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We consider all degenerate scalar-tensor theories that depend quadratically on second
order derivatives of a scalar field, which we have identified in a previous work. These the-
ories, whose degeneracy in general ensures the absence of Ostrogradski instability, include
the quartic Horndenski Lagrangian as well as its quartic extension beyond Horndeski, but
also other families of Lagrangians. We study how all these theories transform under general
conformal-disformal transformations and find that they can be separated into three main
classes that are stable under these transformations. This leads to a complete classification
modulo conformal-disformal transformations. Finally, we show that these higher order the-
ories include mimetic gravity and some particular khronometric theories. They also contain
theories that do not correspond, to our knowledge, to already studied theories, even up to
field redefinition.

I. INTRODUCTION

Scalar tensor theories play a prominent role in theories of modified gravity. As ever more
sophisticated models have been considered, special attention was lately devoted to scalar tensor
Lagrangians that contain second order derivatives of a scalar field. A crucial requirement for such
theories is the absence of the so-called Ostrogradski ghost, in order to avoid disastrous instabili-
ties [1]. It has been thought for a long time that the absence of an Ostrogradski ghost demands
the Euler-Lagrange equations to be at most second-order, which explains why the literature has
been mostly limited to the study of Horndeski’s theories [2, 3] until recently. But the discovery of
viable theories “beyond Horndeski” [4–6], i.e. possessing Euler-Lagrange equations for the metric
and scalar field whose order is higher than two, has challenged this preconception.

A higher order scalar tensor theory generically contains four degrees of freedom, including the
Ostrogradski ghost. As we proposed in [7], a systematic way to identify scalar-tensor theories
that contain only three degrees of freedom is to consider Lagrangians that are degenerate, in
a generalized sense involving the coupling between the metric and the scalar field. From the
Hamiltonian point of view, this degeneracy implies the existence of phase space constraints, in
addition to the usual Hamiltonian and momentum constraints due to diffeomorphism invariance,
and explains why one degree of freedom is eliminated, even if the equations of motion are higher
order. A detailed Hamiltonian analysis has confirmed the direct link between this degeneracy and
the elimination of the Ostrogradski ghost [8].

The degeneracy criterium, which provides a powerful and simple method to identify viable
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theories, was used in [7] to find all scalar tensor theories based on a Lagrangian quadratic in
second order derivatives of a scalar field, together with a term proportional to the scalar curvature.
Within these degenerate higher order scalar tensor (DHOST) theories, we recovered, as particular
cases, the (quadratic) Horndeski Lagrangian LH

4 as well as its extension LbH
4 introduced in [5, 6]

(see section II for an explicit definition of these Lagrangians). We also considered the quintic
extension beyond Horndeski of [5], LbH

5 , which is degenerate by itself or combined with LbH
4 but

not with an arbitrary LH
4 . By using the same degeneracy argument, the combinations involving LH

5

too were studied in [9]. In particular, the results of [7, 9] show that only specific combinations of
Horndeski Lagrangians with their quartic and quintic extensions beyond Horndeski are viable and
they coincide with the combinations obtained in [6] via disformal transformation of Horndeski.

The goal of the present work is to examine in more detail all the quadratic DHOST theories of
[7] and investigate whether they can be related, or not, to already known theories via generalized
disformal transformations [10], i.e. redefinitions of the metric of the form

g̃µν = A(X,φ)gµν +B(X,φ)∇µφ∇νφ , (1.1)

where X ≡ gµν∇µφ∇νφ. Several results concerning the disformal transformations of Horndeski
theories have already been established in previous works. It was shown, in [11], that Horndeski
theories transform into themselves under special disformal transformations where A and B depend
on φ only, not on X. The general disformal transformation of the Einstein-Hilbert Lagrangian
was computed in [4], providing the first example of theory “beyond Horndeski”, i.e. a ghost-free
theory with higher order Euler-Lagrange equations of motion. In [6], it was shown that disformal
transformations of Horndeski theories with A = 1 lead to the extensions beyond Horndeski proposed
in [5]. TheX-dependent disformal transformations have also been studied recently in several papers
(see e.g. [13–17], and [18] for scalar tensor theories that explicitly break spacetime covariance [19].)

In this work, we present the general disformal transformation of all quadratic DHOST theories
identified in [7]. This is useful to show that the three main classes of theories, as well as the few
subclasses within each, are stable under disformal transformations. Part of our results coincides
with the conclusions of [12], which also studies the theories of [7] and especially the class of theories
related to (quadratic) Horndeski via disformal transformations. Here, we derive the transformation
laws of the arbitrary functions in the general action, which enables us to study the disformal
transformations in the other classes as well.

Interestingly, the quadratic DHOST theories contain a few theories which have been well stud-
ied in the literature. Indeed, the Lagrangians that remain invariant under a field redefinition of
the scalar field correspond to khronometric theories [20], which are a subset of Einstein-Aether
theories [21]. Note that khronometric theories are not in general degenerate and only a subset of
them appear among DHOST theories. Finally, we also discuss mimetic gravity [22] and related
theories [23], which are obtained from the Einstein-Hilbert action by a disformal transformation
that is not invertible (see also [4]).

Our paper is organized as follows. In the next section, we introduce the general form of the
Lagrangians we will study. In section III, we summarize the main results obtained in [7] and present
the classification of quadratic DHOST theories. In section IV, we derive the general disformal
transformation of any quadratic DHOST Lagrangian. This enables us to show that all classes are
stable under these transformations. In section V, we consider the theories related to Horndeski.
Other classes are analysed in the subsequent section. In section VII, we discuss the degenerate
khronometric theories as well as mimetic theories. We conclude in the final section.
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II. SCALAR TENSOR THEORIES

A. The action

In this work, we consider scalar-tensor theories whose dynamics is governed by an action of the
general form

S = Sg + Sφ, (2.1)

where the first contribution involves the Ricci scalar R of the metric gµν ,

Sg ≡
∫

d4x
√−g f(φ,X)R , (2.2)

and the second contribution depends quadratically on the second derivatives of the scalar field φ

Sφ ≡
∫

d4x
√−g Cµν,ρσ ∇µ∇νφ ∇ρ∇σφ , (2.3)

Cµν,ρσ being an arbitrary tensor that depends only on φ and ∇µφ. Note that Sg reduces to the
familiar Einstein-Hilbert action when the function f is constant.

We stress that our analysis is also valid if we add to the above action extra contributions that
depend at most linearly on φµν , i.e. of the form

Sother =

∫

d4x
√−g {P (φ,X) +Q1(φ,X)gµνφµν +Q2(φ,X)φµφµνφ

ν} , (2.4)

where we have used the compact notation φµ ≡ ∇µφ and φµν ≡ ∇µ∇νφ. These additional contri-
butions do not modify the degeneracy conditions derived in [7], which will be summarized in the
next section. For simplicity, we will not include these terms explicitly in our study but one should
keep in mind that they can be present.

Without loss of generality, we require the tensor Cµν,ρσ in (2.3) to satisfy the index symmetries

Cµν,ρσ = Cνµ,ρσ = Cµν,σρ = Cρσ,µν , (2.5)

which implies that the most general form of this tensor is

Cµν,ρσ =
1

2
α1 (g

µρgνσ + gµσgνρ) + α2 g
µνgρσ +

1

2
α3 (φ

µφνgρσ + φρφσgµν)

+
1

4
α4(φ

µφρgνσ + φνφρgµσ + φµφσgνρ + φνφσgµρ) + α5 φ
µφνφρφσ , (2.6)

where the αI are five arbitrary functions of φ and X. Defining the five elementary Lagrangians
quadratic in second derivatives

Lφ
1 ≡ φµνφµν , Lφ

2 ≡ (φ µ
µ )2 , Lφ

3 ≡ φ µ
µ φρφρσφ

σ ,

Lφ
4 ≡ φµφµνφ

νρφρ , Lφ
5 ≡ (φρφρσφ

σ)2 , (2.7)

the action Sφ in (2.3) now reads

Sφ =

∫

d4x
√−g

(

α1L
φ
1 + α2L

φ
2 + α3L

φ
3 + α4L

φ
4 + α5L

φ
5

)

≡
∫

d4x
√−g αIL

φ
I , (2.8)

where the summation over the index I (I = 1, . . . , 5) is implicit in the last expression.
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B. Other curvature terms

It is not difficult to see that the general action (2.1) also includes terms of the form

SRicci ≡
∫

d4x
√−g h(φ,X)Rµνφ

µφν , (2.9)

where h is an arbitrary function. Indeed, using the definition of the Ricci tensor and the properties
of the Riemann tensor, one can write

φµRµνφ
ν = −φµgρσRρµνσφ

ν = −φµgρσ (∇ρ∇µ −∇µ∇ρ)φσ
= −φµ∇µ∇νφ

ν + φµ∇ν∇µφ
ν . (2.10)

Substituting this into the action (2.9), one gets, after integration by parts,

SRicci ≡
∫

d4x
√−g

{

−h
(

Lφ
1 − Lφ

2

)

+ 2hX

(

Lφ
3 − Lφ

4

)

+ hφ
(

Xφµµ − φµφµνφ
ν
)

}

, (2.11)

where the contribution proportional to hφ is of the form (2.4).

C. Particular cases

The theories (2.1) include as a particular case the quartic Horndeski term

LH
4 = G4(φ,X)R − 2G4,X(φ,X)(✷φ2 − φµνφµν) , (2.12)

which corresponds to (2.2) and (2.8) with

f = G4 , α1 = −α2 = 2G4,X , α3 = α4 = α5 = 0 . (2.13)

The action (2.1) also includes the extension beyond Horndeski introduced in [5], which can be
written as

LbH
4 = F4(φ,X)ǫµνρσ ǫ

µ′ν′ρ′σφµφµ′φνν′φρρ′ . (2.14)

This is of the form (2.8) with

α1 = −α2 = XF4 , α3 = −α4 = 2F4 , α5 = 0 . (2.15)

Of course, any combination of LH
4 and LbH

4 is also among the theories (2.1).

III. CLASSIFICATION OF DEGENERATE THEORIES

In this section, we summarize the main results obtained in [7], as well as some additional
elements derived in [8], and present all the quadratic DHOST theories, i.e. all the theories of the
form (2.1) which are degenerate.



5

A. Degeneracy conditions

In order to study the degeneracy of (2.1), it is useful to introduce the auxiliary field Aµ ≡ ∇µφ.
For an arbitrary foliation of spacetime by spacelike hypersurfaces Σ(t), endowed with spatial metric
hij , the metric in ADM form reads

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (3.1)

where N is the lapse and N i the shift vector. The (3 + 1) decomposition of the action (2.1) leads
to a kinetic term of the form [7]

Skin =

∫

dt d3xN
√
h

[

1

N2
AA2

∗ +
2

N
BijA∗Kij +KijklKijKkl

]

, (3.2)

where we have introduced the quantity

A∗ ≡
1

N
(A0 −N iAi) , (3.3)

and the extrinsic curvature tensor

Kij ≡
1

2N

(

ḣij −DiNj −DjNi

)

. (3.4)

The coefficients that appear in (3.2) depend on the six arbitrary functions f and αI of (2.1). They
are explicitly given by [7, 8]

A = α1 + α2 − (α3 + α4)A
2
∗ + α5A

4
∗ , Bij = β1h

ij + β2Â
iÂj , (3.5)

Kij,kl = κ1h
i(khl)j + κ2 h

ijhkl +
1

2
κ3

(

ÂiÂjhkl + ÂkÂlhij
)

+
1

2
κ4

(

ÂiÂ(khl)j + ÂjÂ(khl)i
)

+ κ5Â
iÂjÂkÂl , (3.6)

with

β1 =
A∗
2
(2α2 − α3A

2
∗ + 4f,X) , β2 =

A∗
2
(2α5A

2
∗ − α3 − 2α4) , (3.7)

κ1 = α1A
2
∗ + f , κ2 = α2A

2
∗ − f , κ3 = −α3A

2
∗ + 4f,X , κ4 = −2α1 , κ5 = α5A

2
∗ − α4 . (3.8)

The three-dimensional vector Âi is defined by Âi ≡ Ai and Â
i ≡ hijÂj .

By choosing an appropriate basis of the six-dimensional vector space of symmetric 3×3 matrices,
where the Kij take their values, the kinetic matrix associated with (3.2) can be written as a 7× 7
block diagonal symmetric matrix of the form [8]

(

M 0

0 D

)

, (3.9)

with the 3× 3 matrix

M ≡







A 1
2(β1 + Â2β2)

1√
2
β1

1
2 (β1 + Â2β2) κ1 + κ2 + Â2(κ3 + κ4) + (Â2)2κ5

√
2(κ2 +

1
2 Â

2κ3)
1√
2
β1

√
2(κ2 +

1
2Â

2κ3) κ1 + 2κ2






, (3.10)

and the diagonal matrix

D = Diag

[

κ1, κ1, κ1 +
1

2
Â2κ4, κ1 +

1

2
Â2κ4

]

. (3.11)
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The coefficients in the first line (or first row) of M describe the kinetic terms associated with the
scalar field related variable A∗, including its mixing with the metric sector. As for the metric sector
alone, it is described by the right lower 2 × 2 submatrix of M, which we will call MK , together
with D. As our goal is to eliminate the extra degree of freedom due to the higher derivatives of
the scalar field, we are looking for a degeneracy of the kinetic matrix that arises from the scalar
sector. As a consequence, we will be interested in theories such that M is degenerate, while MK

and D remain nondegenerate in order to preserve the usual tensor structure of gravity.
Requiring the determinant of the matrix M to vanish1 yields an expression of the form

D0(X) +D1(X)A2
∗ +D2(X)A4

∗ = 0 , (3.12)

where we have substituted the expressions (3.5)-(3.8) into (3.10) and replaced all Â2 byX+A2
∗. The

functions D0, D1 and D2 depend on the six arbitrary functions f̃ and αI of the initial Lagrangian:

D0(X) ≡ −4(α1 + α2)
[

Xf(2α1 +Xα4 + 4fX)− 2f2 − 8X2f2X
]

, (3.13)

D1(X) ≡ 4
[

X2α1(α1 + 3α2)− 2f2 − 4Xfα2

]

α4 + 4X2f(α1 + α2)α5

+8Xα3
1 − 4(f + 4XfX − 6Xα2)α

2
1 − 16(f + 5XfX)α1α2 + 4X(3f − 4XfX)α1α3

−X2fα2
3 + 32fX(f + 2XfX)α2 − 16ffXα1 − 8f(f −XfX)α3 + 48ff2X , (3.14)

D2(X) ≡ 4
[

2f2 + 4Xfα2 −X2α1(α1 + 3α2)
]

α5 + 4α3
1 + 4(2α2 −Xα3 − 4fX)α2

1 + 3X2α1α
2
3

−4Xfα2
3 + 8(f +XfX)α1α3 − 32fXα1α2 + 16f2Xα1 + 32f2Xα2 − 16ffXα3 . (3.15)

Since the determinant must vanish for any value of A∗, we deduce that degenerate theories are
characterized by the three conditions

D0(X) = 0, D1(X) = 0, D2(X) = 0 . (3.16)

By solving these three conditions, one can determine and classify all DHOST theories, as discussed
in [7].

B. Degenerate theories

The condition D0(X) = 0 is the simplest of all three and allows to distinguish several classes
of theories. Indeed, D0 can vanish either if α1 + α2 = 0, which defines our first class of solutions,
or if the term between brackets in (3.13) vanishes, which defines our second class, as well as our
third class corresponding to the special case where f = 0.

1. Class I (α1 + α2 = 0)

This class is characterized by the property

α1 = −α2 . (3.17)

1 Note that we have not used the same matrix in [7] but another, non symmetric, matrix constructed by solving for
null eigenvectors of the kinetic matrix. The two methods are obviously equivalent.
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One can then use the conditions D1(X) = 0 and D2(X) = 0 to express, respectively, α4 and α5 in
terms of α2 and α3, provided f +Xα2 6= 0. This defines the subclass Ia, characterized by

α4 =
1

8(f +Xα2)2
[

16Xα3
2 + 4(3f + 16XfX)α2

2 + (16X2fX − 12Xf)α3α2 −X2fα2
3

+16fX(3f + 4XfX)α2 + 8f(XfX − f)α3 + 48ff2X
]

(3.18)

and

α5 =
(4fX + 2α2 +Xα3)

(

−2α2
2 + 3Xα2α3 − 4fXα2 + 4fα3

)

8(f +Xα2)2
. (3.19)

Degenerate theories in class Ia thus depend on three arbitrary functions α2, α3 and f .
In the special case f +Xα2 = 0, we find another subclass of solutions characterized by

α1 = −α2 =
f

X
, α3 =

2

X2
(f − 2XfX) , (Class Ib), (3.20)

where f , α4 and α5 are arbitrary functions. In the following, we will not explore this class much
further because the metric sector is degenerate. Indeed, the last two eigenvalues of D, which are
equal to f − α1X, vanish in this case.

2. Class II

The condition D0(X) = 0 can also be satisfied if

Xf(2α1 +Xα4 + 4fX)− 2f2 − 8X2f2X = 0 . (3.21)

We can then proceed as previously by solving D1(X) = 0 and D2(X) = 0 to express α4 and α5 in
terms of the three other functions. Substituting the obtained expression for α4 into the condition
(3.21), one finally gets

(Xα1 − f)
[

(4f2 +Xf(8α2 + 2α1 +Xα3 − 4fX)− 4X2fX(α1 + 3α2)
]

= 0 . (3.22)

Assuming that f −Xα1 6= 0, this leads to the expressions

α3 =
1

X2f
[−4f(f −XfX)− 2X(f − 2XfX)α1 + 4X(−2f + 3XfX)] , (3.23)

α4 =
2

X2f

[

f2 − 2fXfX + 4X2f2X −Xfα1

]

, (3.24)

α5 =
2

f2X3

[

4f(f2 − 3fXfX + 2X2f2X) + (3Xf2 − 8X2ffX + 6X3f2X)α1

+2X(2f − 3XfX)2α2

]

, (3.25)

while f̃ , α1 and α2 are arbitrary. This describes our class IIa, characterized by three arbitrary
functions.

The case f = Xα1 defines another class, similar to class Ib, which we will call class IIb, described
by

α1 =
f

X
, α4 = 4fX

(

2
fX
f

− 1

X

)

, (3.26)

α5 =
1

4X3f(f +Xα2)

[

8X(4XfXf − f2 − 4X2f2X)α2 +Xf(8X2fX +X3α3 − 4f)α3

+4(XfXf
2 − 2X3f3X + 2X2f2Xf − f3)

]

, (3.27)

where α2 and α3 are arbitrary functions. Like class Ib, the metric sector is degenerate for these
theories and we will not consider them further in the following.
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3. Class III (f = 0)

Finally, we devote a special class to the case f = 0, which also leads automatically to D0 = 0.
Using D1 = 0 and D2 = 0 to determine α4 and α5, one gets

α4 = − 2

X
α1 , α5 =

4α2
1 + 8α1α2 − 4α1α3X + 3α2

3X
2

4X2(α1 + 3α2)
(class IIIa) , (3.28)

while α1, α2 and α3 are arbitrary, provided α1 + 3α2 6= 0. This defines our class IIIa. Note that
the intersection of IIIa with the class Ia is described by

α2 = −α1 , α4 = − 2

X
α1 , α5 =

(2α1 −Xα3)(2α1 + 3Xα3)

8X2α1
, (IIIa ∩ Ia) , (3.29)

which depends on two arbitrary functions, α1 and α3, and includes the Lagrangian Lbh
4 (for which

α1/X = α3/2 = F4).
The case α1 + 3α2 = 0 yields another subclass,

f = 0 , α1 =
3

2
Xα3, α2 = −X

2
α3 (class IIIb) , (3.30)

which in general leads to a degenerate metric sector. Another special case corresponds to the class

f = 0 , α1 = 0 , (class IIIc) (3.31)

which depends on four arbitrary functions. Since f − α1X = 0, this class is also degenerate in the
metric sector.

4. Degeneracy of the scalar sector alone

Among all the degenerate theories that we have listed above, it is not difficult to identify the
theories that remain degenerate even when the metric becomes nondynamical, as noted in [7]. In
this limit, only the kinetic term for A∗ is relevant and the degeneracy of the scalar sector alone
thus requires A = 0, which imposes simultaneously the three constraints

α1 + α2 = 0 , α3 + α4 = 0 , α5 = 0 . (3.32)

The first condition implies that the theories satisfying these conditions belong to class I. Ignoring
class Ib, whose metric sector is degenerate, we turn to class Ia. For theories satisfying (3.32), the
functions α2 and α3 are no longer independent, but related by

4fX + 2α2 +Xα3 = 0 . (3.33)

This means that the condition A = 0 restricts the degenerate theories to a subclass that depends
on two arbitrary functions only. It is easy to see that this family of theories in fact coincides with
the sum of LH

4 and LbH
4 , upon using the identification

f = G4 , α1 = −α2 = 2G4X +XF4 , α3 = −α4 = 2F4 . (3.34)

This implies that the quartic Lagrangian L4 = LH
4 +LbH

4 represents the most general theories that
are degenerate when the metric is nondynamical (with a nondegenerate metric sector).
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IV. DISFORMAL TRANSFORMATIONS

We now study the effect of conformal-disformal transformations, or generalized disformal trans-
formations, introduced in [10], in which the “disformed” metric g̃µν is expressed in terms of gµν
and φ as

g̃µν = A(X,φ)gµν +B(X,φ)φµ φν . (4.1)

Via this transformation, any action S̃ given as a functional of g̃µν and φ induces a new action S
for gµν and φ, when one substitutes the above expression for g̃µν in S̃:

S[φ, gµν ] ≡ S̃ [φ, g̃µν = Agµν +B φµφν ] . (4.2)

We will say that the actions S and S̃ are related by the disformal transformation (4.1).
Starting from an action S̃ of the form (2.1),

S̃ = S̃g + S̃φ =

∫

d4x
√

−g̃
[

f̃ R̃+ α̃I L̃
φ
I

]

, (4.3)

we show below that the action S, related to S̃ via a disformal transformation, is also of the form
(2.1), up to terms of the form (2.4), and we compute explicitly the relations between the functions
that appear in the two Lagrangians. Interestingly, if the disformal transformation is invertible,
in the sense that the metric gµν can be expressed in terms of g̃µν , then the number of degrees
of freedom associated with S and S̃ should be the same. One thus expects that the disformal
transformations of all the degenerate theories described in the previous section are also degenerate.
We will also discuss the special case where the transformation is non invertible in subsection VIIB.

A. Relations between the two metrics and their covariant derivatives

In order to write explicitly the above action in terms of gµν and φ, we will need the expression
of the inverse metric

g̃µν = A−1

(

gµν − B

A+BX
∇µφ∇νφ

)

. (4.4)

Contracting this relation with φµ φν gives X̃ as a function of X:

X̃ =
X

A+BX
. (4.5)

It is also useful to introduce the ratio

Jg ≡
√−g̃√−g = A3/2

√
A+BX . (4.6)

The difference between the two covariant derivatives ∇̃ and∇, associated respectively to the two
metrics g̃µν and gµν , is fully characterized by the difference of their respective Christoffel symbols,

Cλ
µν ≡ Γ̃λ

µν − Γλ
µν , (4.7)

which defines a tensor. In particular, the relation between the respective second order covariant
derivatives of φ reads

∇̃µ∇̃νφ = ∇µ∇νφ− Cλ
µνφλ . (4.8)
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The explicit expression for Cλ
µν is given by

Cλ
µν =

AX

A

[

2δλ(µφν)σφ
σ − φλσφσgµν +

B

A+BX

(

−2φλφ(µφν)σφ
σ + φλφρφρσφ

σgµν

)

]

+BX

[

− 1

A
φµφνφ

λσφσ +
1

A+BX

(

2φλφ(µφν)σφ
σ +

B

A
φρφρσφ

σφλφµφν

)]

+
B

A+BX
φλφµν

+
Aφ

2A

[

δλµφν + δλνφµ − 1

A+BX
(Aφλgµν + 2Bφλφµφν)

]

+
Bφ

2(A+BX)
φλφµφν . (4.9)

The last line does not depend on second derivatives of φ. As we will see, this implies that the
terms in Aφ and Bφ appear only in the transformed action as terms of the form (2.4), which we
will not compute explicitly.

B. Curvature term

Let us first concentrate, in S̃, on the term depending on the Ricci scalar of g̃µν . Following the
derivation presented in [4], the Ricci scalar R̃ can be written in terms of the tensor Cλ

µν and of the
metric gµν , according to the expression

R̃ ≡ g̃µνR̃µν = A−1

(

gµν − B

A+BX
φµφν

)

(

Rµν + Cσ
µρC

ρ
νσ − Cρ

µνC
σ
ρσ

)

+ ∇̃ρξ
ρ , (4.10)

with

ξρ ≡ g̃µνCρ
µν − g̃ρµ Cν

µν . (4.11)

All the terms quadratic in Cλ
µν can be rewritten in terms of the elementary Lagrangians Lφ

I . One
finds

A−1

(

gµν − B

A+BX
φµφν

)

(

Cσ
µρC

ρ
νσ − Cρ

µνC
σ
ρσ

)

=
∑

I

γIL
φ
I + (. . . ) , (4.12)

with

γ1 = γ2 = 0 , γ3 = −B (BXAX +A (2AX +XBX +B))

A2(A+BX)2
, (4.13)

γ4 =
(6A2 + 8ABX + 2B2X2)A2

X + 4AX(A +BX)AXBX +A2B(B +XBX)

A3(A+BX)2
, (4.14)

γ5 = −2AX (BAX + 2ABX)

A3(A+BX)
. (4.15)

The dots in (4.12) indicate terms that are at most linear in φµν , i.e. of the form (2.4), which we
will not write down explicitly.

The total derivative ∇̃ρξ
ρ can be ignored if the function f̃ multiplying the scalar curvature is

a constant. Otherwise, one also needs to reexpress this term as a function of gµν and φ. This can
be done after an integration by parts so that one gets

∫

d4x
√

−g̃ f̃∇̃µξ
µ = −

∫

d4x
√

−g̃ ξµ∇µf̃ = −2

∫

d4x
√

−g̃ f̃X̃ X̃X ξµφµνφ
ν + (. . . ) , (4.16)
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with

X̃X ≡ ∂X̃

∂X
=

A

(A+BX)2
. (4.17)

Since ξµ contains second derivatives of φ, the scalar quantity ξµφµνφ
ν can be decomposed as a

combination of the elementary terms Lφ
I . One finds

ξµφµνφ
ν = λIL

φ
I + (. . . ) , (4.18)

with

λ1 = λ2 = 0 , λ3 =
B

A2 +ABX
, (4.19)

λ4 = −4BXAX +A (6AX + 2XBX +B)

A2(A+BX)
, λ5 =

2 (2BAX +ABX)

A2(A+BX)
, (4.20)

and the dots stand as usual for the terms at most linear in φµν .
Putting everything together, one finds that the scalar curvature term yields

∫

d4x
√

−g̃ f̃ R̃ =

∫

d4x
√−g Jg

{

f̃

A

[

R− B

A+BX
Rµν φ

µφν
]

+
(

γI − 2X̃X f̃X̃λI

)

Lφ
I

}

+ (. . . ) ,

(4.21)
where the term in Rµν φ

µφν is of the form (2.9) with the function

h = −Jg
B

A(A+BX)
f̃ , (4.22)

and the dots correspond to terms of the form (2.4).

C. Scalar field terms

Let us now consider the terms quadratic in second derivatives of the scalar field. Each of the
five terms in S̃φ can be decomposed, after substitution of (4.1), into the five terms that appear in
the final action Sφ.

Let us illustrate this with the first term L̃φ
1 ≡ φ̃µν φ̃

µν , which can be decomposed as follows:

L̃φ
1 = g̃µρ g̃νσ ∇̃µ∇̃νφ ∇̃ρ∇̃σφ (4.23)

= A−2

(

gµρ − B

A+BX
φµφρ

)(

gνσ − B

A+BX
φνφσ

)

(

φµν − Cλ
µνφλ

)

(

φρσ − Cτ
ρσφτ

)

= T11 Lφ
1 + T13 Lφ

3 + T14 Lφ
4 + T15 Lφ

5 + (. . . ) , (4.24)

where the coefficients are determined explicitly by substituting the expression (4.9) for Cλ
µν . Note

that the term Lφ
2 does not appear in the decomposition.

Proceeding similarly with all the other terms, one finally gets five similar decompositions, which
can be summarized by the expression

L̃φ
I = TIJLφ

J + (. . . ) , (4.25)



12

where the summation with respect to the index J is implicit. The nonvanishing coefficients TIJ
are given by

T11 =
1

(A+BX)2
, T13 =

2AX

A(A+BX)2
, T14 =

2
(

X (AX +XBX) 2 −A (2 (AX +XBX) +B)
)

A(A+BX)3
,

T15 =
1

A2(A+BX)4
[

2A3BX +A2
(

−2XAXBX + 2A2
X +B2 −X2B2

X + 4BXBX

)

+ 3B2X2A2
X

−2ABX
(

2XAXBX +AX (B − 2AX) +X2B2
X

)]

T22 =
1

(A+BX)2
, T23 = −2 (A (−2AX +XBX +B)− 3BXAX)

A(A+BX)3
,

T25 =
(A (−2AX +XBX +B)− 3BXAX) 2

A2(A+BX)4
,

T33 =
A−X (AX +XBX)

(A+BX)4
, T35 =

(A (−2AX +XBX +B)− 3BXAX) (A−X (AX +XBX))

A(A+BX)5
,

T44 =
(A−X (AX +XBX)) 2

A(A+BX)4
, T45 = −B (A−X (AX +XBX)) 2

A(A+BX)5
,

T55 =
(A−X (AX +XBX)) 2

(A+BX)6
. (4.26)

It can be noticed that these coefficients form a triangular matrix.

D. Transformation of the total action

Collecting all the results obtained above, one can now write the functions that appear in the
action S in terms of the functions f̃ and α̃I of S̃. We find

f = Jg A
−1f̃ , (4.27)

α1 = −h+ Jg T11 α̃1 , (4.28)

α2 = h+ Jg T22 α̃2 , (4.29)

α3 = 2hX + Jg

[

f̃ γ3 − 2X̃X f̃X̃λ3 + T13 α̃1 + T23 α̃2 + T33 α̃3

]

, (4.30)

α4 = −2hX + Jg

[

f̃γ4 − 2X̃X f̃X̃λ4 + T14 α̃1 + T44 α̃4

]

, (4.31)

α5 = Jg

[

f̃γ5 − 2X̃X f̃X̃λ5 + T15 α̃1 + T25 α̃2 + T35 α̃5 + T45 α̃5 + T55 α̃5

]

. (4.32)

By substituting all the formulas given in the previous subsections, one obtains the explicit ex-
pressions of f and αI in terms of f̃ , α̃I , A and B. One can verify that the f and αI satisfy
the degeneracy conditions (3.13)-(3.15). In fact, it turns out that this is a very efficient way to
check the expressions for f and αI . A first conclusion is thus that all quadratic DHOST theories
transform into quadratic DHOST theories.

For a more detailed analyis, the relations (4.27)-(4.32) in their abridged form are useful to see
how the main families of DHOST theories transform. First of all, let us note that if f̃ = 0 then
necessarily f = 0. Therefore, the transformed version of theories in class III remains in class III.
As a consequence of T11 = T22, we also find the relation

α1 + α2 = Jg T11 (α̃1 + α̃2) , (4.33)

which shows that the property α1 + α2 = 0 (or α1 + α2 6= 0) is unchanged by disformal trans-
formations. This implies that class I, characterized by α1 + α2 = 0, is stable under disformal
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transformations. Therefore all the three main classes are stable. We study more precisely the
impact of disformal transformations in the next two sections.

V. DISFORMAL TRANSFORMATIONS IN CLASS IA

Disformal transformations for theories in class Ia have been partially studied in several previous
works. In particular, it has been shown that Horndeski theories are stable under X-independent
disformal transformations [11]. The first example of theory beyond Hordenski, i.e. with higher
order equations of motion, was exhibited in [4] by considering the general disformal transformation
of the Einstein-Hilbert action, which is also in class Ia. It was also shown in [6] that the extended
quadratic (quintic) Lagrangian proposed in [5] can be generated from the quadratic Horndeski
Lagrangian via a purely disformal transformation with A = 1. All these examples are particular
cases of disformal transformations within class Ia.

If we now consider class Ia theories such that f̃ 6= 0, which depend on three arbitrary functions,
it is natural to expect that generic theories can be “generated” from the subset of (quadratic)
Horndeski theories, characterized by a single arbitrary function f̃ , via general disformal transfor-
mations, which depend on two arbitrary functions. We can check that this is indeed the case2, by
starting from the quartic Horndeski Lagrangian expressed in terms of the metric g̃µν and of the
scalar field φ,

S̃[φ, g̃µν ] =

∫

d4x
√

−g̃
{

f̃(X̃, φ)R̃ − 2f̃,X̃(X̃, φ)
[

(∇̃µ∇̃µφ)
2 − ∇̃µ∇̃νφ ∇̃µ∇̃νφ

]}

. (5.1)

Substituting (4.1), we obtain an action S for gµν and φ, which is characterized by the functions

f = A1/2
√
A+BX f̃ , (5.2)

and

α1 = −α2 = − 2A3/2

(A+BX)3/2
[(B +XB2)f̃ + 2f̃X̃ ] (5.3)

α3 = − 2 (BAX +ABX)

A1/2(A+BX)1/2
f̃ +

4(XBX −AX)A1/2

(A+BX)3/2
(5.4)

α4 =
2
(

A2BX +AAX (2XBX +B) +A2
X(3A+BX)

)

A3/2(A+BX)1/2
f̃

−4
(

−AX

(

A− 2X2BX

)

+AXBX + 2XA2
X

)

A1/2(A+BX)3/2
f̃X̃ (5.5)

α5 = −2AX (BAX + 2ABX)

A3/2(A+BX)1/2
f̃ +

4AX (2XBX −AX)

A1/2(A+BX)3/2
f̃X̃ (5.6)

If one starts from a generic theory in Class I, defined by the functions f and αI , it is possible
to determine two functions A and B such that this theory is disformally related to Horndeski, as
we now show. According to (5.2), the Horndeski function f̃ is related to f , A and B by

f̃ = A−1/2(A+BX)−1/2 f . (5.7)

2 The same calculation has been performed independently in the recent paper [12].
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Substituting this expression for f̃ into (5.3) yields

α1 = −α2 =
2AfX − f(2AX +XBX)

A−XAX −X2BX
, (5.8)

which one can solve to find BX in terms of α2, f and A:

BX =
(2fX + α2)A− (2f +Xα2)AX

X(f +Xα2)
. (5.9)

Substituting (5.7) and (5.9) in α3 gives

AX

A
=

4fX + 2α2 +Xα3

4(f +Xα2)
. (5.10)

Finally, by substituting successively (5.7), (5.9) and (5.10), one can rewrite α4 and α5 in terms of
f , α2 and α3 and check that one recovers exactly the expressions (3.18) and (3.19). This proves
that generic theories in class Ia are “generated” from the Horndeski quadratic Lagrangians via
disformal transformations (4.1).

In analogy with the choice between the “Jordan frame” and “Einstein frame” for traditional
scalar tensor theories, the above construction shows that theories belonging to class Ia with f 6= 0
can be defined either in the “Jordan frame”, where the metric is minimally coupled to matter,

Stotal =

∫

d4x
√−g

[

fR+ αIL
φ
I

]

+ Sm[gµν ,Ψm] , (5.11)

or in the “Horndeski frame”, where the gravitational part of the action is described by Horndeski,

S̃total =

∫

d4x
√

−g̃
{

f̃ R̃− 2f̃,X̃

[

(�̃φ)2 − φ̃µν φ̃
µν
]}

+ (. . . ) + Sm[gµν ,Ψm] . (5.12)

In the “Horndeski frame”, the matter action is nonminimally coupled, but can be expressed ex-
plicitly in terms of the “Horndeski metric” by inverting the transformation (4.1).

Note that the Einstein-Hilbert Lagrangian, with f̃ constant and α̃I = 0, is a particular case of
Horndeski. It generates, via disformal transformations, the family characterized by the expressions
(5.2)-(5.6) with f̃X̃ = 0. If the disformal transformation is invertible, one thus gets a family
of scalar-tensor theories which are in fact general relativity in disguise and, as such, are doubly
degenerate and contain only two tensor modes. Of course, one can always add another term of the
form (2.4) in the action, which does not modify the quadratic part of the action (2.1), in order to
break the second degeneracy. One then obtains a degenerate scalar-tensor theory with one scalar
mode and two tensor modes. This is precisely how a theory “beyond Horndeski” was constructed
in [4].

VI. DISFORMAL TRANSFORMATIONS IN OTHER CLASSES

We now turn to the other classes of DHOST theories.

A. Stability of all classes

We have already pointed out the stability, under disformal transformations, of the sign (including
zero) of f and of α1 + α2, which guarantes the stability of the classes I, II and III separately. We
now consider the criteria that distinguish the subclasses within these classes.



15

One can first notice the relation

f − α1X = Jg

[

1

A+BX
f̃ − X

(A+BX)2
α̃1

]

=
Jg

A+BX

(

f̃ − X̃ α̃1

)

, (6.1)

where we have substituted the expression (4.22) for h and the coefficient T11 in (4.28). If we start
from a theory in Class Ib or in Class IIb, characterized by α̃1 = f̃/X̃ , the above relation implies
that the disformally transformed theory verifies α1 = f/X and thus belongs to the same subclass,
either Ib or IIb, as the original theory. Therefore, the classes Ia, Ib, IIa and IIb are separately
stable.

We find the same properties for the subclasses in class III. Indeed, when f = 0, we have
α1 = JgT11α̃1 and α2 = JgT11α̃2. Therefore the signs of α1 and α1 + 3α2 which distinguish the
subclasses IIIa, IIIb and IIIc are conserved in a disformal transformation.

In summary, all the classes and subclasses that we have distinguished are separately stable under
disformal transformations. In particular, the intersections of two classes or subclasses, when non
empty, are also stable. This applies for instance to the intersection of Ia and IIIa, which contains
Lbh
4 .

B. Disformal transformations in Class IIa

It is straightforward to specialize the general disformal transformations to class IIa. One just
needs to impose that the tilted functions f̃ and the α̃I satisfy the properties (3.25). Since La-
grangians in class IIa depend on three arbitrary functions, one can try to proceed as in class Ia by
choosing a particular family that depends on a single arbitrary function and then produce generic
theories by applying a disformal transformation. There is no natural candidate for this one-function
family, in contrast with Horndeski. One could choose for example the family

f̃ = 1 , α̃1 = 0 , α̃3 = − 4

X2
(1 + 2Xα2) , α̃4 =

2

X2
, α̃5 =

8

X3
(1 + 2Xα2) , (6.2)

which depends only on the arbitrary function α̃2.
One finds that the disformal transformation of this family leads, in particular, to

f = A1/2(A+BX)1/2 (6.3)

and

α2 = −A
1/2

(

A(B − α̃2) +B2X
)

(A+BX)3/2
(6.4)

We can solve the first equation to determine B in terms of A and f :

B =
f2 −A2

AX
. (6.5)

Substituting in (6.4) and solving for α̃2, we get

α̃2 =
f2

A3X

(

f2 −A2 +Xfα2

)

. (6.6)

One can then substitute these relations into the other coefficients obtained by disformal transfor-
mation. The coefficient α4, for instance, is particularly simple:

α4 =
2

fX2

(

A2 + 4X2f2X − 2XffX
)

. (6.7)

In this way, one can determine the function A in terms of α4 and f , and then B. Note however
that this procedure works only if the above equation can be solved for A2. This means that there
will be restrictions on the theories generated by the family (6.2).
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C. Disformal transformation in class IIIa

Although class IIIa contains LbH
4 , which depends on a single function, this Lagrangian cannot

generate all theories in IIIa because it belongs to the intersection of IIIa and Ia and any of its
transformed Lagrangians will also belong to this intersection. This means in particular that LbH

4

cannot be connected to Horndeski, as already pointed out in [9].
In class IIIa, h = 0 and therefore the ratio between α1 and α2 remains conserved in a disformal

transformation. This implies that one cannot choose a “seed” family with α̃1 = 0 or α̃2 = 0 in
order to obtain generic theories of IIIa. Instead, one can try to take, for instance, the family

f̃ = 0 , α̃1 = 1 , α̃3 = 0 , α̃4 = − 2

X
, α̃5 =

1 + 2α̃2

X2(1 + 3α̃2)
, (6.8)

which depends on the arbitrary function α̃2. Applying a disformal transformation on this family,
one gets

α1 = A3/2(A+BX)−3/2, α2 = A3/2(A+BX)−3/2α̃2 , (6.9)

which can be solved to give

B = A
1− α

2/3
1

Xα
2/3
1

, α̃2 = A−3/2(A+BX)3/2α2 . (6.10)

Substituting into the expression for α3, one finds

AX

A
=

2α1α3 − 4α3α1X

6α1(α1 + 2α2)
. (6.11)

This enables us to determine A and then B.

VII. LINK WITH KHRONOMETRIC AND MIMETIC THEORIES

In this section we show that, aside Horndeski and its extension, quadratic DHOST theories also
contain, as particular cases, other theories that have already been studied elsewhere. In the first
part, we identify some “khronometric” theories in both class I and class II. In the second part, we
discuss “mimetic” theories, associated with a non invertible disformal transformation.

A. Khronometric theories

Khronometric theories [20] represent a subset of Einstein-aether theories [21] for which the unit
time-like vector uµ, which defines a special frame, is expressed as the normalized gradient of a
scalar field,

uµ =
∇µφ√
−X

. (7.1)

Their dynamics is described by the action

S =

∫

d4x
√−g

(

fR+Kµν
ρσ∇µu

ρ∇νu
σ
)

, (7.2)
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with

Kµν
ρσ ≡ c1g

µνgρσ + c2δ
µ
ρ δ

ν
σ + c3δ

µ
σδ

ν
ρ + c4u

µuνgρσ , (7.3)

where the ca are constant. This is the most general Lagrangian which depends only quadratically
on the vector field uµ and it is clearly invariant under arbitrary scalar field redefinitions φ 7→ ψ(φ).
Since f is constant, we can set f = 1 without loss of generality.

Substituting (7.1) into (7.2)-(7.3), we find that the action (7.2) is of the form (2.1), with the
functions

f = 1 , α1 = − 1

X
(c1 + c3) , α2 = − 1

X
c2 , α3 =

2

X2
c2 ,

α4 =
1

X2
(c1 + 2c3 + c4) , α5 = − 1

X3
(c2 + c3 + c4) . (7.4)

One immediately sees that the parameter c1 can be absorbed in c3 and c4 by redefining c3+c1 → c3
and c4 − c1 → c4. In the following, we will thus assume c1 = 0 without loss of generality (one can
always return to the original form by using the inverse redefinitions).

Among khronometric theories, which represent a subset of higher order theories, one can look
for degenerate theories by examining the degeneracy conditions (3.13)-(3.15). Substituting (7.4),
with c1 = 0, into the first degeneracy condition yields

D0 =
4

X
(c2 + c3) (c4 − 2) = 0 , (7.5)

whose solutions yield several families of degenerate khronons.

1. Khronons in Class I

Let us first consider the case

c2 + c3 = 0 , (7.6)

which corresponds to class I, since this implies α1 + α2 = 0. Substituting this condition into D1

and D2, one finds

D1 = XD2 = − 8

X2
(c2 − 1)2 c4 , (7.7)

which allows two possibilities.
The first family, characterized by

α1 = −α2 =
1

X
, α3 =

2

X2
, α4 =

1

X2
(c4 − 2), α5 = − c4

X3
, (7.8)

with c4 arbitrary, belongs to the class Ib.
The second family, described by

α1 = −α2 =
c2
X
, α3 =

2c2
X2

, α4 = −2
c2
X2

, α5 = 0 , (7.9)

with c2 arbitrary, belongs to class Ia (except the case c2 = 1 which is also in the previous family).
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2. Khronometric Class II

The second possibility to satisfy D0 = 0 is given by

c4 = 2 , (7.10)

which leads to

D1 = XD2 =
8

X2
(1 + c3)(3c2 + c3 − 2) . (7.11)

Once again, we get two families, but now belonging to class II.
The first family, corresponding to c3 = −1, is described by

α1 =
1

X
, α2 = − c2

X
, α3 =

2c2
X2

, α4 = 0, α5 = −c2 + 1

X3
, (7.12)

and depends on the arbitrary parameter c2. These theories are in IIb, except for the case c2 = 1,
which is in IIa.

The second family, corresponding to c3 = 2− 3c2, also depends on the single parameter c2:

α1 =
3c2 − 2

X
, α2 = − c2

X
, α3 =

2c2
X2

, α4 =
6(1− c2)

X2
, α5 =

2(c2 − 2)

X3
. (7.13)

These Lagrangians belong to IIb, except if c2 = 1.

3. Disformal transformations

The set of khronometric theories is stable under the action of disformal transformations of the
form

g̃µν = a gµν + b uµuν , (7.14)

i.e. for A = a and B = −b/X, where a and b are constant.
Without loss of generality, one can restrict our analysis to one-parameter transformations such

that b = a − a−1, which preserve f = 1 in the khronometric action (7.2). It is straightforward
to study the action of disformal transformations of this type on the four degenerate khronometric
families identified above. One finds that each theory of the first family (7.8) remains invariant.
Each of the three other families is stable, the transformed theory being obtained by the following
modification of the parameter c2:

c2 → (c2 − 1)a2 + 1 . (7.15)

In particular, one notes that, in the family (7.9), any theory with c2 > 0 can be transformed into
general relativity by choosing a2 = 1/(1 − c2).

B. Mimetic theories

In previous sections, we have assumed that the disformal transformation (4.1) is invertible, in
the sense that one can also express the metric gµν in terms of g̃µν . When we relax this condition, one
obtains the so-called “mimetic” theories, in analogy with the first model of this kind, investigated
in [22], defined from a non-invertible disformal transformation of the Einstein-Hilbert action.
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1. Non-invertible disformal transformation and symmetries

By differentiating the expression

g̃µν = A(φ,X)gµν +B(φ,X)φµφν , (7.16)

one obtains

δg̃µν = Fµν δφ +Hα
µν ∇αδφ+ Jαβ

µν δgαβ (7.17)

with

Fµν = Aφgµν +Bφφµφν , (7.18)

Hα
µν = 2(AXgµν +BXφµφν)φ

α +B(φνδ
α
µ + φµg

α
ν ) , (7.19)

Jαβ
µν = Aδα(µδ

β
ν) − φαφβ(AXgµν +BXφµφν) . (7.20)

As discussed in [4], the disformal transformation is non invertible, i.e. gµν cannot be determined

from g̃µν , if the determinant of the Jacobian matrix Jαβ
µν ≡ ∂g̃µν

∂gαβ
vanishes. This happens when Jαβ

µν

admits a null vector vαβ such that

Jαβ
µν vαβ = 0 . (7.21)

It is straightforward to check that the combination

vαβ = AXgαβ +BXφαφβ (7.22)

is a null vector of the Jacobian matrix, provided the functions A and B verify

BX =
A−XAX

X2
. (7.23)

After integration, this yields

B = −A

X
+ µ(φ) , (7.24)

corresponding to the disformal transformation

g̃µν = A(φ,X)

(

gµν −
1

X
φµφν

)

+ µ(φ)φµφν . (7.25)

Note that if we insert (7.24) into (4.5), one gets X̃ = 1/µ(φ), which shows that X̃ does not depend
on X.

2. Mimetic action

If we start from an action of the form

S̃[φ, g̃µν ] =

∫

d4x
√

−g̃
(

f̃(φ)R̃ + αI(φ)L̃
φ
I

)

, (7.26)

and substitute (7.25), we obtain a new action S, given as a functional of gµν and φ. This leads
to a subclass of our DHOST theories with particular properties. This procedure has been used
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in [22] for the Einstein-Hilbert action, i.e. f̃ = 1 and α̃I = 0, with the disformatl transformation
characterized by A = X and B = 0, to introduce the model of mimetic dark matter. It has
been extended in [23] to a general non-invertible transformation, with (7.24). In contrast with the
generic case where the disformal transformation is invertible, the number of degrees of freedom is
not necessarily the same for S̃ and S. In particular, if S̃ is the Einstein-Hilbert action, with only
two degrees of freedom, one ends up with three degrees of freedom for S, as discussed in [22] and
[23].

Interestingly, the mimetic action S is invariant under the local symmetry

δφ = 0 and δgµν = ε vµν = ε(AXgµν +BXφµφν) , (7.27)

where ε is an infinitesimal space-time function. This symmetry follows immediately from (7.17),
together with the property that vµν is a null eigenvector of the Jacobian matrix.

In the Hamiltonian framework, such a symmetry implies the existence of an extra first class
constraint in addition to the usual Hamiltonian and momentum constraints associated with dif-
feomorphism invariance. This is in contrast with the standard quadratic DHOST theories, for
which the extra constraints are generically second class, as shown in [8]. One of these second class
constraints is necessary to eliminate the Ostrogradski ghost and we thus expect that, even though
mimetic theories contain three degrees of freedom, the Ostrogradski ghost is still present.

This is indeed the case for the simplest model of mimetic gravity, obtained from Einstein-Hilbert
with A = X and B = 0. In that case, the symmetry (7.27) reduces to an invariance under conformal
transformations of gµν . In the Hamiltonian description, this symmetry is necessarily associated to
a first class constraint. Following the analysis of [8], and introducing the conjugate momenta πij

and p∗ of hij and A∗, respectively, one can show that the primary constraint reduces to

Ψ ≡ γijπ
ij − 1

2
p∗ , (7.28)

which is indeed the generator of infinitesimal conformal transformations. As a consequence, the
primary constraint is first class and it Poisson commutes with the Hamiltonian and momentum
constraints. Hence, there is no secondary constraint that eliminates the Ostrogradski ghost. This
has already been noticed in [24] and we expect this to remain true for any mimetic-like theory.

VIII. CONCLUSIONS

The degeneracy, in the generalized sense introduced in [7], of scalar-tensor Lagrangians is a
powerful tool to classify viable alternative theories of gravity. In the present work we have revisited
all the quadratic DHOST theories identified in [7] and studied how they transform under generalized
disformal transformations. In order to do so, we have obtained the general transformation laws
of the six arbitrary functions that appear in the Lagrangian of these theories. This shows that
any quadratic DHOST theory is transformed, via disformal transformation, into another quadratic
DHOST theory, up to terms that are at most linear in φµν (which do not affect the degeneracy of
the theory). Moreover, we have found that the three main classes of quadratic DHOST theories,
as well as the two or three subclasses within each, are all stable under disformal transformations.
One of these subclasses (class Ia) contains the theories “generated” from the (quadratic) Horndeski
Lagrangian via disformal transformations, .

Two disformally related theories describe distinct physics if matter is assumed to be minimally
coupled for both theories. Conversely, a given scalar tensor theory can be described by different
disformally related Lagrangians, provided the coupling to matter is modified accordingly. In this
sense, the situation is very similar to traditional scalar-tensor theories for which one can use the
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Jordan frame, in which matter is minimally coupled to the metric, or the Einstein frame, where
the gravitational dynamics is described by the usual Einstein-Hilbert Lagrangian but at the price
of a non-minimal coupling of matter to the metric. Similarly, for the quadratic DHOST theories
in class Ia, one can work either in the Jordan frame, where matter is minimally coupled but the
equations of motion are in general higher order, or in the “Horndeski” frame where the equations
of motion are second order but with a non-minimal coupling of matter to the metric.

Apart Horndeski and its extension, we have also recognized other known theories among the
quadratic DHOST theories. Khronometric theories, which are a sub-class of Einstein-aether the-
ories where the unit vector is proportional to the gradient of a scalar field, lead to higher order
scalar-tensor theories when covariantized. These covariantized theories are in general not degener-
ate but we have found that a subset of them are indeed degenerate. Our theories also encompass
mimetic gravity, which is obtained from the Einstein-Hilbert Lagrangian via a specific, non invert-
ible, disformal transformation.

Quadratic DHOST theories also contain theories that cannot be related, up to disformal disfor-
mations, to known theories, at least to our knowledge, and thus seem to represent genuinely new
scalar-tensor theories, independently of their specific coupling to matter. It would be interesting to
study the cosmology of these new theories by using, for instance, the general formalism developed
in [25, 26].

Note added: the paper [12], which appeared on arXiv during the preparation of this manuscript,
also studies the theories introduced in [7] and has some partial overlap with the present work, in
particular concerning the disformal transformations in class Ia.
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