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Theories with higher order time derivatives generically suffer from ghost-like instabilities,
known as Ostrogradski instabilities. This fate can be avoided by considering “degenerate”
Lagrangians, whose kinetic matrix cannot be inverted, thus leading to constraints between
canonical variables and a reduced number of physical degrees of freedom. In this work, we
derive in a systematic way the degeneracy conditions for scalar-tensor theories that depend
quadratically on second order derivatives of a scalar field. We thus obtain a classification
of all degenerate theories within this class of scalar-tensor theories. The quartic Horndeski
Lagrangian and its extension beyond Horndeski belong to these degenerate cases. We also
identify new families of scalar-tensor theories with the property that they are degenerate
despite the nondegeneracy of the purely scalar part of their Lagrangian.

I. INTRODUCTION

Theories of modified gravity have attracted considerable attention in the last few years (see e.g.
[1–3] for recent reviews). The main motivation that drives their study is to find an explanation
for the present cosmic acceleration, even if exploring alternative theories of gravitation is also
very instructive from a more fundamental point of view. Many theories of modified gravity are
constructed by simply introducing a scalar field in addition to the usual tensor modes of general
relativity, hence their generic name of scalar-tensor theories. The latest studies of dark energy have
tried to encompass very large classes of scalar-tensor theories (see e.g. [4–6] for a recent approach
that unifies the treatment of single scalar field models of dark energy).

One way to enlarge the traditional scalar-tensor theories is to allow for the presence of higher
order derivatives in the Lagrangian. However, this possibility is severely restricted in order to avoid
disastrous instabilities. Indeed, according to Ostrogradski’s theorem, nondegenerate Lagrangians
with higher order time derivatives1 lead to ghost-like instabilities, also known as Ostrogradski
instabilities [7]. Such Lagrangians yield higher order equations of motion, which require more initial
conditions than in usual dynamical systems. This translates, in the Hamiltonian formulation, into
the appearance of an extra degree of freedom, with a Hamiltonian that depends linearly on one
canonical momentum and is thus (kinetically) unbounded from below.

This lethal fate can however be avoided for special Lagrangians. Well-known examples are the
galileon models [8], which lead to second order equations of motion despite the presence of higher
order derivatives in their Lagrangian. For 4D scalar-tensor theories, i.e. including both a scalar
field φ and a four-dimensional dynamical metric gµν , the most general Lagrangians leading to
second order equations of motion for φ and gµν were obtained by Horndeski [9]. These models were
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1 For a single variable q, a Lagrangian of the form L(q, q̇, q̈) is nondegenerate if ∂2L/∂q̈2 6= 0. Multi-variable
Lagrangians will be discussed in the main text.
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later rediscovered in constructing general covariant extensions of the galileons that lead to at most
second order equations of motion, with the preconception that this requirement was necessary to
avoid Ostrogradski ghosts [10, 11]. Hordenski’s theories can be described by linear combinations
of the following Lagrangians,

LH
2 ≡ G2(φ,X) , LH

3 ≡ G3(φ,X)✷φ , (1.1)

LH
4 ≡ G4(φ,X) (4)R− 2G4,X(φ,X)(✷φ2 − φµνφµν) , (1.2)

LH
5 ≡ G5(φ,X) (4)Gµνφ

µν +
1

3
G5,X(φ,X)(✷φ3 − 3✷φφµνφ

µν + 2φµνφ
µσφν

σ) , (1.3)

where we have used the notation φµ ≡ ∇µφ, φµν ≡ ∇ν∇µφ and X ≡ ∇µφ∇µφ, and a comma
denotes a partial derivative with respect to the argument.

Recently it was realized that requiring second order equations of motion is in fact not manda-
tory and extensions of Horndeski’s quartic and quintic Lagrangians were proposed in [12, 13] (an
earlier example of theory beyond Horndeski was constructed in [14] via the use of disformal trans-
formations). These additional Lagrangians can be written in the form

LbH
4 ≡ F4(φ,X)ǫµνρσ ǫ

µ′ν′ρ′σφµφµ′φνν′φρρ′ , (1.4)

LbH
5 ≡ F5(φ,X)ǫµνρσǫµ

′ν′ρ′σ′

φµφµ′φνν′φρρ′φσσ′ , (1.5)

where ǫµνρσ is the totally antisymmetric Levi-Civita tensor. They lead to equations of motion
that are third order in time derivatives. Interestingly, these extensions beyond Horndeski can
also be recast as generalizations of the “John” and “Paul” terms of the Fab Four [15], where the
corresponding two arbitrary functions of φ acquire a dependence on X as well [16]. These theories
beyond Horndeski lead to a whole range of new phenomena, which have been recently investigated
in several works (see e.g. [17–24]).

Evading the Ostrogradski ghost usually requires to work with a “degenerate” Lagrangian2. In
this sense, flat spacetime galileons can be seen as degenerate theories. Degeneracy can also involve
several variables simultaneously and is the main focus of the present work. To be more specific, we
define a degenerate theory as follows. After introducing auxiliary variables to replace the second
order time derivatives of the Lagrangian by first order time derivatives, the Lagrangian is said to be
degenerate if the kinetic matrix (composed of the coefficients of the kinetic terms) is degenerate. As
we show in this paper, Horndeski theories are degenerate in a trivial way: there is no mixing in the
kinetic matrix between the higher order sector (scalar field) and the metric sector. By contrast, the
extension beyond Horndeski is characterized by a nontrivial degeneracy, which involves a mixing
between the two sectors and explains why the equations of motion are higher order even if the
system remains degenerate.

The central purpose of this paper is to derive, in a systematic way, the degeneracy conditions
for higher derivative scalar theories coupled to gravity. For pedagogical reasons, we first introduce
a toy model with properties that are very similar to those encountered in the scalar-tensor theories
we investigate later. This toy model is sufficiently simple that the equations of motion and the
Hamiltonian formulation can be easily derived and fully analysed.

We then turn to a large class of scalar tensor theories with Lagrangians that depend quadrati-
cally on the second derivatives of the field, i.e. φµν , while the dynamics of the gravitational sector is
described by the Ricci scalar multiplied by an arbitrary function of φ and X. This class of theories
depends on six arbitrary functions of φ and X, and includes the quartic Horndeski and beyond

2 Another approach, familiar in the context of effective field theory, consists in simply discarding Ostrogradski
instabilities when they arise from the perturbative part of the Lagrangian (see e.g. [25]).
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Horndeski terms, i.e. LH
4 and LbH

4 . Familiar terms like a standard kinetic term or a potential, or
more generally any combination of LH

2 and LH
3 , can of course be added, but we do not consider

them explicitly as they do not modify the degeneracy properties of the Lagrangian.
For the class of theories described above, we are able to derive the degeneracy conditions that

must be satisfied by the arbitrary functions of the Lagrangian. This enables us to classify all
degenerate Lagrangians in this class. In particular, we find that a combination of LH

4 and LbH
4 is

degenerate, as expected. We also identify three other families of degenerate Lagrangians, whose
purely scalar part is nondegenerate.

We also consider separately the quintic Lagrangian beyond Horndeski, LbH
5 , whose analysis is

more involved since its dependence on φµν is now cubic. We show that LbH
5 is degenerate and the

corresponding null eigenvector of its kinetic matrix is the same as that of LbH
4 , which implies that

LbH
4 +LbH

5 is also degenerate. However, we find that the combination of LbH
4 , LbH

4 and LbH
5 leads to

a nondegenerate Lagrangian in general, which means that an Ostrogradski instability is expected
in this case.

The plan of our paper is the following. The next section is devoted to the full analysis of our toy
model. We then present the class of models we investigate, which include the quartic Lagrangians
LH
4 and LbH

4 as particular cases. The section that follows explains how to derive the degeneracy
conditions. This enables us to fully classify the degenerate theories in the subsequent section.
We then consider the particular case of LbH

5 . We finally summarize our results and conclude.
In addition, we present a discussion on the unitary gauge and the degeneracy conditions in an
Appendix.

II. A TOY MODEL

In order to illustrate how the Ostrogradski instability can be circumvented within degenerate

theories, despite the presence of higher order time derivatives in the equations of motion, let us
consider and study in detail a simplified toy model. The degeneracy properties that we discuss in
this section will be quite similar to those of the scalar-tensor theories considered in the rest of the
paper.

A. Higher derivative Lagrangian

Our toy model describes a point particle system with higher derivatives, coupled to n regular
degrees of freedom. Denoting the respective variables by φ(t) and qi(t) (i = 1, . . . , n), their coupled
dynamics is governed by a Lagrangian of the form

L =
1

2
a φ̈2 +

1

2
k0φ̇

2 +
1

2
kij q̇

iq̇j + bi φ̈ q̇i + ci φ̇ q̇i − V (φ, q) . (2.1)

In this simplified framework, we assume that a, bi, ci, k0 and kij are constant but the model
could easily be extended to arbitrary functions of φ. The coupling between the variable φ and the
regular degrees of freedom qi is governed by two interaction terms. In particular, the interaction
term proportional to bi generates third order derivatives in the equations of motion for φ and qi,
which read respectively

a
....
φ − k0φ̈+ bi

...
q i − ciq̈

i − Vφ = 0 , (2.2)

kij q̈
j + bi

...
φ + ciφ̈+ Vi = 0 , (2.3)

where Vi ≡ ∂V/∂qi and Vφ ≡ ∂V/∂φ. In general, these equations involve an extra degree of
freedom, corresponding to an Ostrogradski ghost. However, as we show in more details below,
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there exist cases where the ghost can be avoided even if the equations of motion feature higher
order time derivatives.

B. An equivalent formulation

To compute the number of degrees of freedom (either in the Lagrangian or Hamiltonian frame-
works), it is convenient to reformulate the theory in a way that eliminates explicit higher order
time derivative in the Lagrangian. For that purpose, we simply replace φ̇ by a new variable Q in
(2.1) and we add a “constraint” which imposes indeed that Q is the time derivative of φ. Thus,
we introduce the new Lagrangian

L =
1

2
a Q̇2 +

1

2
kij q̇

iq̇j +
1

2
k0Q

2 − V (φ, q) + (biQ̇+ ciQ)q̇i − λ(Q− φ̇) , (2.4)

where Q and λ are two new variables.
To verify that this action is equivalent to the original one (2.1), we derive the equations of

motion, which read

aQ̈+ biq̈
i = ciq̇

i + k0Q− λ , (2.5)

biQ̈+ kij q̈
j = −Vi − ciQ̇ , (2.6)

φ̇ = Q and λ̇ = −Vφ , (2.7)

and check explicitly that there are indeed equivalent to the system (2.2)-(2.3).
We now introduce the kinetic matrix, i.e. the symmetric matrix that contains the coefficients

of the terms quadratic in time derivatives in the new Lagrangian (2.4):

M =

(

a bj
bi kij

)

. (2.8)

As we will see, this matrix plays a crucial rôle in the determination of the number of degrees of
freedom.

If M is invertible, the equations (2.5-2.6) enable us to express the second order derivatives Q̈
and q̈i in terms of up to first order derivative quantities. Together with the equations in (2.7), the
differential system thus requires initial conditions for Q, Q̇, qi, q̇i, λ and φ, i.e. 2(n + 2) initial
conditions. This means that the system describes (n + 2) degrees of freedom, which includes the
extra degree of freedom associated with the Ostrogradski ghost. In conclusion, when the kinetic
matrix M is invertible, the system (2.4) admits a ghost and provides a typical illustration of the
Ostrogradski instability. The same conclusion can also be reached from the Hamiltonian point
of view, with a precise analysis of the constraints and the counting of the number of degrees of
freedom. This will be the purpose of the last subsection.

C. Degeneracy: eliminating the extra degree of freedom

The presence of an extra degree of freedom can be avoided by imposing that the kinetic matrix
M is degenerate. We also require that this degeneracy arises from the φ sector and its coupling to
the qi, not from the qi sector alone, which means that we assume the matrix kij to be invertible.
By writing the determinant of M in the form

det(M) = det(k)
(

a− bibj(k
−1)ij

)

, (2.9)
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one finds that the degeneracy of the kinetic matrix M is expressed by the algebraic relation

a− bi bj (k
−1)ij = 0 . (2.10)

An obvious way to make M degenerate is to choose a = 0 and bi = 0. In this trivial case, all
the higher order derivatives disappear in the original Lagrangian and the system describes n + 1
degrees of freedom as usual. This choice also implies that the equations of motion are second order.

Let us now turn to more interesting situations where the degeneracy is nontrivial, i.e. when
the degeneracy condition (2.10) is satisfied with bi 6= 0. Although the associated equations of
motion involve higher order time derivatives (up to fourth order if a 6= 0, third order otherwise),
the degeneracy guarantees that there is no extra degree of freedom.

In order to see this, let us introduce the vector

v =

(

v0

vi

)

=

(

−1
(k−1)ijbj

)

, (2.11)

which is a generator of the one-dimensional kernel of the matrix M . Projecting the system (2.5)-
(2.6) in the direction v eliminates all second order derivatives and gives

ci(q̇
i + viQ̇) + k0Q+ viVi = λ . (2.12)

The above equation suggests to work with the variables xi ≡ qi + viQ, instead of the qi. In terms
of these new variables, the equations of motion of the dynamical system simplify into

ciẋ
i + k0Q+ viVi = λ , (2.13)

kij ẍ
j + ciQ̇+ Vi = 0 . (2.14)

Taking the time derivative of the first equation (2.13) and using (2.7) to eliminate λ̇ and Q, we
finally obtain the equivalent dynamical system

(k0 − vivjVij)φ̈+ ciẍ
i = −(viVij)ẋ

j − (viViφ)φ̇− Vφ (2.15)

ciφ̈+ kij ẍ
j = −Vi , (2.16)

where Vij ≡ ∂Vi/∂q
j = Vji and Viφ = ∂Vi/∂φ = Vφi (the potential V and its derivatives depend on

φ, φ̇ and xi via the substitution qi = xi − viφ̇).
We have thus obtained a second order system for the variables xi and φ, which means that the

theory generically requires 2(n + 1) initial conditions to be solved. Note that the new system is
itself degenerate when the new kinematic matrix

M̃ =

(

k0 − vivjVij ci
ci kij

)

(2.17)

is not invertible. This occurs if its determinant,

det(M̃) = ∆ det k with ∆ = k0 − vivjVij − (k−1)ijcicj , (2.18)

vanishes, i.e. if ∆ = 0 since k is invertible. A careful analysis of this particular case would show
that, in this case, the theory admits in fact fewer physical degrees of freedom. From now on, we
will assume that the potential V is generic and that ∆ does not vanish.
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D. Hamiltonian analysis

The Hamiltonian formulation is certainly the most rigorous framework to count the number of
physical degrees of freedom and to study the stability of the system. To complete the previous
Lagrangian analysis, we now perform the canonical analysis of the theory.

In the Hamiltonian framework, the configuration variables and their respective conjugate mo-
menta satisfy the Poisson brackets:

{P,Q} = 1 , {pi, qj} = δji , {πφ, φ} = 1 , (2.19)

while the other Poisson brackets vanish. For simplicity, we do not consider here λ as an indepen-
dent variable, but we simply identify it with the conjugate momentum πφ, as it follows from the
Lagrangian (2.4) that πφ ≡ ∂L/∂φ̇ = λ. Similarly, one finds that the momenta P and pi are related
to Q̇ and q̇i by

(

P
pi

)

= M

(

Q̇
q̇j

)

+

(

0
Qci

)

, (2.20)

where M is the kinetic matrix (2.8).

1. Non-degenerate case: Ostrogradki’s ghost

When M is invertible, it is possible to invert the system (2.20) and to express the velocities Q̇
and q̇i in terms of the momenta P and pi. The Hamiltonian is thus given by

H = PQ̇+ piq̇
i + πφφ̇− L (2.21)

=
1

2

(

P, pi −Qci
)

M−1

(

P
pj −Qcj

)

+ V (φ, q)− 1

2
k0Q

2 + πφQ . (2.22)

The Hamiltonian H is a function of the 2(n + 2) canonical variables: (Q, qi, φ) and (P, pi, πφ),
corresponding to n+ 2 degrees of freedom, as obtained in the Lagrangian analysis. Moreover, one
observes that the Lagrangian is linear in πφ, which makes the Hamiltonian unbounded from below.
This is the characteristic signature of Ostrogradski’s instability.

2. Degenerate case

The only possibility to avoid the Ostrogradski ghost is to assume that M is degenerate, i.e.
that the condition (2.10) is satisfied. Note that such a condition does not necessarily imply that
the coefficient a vanishes.

An immediate consequence of the degeneracy is the existence of a primary constraint relating
the canonical momenta, which reads

Ω = vi(pi −Qci)− P ≈ 0. (2.23)

As usual, we use the notation ≈ to denote weak equality in phase space. We then introduce the
canonical Hamiltonian defined by

H = PQ̇+ piq̇
i + πφφ̇− L . (2.24)
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After some straightforward manipulations to eliminate the velocities, and taking into account the
primary constraint (2.23), one finds that the expression of the total Hamiltonian in terms of the
canonical variables is given by

HT =
1

2
(k−1)ij(pi −Qci)(pj −Qcj)−

1

2
k0Q

2 + V (φ, q) + πφQ+ µΩ , (2.25)

where µ is a Lagrange multiplier enforcing the primary constraint (2.23).
The invariance under time evolution of the constraint Ω leads to the secondary constraint

Ψ = Ω̇ = {Ω,HT } = ci(k
−1)ij(pj −Qcj) + k0Q+ viVi − πφ ≈ 0 . (2.26)

To see whether time evolution of Ψ leads to tertiary constraint, it is sufficient to compute the
Poisson bracket between the primary and secondary constraints,

{Ω,Ψ} = k0 − vivjVij − (k−1)ijcicj = ∆ , (2.27)

where one recognizes the expression ∆ that already appeared in the Lagrangian framework (see
Eq. (2.18)). As before, we leave aside the special case ∆ = 0 (which would further reduce the
number of physical degrees of freedom).

In the generic case where ∆ 6= 0, the analysis stops here because imposing Ψ̇ = 0 simply
fixes the Lagrange multiplier µ without generating any new constraint. We have thus obtained
a Hamiltonian system with a 2(n + 2)-dimensional phase space restricted by two second-class
constraints Ω and Ψ. This implies that the number of physical degrees of freedom is only n + 1.
There is no extra degree of freedom in this degenerate case.

Moreover, one can construct the physical phase space spanned by the variables (qi, pi;Q,φ),
with a Poisson algebra defined from the Dirac bracket (see e.g. [26])

{F,G}D = {F,G} − 1

∆
({F,Ψ}{Ω, G} − {F,Ω}{Ψ, G}) . (2.28)

The associated Hamiltonian Hphys is obtained from the total Hamiltonian after elimination of P
and πφ via the second-class constraints:

Hphys =
1

2
(k−1)ijpipj +

1

2

(

k0 − (k−1)ijcicj
)

Q2 +QviVi + V (φ, q) . (2.29)

The linear dependence on the canonical momentum πφ has disappeared in the above Hamiltonian
because of the constraint Ψ. This confirms that the Ostrogradski ghost has been eliminated as a
consequence of the degeneracy of the kinetic matrix M .

Note that our analysis focuses only on the Ostrogradski instability. Other types of instabilities
could be present in the theory (such as, for instance, a ghost instability due to a negative eigenvalue
of kij) and a further analysis of the above Hamiltonian, depending on the specific choice of the
Lagrangian coefficients and of the potential, is required to ensure the absence of any other dangerous
instability.

E. Summary

The analysis of the Lagrangian (2.1) has shown us that the crucial ingredient to avoid the pres-
ence of an Ostrogradski ghost is the degeneracy of the kinetic matrix (2.8). From the Hamiltonian
point of view, this degeneracy entails the presence of constraints, which reduce the number of
physical degrees of freedom. The linear dependence of the Hamiltonian on one of the momenta,
which is a signature of the Ostrogradski instability, is also eliminated.
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In the rest of this paper, we will investigate the degeneracy of scalar tensor theories, following
the same procedure as the one used in this section. The scalar field, with higher order derivatives,
will be analogous to our variable φ(t), while the metric field will play a rôle similar to that of the
“regular” degrees of freedom qi(t). Of course, the mathematical structure is more complicated but
the essential features concerning the degeneracy of the kinetic matrix turn out to be quite similar.

In the toy model, a trivial way to ensure the degeneracy of the kinetic matrix is to impose a = 0
and bi = 0. As we will see, this situation is analogous to Horndeski theories where the equations of
motion are second order3. Degeneracy can also be achieved in a non trivial way when bi 6= 0. The
case a = 0 and bi 6= 0, which leads to third order equations of motion, is similar to the extension
beyond Horndeski introduced in [12]. We have also seen that the degeneracy condition can be
satisfied even if a 6= 0. Remarkably, the same situation can occur in scalar-tensor theories, as we
will see in Section V.

III. SCALAR TENSOR THEORIES

A. The action

We now consider a class of scalar-tensor theories whose dynamics is governed by an action of
the general form

S[g, φ] ≡
∫

√

|g|
(

f (4)R+ Cµν,ρσ ∇µ∇νφ∇ρ∇σφ
)

, (3.1)

where (4)R is the four-dimensional Ricci scalar, f an arbitrary function of φ and X (a constant f
corresponds to general relativity), and the tensor Cµν,ρσ depends only on φ and φµ ≡ ∇µφ. One
can also add in the above action other terms that depend only on φµ or depend linearly on φµν .
Since these additional terms do not modify the kinetic matrix, we will not need to consider them
explicitly in the following in order to study the degeneracy of the Lagrangian.

Given the way it is contracted in the action, one can require, without loss of generality, that
Cµν,ρσ satisfies the following symmetries:

Cµν,ρσ = Cνµ,ρσ = Cµν,σρ = Cρσ,µν . (3.2)

As a consequence, it can always be written in the form

Cµν,ρσ =
1

2
α1 (g

µρgνσ + gµσgνρ) + α2 g
µνgρσ +

1

2
α3 (φ

µφνgρσ + φρφσgµν)

+
1

4
α4(φ

µφρgνσ + φνφρgµσ + φµφσgνρ + φνφσgµρ) + α5 φ
µφνφρφσ , (3.3)

where the αi are functions of φ and X.

B. Particular cases

The class of theories (3.1) includes as a particular case the quartic Horndeski term

LH
4 = G4(φ,X) (4)R− 2G4,X(φ,X)(✷φ2 − φµνφµν) . (3.4)

3 Horndeski Lagrangians contain terms linear in φ̈, which we have not included in our toy model, but these terms
are irrelevant for the kinetic matrix.
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The above Lagrangian is indeed of the form (3.1)-(3.3) with

f = G4 , α1 = −α2 = 2G4,X , α3 = α4 = α5 = 0 . (3.5)

The action (3.1) also includes the extension beyond Horndeski introduced in [12], which can be
written as

LbH
4 = F4(φ,X)ǫµνρσ ǫ

µ′ν′ρ′σφµφµ′φνν′φρρ′ . (3.6)

This corresponds to (3.1) with

α1 = −α2 = XF4 , α3 = −α4 = 2F4 , α5 = 0 . (3.7)

C. Reformulation of the action

Instead of working directly with second order derivatives in the Lagrangian, it is more convenient
to introduce a new variable, as illustrated in the toy model. In the present case, we simply replace
in the action all first order derivatives ∇µφ by the components of a field Aµ and we impose the
relation Aµ = ∇µφ via a constraint in the Lagrangian. Our new action is thus given by

S[g, φ;Aµ, λ
µ] =

∫

√

|g|
{

f (4)R+ Cµν,ρσ∇µAν ∇ρAσ + λµ(∇µφ−Aµ)
}

, (3.8)

where the tensor Cµνρσ is now expressed in terms of Aµ and φ.
It is not difficult to verify that (3.8) and (3.1) are equivalent at the classical level. To do so, let

us write the equations of motion induced by (3.8) for the scalar field φ and the vector field Aµ,

δCµν,ρσ

δφ
∇µAν ∇ρAρ −∇µλ

µ = 0 ,
δCµν,ρσ

δAα
∇µAν ∇ρAσ − 2∇β

(

Cµν,αβ∇µAν

)

= λα , (3.9)

together with

Aµ = ∇µφ , (3.10)

which follows from the variation with respect to λµ. Taking the divergence of the last equation in
(3.9) and replacing Aµ by ∇µφ leads to the usual equation of motion for the scalar field when one
uses the first equation. It is also immediate to check that the equations of motion for the metric
are also equivalent. In the next section, we will use this new formulation (3.8) to study the possible
degeneracies of the Lagrangian.

IV. DEGENERACY

In this section, we concentrate on the kinetic part of the Lagrangian in order to write explicitly
the degeneracy conditions for the kinetic matrix. We thus need to separate the time derivatives
from the spatial derivatives. The standard procedure consists in a 3+1 decomposition à la ADM
within an explicit coordinate system. Here instead, we resort to a covariant 3+1 decomposition of
spacetime, i.e. we do not introduce a coordinate system but work with tensors that are decomposed
into time-like and space-like components. For explicit calculations, this is much more efficient that
the traditional ADM decomposition. We use the abstract index notation, with latin indices (a, b,
etc), to emphasize that we are working directly with tensors.
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A. Kinetic matrix

We assume the existence of a slicing of spacetime with 3-dimensional spacelike hypersurfaces.
We introduce their normal unit vector na, which is time-like, and satisfies the normalization condi-
tion nan

a = −1. This induces a three-dimensional metric, corresponding to the projection tensor
on the spatial hypersurfaces, defined by

hab ≡ gab + nanb . (4.1)

It is then useful to define the spatial projection of Aa,

Âa ≡ hbaAb , (4.2)

and its normal projection

A∗ ≡ Aan
a . (4.3)

Let us now introduce the time direction vector ta = ∂/∂t associated with a time coordinate t
that labels the slicing of spacelike hypersurfaces. One can always decompose ta as

ta = Nna +Na, (4.4)

thus defining the lapse function N and the shift vector Na orthogonal to na. We also define the
“time derivative” of any spatial tensor as the spatial projection of its Lie derivative with respect
to ta. In particular, we have

Ȧ∗ ≡ ta∇aA∗ ,
˙̂
Aa ≡ hbaLtÂb = hba (t

c∇cÂb + Âc∇bt
c) . (4.5)

Using the above definitions, as well as the property ∇aAb = ∇bAa which follows from (3.10),
one finds that the 3+1 covariant decomposition of ∇aAb is given by4

∇aAb = DaÂb −A∗Kab + na(KbcÂ
c −DbA∗) + nb(KacÂ

c −DaA∗)

+
1

N
nanb (Ȧ∗ −N cDcA∗ −NÂca

c) , (4.6)

where Da denotes the 3-dimensional covariant derivative associated with the spatial metric hab,
ab ≡ nc∇cnb is the “acceleration”, andKab is the extrinsic curvature tensor, which can be expressed
as

Kab =
1

2N

(

ḣab −DaNb −DbNa

)

. (4.7)

The only terms in (4.6) that are relevant for the kinetic part of the Lagrangian are

(∇aAb)kin = λab Ȧ∗ + Λ cd
ab Kcd , (4.8)

where we have introduced the tensors

λab ≡
1

N
nanb , Λ cd

ab = −A∗ h
c
(ah

d
b) + 2n(ah

(c
b)Â

d) . (4.9)

4 In particular, we have used the relation
˙̂
Ab = Db(Act

c) + A∗(Nab − DbN), which is valid when ∇[aAb] = 0, to

eliminate the time derivatives of Âb.
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Strictly speaking, only the ḣab term is relevant but we will keep Kab for convenience. We thus find
that the kinetic part of the Lagrangian quadratic in ∇aAb reduces to

L
(φ)
kin = Cab,cdλab λcd Ȧ

2
∗ + 2Cab,cdΛ ef

ab λcd Ȧ∗Kef + Cab,cdΛ ef
ab Λ gh

cd KefKgh , (4.10)

which is similar to the Lagrangian (2.4), with A∗ and Kab (or ḣab) playing the rôle of Q and q̇i,
respectively.

One can then compute the analogs of the coefficients a, bi and kij in (2.4), up to a factor 2
for notational convenience, by substituting the explicit expressions for Cab,cd, λab and Λ cd

ab . After
straightforward calculations, we find that the first kinetic coefficient is given by

A ≡ Cab,cdλabλcd =
1

N2

[

α1 + α2 − (α3 + α4)A
2
∗ + α5A

4
∗

]

, (4.11)

while the coefficients of the mixed terms can be written as

Bef ≡ Cab,cdΛ ef
ab λcd = β1h

ef + β2 Â
eÂf , (4.12)

with

β1 =
A∗

2N

(

2α2 − α3A
2
∗

)

, β2 = −A∗

2N

(

α3 + 2α4 − 2α5A
2
∗

)

. (4.13)

Finally the kinetic coefficient for the purely metric sector is given by

Kef,gh ≡ Cab,cdΛ ef
ab Λ gh

cd . (4.14)

Substituting the explicit expressions in (3.3) and (4.9), one gets

Kab,cd ≡ Cab,cdΛ ef
ab Λ gh

cd = κ1h
a(chd)b + κ2 h

abhcd +
1

2
κ3

(

ÂaÂbhcd + ÂcÂdhab
)

+
1

2
κ4

(

ÂaÂ(chd)b + ÂbÂ(chd)a
)

+ κ5Â
aÂbÂcÂd , (4.15)

with

κ1 = α1A
2
∗ , κ2 = α2A

2
∗ , κ3 = −α3A

2
∗ , κ4 = −2α1 , κ5 = α5A

2
∗ − α4 . (4.16)

One can note that the structure of Kab,cd is completely analogous to that of Cab,cd, the only
difference being that the former depends on the spatial metric hab and spatial vector Âa, whereas
the latter depends on the spacetime metric gab and vector Aa.

To obtain the full kinematic part of the action, one must also take into account the gravitational
term f (4)R. Using the identity

(4)R = KµνK
µν −K2 + (3)R− 2∇µ(a

µ −Knµ) , (4.17)

and integrating by parts, one can rewrite the gravitational part of the action as
∫

d4x
√−g f (4)R =

∫

d4x
√−g

{

f
[

KµνK
µν −K2 + (3)R

]

+ 2∇µf (aµ −Knµ)
}

, (4.18)

where (3)R is the three-dimensional Ricci scalar. Since ∇µf = 2fXAνAµν + fφAµ, one finds that
the second term on the right hand side contributes to the mixed kinetic terms Ȧ∗Kab, with the
coefficient

Bab
grav = 2fX

A∗

N
hab . (4.19)
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The two terms in (4.18) contribute to the kinetic term quadratic in Kab and the corresponding
coefficient can be written as

Kab,cd
grav = γ1h

a(chd)b + γ2 h
abhcd +

1

2
γ3

(

ÂaÂbhcd + ÂcÂdhab
)

, (4.20)

with

γ1 = −γ2 = f , γ3 = 4fX . (4.21)

In summary the coefficients obtained from the total action are

B̃ab = Bab + Bab
grav, K̃ab,cd = Kab,cd +Kab,cd

grav , (4.22)

which can be decomposed as in (4.12) and (4.15), respectively, with the new coefficients β̃1, β̃2, κ̃1,
κ̃2 and κ̃3, while the coefficients κ4 and κ5 remain unchanged. The coefficients A, B̃ab and K̃ab,cd

play the same rôle as, respectively, a, bi and kij in the toy model.
Interestingly, in the case of the Horndeski Lagrangian LH

4 , we have

β1 = −2
A∗

N
G4X , β2 = 0 , (Horndeski) (4.23)

and one notes that Bab is exactly cancelled by the gravitational contribution (4.19), so that the
total coefficient B̃ab vanishes. This is not surprising since Horndeski’s theories are, by construction,
restricted to give second order equations of motion. By contrast, when B̃ab 6= 0, the equations of
motion become higher order, as with LbH

4 .

B. Degeneracy conditions

1. No dynamical metric

Let us start with the extremely simple situation where only the dynamics of the scalar field
is taken into account, while the spacetime metric is frozen. In this case, the kinetic Lagrangian
is reduced to the Ȧ2

∗ term and the system is degenerate only if A = 0. Since it must be true
independently of the particular value of A∗, this implies, according to (4.11), the three conditions

α1 + α2 = 0 , α3 + α4 = 0 , α5 = 0 . (4.24)

We note that both quartic Lagrangians LH
4 and LbH

4 satisfy these conditions. This is expected since
both Lagrangians reduce in flat spacetime to galileons, which are not plagued with ghosts.

2. Dynamical metric

In the general case, one must now consider the full kinetic matrix, which is of the form

(

A B̃cd

B̃ab K̃ab,cd

)

. (4.25)

This matrix is degenerate if there exists an eigenvector with zero eigenvalue, i.e. if one can find v0
and Vcd such that

v0 A+ B̃cdVcd = 0 , v0 B̃ab + K̃ab,cd Vcd = 0 . (4.26)
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Since Vcd is a symmetric spatial tensor of order 2, it must be of the form

Vcd = v1 hcd + v2 ÂcÂd , (4.27)

and the contraction of Kab,cd with Vcd can be similarly decomposed along hab and ÂaÂb. In this
way, the system (4.26) is easily transposed into the matricial relation

M · V ≡





A 3β̃1 + β̃2Â
2 β̃1Â

2 + β̃2(Â
2)2

β̃1 κ̃1 + 3κ̃2 + κ̃3Â
2/2 κ̃2Â

2 + κ̃3(Â
2)2/2

β̃2 3κ̃3/2 + κ4 + κ5Â
2 κ̃1 + (κ̃3/2 + κ4)Â

2 + κ5(Â
2)2









v0
v1
v2



 = 0 . (4.28)

There is a nontrivial solution if the determinant of the matrix M vanishes. The matrix components
depend on the functions f and α’s, as well as on A∗ and Â2, and the latter quantity can be expressed
in terms of A∗ and X, since Â2 = X +A2

∗.
Requiring the determinant of M to vanish yields an expression of the form

D0(X) +D1(X)A2
∗ +D2(X)A4

∗ = 0 , (4.29)

with

D0(X) ≡ −4(α2 + α1)
[

Xf(2α1 +Xα4 + 4fX)− 2f2 − 8X2f2
X

]

, (4.30)

D1(X) ≡ 4
[

X2α1(α1 + 3α2)− 2f2 − 4Xfα2

]

α4 + 4X2f(α1 + α2)α5 + 8Xα3
1

−4(f + 4XfX − 6Xα2)α
2
1 − 16(f + 5XfX)α1α2 + 4X(3f − 4XfX)α1α3

−X2fα2
3 + 32fX(f + 2XfX)α2 − 16ffXα1 − 8f(f −XfX)α3 + 48ff2

X , (4.31)

D2(X) ≡ 4
[

2f2 + 4Xfα2 −X2α1(α1 + 3α2)
]

α5 + 4α3
1 + 4(2α2 −Xα3 − 4fX)α2

1 + 3X2α1α
2
3

−4Xfα2
3 + 8(f +XfX)α1α3 − 32fXα1α2 + 16f2

Xα1 + 32f2
Xα2 − 16ffXα3 . (4.32)

Since the determinant must vanish for any value of A∗, we deduce that degenerate theories are
characterized by the three conditions

D0(X) = 0, D1(X) = 0, D2(X) = 0 . (4.33)

We identify in the next section the theories of the form (3.1) that satisfy these conditions simulta-
neously.

V. CLASSIFICATION OF DEGENERATE THEORIES

The condition D0(X) = 0 is the simplest of all three and allows to distinguish two subclasses
of theories, depending on whether the condition α1 + α2 = 0 is satisfied or not. Note that this
condition is also one of the conditions to get A = 0.

A. Models with α1 + α2 = 0

In this case D0(X) = 0 is automatically satisfied. One can then use the condition D1(X) = 0
to express α4 in terms of α2 and α3:

α4 =
1

8(f +Xα2)2
[

16Xα3
2 + 4(3f + 16XfX)α2

2 + (16X2fX − 12Xf)α3α2 −X2fα2
3
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+16fX(3f + 4XfX)α2 + 8f(XfX − f)α3 + 48ff2
X

]

. (5.1)

Similarly, the condition D2(X) = 0 yields

α5 =
(4fX + 2α2 +Xα3)

(

−2α2
2 + 3Xα2α3 − 4fXα2 + 4fα3

)

8(f +Xα2)2
. (5.2)

We thus conclude that degenerate theories in this subclass depend on three arbitrary functions α2,
α3 and f .

Focussing now on theories satisfying A = 0, which imposes the additional conditions α5 = 0
and α3 +α4 = 0, one finds that the functions α2 and α3 are no longer independent, but related by

4fX + 2α2 +Xα3 = 0 . (5.3)

This means that the condition A = 0 restricts the degenerate theories to a subclass that depends
on two arbitrary functions only.

It is easy to see that this family of theories in fact coincides with the sum of LH
4 and LbH

4 , upon
using the identification

f = G4 , α1 = −α2 = 2G4X +XF4 , α3 = −α4 = 2F4 . (5.4)

This implies that the quartic Lagrangian L4 = LH
4 + LbH

4 represents the most general theories of
the form (3.1) that are degenerate both with or without gravity.

Note that the contribution from LbH
4 to the coefficient Bab is given by

Bab
4bH

=
A∗

N
F4(Â

aÂb − Â2hab) , (5.5)

whereas

Kab,cd
4bH

ÂcÂd = F4A
2
∗ (2Â

2 −A2
∗)(Â

aÂb − Â2hab) , (5.6)

which means that the kinetic matrix of LbH
4 has a null eigenvector characterized by Vcd = ÂcÂd

and v0 = −NA∗(2Â
2 −A2

∗). When we consider the sum L4 = LH
4 + LbH

4 , one finds

B̃ab
4 = Bab

4bH
, (5.7)

and

K̃ab,cd
4 ÂcÂd =

[

G4 − 2XG4X + F4(2X +A2
∗)A

2
∗

]

(ÂaÂb − Â2hab) , (5.8)

which shows that LH
4 + LbH

4 is degenerate with the null eigenvector defined by Vcd = ÂcÂd and
v0 = −N [G4 − 2XG4X + F4(2X +A2

∗)A
2
∗]/(A∗F4).

B. Models with α1 + α2 6= 0

To simplify the presentation, we now assume that the gravitational sector is described by general
relativity, i.e. f = 1, but it is immediate to extend the results given below to the general case. In
this situation, the first condition, D0(X) = 0, is satisfied if

2Xα1 +X2α4 = 2 . (5.9)
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We can then proceed as in the previous subsection by solving D1(X) = 0 and D2(X) = 0 to express
α4 and α5 in terms of the three other functions. Substituting the obtained expression for α4 into
the condition (5.9), one finally gets

(Xα1 − 1)2(4 + 8Xα2 + 2Xα1 +X2α3)
2 = 0 . (5.10)

We thus have two subcases. In the first subcase (α1 = 1/X), we find the family

α1 =
1

X
, α4 = 0 , α5 =

−4− 8Xα2 − 4X2α3 +X4α2
3

4X3(1 +Xα2)
, (5.11)

where α2 and α3 are arbitrary functions. In the second subcase, we get

α1 = − 2

X
− 4α2 −

X

2
α3 , α4 =

6

X2
+

8

X
α2 + α3, α5 = −4 + 8Xα2 + 3X2α3

X3
, (5.12)

while α2 and α3 are arbitrary.
It is straightforward to repeat the same calculation with an arbitrary f . We have not written

down the results we got because the expressions are a bit cumbersome and not very illuminating.
In conclusion of this subsection, we have obtained two other families of theories, which depend on
the three arbitrary functions α2, α3 and f .

VI. QUINTIC LAGRANGIAN BEYOND HORNDESKI

In the previous sections, we have systematically investigated the Lagrangians of the form (3.1),
which include the quartic terms LH

4 and LbH
4 . A similar systematic investigation of the Lagrangians

with a cubic dependence on the second derivatives of φ is much more involved and is left for future
work. In this section, we just consider the quintic Lagrangian beyond Horndeski, i.e. LbH

5 , whose
dependence on φab is cubic:

LbH
5 = Cab,cd,ef

5bH
φab φcd φef . (6.1)

The tensor Cab,cd,ef satisfies the following symmetries: invariance under the exchange of a and b,
of c and d, and of e and f , and invariance under permutations of the pairs (ab), (cd) and (ef).
According to (1.5), this tensor is given explicitly by

Cab,cd,ef
5bH

= F5 Sym{{a,b},{c,d},{e,f}}

[

φa′ φb′ ǫ
a′a c e ǫb

′b d f
]

, (6.2)

where we symmetrize the expression between the brackets with respect to the index symmetries
listed above.

We now derive the matrix consisting of the second derivatives of the Lagrangian with respect
to the velocities Ȧ∗ and Kab. By analogy with the previous sections, this matrix will also be called
the kinetic matrix, although it now depends on the velocities. The contribution to A from LbH

5 is
given by

A
5bH

≡ 1

2

∂2LbH
5

∂Ȧ2
∗

=
1

2

∂2LbH
5

∂φab ∂φcd
λabλcd = 3Cab,cd,ef

5bH
λab λcd φef , (6.3)

which always vanishes because

Cab,cd,ef
5bH

λab λcd = 0 . (6.4)
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Similarly, the contribution of LbH
5 to Bab is

Bab
5bH

≡ 1

2

∂2LbH
5

∂Ȧ∗∂Kab

= 3Ccd,ef,gh
5bH

λcdΛ
ab

ef φgh (6.5)

= 3F5
A∗

N

[

Â2Σab +
(

ÂeÂfΣef − Â2Σ
)

hab − 2ÂeΣ
e(aÂb) +ΣÂaÂb

]

, (6.6)

where Σab ≡ DaÂb − A∗Kab is the purely spatial part of φab (see Eq. (4.6)), and Σ = habΣab its
trace. It is immediate to check the identity

Bab
5bH

ÂaÂb = 0 , (6.7)

which will be useful below to identify a null eigenvector of the kinetic matrix.
Finally, the last contribution to the kinetic matrix reads

Kab,cd
5bH

≡ 1

2

∂2LbH
5

∂Kab∂Kcd

= 3Cef,gh,mn
5bH

Λ ab
ef Λ cd

gh φmn , (6.8)

which implies, in particular,

Kab,cd
5bH

ÂcÂd = NA∗(2Â
2 −A2

∗)Bab
5bH

. (6.9)

This relation, together with (6.7), shows that the kinetic matrix of LbH
5 obeys the degeneracy

conditions (4.26) with Vab = ÂaÂb and v0 = −NA∗(2X + A2
∗). This proves that the Lagrangian

beyond Horndeski LbH
5 is degenerate. Moreover, the eigenvector is the same as for LbH

4 , which
implies that the combination of LbH

4 and LbH
5 is also degenerate.

However, the combination of LH
4 , L

bH
4 and LbH

5 does not yield a degenerate Lagrangian, because
the null eigenvectors do not coincide, except if G4 − 2XG4X = 0. Note that, in this respect,
the unitary gauge (i.e. with a uniform scalar field on constant time hypersurfaces) is somewhat
misleading since the coefficients Bab for the Lagrangians LH

4 , L
bH
4 and LbH

5 all vanish in this gauge
( in which Âa = 0), which suggests that the sum of all these Lagrangians is degenerate. As the
present analysis shows, this is in fact not the case. Other examples where the unitary gauge can
be misleading are discussed in the Appendix.

VII. CONCLUSIONS

In this work, we have studied a large class of higher derivative scalar theories coupled to gravity,
which include the quartic Horndeski Lagrangian LH

4 and its extension beyond Horndeski LbH
4 . As

we have shown, the coupling of the scalar field to other degrees of freedom extends the range of
possibilities to construct degenerate theories, in order to avoid Ostrogradski’s ghosts. We have
illustrated these new possibilities with a simple toy model, which is easy to analyse in both the
Lagrangian and Hamiltonian formulations.

In summary, one can distinguish three possibilities. The simplest one corresponds to a trivial
degeneracy where the kinetic matrix has a row (and column) of zeros, thus yielding second order
equations of motion. Horndeski’s theories, which were required by construction to give second
order equations of motion, are examples of this simple case. The second possibility occurs when
the degeneracy of the kinetic matrix is nontrivial as a consequence of the coupling with the other
degrees of freedom, but remains degenerate when this coupling is suppressed. This is what happens
with the extension beyond Horndeski LbH

4 , leading to third order equations of motion. Finally, we
also have the possibility that the degeneracy is entirely due to the couplings with the other degrees
of freedom and disappears when the latter are suppressed.
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For our toy model, we have fully derived the Hamiltonian formulation and shown explicitly the
link between the degeneracy of the kinetic matrix and the absence of the Ostrogradski instability.
From the Hamiltonian point of view, the disappearance of the ghost-like degree of freedom is the
direct consequence of the presence of two second-class constraints in phase space5.

The derivation of a Hamiltonian formulation for scalar tensor theories of the form (3.1) in
an arbitrary gauge will be presented in another publication [28]. The Hamiltonian analysis in an
arbitrary gauge is much more involved than in the unitary gauge, which was used in [12, 13, 29], and
so far, only the Lagrangian LbH

4 has been considered, with the conclusion that the number of degrees
of freedom is strictly less than four in this particular case [30]. Our Hamiltonian formulation,
detailed in [28], is based on the tools developed in the present work and confirms the absence of
an extra degree of freedom in the degenerate theories that we have identified.

The analysis of the present work is mainly devoted to theories that are quadratic in the second
derivatives of φ. A systematic treatment of the theories that are cubic in φµν , which include LbH

5 ,
is more involved, because the coefficients of the kinetic matrix keep a linear dependence on φµν ,
and is left for future work. We have nevertheless checked explicitly that the kinetic matrix of
the Lagrangian LbH

5 is also degenerate. Its direction of degeneracy is the same as that of LbH
4 ,

but not that of the sum LH
4 + LbH

4 in general. This means that only restricted combinations
of Horndeski’s Lagrangians with the extensions LbH

4 or LbH
5 lead to degenerate theories and are

thus presumably free of Ostrogradski instabilities. Note that these findings are consistent with
the results of [13] showing the correspondence between theories beyond Horndeski and Horndeski
theories via disformal transformations for restricted subclasses of Lagrangians. Moreover, these
conclusions should not be seen as inconsistent with the property that the equations of motion for
a general combination of Horndeski and beyond Horndeski terms can be rewritten as a system of
equations which are second-order in time derivatives, as shown in [30]. Indeed, the redundancy of
variables that describe the two gravitational degrees of freedom obscures the relation between the
order of the equations of motion and the number of degrees of freedom.

Beyond shedding some light on the structure of Horndeski’s theories and of their extensions,
our systematic treatment of the degeneracy provides a new tool for identifying ghost-free theories,
much easier than a full Hamiltonian analysis. In the present context, this approach has enabled
us to identify other classes of scalar-tensor Lagrangians. In contrast with Horndeski and their
extensions, these Lagrangians have the property to be non degenerate when the metric is non
dynamical, and thus suffer from Ostrogradski instabilities in this case. Remarkably however, the
Lagrangian becomes degenerate, via the coupling between the scalar field and the metric kinetic
terms, when the metric is dynamical. This suggests that the Ostrogradski ghost is tamed by gravity
for these theories. We leave for future work a more detailed investigation of these theories.
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Appendix A: Unitary gauge

Instead of following the procedure outlined in the main text, one might be tempted to work
directly in the so-called unitary gauge, where the constant time hypersurfaces coincide with uniform
scalar field hypersurfaces. In our language, this gauge is characterized by the condition

Âa = 0 . (A1)

In order to determine the degeneracy of the kinetic matrix in the unitary gauge, one can proceed
as in the general case. In this way, one obtains a matrix Mu that simply corresponds to the matrix
M of the main text restricted to the case Â = 0, i.e.

Mu = M|Â2=0 . (A2)

Moreover, since X = −A2
∗ in the unitary gauge, the condition det(Mu) = 0 yields an expression

of X only, given by

D0(X)−XD1(X) +X2D2(X) = 0 , (A3)

where we have simply replaced A2
∗ by −X in the expression (4.29).

This result shows that one must be careful when using the unitary gauge to determine whether a
theory is degenerate or not. Indeed, a theory can obey the above condition (A3) without satisfying
the three conditions Di(X) = 0 separately. A simple example of this type, which looks degenerate
in the unitary gauge but turns out to be non-degenerate, is described by

α1 = −Xα4 , α2 = α3 = α5 = 0 . (A4)

For α4 = −1/2, the corresponding Lagrangian simply reads6

L = ∇[λφ ∇µ]∇νφ ∇[λφ∇µ]∇νφ . (A5)
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