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Abstract

Magnetohydrodynamic turbulence driven by the magnetorotational instability can provide diffusive transport of
angular momentum in astrophysical disks, and a widely studied computational model for this process is the ideal,
stratified, isothermal shearing box. Here we report results of a convergence study of such boxes up to a resolution
of N=256 zones per scale height, performed on blue waters at NCSA with ramses-gpu. We find that the
time and vertically integrated dimensionless shear stress N 1 3a ~ - , i.e., the shear stress is resolution dependent.
We also find that the magnetic field correlation length decreases with resolution, N 1 2l ~ - . This variation is
strongest at the disk midplane. We show that our measurements of a are consistent with earlier studies, and we
discuss possible reasons for the lack of convergence.
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1. Introduction

Astrophysical disks form in galaxies and around black holes,
neutron stars, white dwarfs, main-sequence stars, and planets
because the angular momentum of the parent plasma is
approximately conserved while kinetic energy in noncircular
or non-coplanar motion is easily dissipated and radiated away.
Disk evolution is therefore governed by angular momentum
transport, which can take the form of external torques (e.g.,
from magnetized winds) or internal transport.

Diffusive internal transport of angular momentum has been
fruitfully described with the phenomenological anomalous
viscosity, or α, model (Shakura & Sunyaev 1973; Lynden-Bell
& Pringle 1974), which attributes transport to localized
turbulence. No general driver of turbulence in non-self-
gravitating Keplerian disks was known until the discovery by
Balbus & Hawley (1991) of the magnetorotational instability
(MRI), a local, linear instability of weakly magnetized disks.
Subsequent nonlinear numerical studies convincingly demon-
strated that the MRI leads to turbulence and outward angular
momentum transport (see the review of Balbus & Hawley
1998). Later work has uncovered purely hydrodynamical
instabilities including the zombie vortex (Marcus et al. 2015,
but see Lesur & Latter 2016), the vertical shear instability
(Urpin 2003; Nelson et al. 2013), the baroclinic instability
(Klahr & Bodenheimer 2003; Petersen et al. 2007a, 2007b;
Lesur & Papaloizou 2010), and convective overstability (Klahr
& Hubbard 2014). Nonetheless, MRI-driven turbulence
remains the leading candidate for driving disk evolution in
many astrophysical settings.

Our paper probes numerical convergence of magnetohydro-
dynamic (MHD) turbulence in a particular disk model. By
convergence, we mean resolution and dissipation-scale inde-
pendence in average quantities like the angular momentum
flux. We begin by reviewing the various classes of numerical
models used to study MHD turbulence in disks, and describing
the claims of convergence or nonconvergence made for each
class.

Numerical simulations of disk turbulence can be divided into
local and global models. In a local model (or shearing box;
Goldreich & Lynden-Bell 1965; Hawley et al. 1995), the
equations of motion are expanded to lowest order in the ratio of
the scale height H to the local radius r in a co-orbiting
Keplerian frame. Differential rotation manifests as a linear
shear flow. The shearing box boundary conditions then make it
possible to model the disk in a shear-periodic, rectangular box.
The local model is highly symmetric and cannot, for example,
distinguish between the inward and outward directions (it is
symmetric under a rotation by π around the z axis). In a global
model, by contrast, one simulates some radial range within a
disk without requiring H r . Global models do not have the
inward–outward symmetry of the local model.
The vertical (z) component of gravitational acceleration in

the local model is z2-W , where Wº orbital frequency.
Unstratified local models turn off the vertical component of
gravity, begin with a uniform vertical density profile, and
typically use periodic vertical boundary conditions. Stratified
local models turn on the vertical component of gravity, begin
with a z-dependent vertical density profile, and use a variety of
vertical boundary conditions.
For most boundary conditions, local simulations conserve

one or more components of the mean magnetic field. For
example, unstratified local models with periodic vertical
boundary conditions conserve the mean vertical and toroidal
field if the mean radial field vanishes.5 Numerical investiga-
tions show that the mean field can have a profound effect on the
saturated turbulent state, so we need to distinguish between
zero mean field models, where all the currents that sustain the
field are contained within the simulation volume and can
therefore decay, and mean field models, where one or more
components of the field is fixed by the boundary conditions and
cannot decay.
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5 A nonvanishing mean radial field is conserved, but it causes the toroidal
field to vary linearly in time. See Hawley et al. (1995).
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Turbulence leads to dissipation. In explicit dissipation
models (or direct numerical simulations) dissipation is
incorporated directly in the model, for example, by a scalar
viscosity ν and resistivity η that are dimensionlessly para-
meterized by the Reynolds numbers and their ratio, the
magnetic Prandtl number:

Re
c H

Re
c H

Pr . 1s
M

s
M

n h
n
h
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In implicit large eddy simulation (ILES) models there is no
explicit dissipation, and dissipation is provided by the
numerical scheme through truncation error at the grid scale.
Notice that for ILES models run with a conservative scheme,
lost kinetic and magnetic energy is entirely captured as plasma
thermal energy. In this sense reconnection can be “included” in
an ILES model, though the reconnection rate and dynamics
may be incorrect.

The consequences of using ILES to study high Reynolds
number hydrodynamic turbulence are fairly well understood
(e.g., Sagaut 2006): if there is sufficient dynamic range (large
enough zone number) then the character of dissipation at small
scales has little influence on turbulent structures at large scales.
It is large-scale structures that often determine the flow
properties of greatest astrophysical interest, such as turbulent
momentum flux. The consequences of using ILES to study high
Reynolds numbers MHD turbulence are less well understood
(Miesch et al. 2015). It is fair to say that many disk simulators
(including us) have frequently assumed that with enough
dynamic range MHD ILES would converge to the astrophy-
sically relevant high Reynolds numbers result (but see Fromang
et al. 2007; Lesur & Longaretti 2007; Longaretti & Lesur 2010;
Meheut et al. 2015; Walker et al. 2016).

Finally, disk simulations can be subdivided according to
their treatment of heating and cooling of the plasma. Direct
simulation of the interaction of radiation with matter has, until
recently, been expensive in comparison to available computa-
tional resources. Most disk simulations have therefore used
simplified treatments of plasma thermodynamics, with phe-
nomenological cooling and heating, or assumed an isothermal
equation of state with pressure P cs

2r= , and cs constant in time
and space. Isothermal models are relevant to disks heated by
external illumination, such as disks around compact objects at
many gravitational radii, where the thermal timescale can be
short compared to the dynamical timescale.

Local models also depend on the box dimensions, which are
purely numerical parameters. Changes in box sizes are known
to produce qualitative changes in shearing box models (e.g.,
Simon et al. 2012; Ross et al. 2016; Shi et al. 2016). Even the
largest domains find correlations on the scale of the box, at
least in the corona (Guan & Gammie 2011). Two related
questions emerge. Does the shearing box model converge as
the box sizegoesto infinity? Does shearing box evolution
match global behavior as the box size goes to infinity? These
questions are challenging to answer numerically.

Much is now understood about convergence of the gross,
time-averaged properties of MRI-driven turbulence (e.g., α) in
every corner of the five-dimensional disk model parameter
space: local/global, stratified/unstratified, mean/zero net field,
ILES/explicit dissipation, isothermal/nonisothermal. A sum-
mary of previous calculations emphasizing convergence is
given in Table 1.

Zero net field, local, unstratified, isothermal, ILES models
are particularly interesting: Fromang & Papaloizou (2007)
showed that these models are nonconvergent (see also Pessah
et al. 2007), and this has been independently confirmed (Guan
et al. 2009; Simon et al. 2009). With Nbeingthe number of
resolution elements along one axis, with zone aspect ratios
fixed, nonconvergence appears as N 1a µ - (but see Bodo
et al. 2011) and magnetic correlation length N 1l µ - (i.e.,
correlation length is proportional to zone size). However, this is
not the full story: Shi et al. (2016) have recently found
convergence if the vertical extent of the model is large
compared to the radial extent. In this case, MHD turbulence
excites waves that travel vertically, and this may be connected
to the butterfly oscillations seen in stratified models. However,
the connection between these tall boxes and traditional
unstratified (and stratified) shearing boxes is still uncertain,
and we consider it premature to change the relevant conclusion
for convergence in Table 1.
Unstratified models converge, however, if either explicit

dissipation (Fromang 2010, but see Bodo et al. 2011) or a mean
magnetic field (Guan et al. 2009; Simon et al. 2009) are added.
When a mean field is added α increases proportional to the
mean field strength (Hawley et al. 1995; Salvesen et al. 2016).
What about stratified models? One might think that

stratification would lead to magnetically driven convection,
which could organize the field on the scale of the convective
eddies, leading to convergence. However, the numerical
evidence for convergence of zero net field, local, stratified,
isothermal ILES models is contradictory. The work of Davis
et al. (2010), using the athena code, is consistent with
convergence, while the work of Bodo et al. (2014), using the
Pluto code, shows a sharp drop in Maxwell stress at the
highest accessible resolution of 200 2 141 zones per scale
height. The question of convergence for stratified, isothermal
ILES models is particularly pressing because they are some-
times used to interpret observations in both local (e.g., Simon
et al. 2015) and global (e.g., Mościbrodzka et al. 2009; Flock
et al. 2015) forms.
This paper therefore returns to study the convergence of zero

net field, local, stratified, isothermal ILES models at high
resolutions made newly accessible by the combination of
NCSA’s blue waters machine and the ramses-gpu code.
In Section 2, we present the physical model and numerical
method. Section 3 contains the results of our calculations.
Section 4 discusses the implications of our results and future
directions. Section 5 concludes.

2. Model

2.1. Governing Equations

The local model expands the equations of motion to lowest
nontrivial order around a Keplerian orbit at R R ,0 0f f= = +

t z, 0W = and defines the local Cartesian coordinates

x y z R R R t z, , , , . 20 0 0f f= - - W -( ) ( ( ) ) ( )

In the local model for a Keplerian disk, the equations of ideal
MHD, with an isothermal equation of state (P c ;s

2r= P º
pressure, r º density, cs º sound speed, which is assumed
constant), are

v
t
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r

r
¶
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where v º velocity in the local frame and B º magnetic field,
subject to the constraint

B 0. 6 =· ( )

Equation (4) includes Coriolis and tidal forces. Notice that
there is no explicit dissipation (resistivity or viscosity) and that
R0 does not appear in the governing equations.

For B 0= ,these equations admit the equilibrium

z
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Here H cs= W. Notice that others (e.g., Davis et al. 2010;
Bodo et al. 2014) define the scale height as c2 s W. This
implies that their resolution should be multiplied by 1 2 for
comparison with ours. The initial conditions for our model are
the unmagnetized equilibrium (7)–(8), seeded with a uniform
toroidal field at z H2 ;<∣ ∣ B 0= elsewhere. The initial plasma

P B2 502b º = at the midplane.
Hereafter, we set

c 1 1 1 9s 0r= W = = ( )

which together imply that H=1 and the surface density
2pS = . The mass, length, and time units are thus H0

3r , H,

and 1W- , respectively. Occasionally, we reinsert these units for
clarity.
For the x and y boundaries, we use shearing box boundary

conditions (see Hawley et al. 1995). With these boundary
conditions the model is translation-invariant in the x−y plane,
and also invariant under rotations by π around the z axis. In
addition, the vertical magnetic flux dxdyBz zòF º (integral
taken over the entire x− y domain at any z) is conserved. Our
initial conditions have 0zF = , and our model extends over

L x L2 2x x- < < , with Lx=3, and over L 2y- <
y L 2y< , with Ly=4.
At least three different z boundary conditions have been used

for stratified shearing boxes. Beginning with Stone et al.
(1996), many have used outflow boundary conditions. Davis
et al. (2010) used periodic boundary conditions, which have the
advantage that all three components of the mean magnetic field
are conserved in exchange for altering the domain topology.
Several authors (Brandenburg et al. 1995; Bodo et al. 2014)
adopt impenetrable, stress-free boundaries that set

v z v z v 0x y z¶ ¶ = ¶ ¶ = = and B B B z 0x y z= = ¶ ¶ = (or
the equivalent conditions on the magnetic vector potential).
The effect of boundary condition choice has not been
systematically studied at modern resolution, though Stone
et al. (1996) found that an artificial resistive layer at

z2 3< <∣ ∣ did not affect midplane dynamics significantly,
and Oishi & Mac Low (2011) demonstrate similar behavior in
three runs that differ only by choice of vertical boundary
conditions. For finite thermal diffusivity, Gressel (2013) find a
significant change in energy transport between outflow and
impenetrable vertical boundaries. For a discussion of the effects
of very large vertical extents, see Suzuki et al. (2010).
We chose outflow boundary conditions and a large

vertical extent to minimize the influence of the vertical
boundaries on the body of the disk. Formally, outflow
boundary conditions are B z 0¶ ¶ = and v z 0¶ ¶ = , and

Table 1
Convergence Properties of MHD Disk Turbulence Models

Geometry Stratified Net Dissipation Isothermal Convergent Maximum References
Flux Resolution

local no zero ILES yes no H256 (1), (2), (3), (4)
local no zero explicit yes yes H512 (5)
local no mean ILES yes yes H256 (6), (2), (3)
local no mean explicit yes yes H800 (7)
local no mean ILES no yes H64 (8)

local yes zero ILES yes this work H256 (9), (10), (11)
local yes zero ILES no unclear H64 (12), (13)
local yes zero explicit yes unclear H128 (14), (15)
local yes mean ILES yes unclear H48 (16), (17)
local yes zero ILES no unclear H64 (18), (19)

global no zero ILES yes unclear 480 1920 128´ ´ (20)
global yes zero ILES no unclear 768 256 256´ ´ (21), (22), (23)
global yes mean ILES no unclear 288 128 128´ ´ (24), (25), (26)

Note. For convergence (stress with respect to dissipative scale), no and yes indicate clear, consistent, persuasive findings in the literature. This table is incomplete: it
focuses on studies that consider convergence, and omits some combinations of parameters. A global unstratified simulation has cylindrical geometry and neglects
vertical gravity. H csº W.
References. (1) Fromang & Papaloizou (2007), (2) Simon et al. (2009), (3) Guan et al. (2009), (4) Bodo et al. (2011), (5) Fromang (2010), (6) Hawley et al. (1995),
(7) Meheut et al. (2015), (8) Jiang et al. (2013a), (9) Davis et al. (2010), (10) Bodo et al. (2014), (11) Nauman & Blackman (2014), (12) Shi et al. (2010), (13) Bodo
et al. (2015) (14) Simon et al. (2011), (15) Oishi & Mac Low (2011) (16) Bai & Stone (2013), (17) Fromang et al. (2013), (18) Jiang et al. (2013b), (19) Bodo et al.
(2015), (20) Sorathia et al. (2012), (21) Shiokawa et al. (2012), (22) Hawley et al. (2013), (23) Parkin & Bicknell (2013), (24) Tchekhovskoy et al. (2011), (25)
McKinney et al. (2012), (26) Beckwith et al. (2009).
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c z z1 0s
2 2r r- ¶ ¶ - W =( ) ( ) , consistent with hydrostatic

equilibrium. Our model extends over L z L2 2z z- < <
with Lz=12.

Outflow boundary conditions imply that fluid mass in the
computational domain is not conserved. The characteristic
outflow timescale outt º S Ṡ. Assuming sonic outflow at the
boundaries, z L c2 2z srS » =˙ (∣ ∣ ) . Using the density profile fit
from Guan & Gammie (2011) that takes account of magnetic
support of the disk atmosphere, 6 10out

4 1t » ´ W- . This is
long relative to our integration times. Outflow boundary
conditions also imply that the radial and toroidal magnetic
flux are not conserved.

The domain size L L L H, , 3, 4, 12x y z =( ) ( ) may influence
the turbulent state. Guan & Gammie (2011) and Simon et al.
(2012) provide numerical evidence that angular momentum
transport and variability may depend on structures large
compared to H, but such large domains are currently
inaccessible at our target resolution. Simon et al. (2012)
demonstrate a transition to anomalous behavior as Lx goes from
2 to 0.5. The minimum Lx that avoids these pathologies is
known to be less than L 3;x = the results of Davis et al. (2010)
suggest that this minimum is less than L 2x = .

Finally, the integration time tD should be long enough that
average values for α and other quantities of interest can be
measured with reasonable signal to noise. Our typical
integration time is 300 1» W- (see the Appendix for a discussion
of measurement errors).

2.2. Numerical Methods

We integrate the model with ramses-gpu (Fromang et al.
2006; Kestener et al. 2010; Kestener et al. 2014), a modern
astrophysical MHD code with support for GPU acceleration.6

ramses-gpu is a second-order finite volume MUSCL
scheme. Fluxes are evaluated with the HLLD approximate
Riemann solver (Miyoshi & Kusano 2005). The constraint

B 0 =· is preserved via constrained transport with face-
centered magnetic fields (Evans & Hawley 1988).

Numerical resolution is characterized by

N
H

x
, 10=

D
( )

i.e., the number of zones per scale height in the radial direction.
We take Δ x:Δ y:Δ z=1:2:1, so this is also the number of
zones per scale height in the vertical direction, and twice the
number of zones per scale height in the azimuthal direction.
Hawley et al. (2011) showed that for MRI growth the azimuthal
direction is typically better resolved than the vertical direction
by a factor of a few in shearing boxes, as did Parkin & Bicknell
(2013). Guan et al. (2009) showed that the autocorrelation
function of the magnetic field in unstratified, isothermal

shearing box models is anisotropic and approximately in the
ratio of 1:4:1 in the radial, azimuthal, and vertical directions,
suggesting that near the midplane the y direction is slightly
better resolved than x and z in our model.
The mean azimuthal velocity v x3 2y = - W( ) . Truncation

error depends on the velocity of the fluid with respect to the
grid, and therefore if vy is the dominant component of the
velocity field, the truncation error will vary systematically with
x. This problem can be solved by using orbital advection (also
known as “FARGO”; Masset 2000) for the MHD equations
(Johnson et al. 2008, and references therein). We do not use
orbital advection, but the shear velocity at the edge of our
boxes is only c1.5 s, and we have checked that the Maxwell and
Reynolds stresses do not vary significantly with x.
We start preliminary models from smooth initial conditions.

These were seeded with white noise, with v c0.01i sd ~ and
0.01 0dr r~ to excite a spectrum of unstable modes. We used

late-time snapshots from these models to initialize our
production models. Each run at resolution N2 was initialized
with a snapshot from the final (or near-final) state of a model
with resolution N using a divergence-free prolongation operator
(Fromang et al. 2006). While this avoids running high-
resolution models through an initial transient phase (and allows
our model to forget the initial net azimuthal magnetic flux), it
does introduce a potential bias by coupling the initial state of
one simulation to the final (or near-final) state of a lower-
resolution model.
Stratified shearing box models have high Alfvén speeds in

the upper atmosphere (vA
1 2r~ - ), which via the Courant

condition can demand an impractically small timestep. This is a
standard problem in numerical MHD, and can be solved by
applying a density floor, or re-introducing a displacement
current that limits the Alfvén speed to a maximum speed
(Boris 1970). In shearing box models, Miller & Stone (2000)
used a version of the Boris fix with speed of light
v c1, 4, 8 sA,max = ( ) . Guan & Gammie (2011), by contrast,
impose a density floor of 10 5

0r
- . We impose a density floor

such that v v c10 sA A,max< = . Our vA,max is higher than the
expected vA at z=6 (as deduced from the fit to averaged
stratified shearing box properties of Guan & Gammie 2011) but
small enough to limit the integration to a practical timestep.
In characterizing the saturated state, we use the following

averages: an average over volume

f
dxdydz f

dxdydz
, 11

ò
ò

á ñ º ( )

an average over x and y

f
dxdy f

dxdy
, 12

ò
ò

º[ ] ( )

and an average over time

f
dt f

dt
. 13

ò
ò

º ( )

The height-integrated Shakura–Sunyaev α parameter is

v v B B

P
. 14

x y x y

a
r d

º
á - ñ

á ñ
( )

Table 2
Model Parameters

Label N=Zones/H t0
1W-( ) t 1D W-( )

r32 32 1800 300
r64 64 2100 300
r128 128 2400 300
r256 256 2648 288

6 Freely available: http://www.maisondelasimulation.fr/projects/RAMSES-
GPU/html/.
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This definition does not depend explicitly on box size. It is the
average used in height-integrated disk evolution models (e.g.,
King et al. 2007) for comparison with observation.

3. Results

We consider four models, marching forward in linear
resolution by factors of two from N=32 to N=256. Each
model is started using late-time data from the preceding lower-
resolution model. All share a common coordinate time t. The
runs and their linear resolution, initial time t0, and duration tD
are given in Table 2. We define t¢ for each run as t t0- .
Poloidal slices from all four resolutions are shown in Figure 1.

For L H12z = about 0.5% of the disk mass is lost per
300 1W- after accounting for mass added via the density floor
(see Table 3; M0 is the mass of the disk at the start of that run).

We now turn to the effects of resolution on one- and two-
point statistics of the saturated state. Section 3.1 considers
volume- and area-averaged quantities over the domain.
Section 3.2 presents the correlation function of the magn-
etic field.

3.1. Space and Time Averages

Does a depend on resolution? Figure 2 shows α as a function
of time and resolution. Average values are given in Table 3.
Interestingly, the stress monotonically decreases with resolution
and there is no evidence for convergence. The resolution
dependence is well fit by N 1 3a µ - .

How large are the error bars on our estimate of a, and is the
observed variation with N significant? We assume that ta ( ) is a
stationary process with mean a and variance 2sa. We provide
evidence in the Appendix that the fluctuations in ta ( )
decorrelate over large time intervals for a long-integration-
time N=32 model, and that the correlation time 63ct W » . A
measurement of a averaged over some interval T,therefore,
consists of approximately T ct~ independent measurements,
and one expects an rms error in evaluating a of T c

1 2s t» a
-( )

(see Figure 4 of Longaretti & Lesur 2010, which implies
10ct W ~ in an unstratified local model).

In the Appendix,we work out the relation between , cs t and
the rms error in evaluating a for a class of model power
spectra, assuming ta ( ) is a Gaussian process.7 For a fit to the
N=32 run power spectrum, these imply that the expected rms
error is 0.6 0.170s a» »a , assuming that 0s aa is indepen-
dent of N, consistent with Table 3. This can be compared to

N N2 1 0.25a a - »( ) ( ) . Therefore, the observed trend over
a factor of 8 in N and 2» in a is significant. A naive estimate of
the probability that d d Nlog log 0a gives 3%» .
The run of magnetic field energy density E z t,B =[ ]( )

B B 2[ · ] for all runs is shown in Figure 3. Evidently, the
“butterfly” or dynamo oscillations, which are independent,
quasi-periodic enhancements in magnetic energy density on

Figure 1. x–z slices of ρ (upper half) and By (lower half) for 32, 64, 128, and 256 zones per scale height. Note that as resolution increases, shocks become sharper and
magnetic field structure becomes smaller. Color maps are linear and shared across resolutions.

7 The PDF of α is not consistent with a Gaussian. The PDF of loga is
consistent with a Gaussian. The analysis in the Appendix does not change if
carried out for loga instead of α.
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either side of the disk, followed by a buoyant rise of magnetic
field through z H2~ , are present at all resolutions.

Does the time-averaged vertical structure of the disk change
with resolution? Figure 4 shows x, y-averaged quantities for all
runs averaged over time. Also shown are fits to ρ and EB from
Guan & Gammie (2011), who study boxes of lower resolution
but greater radial and azimuthal extent than we do here.8 The
density profile is consistent with an exponential profile (rather
than Gaussian) at large z∣ ∣, with scale height H0.44 . The
magnetic energy density is also consistent with an exponential
profile at large z∣ ∣, but with scale height H0.64 . EB has a feature
close to the vertical boundaries, perhaps caused by field lines
breaking as they intersect the boundary (Miller & Stone 2000).

The top right panel of Figure 4 shows the t, x, y-average of
total stress. Little variation is seen at large z∣ ∣, and amonotonic
decrease of stress with resolution is seen near the midplane.
Notice, however, that as resolution increases the structure of
averaged stress develops a local minimum around z=0 and a
local maximum around z H2~∣ ∣ .

3.2. Magnetic Field Correlations

Earlier work (Guan et al. 2009) has shown that the magnetic
field correlation length (defined below) scales as N 1- in zero-

net-field, unstratified local ILES models, where N 1a ~ - . How
does the characteristic size of structures in MHD disk
turbulence change with N for our stratified models?
The dimensionless magnetic field autocorrelation tensor is

T x y z t
B

B x y z t B

x x y y z t

, , ,
1

, , ,

, , , . 15

ij i j
2

d d d d

d d

º

´ + +

( )
[ ]

[ ( )

( )] ( )

The dimensionless scalar magnetic autocorrelation function
Tr TB

ijx º ( ). Evidently, x y0, 0 1Bx d d= = =( ) . We consider
only ;Bx vx and xr contain comparatively larger contributions
from the compressive disturbances evident in Figure 1 (see also
Beckwith et al. 2011).
First, we average x y z t, , ,Bx d d( ) over z H2<∣ ∣ and t, as did

Davis et al. (2010). The result is shown in Figure 5. The
correlation function is an ellipse swept back by the shear into a
trailing spiral structure. The shape and orientation of the ellipse
do not change significantly with resolution, but the scale of the
correlation ellipse drops monotonically as resolution is
increased.
Next, we average x y z t, , ,Bx d d( ) over time and over bins in

z of width z H0.5D = , then fold around the midplane. We then
evaluate the second moments of zBx ( ) in the contiguous region
around x y 0d d= = where 0Bx > . The eigenvectors of this
moment tensor define a major and minor axis with major axis
tilted at a small angle θ to the y axis. The correlation lengths

Table 3
Model Results

Label a B Bx yá- ñ v vx yr dá ñ M M0D s aa minorl majorl tiltq

r32 0.039 0.0061 0.0017 0.69% 0.24 0.12 0.61 16°. 0
r64 0.034 0.0053 0.0015 0.65% 0.37 0.085 0.40 17°. 8
r128 0.025 0.0039 0.0011 0.55% 0.26 0.060 0.27 18°. 6
r256 0.019 0.0029 0.0008 0.40% 0.23 0.043 0.20 19°. 0

Note. minorl , majorl , and tiltq are averaged over z H2<∣ ∣ .

Figure 2. α for all runs. The top panel shows evolution over time (after boxcar smoothing of width t 2.5 1D = W- for clarity), while the bottom panel shows the time
averages as a function of resolution with a best-fit power law overlaid.

8 The fit is z H0.93 exp 20
2 2r r= -( ( )) for z H2.55<∣ ∣ and 0.036r =

z Hexp 2.55 0.440r - -( (∣ ∣ ) ) otherwise, and E c0.012B s0
2r= for z H2.55<∣ ∣

and c z H0.012 exp 2.55 0.64s0
2r - -( (∣ ∣ ) ) otherwise.
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minorl and majorl are defined as the distance along each
eigenvector at which e1Bx = . The shape of the correlation
departs from an exponential at both small and large scales,

though the correlations at large scales are weak and hard to
measure accurately (though they must be present, as Guan &
Gammie 2011have shown that butterfly oscillations are

Figure 3. Spacetime diagram of EB[ ] for all runs. Color scales are specific to each panel. Note thepersistence of thebutterfly diagram across all resolutions.

Figure 4. Time- and x, y-averaged quantities as a function of height. Fits to ρ and EB from Guan & Gammie (2011) are overlaid.
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coherent over large boxes). The correlation length is the outer
scale of disk turbulence.

Figure 6 shows zminorl (∣ ∣), zmajorl (∣ ∣), and zq (∣ ∣). All depend
on height. The tilt rises toward 19»  for z H2.5<∣ ∣ . It declines
out to H4.5 and then rises again toward the boundary (this rise
may signal the influence of boundary conditions or the density
floor). The major axis correlation length converges toward

H0.5» for z H3>∣ ∣ , but is monotonically decreasing with N at
z=0. The minor axis correlation length is also monotonically
decreasing with N at z=0, and rises steadily with a bump at

H3» toward the boundaries.
Figure 7 shows explicitly the resolution sensitivity d log l

d Nlog for the minor and major axis correlation lengths, along
with the resolution sensitivity d w d Nlog logrf[ ] of the shear
stress, as a function of z∣ ∣. Both correlation lengths are sensitive to
resolution at the midplane, and far less sensitive (perhaps
converged) at higher altitude. At the midplane, both correlation
lengths scale as N 1 2- . wrf[ ] exhibits a similar trend, especially
for z H3∣ ∣ .

Does this mean the outer scale of turbulence is unresolved,
even at our highest resolution? Figure 6 also shows zminorl (∣ ∣),

zmajorl (∣ ∣) in units of xD in the right panels. Above z H3=∣ ∣
even the minor axis is very well resolved, in excess
of 30 zones per correlation length. At the midplane

N x32 3minorl = D »( ) and N x256 10minorl = D »( ) . This

differs from the nonconvergence observed in unstratified, zero-
net-field ILES models, where xl D are independent of N; here,
the outer scale is better resolved as resolution increases.9

3.3. Evolution of Net Magnetic Flux

Our choice of boundary conditions permit the evolution of
Bxá ñ and Byá ñ. How important is the mean field in driving the
evolution?
The rms and standard deviation of Byá ñ and Bxá ñ are given in

Table 4. Evidently, B By xá ñ á ñ . We can estimate the effect of
the mean field on a using the saturation predictor of Hawley
et al. (1995) for an unstratified shearing box with a net toroidal
field:10B L v4 16 15 0.012 y

2
0 Ap r~ W( ) , where vA is the

Alfvén speed associated with the rms net toroidal field. Then

Figure 5. Bx averaged over time and the region z H2<∣ ∣ for all runs.

9 The ratio of correlation length to resolution xl D is related to, but not
exactly the same as, the quality factor Q xMRIlº D , where vMRI Al µ W is a
characteristic wavelength for the MRI (Sano et al. 2004; Noble et al. 2010;
Hawley et al. 2011). The ratio of the two ratios is M vA lµ º W , which is the
Alfvén Mach number of MRI-driven turbulence at the correlation length.
Walker et al. (2016) demonstrated that in their unstratified models M is
approximately constant in MRI-driven turbulence. In our simulations M varies
by a factor of∼2 inside the disk.
10 We emphasize that this predictor is for unstratified models; how well it
recovers the behavior of stratified models is uncertain. We also use the mean
field through the box as input; locally, the net field may vary.
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using dz dzP B H1 2 0.25 5 2NF
2ò òa b p» =( ( )) ( )

(where H5 comes from assuming B const2 = for z H2.5<∣ ∣ ,
B 02 = else), we find a predicted a associated with the mean
azimuthal field that is, for all models, at least a factor of 3
smaller than the measured a (and nearly an order of magnitude
for r256). This suggests that the boundary conditions are not
controlling the saturation.

The mean field sensed locally by the turbulence may still
control α locally. To illustrate this point, Figure 8 shows a
sample estimate of a local mean field: the azimuthal field
averaged over sheets at constant z. This fluctuates in sign, so to
avoid cancellation we take the time average of the absolute
value of this mean field. The resulting mean field is an order of
magnitude larger than Byá ñ, which the unstratified box

Figure 6. Minor axis correlation length, major axis correlation length, and tilt as a function of z∣ ∣ for each resolution. The correlation lengths are given in units of scale
heights (left panels) and cell size xD (right panels).

Figure 7. Resolution dependence of shear stress d w d N zlog logrf[ ] ( ) and correlation lengths d d N zlog logl ( ) for λ the minor axis (middle) and major axis
(bottom) magnetic field correlation lengths. Both λ are more strongly dependent on resolution at the midplane than at z H3>∣ ∣ .
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saturation predictor suggests would produce an a comparable
to what is measured. In sum: a localized mean field may play
an important role in controlling the outcome, but the mean field
over the entire computational domain does not.

4. Discussion

Our simulations have yielded several unexpected depen-
dences on resolution: (1) N 1 3a ~ - (2) minorl µ

Nmajor
1 2l ~ - in the midplane of the disk, and nearly ∼N0

in the corona (3) The total stress, scaling similarly to λ with N,
develops a local maximum at z H2~∣ ∣ as resolution increases.

Surprisingly, we do not see convergence of the time-
averaged, vertically integrated shear stress a for resolution up
to N=256 zones per scale height in stratified, isothermal,
local ILES models. This is broadly consistent with Bodo et al.
(2014) and in tension with the results of Davis et al. (2010).
Both Davis et al. (2010) and Bodo et al. (2014) find a plateau in
a between 45» and 90» zones per H. We do not find evidence
for this behavior, but the plateau could be hidden in our
measurement errors due to finite run time and finite computa-
tional volume.

Are our results consistent with earlier work? To compare, we
need to convert to common units and a common measurement
of stress, for which we will use α as defined in Equation (14).

Davis et al. (2010) report volume-and-time-averaged stresses
in units of the midplane pressure. This is equivalent to volume-
averaged stress in our units. Notice that Davis et al. (2010)
define H c2 s= W. Then for N 23,» ( 45, 91) their volume

averaged stress (see their Table 1) is 0.0149,( 0.0093, 0.0092).
Converting to vertically integrated stress (multiply by 4 2 )
and dividing by the vertically integrated gas pressure ( 2p in
our units), we find (using our definition of α) 0.034,a = (
0.021, 0.021).

Bodo et al. (2014) also define H c2 s= W, and set
c 1 2s = , 1,0r = and 1W = , so their unit of stress is a
factor of two larger than ours. They consider models with
N 23,» ( 45, 91, 141). Since they do not report time-averaged
stresses, we will estimate these from their Figure 2. We
estimate that the volume integrated maxwell stress in their units
is 0.022,( 0.017, 0.017, 0.01). We convert this vertically
integrated stress to our units (multiply by 2 2 ; the factor of 2
is for the stress unit and the factor of 2 is for the length unit),
multiply by 1.25 to incorporate an assumed 25% Reynolds
stress contribution, then divide by the vertically integrated
pressure ( 2p ) in our units to find 0.031,a  ( 0.024,
0.024, 0.014).

To facilitate comparison, at a resolution of N 32,= ( 64, 128,
256), we find 0.039,a = ( 0.034, 0.025, 0.019). These results
are shown in Figure 9. The overall offset of the Davis et al. and
Bodo et al. series from ours is significant, but may be explained
in part by the larger vertical extent of our models. The
algorithms used also differ, possibly yielding different effective
resolutions, and of course the vertical boundary conditions also
differ. Nevertheless, it is reassuring that all simulations lead to
values of a that are within 1s of our results. Indeed, least
squares power-law fits to the Davis et al. and Bodo et al. series

Table 4
rms and Standard Deviation of Net Magnetic Fluxes Present for Each Run

Label Bx
rmsá ñ Bxsá ñ By

rmsá ñ Bysá ñ NFa

r32 7.0×10−4 4.2×10−4 3.6×10−2 1.5×10−2 1.1×10−2

r64 4.0×10−4 3.8×10−4 1.8×10−2 1.6×10−2 5.6×10−3

r128 4.3×10−4 3.2×10−4 2.0×10−2 1.4×10−2 6.2×10−3

r256 3.7×10−4 3.5×10−4 1.1×10−2 1.0×10−2 3.4×10−3

Note.Vertical magnetic flux is zero, conserved to machine precision.

Figure 8. Time-averaged absolute value of the x, y-averaged magnetic flux.
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yield slopes (−0.35 and −0.37, respectively) consistent with
ours (−0.36) and the relationship N 1 3a ~ - .

The correlation function in the x−y plane is approximately
ellipsoidal and characterized by the major axis length, minor
axis length, and the “tilt angle” between the major axis and the
y axis. The tilt angle N 256 19tiltq = ~ ( ) is consistent with
Davis et al. (2010) who find N 91 18tiltq » ~ ( ) . The increase
in tiltq with resolution was also reported by Guan et al. (2009).
Although Davis et al. (2010) do not quote a value for minorl ,
visual inspection of their N 64Bx »( ) slice yields a value
comparable to what we find at similar resolution.

The sensitivity of stress to N depends on height (see
Figure 7). The midplane shear stress decreases with N at a rate
that is inconsistent with convergence, but the stress at z H2∣ ∣
is much less sensitive to N and convergence is not excluded by
our limited time- and volume-sampled data. One consequence
of this is that a local minimum develops in the total stress at
z=0 and a local maximum develops at z H2∣ ∣ . A
qualitatively similar local maximum in the stress is observed
in stratified shearing boxes with self-consistent thermody-
namics, at least when they are radiation pressure-dominated
(Hirose et al. 2009; Jiang et al. 2016). This effect appears to be
due to a convective process, which also significantly enhances
α in these models (e.g., Hirose et al. 2014).

Are our simulations run long enough? From a long-duration,
low-resolution simulation, we measured a correlation time of

60 1» W- (this is slightly shorter than the 90 1W- correlation time
seen in the N=90 run of Davis et al. (2010)11), and our
assessment of the error bars on ā relies on this measurement.
Stratified shearing box models frequently give an impression of
order-unity enhancements in α (“bursts”) separated by long
intervals, and rare bursts could change the correlation time. Our
data are not sufficient to assess whether this impression is
statistically well grounded or not. If it is, then the bursts might
correspond to long-timescale power in the power spectrum of a
Gaussian process that is undetectable in a short simulation, or

non-Gaussianity associated with the flares. There is, however,
no evidence for non-Gaussianity in our data; the probability
distribution for loga, for example, is consistent with Gaussian.
There is also no evidence of changes in the variance of log a( )
with N; the relative variance, shown in Table 3, shows no
systematic trend.
Why no convergence? The cause may lie either with our

numerical realization of the stratified isothermal zero-net-flux
ILES shearing box model (A), or with assumptions made by
the model itself (B). We have assembled an incomplete list of
possible explanations.
(A1) The nonconvergence is physical and 0MRIa  in

isothermal astrophysical disks with vanishing mean field.
Although we cannot rule this out, it seems inconsistent with the
result of Fromang (2010) for an unstratified model with explicit
scalar viscosity and resistivity that converges to nonzero α,
albeit only for Pm=4.
(A2) The apparent nonconvergence is a consequence of a

combination of statistical errors associated with a finite
sampling time and an initial transient that results from using
resolution N 2 data to initialize resolution N models. Our
analysis (see the Appendix) suggests, however, that even
though a has a long correlation time this is improbable.
(A3) The nonconvergence is an artifact of the limited size of

the model. Fluctuations in ta ( ) will depend on the volume of
the simulation. Naively, they would scale as 1 over the square
root of the number of correlation volumes. However, there is
coupling between correlation volumes via large-scale magnetic
fields and this is connected to the butterfly oscillations.
Furthermore, it is already known that in unstratified, local
simulations the imposition of a mean field causes an ILES
model to converge. Ultimately, it must be that turbulence is
locally unable to distinguish between uniform fields and
magnetic fields that have structure on a sufficiently large scale.
Perhaps our models are simply too small to see this sufficiently
large scale, and so they are analogous to the zero mean field
unstratified models that do not converge.

Figure 9. Time-averaged dimensionless shear stress a for Davis et al. (2010), Bodo et al. (2014), and this work. Results are broadly consistent, and all show
approximately the same scaling of stress with resolution. Fits to each data set are shown as dashed lines.

11 We thank S. Davis for kindly providing us with the data.
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The interaction between small- and large-scale fields has
been explored by Sorathia et al. (2012) who measured the net
magnetic flux in local regions of global unstratified ILES
models. They found distributions of Bxá ñ, Byá ñ, and Bzá ñ
inconsistent with zero, with the linear MRI growth associated
with these mean fields typically being well resolved in their
simulations.

(A4) The model will converge at higher N, and we are
simply not in the high-resolution limit yet. The magnetic field
correlation length is x10~ D in our highest resolution models,
so there is only a dynamic range of 2 between the outer scale
λ and the dissipation scale.

(A5) The model will not converge, with N 1a l~ ~ - , in
the complete absence of a mean magnetic field. Although we
cannot account for the a we measure from the net flux through
our computational domain, our estimate is based on a fit to
results from unstratified models. Mean fields in stratified boxes
may behave differently. They may, for example, be playing a
stronger role than we estimate in the magnetically dominated
corona, contributing to our near-convergence of λ above
z H3~∣ ∣ . Nonetheless, Davis et al. (2010) do maintain zero net
flux in a stratified model, and their results are inconsistent
with N 1a ~ - .

(B1) The nonconvergence is an artifact of our use of an ILES
model. In models in which the numerical resolution and
Reynolds numbers are increased together, there is numerical
evidence that both unstratified and stratified models converge
(Fromang 2010; Simon et al. 2011). It would be interesting to
know whether this extends to larger N and the large ReM, large
Re limit relevant to astrophysical disks. There is also numerical
evidence that computational models of the solar dynamo
depend strongly on the dissipation model (see, e.g., Charbon-
neau 2014, for a review).

(B2) The nonconvergence is an artifact of the absence of
consistent vertical energy transport by radiation and convec-
tion. It is now known that convective disks in models with
consistent treatment of energy transport exhibit enhanced α
(Hirose et al. 2014), which may enhance the amplitude of
dwarf nova outbursts. The convective process may aid
convergence (Bodo et al. 2015). It is not yet clear how well
converged the energetically consistent models are; current
models have N O 64~ ( ).

(B3) The nonconvergence is an artifact of the symmetry of the
local model. The local model is invariant under translations in the
plane of the disk, and invariant under rotations by π around the z
axis. The incorporation of higher order terms in H/r would break
these symmetries and might qualitatively change the outcome.
There is limited numerical evidence for convergence in
unstratified global models (Sorathia et al. 2012), though with a
tendency for a (and hence Ṁ and 1b- ) to increase with resolution
(see also Hawley et al. 2011, 2013; Shiokawa et al. 2012).

What are the implications of nonconvergence? It is difficult
to say without testing the hypotheses above with new
numerical simulations. For example, if A4 is correct (insuffi-
cient resolution), then current lower-resolution models may
yield ā to within a factor of two. On the other hand, if A5 is
correct (α is zero without a mean field),then the result would
have profound implications for our understanding of disk
structure and evolution, which would presumably be controlled
by the generation and transport of large-scale magnetic field.
No matter what the explanation for the nonconvergence seen

here, future disk simulations need to be tested carefully for
convergence.

5. Conclusion

The isothermal stratified zero-net-flux shearing box is a
minimal model with zero physical parameters for the turbulent
saturation of the MRI and is thus central to accretion disk theory.
We have attempted to sort out apparently conflicting reports of
convergence in the literature using the ramses-gpu code on
blue waters to probe convergence at an unprecedented
resolution of N=256 zones per scale height.
Our results imply that existing local and perhaps global zero-

mean-field ILES models of disks are, at best, underresolved.
We have found that N 1 3a ~ - . This is not convergent, but it
differs from the sharp nonconvergence identified by Fromang
& Papaloizou (2007) in unstratified ILES models,
with N 1a ~ - .
We have also compared our results to earlier work by Davis

et al. (2010) and Bodo et al. (2014). These earlier calculations
are consistent with ours to within the error bars, and all show a
similar trend with resolution. Like Bodo et al. (2014) and
unlike Davis et al. (2010), our models do not conserve net
toroidal magnetic flux. Although first estimates suggest the net
flux present in our model is not controlling our results, this
remains an uncertainty in performing comparisons. Box size
effects may also confound comparisons.
We have reviewed possible physical and numerical causes of

this nonconvergence. All of these are amenable to further
numerical investigation when sufficient computational
resources are available. One implication is clear, however:
simulations of MHD turbulence in disks need to be tested
carefully for convergence, and the attendant uncertainties need
to be allowed for when weighing the results.
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Work at Los Alamos National Laboratory was done under the
auspices of the National Nuclear Security Administration of the
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in part by a Romano Professorial Scholar appointment, a
Simons Fellowship in Theoretical Physics, and a Visiting
Fellowship at All Souls College, Oxford.

Appendix
Measurement Error Estimates with a Gaussian Process

Model

Shearing box simulations estimate the true, long-term
average 0a from a measured over a finite time tD . How long
is long enough?
Note that in this section, áñ denotes an expectation value for

consistency with previous literature on Gaussian random fields,
rather than the volume average of Equation (11). Suppose α has a
correlation time ct and variance 2s . Then our intuition is that

0
2a aá - ñ( ) should be proportional to tc

2s t D , i.e., the rms
error averaged over many realizations of α should scale as one
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over the square root of the number of correlation times. But with
what coefficient?

We can estimate 0
2a aá - ñ( ) for a Gaussian process with

known power spectrum over some long but finite time T. That
is,

t a t
j

T
cos ;

2
. 16

j
j j j j0 åa a w f w

p
= + + =( ) ( ) ( )

The sum is taken only over 0jw > , jf is uniformly distributed
in 0, 2p[ ) (random phase), and aj is Gaussian distributed:
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The power spectrum P T aj
2º á ñw . In the limit that T is large the

modes are closely spaced and d T 2j ò w på  ( ). The expected
variance in α over the interval T is
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where the factor of two comes from phase averaging. Pw is
independent of T if 2s is fixed.

The autocorrelation function is
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To go further, we need to know the power spectrum.
We consider model power spectra that decorrelate on long

timescales, so that P 0wµw for ω small, and scale as a power
law at high frequency. A suitable model is

P 1 . 23p
0

2 2w wµ +w
-( ( ) ) ( )

Evidently, if the process is stationary, then p 1> . The power
spectrum can be normalized by 2s :
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where Kn is a modified Bessel function of the second kind. It is
easy to show that 0 2x s( ) .
We estimate 2s from data taken over an interval tD . This

estimate is biased because it does not include contributions to
the variance from low-frequency components. The expected
value of 2s sampled over time tD is
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If p and 0w are known, then this expression can be used to
produce a debiased estimate of 2s .
An auxiliary N= 32 run with t 2000 1D = W- has a power

spectrum consistent with p 2~ . For this special case,
e2 0x t s= w t-( ) ∣ ∣, c 0

1t w= - , and
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Consistent with expectations, this scales as tc
2s t D . Also,
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The auxiliary N= 32 run has 60ct W  , so 600
1w = W- , which

we will assume is independent of N. Runs in Table 2 with
t 300 1D = W- therefore have t 50w D  . Runs in Table 2 also

have 0.25s aa  . Then (28) implies the debiased
0.30s aa  . Combined with (27), we find m 0.172 1 2 aá ñ = .

This implies that the 1σerror is small compared to the total
change in a over a factor of eightin N.
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