5.1 Quantum corrections without flux

The one-loop corrections to the Wilson line mass are determined by the couplings of ϕ

to the matter fields Q and Q̃. Gauge field contributions only enter at two-loop level.

Hence our starting point is the action (2.13) from which one obtains the Lagrangian in

component form,

L4 ⊃−
1

4
FµνF

µν − ∂µϕ∂µϕ

+
∑
n,m

(
−DµQn,mDµQn,m + |Mn,m +

√
2gqϕ|2 Qn,mQn,m

− iχn,mσµDµχn,m − iχ̃n,mσµDµχ̃n,m

+ (Mn,m +
√

2gqϕ) χ̃n,mχn,m + h.c.
)
,

(5.1)

where the complex mass terms Mn,m are defined in eq. (2.8) and Dµ = ∂µ + igqAµ.

Given the effective action (5.1) it is straightforward to calculate the one-loop quantum

corrections to the Wilson line mass. The relevant bosonic and fermionic contributions are

depicted in figure 1 and figure 2, respectively, from which one obtains after a Wick rotation

δm2
b = 2g2q2

∑
n,m

∫
d4k

(2π)4

(
1

k2 + |Mn,m|2
− Mn,mMn,m

(k2 + |Mn,m|2)2

)
, (5.2)

and

δm2
f = −4g2q2

∑
n,m

∫
d4k

(2π)4

k2

(k2 + |Mn,m|2)2
= −2δm2

b . (5.3)
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As expected the contributions cancel for a supersymmetric spectrum, i.e. for two charged

scalars and a pair of charged Weyl fermions with the same masses.

The bosonic contribution (5.2) to the Wilson line mass is an infinite sum of quadrat-

ically divergent terms. A consistent treatment of this expression requires a regularization

prescription as well as renormalization conditions. In the literature several approaches have

been pursued which make use of string inspired Poisson resummation [24, 29, 32], as well

as dimensional regularization [33]. In the following we shall adopt the treatment in [24]

which yields a well-known result for the Wilson line effective potential.

Using the Schwinger representation eq. (5.2) is conveniently expressed as

δm2
b = 2g2q2

∑
n,m

∫ ∞
0

dt t e−|Mn,m|2t
∫

d4k

(2π)4
k2e−k

2t

=
g2q2

4π2

∫ ∞
0

dt

t2
Θ3

(
0;

4πit

L2

)2

,

(5.4)

where we have interchanged summation over KK modes and t-integration, so that the

integrand is now given by the square of the Jacobi Θ-function

Θ3(z; τ) =
∑
r

eiπτr
2
e2πizr . (5.5)

Under modular transformations Θ3 transforms as

Θ3(0; τ) = (−iτ)−1/2Θ3(0;−1/τ) . (5.6)

From this we obtain

δm2
b =

g2q2L2

16π3

∫ ∞
0

dt

t3
Θ3

(
0;
iL2

4πt

)2

=
g2q2L2

16π3

∫ ∞
0

duuΘ3

(
0;
iL2u

4π

)2

=
g2q2

π3L2

∑
r,s

1

(r2 + s2)2
,

(5.7)

where we have used the explicit form (5.5) in the last step.

The full divergence of δm2
b , i.e. summation over KK modes and quadratically divergent

momentum integrations, is contained in the r = s = 0 contribution to the sum in eq. (5.7).

To remove this divergence a counterterm is needed. Following [24, 29], we define the finite

part of δm2
b by dropping the r = s = 0 contribution to the sum (5.7). We have compared

this finite part with the result in [33], which has been obtained by using dimensional

regularization and Poisson resummation. It is reassuring that both procedures give the

same answer.

The mass of ϕ can also be obtained from the second derivative of the Wilson line

effective potential which was calculated in [24]. Here one starts from the effective mass of

the matter fields Qn,m in a constant Wilson line background ϕ (see eq. (5.1)),

Mn,m(ϕ) = Mn,m +
√

2gqϕ . (5.8)
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From the general expression for the one-loop effective potential,

Veff =
1

2

∑
I

(−1)FI

∫
d4k

(2π)4
log
(
k2 +M2

I (ϕ)
)

= − 1

32π2

∑
I

(−1)FI

∫
dt

t3
e−M

2
I (ϕ)t ,

(5.9)

with I labeling the bosons and fermions in the theory, one obtains for the contribution of

the complete KK tower of a single 6d charged scalar field Q,

Veff = − 1

16π2

∑
n,m

∫
dt

t3
e−|Mn,m|2(ϕ)t

= − 1

16π2

∑
n,m

∫ ∞
0

dt

t3
exp

[
−
(

2πn

L
+ qga5

)2

t−
(

2πm

L
+ qga6

)2

t

]
,

(5.10)

where a5 and a6 are constant background fields. After a Poisson resummation one finds

Veff = − L2

64π3

∑
r,s

∫ ∞
0

dt

t4
exp

[
iqgL (ra5 + sa6)− L2

4t

(
r2 + s2

)]

= − L2

64π3

∑
r,s

∫ ∞
0

duu2 exp

[
iqgL (ra5 + sa6)− L2

4
u
(
r2 + s2

)]
.

(5.11)

Performing the u-integration and expressing the effective potential in terms of ϕ yields the

final result

Veff = − 2

L4π3

∑
r,s

1

(r2 + s2)3
exp

[
i
qgL√

2
((s− ir)ϕ+ (s+ ir)ϕ)

]
. (5.12)

The r = s = 0 contribution is again divergent. It has been argued that dropping this

term corresponds to subtracting a divergent cosmological constant. However, since the

expression for the effective potential is divergent, omitting the r = s = 0 contribution also

subtracts field dependent terms. Indeed, the mass term

∂ϕ∂ϕVeff|ϕ=0 =
g2q2

L2π3

∑
r,s

1

(r2 + s2)2 (5.13)

is divergent and identical to the expression (5.7). On the other hand, the prescription to

drop the r = s = 0 is consistent with respect to the finite contributions since the finite mass

terms obtained from the diagrammatic calculation and the effective potential calculation

then yield the same result.

5.2 Quantum corrections with flux

Given the four-dimensional effective action for the torus compactification with flux,

see (3.25) and (3.37), containing the complete tower of Landau levels we can again study

quantum corrections to the Wilson line effective potential. In the following we shall com-

pute the quantum corrections to the mass term and the quartic coupling.
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ϕ ϕ

Qn,j , Q̃n,j

ϕ ϕ

Qn+1,j , Q̃n+1,j

Qn,j , Q̃n,j

Figure 3. Bosonic contributions to the Wilson line mass with flux.

ϕ ϕ

χn,j

χ̃n,j

Figure 4. Fermionic contribution to the Wilson line mass with flux.

From eq. (3.37) one reads off the couplings of the Wilson line ϕ to the towers of charged

bosonic and fermionic fields,

Lint =− i
√

2qg
∑
n,j

√
α(n+ 1) ϕ

(
Q̃n+1,jQ̃n,j −Qn,jQn+1,j

)
+ h.c.

− 2q2g2
∑
n,j

|ϕ|2
(
|Qn,j |2 + |Q̃n,j |2

)
−
√

2qg
∑
n,j

ϕ χ̃n,jχn,j + h.c. ,

(5.14)

where we have introduced the positive parameter α = −2qgf of mass dimension two. Note

that the cubic bosonic vertex is proportional to the mass of the charged fields involved.

Moreover, the bosonic couplings do not mix the fields Q and Q̃. On the contrary, the

fermionic coupling involves the pair χ and χ̃ at the same Landau level n, analogously to

the Dirac mass terms in eq. (3.37).

As in the case without flux there are two classes of bosonic contributions and one

class of fermionic contributions to the Wilson line mass which are depicted in figure 3 and

figure 4, respectively. Using the couplings given in the Lagrangian (5.14) one obtains for

the quantum corrections

δm2
b = 2q2g2|N |

∑
n

∫
d4k

(2π)4

(
2

k2 + α(n+ 1
2)
− 2α(n+ 1)(

k2 + α(n+ 3
2)
) (
k2 + α(n+ 1

2)
)) ,

δm2
f = −2q2g2|N |

∑
n

∫
d4k

(2π)4

2k2

(k2 + αn) (k2 + α(n+ 1))
, (5.15)
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which can be brought to the form

δm2
b = −4q2g2|N |

∑
n

∫
d4k

(2π)4

(
n

k2 + α(n+ 1
2)
− n+ 1

k2 + α(n+ 3
2)

)
,

δm2
f = 4q2g2|N |

∑
n

∫
d4k

(2π)4

(
n

k2 + αn
− n+ 1

k2 + α(n+ 1)

)
.

(5.16)

Using the Schwinger representation of the propagators and performing the momentum

integrations one finds

δm2
b = −q

2g2

4π2
|N |

∑
n

∫ ∞
0

dt
1

t2

(
ne−α(n+ 1

2
)t − (n+ 1)e−α(n+ 3

2
)t
)
,

δm2
f =

q2g2

4π2
|N |

∑
n

∫ ∞
0

dt
1

t2

(
ne−αnt − (n+ 1)e−α(n+1)t

)
.

(5.17)

As in the case without flux the bosonic as well as the fermionic contribution of each Landau

level is quadratically divergent. However, interchanging summation and t-integration and

using various identities for geometrical series, one arrives at

δm2
b = − q2g2

4π2
|N |

∫ ∞
0

dt
1

t2

(
e

1
2
αt

(eαt − 1)2
− e

1
2
αt

(eαt − 1)2

)
= 0 , (5.18)

δm2
f =

q2g2

4π2
|N |

∫ ∞
0

dt
1

t2

(
eαt

(eαt − 1)2
− eαt

(eαt − 1)2

)
= 0 . (5.19)

We conclude that, contrary to the case without flux, the contributions from the different

Landau levels add up to zero and the integrand vanishes. It is remarkable that the bosonic

and the fermionic contribution to the Wilson line mass vanish individually. To obtain

this result it is important to perform the summation before the momentum integration, as

in [24, 33]. In this way, the symmetries of the gauge theory in the compact dimensions

are kept. Comparing the result with the case without flux suggests that magnetic flux

may provide a protection of the Wilson line mass compared to the compactification scale,

independent of supersymmetry.

With non-vanishing flux the computation of the complete Wilson line effective potential

is not straightforward, unlike in the case without flux. As next step we therefore compute

the one-loop contribution to the quartic coupling λ. The calculation is very similar to the

one for the mass term, although more cumbersome. The diagrams with charged fermions

and bosons in the loops are depicted in figures 5 and 6, respectively. Compared to the

computation of the mass term now also fermion propagators appear that mix neighboring

Landau levels. As for the mass term we calculate the contributions from bosons and
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Figure 5. Fermionic contributions to the Wilson line quartic coupling with flux.
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Figure 6. Bosonic contributions to the Wilson line quartic coupling with flux.

fermions separately. After some manipulations of the integrand one obtains the result

δλb =− 8q4g4|N |
∑
n

∫
d4k

(2π)4

[
n2

A2
1/2

− (n+ 1)2

A2
3/2

+
1

α

(
−n(n+ 1)

A1/2
+

(n+ 1)(n+ 2)

A3/2
+
n(n+ 1)

A3/2
− (n+ 1)(n+ 2)

A5/2

)]
,

δλf =− 8q4g4|N |
∑
n

∫
d4k

(2π)4

[
− n2

(A0)2
+

(n+ 1)2

(A1)2

+
1

α

(
n(n+ 1)

A0
− (n+ 1)(n+ 2)

A1
− n(n+ 1)

A1
+

(n+ 1)(n+ 2)

A2

)]
,

(5.20)
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where we have introduced the shorthand notation Aj = k2 + α(n + j). Introducing again

the Schwinger representation of the propagators, performing the momentum integrations

and interchanging summation and t-integration yields

δλb = −q
4g4

2π2
|N |

∫ ∞
0

dt
∑
n

(
−e−

1
2
αt
)[1

t

(
−n2e−αnt + (n+ 1)2e−α(n+1)t

)
+

1

αt2
(
n(n+ 1)e−αnt − (n+ 1)(n+ 2)e−α(n+1)t (5.21)

− n(n+ 1)e−α(n+1)t + (n+ 1)(n+ 2)e−α(n+2)t
)]

= 0 ,

δλf = −q
4g4

2π2
|N |

∫ ∞
0

dt
∑
n

[
1

t

(
−n2e−αnt + (n+ 1)2e−α(n+1)t

)
+

1

αt2
(
n(n+ 1)e−αnt − (n+ 1)(n+ 2)e−α(n+1)t (5.22)

− n(n+ 1)e−α(n+1)t + (n+ 1)(n+ 2)e−α(n+2)t
)]

= 0 .

The sums in eqs. (5.21) and (5.22) extend from 0 to +∞. Since they are convergent and

the n = 0 contribution vanishes one can perform a shift n→ n+ 1 in the first term of each

line. It is then apparent that the bosonic and the fermionic contribution to the quartic

coupling again vanish separately. Hence, no |ϕ|4-term is generated at one-loop order. This

suggests that the entire one-loop effective potential vanishes. Indeed, this has already been

conjectured in the original paper by Bachas [5] based on the independence of the Landau

level masses on the Wilson line. At the level of the 4d effective action this result appears

very surprizing but, as we shall see in the following section, it can be understood in terms

of symmetries of the six-dimensional theory.

6 Wilson lines as Goldstone bosons

From the 4d effective field theory perspective the vanishing of the quantum corrections

to the Wilson line effective potential is far from obvious. It is a consequence of an intri-

cate interplay between level-dependent masses and couplings. Furthermore, the separate

cancellations in the bosonic and fermionic sectors show that also supersymmetry is not re-

sponsible for this protection of scalar masses by magnetic flux. Considering the 6d theory

it becomes clear which symmetry lies behind the vanishing of the effective potential for ϕ.

The massless Wilson lines are the Goldstone bosons of the translation symmetries that are

spontaneously broken by the background gauge field. We subsequently analyze the cases

with a single U(1) gauge group and with several U(1) factors.

6.1 Goldstone bosons for a single U(1)

The six-dimensional action of a charged matter field that we considered in the previous

sections,

S6 =

∫
d6x

(
−DMQDMQ

)
,
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with DMQ = (∂M + iqg AM )Q, is obviously invariant under translations in the two torus

directions,

δQ = εm∂mQ , δAn = εm∂mAn , (6.1)

implying δDMQ = εm∂mDMQ and therefore δS6 = 0. In section 3 we considered effective

actions where the KK tower of the gauge field was neglected, i.e., the gauge field was

replaced by its zero-mode, the complex Wilson line ϕ = 1√
2

(a6 + ia5). The corresponding

6d action is invariant under the transformation

δQ = εm∂mQ , δan = 0 . (6.2)

Let us now include magnetic flux by changing the covariant derivative to

DmQ =

(
∂m + iqg

(
am +

f

2
εmnxn

))
Q . (6.3)

The background gauge field 〈Am〉 = f
2 εmnxn breaks the translational U(1)×U(1) symmetry

spontaneously. Now this symmetry is realized nonlinearly,

δQ = εm∂mQ , δan = εm
f

2
εnm , (6.4)

and the two real massless scalars a5 and a6 are the corresponding Goldstone bosons.8 Note

that the Wilson lines a5 and a6 remain massless if the KK tower Âm of massive scalars is

included, i.e., Am = am + Âm, with the transformation behavior

δQ = εm∂mQ , δan = εm
f

2
εnm , δÂm = εm∂mÂm . (6.5)

However, 6d gravity effects may modify the Wilson line masses, which remains to be

investigated. In this connection also the backreaction of the flux on the geometry has to

be taken into account.

The background gauge field used in eq. (6.3) corresponds to a particular choice of

gauge. The same magnetic flux F = d〈A〉 is generated by the background fields

〈A(x5, x6)〉 = (a5 − cfx6)dx5 + (a6 + (1− c)fx5)dx6 , (6.6)

with c ∈ R. However, not all values of c are allowed since the background gauge field has

to satisfy the periodicity condition on a torus,9

〈A(x5 + kL, x6 + lL)〉 = 〈A(x5, x6)〉+ dΛ , k, l ∈ Z , (6.7)

where Λm,n is a large gauge transformation,

Λ =
2π

L
(mx5 + nx6) , m, n ∈ Z . (6.8)

8There are other examples where the spontaneous breaking of translational invariance leads to the

appearance of Goldstone bosons. For instance, the localization of a Dp-brane in 9 − p dimensions implies

the existence of 9− p massless scalars localized on the Dp-brane. See, for example, [34].
9For a recent discussion and references, see [26].
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This means that for all integers k, l other integers m,n have to exist such that the condi-

tion (6.7) is satisfied. Inserting the background field (6.6) into eq. (6.7) yields

− cflLdx5 + (1− c)fkLdx6 =
2π

L
(mdx5 + ndx6) , (6.9)

and with fL2/(2π) = N ∈ Z this leads to the conditions −cNl ∈ Z and (1 − c)Nk ∈ Z,

and therefore

cN ∈ Z . (6.10)

For c 6= 0 and c 6= 1, it is apparent that the background gauge field (6.6) breaks both

translational symmetries. For c = 0 or 1 one might, at first sight, expect that one of the

translations still is an unbroken symmetry, specifically, translations in x6 for c = 0 and

translations in x5 for c = 1. However, in these cases the seemingly unbroken translational

symmetry is broken by the periodicity condition. For instance, consider the case c =

1. The background field 〈A(x5, x6)〉 = −fx6dx5 is changed by a torus translation to

〈A(x5 + kL, x6 + lL)〉 = −fx6dx5 − flLdx5 ≡ −fx6dx5 + dΛ, which yields

Λ = −2π

L
Nlx5 . (6.11)

Clearly, the large gauge transformation that relates the two gauge fields connected by a

torus translation breaks the translation symmetry in x5-direction. We conclude that also

for c = 1 both translation symmetries are broken. One easily confirms that the same is

true in the case c = 0.

6.2 (Pseudo) Goldstone bosons for more U(1)’s

The situation becomes more subtle in the case of more than one U(1) gauge group and an

arbitrary number of charged scalars Qi with different charge assignments. The covariant

derivatives then read

DmQi =

(
∂m + iqiα

(
a(α)
m +

f (α)

2
εmnxn

))
Qi , (6.12)

with i and α labeling the various U(1) gauge groups and charged matter fields, respectively.

In order to identify the Goldstone bosons, i.e. the nonlinearly transforming Wilson

lines a
(α)
m , we start from the individual translation symmetries for the charged fields,

δQi = εm(i)∂mQ
i . (6.13)

As in the previous section, the transformation behavior of the Wilson lines a
(α)
m is de-

termined by the condition that the Lagrangian transforms into a total derivative, i.e.

δ(DmQi) = εm(i)∂mDmQi. This implies

qiα δa
(α)
n = qiβ ε

m
(i)

f (β)

2
εnm , (6.14)
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for all i. This relation expresses the fact that, depending on the matrix qiα, fields

charged under U(1)α may feel an effective flux, even though the flux of the gauge group

U(1)α vanishes.

It is evident that for N U(1) gauge groups and Nf charged fields there can be at

most min(N,Nf ) Goldstone bosons. If there is flux in at least one of the gauge groups the

two translation symmetries are spontaneously broken and there are at least two Goldstone

boson, as discussed in the previous section. Further symmetries are accidental in the sense

that they may be explicitly broken by additional interactions that couple the various matter

fields, such as
∣∣Qi∣∣2 ∣∣Qj∣∣2. Therefore, masses for some Wilson lines a

(α)
m may be generated

beyond one-loop.

In order to illustrate the subtleties in identifying the (pseudo) Goldstone bosons we

discuss a simple example. Consider the gauge group U(1)1 × U(1)2 and two matter fields

Qi with the charge matrix

qiα =

(
1 1

1 −1

)
. (6.15)

For vanishing fluxes, f (1) = f (2) = 0, it is obvious from the relation (6.14) that none of the

fields a
(α)
m transforms nonlinearly. Hence, both symmetries (6.13) are preserved and there

are no (pseudo) Goldstone bosons. For the flux assignment f (1) = f (2) ≡ f 6= 0 one finds

qiβf
β = f

(
2

0

)
, (6.16)

and there is a single Goldstone boson corresponding to a
(1)
m +a

(2)
m . Finally, for f (1) ≡ f 6= 0

and f (2) = 0 one has

qiβf
β = f

(
1

1

)
, (6.17)

and both Wilson lines transform nonlinearly according to (6.14), which corresponds to two

(pseudo) Goldstone bosons.

7 Conclusion and outlook

In this work we have derived the four-dimensional supersymmetric effective action for six-

dimensional gauge theories compactified on a torus with various background gauge fields.

For non-vanishing background flux we have shown how the Kaluza-Klein excitations of the

vector multiplet obtain their masses from a supersymmetric Stückelberg mechanism, and we

have determined their couplings to charged chiral multiplets. For non-vanishing flux in the

internal dimensions we have restricted the uncharged sector to the zero modes. The entire

tower of the charged states, however, is incorporated, and their modified mass spectrum

is obtained by solving the D- and F -term equations. As is well known, the massive tower

corresponds to a harmonic oscillator spectrum with helicity-dependent shifts, where each
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level is |N |-fold degenerate. The Abelian flux background is perturbatively stable and we

have worked out the full effective action in superfields as well as components. For non-

Abelian flux we have clarified the physical mass spectrum. The internal components of

the gauge field develop a tachyonic direction, and we expect the derived supersymmetric

effective action to prove useful for the treatment of tachyon condensation.

Using the explicit expressions for the level-dependent couplings of the charged tower

to the Abelian Wilson lines, which are massless at tree-level, we have reproduced the

known quantum corrections for vanishing flux. Following a regularization prescription

used in the literature, one obtains a finite result. For non-vanishing flux the situation

changes drastically. The quantum corrections induced by the charged bosons and fermions

separately vanish at one-loop order for the |ϕ|2 and |ϕ|4 terms of the effective Lagrangian.

This was shown using a diagrammatic approach where it follows from an intricate interplay

between level-dependent masses and couplings. Considering the six-dimensional theory one

understands that not just the |ϕ|2 and |ϕ|4 terms, but the entire effective potential should

vanish exactly. The background gauge field associated with the magnetic flux breaks the

translation symmetry in the x5- and x6-directions spontaneously. This leads to two massless

Goldstone bosons which can be identified as the Wilson lines a5 and a6 contained in the

complex field ϕ.

The results described above suggest several extensions of our work. First of all, the

analysis of globally supersymmetric gauge theories with magnetic flux should be extended

to supergravity theories. This would allow to study the backreaction of the flux on the

geometry of the compact dimensions as well as possible mixings between moduli of the

metric and the Wilson lines. Very important are also flux compactifications on orbifolds,

see e.g. [26, 35–37]. In models with gauge-Higgs unification [23, 24, 38–40] one could then

investigate the effect of magnetic flux on quantum corrections to Higgs masses. It is an

intriguing possibility that magnetic flux in higher dimensions may contribute significantly

to stabilize the electroweak scale.

Acknowledgments

We thank Fabian Rühle and Yannick Linke for valuable discussions. This work was sup-

ported by the German Science Foundation (DFG) within the Collaborative Research Cen-

ter (SFB) 676 “Particles, Strings and the Early Universe”. E.D. was supported in part

by the “Agence Nationale de la Recherche” (ANR). M.D. acknowledges support from the

“Studienstiftung des deutschen Volkes”.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [hep-th/0204089]

[INSPIRE].

– 26 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/S0370-1573(02)00273-9
https://arxiv.org/abs/hep-th/0204089
http://inspirehep.net/search?p=find+EPRINT+hep-th/0204089


J
H
E
P
0
4
(
2
0
1
7
)
0
5
2

[2] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102] [INSPIRE].
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