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ABSTRACT

We study the linear and non-linear bias parameters which determine the mapping
between the distributions of galaxies and the full matter density fields, comparing dif-
ferent measurements and predictions. Associating galaxies with dark matter haloes in
the MICE Grand Challenge N-body simulation we directly measure the bias paramet-
ers by comparing the smoothed density fluctuations of haloes and matter in the same
region at different positions as a function of smoothing scale. Alternatively we meas-
ure the bias parameters by matching the probability distributions of halo and matter
density fluctuations, which can be applied to observations. These direct bias meas-
urements are compared to corresponding measurements from two-point and different
third-order correlations, as well as predictions from the peak-background model, which
we presented in previous articles using the same data. We find an overall variation of
the linear bias measurements and predictions of ∼ 5% with respect to results from
two-point correlations for different halo samples with masses between ∼ 1012 − 1015

h−1M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-
order bias parameters from the different methods show larger variations, but with
consistent trends in mass and redshift. The various bias measurements reveal a tight
relation between the linear and the quadratic bias parameters, which is consistent
with results from the literature based on simulations with different cosmologies. Such
a universal relation might improve constraints on cosmological models, derived from
second-order clustering statistics at small scales or higher-order clustering statistics.

Key words: methods: analytical - methods: statistical - galaxies: haloes - dark matter
- large-scale structure of Universe.

1 INTRODUCTION

The increase of data from upcoming and next generation of
galaxy surveys is pulling down errors on the observed stat-
istics of the large-scale galaxy distribution. Thus, the infer-
ences on cosmological models from these statistics requires a
modelling of cosmological fluids and their statistical proper-
ties with an accuracy of at least the same order of magnitude
as the observational errors.

One of the largest uncertainties comes from the mod-
elling of the mapping between the observed fluctuations of
galaxies to the fluctuation of the underlying matter distribu-
tion (hereafter referred to as δg and δm respectively). These
fluctuations are defined as normalised deviations of the dens-
ity ρ, smoothed typically with a top-hat window of charac-
teristic scale R, from the mean density of the universe ρ̄ at
the position r,

δ(r) ≡
ρ(r)− ρ̄

ρ̄
. (1)

The mapping from δg to δm is described by the so-called
bias function, δg = F [δm,∇ijΦv ], where ∇ijΦv are second-
order derivatives of the velocity potential. The latter relate
δg to the matter distribution beyond the smoothing scale
R and are therefore referred as non-local contributions to
the bias model (Chan et al. 2012; Baldauf et al. 2012). For
sufficiently large smoothing scales such non-local contribu-
tions may be negligible, which allows for a local descrip-
tion of biasing. Thus, the bias function can be modelled
as a Taylor expansion in terms of the matter fluctuations
(Fry and Gaztanaga 1993)

δh = F [δm] ≃
N
∑

i=0

bi
i!
δim, (2)

where bi are the bias parameters. However, for smaller
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smoothing scales, which are typically used for studying the
two- and three-point statistics of the galaxy distribution,
non-local contributions need to be considered. When fluc-
tuations in the density and velocity potential of the matter
distribution are sufficiently small the non-local bias model
may be described by its second-order expansion, which is
hereafter referred to as non-local quadratic bias model

δg = b1

{

δm +
1

2
[c2(δ

2

m − 〈δ2m〉) + g2G2]

}

, (3)

where b1 and c2 ≡ b2/b1 are referred to as linear and quad-
ratic (or second-order) bias parameters respectively. The
non-local contribution to the bias function consists in that
case of the product of the second-order non-local bias para-
meter g2 and the smoothed second-order Gallileon

G2(r) =

∫

β12θv(k1)θv(k2) Ŵ [k12R]eik12·rd3k1d
3
k2, (4)

where ki and k12 ≡ k2 − k1 are wave vectors of dens-
ity oscillations, β12 ≡ 1 − (k̂1 · k̂2)

2 represents the mode-
coupling between density oscillations which describes tidal
forces, θv ≡ ∇2Φv is the divergence of the normalised ve-
locity field (v/H/f) and Ŵ [k12R] is the window function
in Fourier space. Note that in the case g2 = 0 equation (3)
corresponds to the local quadratic bias model.

The bias parameters are highly relevant for constrain-
ing cosmological models via the growth of matter fluctu-
ations, derived from second-order statistics of the observed
galaxy distribution. In particular at large scales, the lin-
ear bias factor b1 is completely degenerate with the linear
growth factor. Hence, growth-independent measurements of
b1 can strongly tighten cosmological constraints from galaxy
surveys.

Third-order statistics probes the linear and quadratic
bias parameters independently of the growth and can be
used to break the growth-bias degeneracy in the second-
order statistics. Furthermore, the second-order bias meas-
urements from third-order statistics allow growth measure-
ments from second-order statistics at small scales, where
non-linear and non-local terms contribute significantly to
the signal. Such a small scale analysis would strongly im-
prove the cosmological constraining power of galaxy surveys.

However, the value of combining second- with third-
order statistics for constraining cosmological models with
high precision arises from a detailed understanding of how
exactly the bias parameters enter these statistics at different
scales, redshifts and for different samples of tracers.

We therefore investigated in previous works
(Hoffmann et al. 2015b; Bel et al. 2015, where the lat-
ter is hereafter referred to as paper I) how accurately the
linear bias can be measured from different third-order stat-
istics. These studies were based on the large cosmological
MICE Grand Challenge (hereafter referred to as MICE-
GC) N-body simulation in which haloes were detected as
tracers of the cosmic web and associated with galaxies.
The fact that the dark matter distribution is accessible in
simulations allows for reliable measurements of the linear
bias via second-order statistics, which can then be used as
a reference for validating linear bias measurements from
third-order statistics as well as theory predictions. Note

Table 1. Abbreviations for previous articles of this series.

name in the text reference

paper I Bel et al. (2015)
paper II Hoffmann et al. (2015a)

that a reliable reference for validating higher order bias
is currently only provided by running separate universe
N-body simulations (Wagner et al. 2015; Lazeyras et al.
2016), which is beyond the scope of this article.

Alternatively to growth-independent bias measure-
ments from third-order statistics one can employ bias pre-
dictions from the peak-background split model for break-
ing the growth-bias degeneracy. In Hoffmann et al. (2015a,
hereafter referred to paper II) we tested linear bias predic-
tions in the MICE-GC simulations, confirming reports on
inaccuracies of these predictions in the literature on a lar-
ger mass range thanks to the large volume and resolution of
the MICE-GC simulation. As in case of the third-order stat-
istics no reliable measurements for validating the predicted
non-linear bias parameters were available. However, an in-
teresting outcome of this analysis was a simple universal
relation between the linear and non-linear bias parameters
in the peak-background split model, which is independent
of redshift and cosmology for halo samples with b1 & 2.

In the present work we conclude our series of articles,
presenting results from an other method for allowing to
measure bias parameters in the MICE-GC simulation. This
method is based on a direct comparison of the halo and
matter density fluctuations and may therefore be seen as
the most direct way of measuring bias parameters. We also
study a variant of this method, which is based on abund-
ance matching of tracers and matter density contrasts. The
interest of this alternative method is that it can be applied
in galaxy surveys to estimate to bias function. Both meth-
ods deliver linear, as well as non-linear bias measurements.
We compare these new measurements with the most reliable
results from our previous work (paper I and II, see Table 1),
which allows for the validation of how well bias can be meas-
ured with each approach.

The different measurements of linear and non-linear
bias parameters furthermore allow for a validation of the
universal relation between the bias parameters, which we
found for peak-background split predictions in paper II. The
strength of our comparison emerges from the large halo mass
range of roughly 1012 − 1015 h−1M⊙, probed by the MICE-
GC simulation as well as the fact that we use the same halo
mass samples throughout the whole comparison project.

The remainder of this article is organised as follows. In
Section 2 we describe the MICE-GC simulation as well as
the halo samples on which our analysis is based on. The dif-
ferent methods for obtaining the bias parameters are briefly
reviewed in Section 3, while details on bias measurements
from the comparison of density contrasts are given in the
appendix. We present our results in Section 4 which we sum-
marise and discuss in Section 5.

2 SIMULATION AND HALO SAMPLES

Our analysis is based on the Grand Challenge run of the
Marenostrum Institut de Ciències de l’Espai (MICE) simula-
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Table 2. Halo mass samples used in this study. Np is the number
of dark matter particles per halo, Nhalo is the number of haloes
per sample in the comoving output at redshift z = 0.5.

sample mass range [1012h−1M⊙] Np Nhalo

M0 0.58 - 2.32 20-80 122300728
M1 2.32 - 9.26 80-316 31765907
M2 9.26 - 100 316-3416 8505326
M3 > 100 >3416 280837

tion suite to which we refer to as MICE-GC in the following.
Starting from small initial density fluctuations at redshift
z = 100 the formation of large scale cosmic structure was
computed with 40963 gravitationally interacting collision-
less dark matter particles in a 3072 h−1Mpc box using the
GADGET - 2 code (Springel 2005) with a softening length
of 50 h−1kpc. The initial conditions were generated using
the Zel’dovich approximation and a CAMB power spectrum
with the power law index of ns = 0.95, which was normalised
to be σ8 = 0.8 at z = 0. The cosmic expansion is described
by the ΛCDM model for a flat universe with a mass density
of Ωm = Ωdm+Ωb = 0.25. The density of the baryonic mass
is set to Ωb = 0.044 and Ωdm is the dark matter density.
The dimensionless Hubble parameter is set to h = 0.7. More
details and validation test on this simulation can be found
in Fosalba et al. (2013).

Dark matter haloes were identified as Friends-of-Friends
groups (Davis et al. 1985) with a linking length of 0.2 in
units of the mean particle separation. These halo catalogs
and the corresponding validation checks are presented in
Crocce et al. (2013). In the present analysis we use the dark
matter field as well as haloes in the comoving outputs at
redshift z = 0.0 and 0.5. The haloes are thereby divided
into the four redshift independent mass samples M0 - M3
(defined in Table 2), which span a mass range from Milky
Way like haloes up to haloes of massive galaxy clusters.

3 BIAS ESTIMATORS

In this section we summarise the different methods for meas-
uring and predicting linear and non-linear bias parameters.
An overview of the methods with the abbreviations and ref-
erences for the corresponding bias is given in Table 3.

3.1 δh − δm relation

In simulations we can measure the density contrasts of ha-
loes and matter (hereafter referred to as δh and δm respect-
ively), which allows for a direct estimation of the bias para-
meters bi in equation (2). In this sub-section, we describe
the two methods which we employ for these measurements.

The first method has been widely used in the literature
and may be seen as the most direct way of measuring bias,
provided that the biasing function is deterministic and local.
It consists in fitting a polynomial of order n to the δh(ri)−
δm(ri) relation, which can be measured from the smoothed
density fields of haloes and matter at different positions ri in
a simulation. The scatter between haloes and matter density
contrasts in the MICE-GC simulation is shown in Fig. 1 at
redshift z = 0.0 for a smoothing scale of R = 60h−1Mpc.

One can see that the average relation between δm and δh is
different regarding the halo sample: the slope of the most
massive one (M3) is higher than the less massive (M0). This
is expected because the linear bias which controls the slope
of the δh-δm relation is higher for the sample M3. In general,
the best-fit parameters of the polynomial of order n fitted to
the scatter plot are then identified as the bias coefficients.
Note that the parameter b0 is in principle constrained by
requiring that by definition the average of the halo density
contrast is null, 〈δh〉 = 0. In case of a cubic biasing relation
it leads to the formal expression

b0 = −b1σ
2

dm

{c2
2

+
c3
6
S3,dmσ2

dm

}

, (5)

where S3,dm and σ2

dm are respectively the skewness and the
variance of the dark matter field smoothed on scale R. Note
that c3 is the cubic bias coefficient defined as c3 ≡ b3/b1.
We will refer to this method as δh − δm in the remainder of
this article.

In practice, the choice of the order of the polynomial
could affect the estimation of the bias coefficients b1, c2 and
c3 (see Lazeyras et al. 2016). One can expect that this trun-
cation introduces a dependence of the bias parameters on
the smoothing scale, used to estimate the density contrasts.
We therefore perform the same convergence test proposed
by Lazeyras et al. (2016), which consists in comparing the
bias coefficients obtained with a third-, fourth- and fifth-
order polynomial. In the case of third-order polynomials we
test, in addition, the impact of the choice of b0 on the es-
timated bias parameters. To do so we let b0 being free and
compare the resulting bias parameters to those derived fix-
ing b0 to the expected value from equation (5). Note that,
we expect the local deterministic bias to describe the map-
ping between matter and haloes only on sufficiently large
smoothing scales.

The outcome of this analysis is presented is Fig. 2 and
3, which show the results of this fitting process for respect-
ively b0, b1 and c2, c3 when applied at various smoothing
scale R. For each scale, we estimate the error by perform-
ing the fit in 64 Jackknife sub-samples of the full simula-
tion. Examination of the top panel of Fig. 2 shows that b0
changes with scale, while converging to zero. Furthermore
its sign depends on the mass of the halo sample. Both ef-
fect are expected, as shown by equation (5), the sign of b0
can change, depending on the higher order bias coefficients.
Moreover, since b0 depends on quantities such as the vari-
ance σ2 and the skewness S3 of matter, we expect a scale
dependence. Regarding the biasing coefficients, Figures 2
and 3 show that we find a strong scale dependence of our
bias measurements for small smoothing radii R, while res-
ults converge for scales larger than R = 40 h−1Mpc (see
also Manera and Gaztañaga 2011). In general, we can also
conclude that the choice of leaving b0 free or not does not
impact the fitted bias parameters. In addition, looking at
the two low mass samples we can see that above 40h−1Mpc,
the choice of the order of the fitted polynomial does not
impact significantly the measurements. Despite, the visual
difficulty of interpreting the results for the two high mass
samples we will show later that this choice can have an im-
pact on the fitted third-order bias parameter. We therefore
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Figure 1. Scatter plot between halo and matter density contrast
at z = 0 obtained with a smoothing radius R = 60h−1Mpc. We
represent the 68% (dark colour) and 95% (light colour) contour
levels, in red we show the contour levels corresponding to the mass
bin M3 while in blue we show the mass bin M0. Black dashed lines
show the bias function derived from the δh − δm method, while

the green long dashed, red dotted and magenta dotted lines show
results from variants of the δPDF method (see text for details).

only use scales between 40 6 R 6 80 h−1Mpc to derive the
bias parameters via the δh − δm method.

The second method for measuring bias parameters from
the δh − δm relation consists in matching the probability
distribution functions (PDF) of δh and δm, it will there-
fore be referred to as the δPDF method in the following.
As the δh − δm method, it relies on the assumption that
the bias function is local and deterministic. However, the
δPDF method presents a clear advantage: it can be dir-
ectly applied to measure galaxy bias from observations. The
PDF of matter fluctuations can be, indeed, modelled for
a given cosmology and the PDF of galaxies can be dir-
ectly observed from redshift surveys (see Bel et al. 2016;
Di Porto et al. 2014; Marinoni et al. 2005; Bernardeau et al.
2002; Uhlemann et al. 2016). Inferring the bias from the
δh−δm method, on the other hand, requires adequate obser-
vations for measurements of δm via weak gravitational lens-
ing and introduces additional uncertainties (Chang et al.
2016; Pujol et al. 2016).

Thus, measuring the bias parameters by matching the
1-point probability distribution of haloes and matter fluctu-
ations (Ph(δh) and Pm(δm) respectively) represents an al-
ternative way of estimating local bias parameters. It con-
sists in assuming the existence of a local mapping between
the matter and haloes fluctuations such that the probab-
ility is conserved under a change of variable following this
functional relation

Ch[δh] = Cm[δm], (6)

Figure 2. Top: Bias coefficient b0. Bottom: Linear bias coeffi-
cient b1. In both panels, we estimate quantities with respect to
the smoothing scale R. We test several methods: in the first we
fix b0 (solid lines) using equation (5), then we allow b0 to vary
as a free parameter (short dashed lines), after we fit a fourth
(dashed dot-dot-dot lines) and finally a fifth (long dashed lines)
order polynomials. In the bottom panels we also represented the
results of the fit (magenta) of the linear bias b1 between 40 and
80h−1Mpc. We perform this analysis for two comoving outputs
at redshift 0.0 (left) and 0.5 (right). In all panels we adopt a
colour coding blue, green, orange and red referring respectively
to the halo samples M0, M1, M2 and M3. Note that, for clarity,
each method applied to a given halo mass is represented with a
different shade of the corresponding colour.

where Ci is the cumulative distribution function, defined as
Ci[δi] ≡

∫ δi
−1

Pi(δ
′
i)dδ

′
i for either haloes (i = h) or matter

(i = m). The halo density fluctations δh can thus be ex-
pressed as a function of halo density fluctuations δm by in-
verting equation (6) (i.e. δh(δm) = Ch

−1 [Cm[δm]]), which
is by definition the local bias function. The exponent −1
denotes the reciprocal function. The mapping C−1

h [Cm] is
obtained by integrating numerically the probability distri-
bution function of both the halo and matter density con-
trasts. For technical reasons, we use a cubical smoothing of
size 64h−1Mpc which corresponds in volume to a spherical
smoothing of radius R ≃ 40h−1Mpc (which, we saw, is large
enough to consider the bias coefficients as scale independ-
ent). Note that when the average number of haloes per cell
is smaller than 150 (which is the case for the samples M2
and M3), it is necessary to correct from shot noise effects
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Figure 3. Top: Second-order bias coefficient c2. Bottom: Third-
order bias coefficient c3. We adopt the same colour and line coding
described in Fig. 2

(see Di Porto et al. 2014). For reconstructing the halo PDF
we use the relation between the discrete probability distri-
bution PN (where N represents the number of haloes inside
a cell) and the probability density function of halo density
fluctuations Ph(δh),

PN =

∫

∞

−1

K[N |N̄ (1 + δh)]Ph(δh)dδh, (7)

whereK is the conditional sampling probability which we as-
sume to be a Poisson distribution (Layzer 1956). In practice
the inversion of equation (7) requires some subtleties (see
Bel et al. 2016). Following Bel et al. (2016), we apply three
different reconstruction methods and choose the one which
provides the best description of the counting probability dis-
tribution PN . Given the high shot noise level in the M2 and
M3 samples we assume a parametric form for the density
probability Ph, in practice we tested a skewed-LogNormal
(Colombi 1994) and a Gamma expansion (Gaztañaga et al.
2000) and found that the Gamma expansion offers a better
matching of the measured counting probability of haloes.

Once we obtained the bias function we devised two ways
of estimating the bias parameters. In both cases we fix an
effective range on which the Taylor expansion must be valid
and on one hand we fit the bias function with a third-order
polynomial (referred to as proba. (1)) and on the other
hand we apply discreet derivatives method (referred to as

Figure 4. On one hand, we display the bias coefficients (b1, c2
and c3 from top to bottom) obtained by fitting the scatter plot
with increasing order of the polynomial (black diamonds, green
filled circles and orange empty circles) on scales between 40 and
80h−1Mpc with respect to the average mass of the halo samples.
On the other hand, we show the obtained bias coefficients from
the two variants of the δPDF method (see text for more details).

proba. (2)). We allow the effective range in δ to decrease
and stop when the two methods converge to the same val-
ues for b1, c2 and c3. An illustration of this technique is
displayed in Fig. 1, where we show in green long dashed line
the bias function obtained from inversion of equation (6) to-
gether with the Taylor expansion estimated from the fitting
method (orange dotted lines) and from the numerical deriv-
atives method (magenta dotted lines). One can see that the
results from the two methods agree well with the obtained
bias function from the probability density function. On the
other hand, we can see some significant departures from the
Taylor expansion obtained from the direct fit to the scatter
plot (black lines). In fact, considering Fig. 4 which summar-
izes the measurements of the bias coefficients from the two
presented methods one can remark that despite small dis-
crepancies the overall behaviour of the bias coefficients with
respect to the mass is qualitatively in good agreement. In
Fig. 4 we also show, with more clarity, the impact of the
choice of the order of the fitted polynomial to the scatter
plot: it becomes clear that in the halo samples M2 and M3
there is a non-negligible (given the estimated error bars) ef-
fect on the estimation of the c3 coefficient while the lowest
order bias coefficients are not significantly affected.

3.2 two-point cross-correlation

The bias function in equation (3) has an important applic-
ation in the cosmological analysis of galaxy clustering stat-
istics, since it provides a parameterisation of the deviation
between the clustering of haloes (or galaxies) and the un-
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derlying matter distribution. In simulations, where the clus-
tering of matter can be directly measured, one can infer
the bias parameters by comparing the clustering statistics
of haloes and matter. In this subsection we focus on bias
measurements from the two-point correlation ξ as statist-
ical measure for the clustering. It directly probes the linear
growth factor, thereby providing strong constraints on cos-
mological models. The two-point correlation can be defined
in configuration space as the mean product of density fluc-
tuations δi at the positions r1 and r2 that are separated by
the distance r12 ≡ |r1 − r2|,

ξxy(r12) ≡ 〈δx(r1)δy(r2)〉 = 〈δ1xδ
2

y〉(r12). (8)

The indices x and y refer to the density fields of haloes
(or galaxies) and matter, while 〈. . . 〉 denotes the average
over pairs of any orientation and position. The two-point
auto-correlation (hereafter referred to as 2pc) corresponds
to the case x = y and will be denoted in the following as
ξh ≡ ξhh and ξm ≡ ξmm for haloes and matter respectively,
whereas the halo-matter cross-correlation (hereafter referred
to as 2pcc) will be denoted as ξ× ≡ ξhm. Inserting the local
bias model from equation (3) into equation (8) provides, at
leading order, a simple relation between ξm and ξ×,

ξ×(r12) ≃ b1 ξm(r12) +O[ξ2m]. (9)

At large scales (r12 & 20h−1Mpc), where the two-point cor-
relation function is small, we expect O[ξ2m] to be negligible
(see e.g. paper I), which allows for measurements of the lin-
ear bias as

b×ξ (r12) ≡

√

ξ×(r12)

ξm(r12)
≃ b1. (10)

We showed in paper I that b×ξ is a reliable estimate of the
linear bias b1, since it agrees with various other estimat-
ors from second-order one- and two-point statistics at large
scales.

3.3 three-point auto- and cross-correlations

Third-order statistics is sensitive to the shapes of large-
scale density fluctuations. It therefore provides informa-
tion about the large-scale structure which is not accessible
with second-order one or two-point statistics as the latter
is defined isotropically in configurations space. Combining
second- and third-order statistics therefore allows for break-
ing the degeneracy between the linear growth factor and the
linear bias parameter which otherwise limits the accuracy
of cosmological constraints derived from the 2pc at large
scales (see e.g. Bernardeau et al. 2002, or paper I). How-
ever, this approach relies on the accuracy with which the
linear bias can be measured with third-order statistics. The
most general third-order statistics in configuration space
is the three-point correlation or its reduced counter part
(Groth and Peebles 1977). In this subsection we describe our
bias measurements from paper I, which are derived from the
symmetrised reduced three-point halo-matter-matter cross-
correlation in configuration space (hereafter referred to as

3pcc, see also Pollack et al. 2012). It is defined as

Q× ≡
1

3

ζhmm + ζmhm + ζmmh

ζhmH

, (11)

where

ζxyz ≡ 〈δx,1δy,2δz,3〉 (12)

is the three-point halo-matter-matter cross-correlation and

ζhmH ≡ ξhm12 ξhm13 + ξmh
12 ξhm23 + ξmh

13 ξmh
23 (13)

is the corresponding hierarchical three-point cross-
correlation. The average 〈. . . 〉 is made over triangles of
any orientation and position. The auto-correlation for halo
and matter density fields (Qh and Qm respectively) are
defined analogously and will be referred to as 3pc in the
following. For measuring the bias accurately using the 3pcc
one needs to take into account non-local contributions
to the bias function. Neglecting the latter would cause a
∼ 20% error in the estimation of the linear bias parameter
(see Manera and Gaztañaga 2011; Chan et al. 2012;
Baldauf et al. 2012). We therefore proposed in paper I to
measure the linear bias independently of quadratic local
and non-local contributions by combining three-point auto-
and cross-correlations,

b∆Q ≡ −2
Qm

Qh − 3Q×

h

. (14)

A similar combination of auto- and cross-correlations allows
for the determination of the quadratic local and non-local
bias parameters (c2 and γ2) independently of Qm, once the
linear bias is determined (for instance via equation (14) or
the 2pc),

∆Qcg ≡ Qh −Q× =
2

3

1

b1
[c2 + g2Qnloc] . (15)

We predict the non-local contribution Qnloc from the non-
linear power spectrum, which has been measured in the sim-
ulation. Details on this prediction are provided in the ap-
pendix of paper I. Combining three-point auto- and cross-
correlation for measuring bias will be referred to as ∆Q
method in the following. The results in this work are derived
from 3pc measurements which are computed using triangles
with fixed legs of 36 and 72h−1Mpc at 18 opening angles
between these legs. The density fields where smoothed with
an 8h−1Mpc Top-hat window function, and the covariance
between measurements at different opening angles was es-
timated from 64 JK samples. Details on these measurements
are presented in paper I, where we also study the depend-
ence of 3pc bias measurements on the triangle scale.

3.4 third-order cross-moments

Alternatively to the 3pc one can explore the third-order stat-
istical properties of cosmic fields with one- and two-point
statistics. Despite the fact that they do not provide access
to the full third-order hierarchy probed by the 3pcc (Subsec-
tion 3.3) they are useful tools for comparing the statistical
properties of the halo distribution with respect to the un-
derlying matter field.

These one- and two-point statistics correspond to the
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3pc for very specific triangle configurations. The 3pc for tri-
angles which are collapsed into two points corresponds to
the correlator C12 (see Bernardeau 1996), while for a fur-
ther collapse into a single point yields the skewness S3 (see
Bernardeau et al. 2002). As in case of the 3pcc, it is possible
to define the cross-skewness S×

3
and the cross-correlator C×

12

as

S×

3 ≡
〈δhδ

2
m〉

〈δhδm〉2
(16)

and

C×

12 ≡
〈δh,1δh,2δm,2〉

〈δh,1δh,2〉〈δhδm〉
(17)

where δh and δm are respectively the density contrast of
halo and matter density fields which are smoothed with a
spherical top-hat window function of radius R. The auto
skewness S3 and the auto-correlator C12 of the matter dens-
ity field are defined analogously. We provide details on how
we measure these quantities and how to correct them for
shot-noise in paper I. One can express the linear and quad-
ratic bias parameters independently from each other using
the combinations

b×τ≡
S3 − C12

S×

3 − C×

12

≡
τ

τ×
(18)

and

c×τ≡
S3C

×

12 −C12S
×

3

τ×
. (19)

We will refer to this way of measuring bias as the τ×-method
in the following. For spherically averaged quantities such as
skewness, correlators, cross-skewness and cross-correlators
non-local contributions of the second-order described by
equation (4) lead to an effective second-order local bias

ceff2 = c2 −
4

3

γ2
b1

, (20)

but do not affect the estimated linear bias parameter b1
unless for highly biased samples (M3, see discussion in pa-
per I). The same effect has been pointed out by Chan et al.
(2012) for the δg − δm method for measuring bias, which is
described in Section 3.1. Assuming a local Lagrangian bias
model, γ2 = − 2

7
(b1 − 1) we expect the non-local contribu-

tions to ceff2 to be zero for b1 = 0 and . 0.3 for b1 = 4.
However these expectation will not be accurate as moder-
ate deviations from the Lagrangian bias model have been
reported by Chan et al. (2012) and in paper I.

3.5 Peak-background split predictions

The peak-background split (hereafter referred to as PBS)
model provides predictions for the linear and non-linear bias
parameters as a function of halo mass, which are deduced
from derivatives of the mass function. Model fits to mass
function measurements therefore provide analytical expres-
sion of the bias as a function of halo mass. Such PBS bias

predictions are essential for various purposes like bias mod-
elling as function of galaxy properties via Halo Occupa-
tion Distribution (HOD) modelling, cluster mass calibration
or predictions of the cluster count and power spectra cov-
ariances (e.g. Cooray and Sheth 2002; Lima and Hu 2004,
2005; Lacasa and Rosenfeld 2016). It is therefore important
to verify how accurately the PBS model is able to predict
bias measurements in simulations.

In the present analysis we validate the accuracy of PBS
predictions for the linear, quadratic and third-order bias
parameters by comparing them to the various measurements
described in the previous subsections. We employ fits to the
measured MICE-GC mass function from paper II, based on
the models of Tinker et al. (2010) and Warren et al. (2006)
as well as a new model presented in paper II, to which we
refer to as Tinker, Warren and HBG15 model respectively
in the following. The sample M0 has been excluded from
the fitting range since we expect halo detection in the cor-
responding mass range to be very noisy, as we discuss in
paper II. However, the predictions can still be made over
the full mass range for all the samples M0-M3. For studying
the universality of the relation between the different bias
parameters we adopt the fitting parameters for the Tinker
and Warren model, which are provided in the corresponding
articles. Note that these latter fits are based on simulations
with different cosmologies than in the MICE-GC simulation.
Furthermore Tinker et al. (2010) define haloes as spherical
over-densities, not as FoF groups as done by Warren et al.
(2006) and in the present study.

4 RESULTS

4.1 bias comparison

We compare in Fig. 5 the linear and non-linear bias para-
meters from the different measurements and the PBS predic-
tions described in Section 3 using the mass samples M0-M3
(defined in Table 2) at the redshifts z = 0.0 and z = 0.5.

4.1.1 linear bias

In the case of the linear bias (b1, top panel of Fig. 5) we
find an overall variation of roughly 5 percent between res-
ults from different measurements and PBS predictions at all
masses and both redshifts. The measurements from the 2pcc
(b×ξ , equation (10)) are expected to be the most reliable es-
timate with percent level accuracy (see e.g. paper I). We
therefore use it as a reference for evaluating the accuracy of
the other linear bias measurements and predictions in our
comparison.

The results in Fig. 5 show that both estimations for
the linear bias from third-order statistics, (∆Q and τ×, de-
scribed in Section 3.3 and 3.4 respectively) are in 1σ agree-
ment with b×ξ . However, the errors of b×τ are roughly 10
percent, while those of b∆Q at the one percent level. We at-
tributed the strong deviation of b×τ from all other results at
high masses to an inadequate shot-noise correction in paper
I. From the same analysis we expect larger deviations from
b×ξ when the linear bias is measured from third-order auto-
instead of cross-correlations correlations and when non-local
contributions are not taken into account.
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Table 3. Bias estimators, definitions and notations. The term cross refers to halo-matter cross correlations, b and c indicate linear and
non-linear bias estimations respectively.

method bias parameters reference

measurements δh − δm b1, c2, c3 Section 3.1
δPDF b1, c2, c3 Section 3.1

two-point cross-correlation ξ× b1 Section3.2, paper I
combined three-point auto- and cross-correlations ∆Q b1, c2 Section3.3, paper I
combined third-order auto- and cross-moments τ× b1, c2 Section3.4, paper I

predictions peak-background split (PBS) model b1, c2, c3 Section3.5, paper II

The two types of linear bias measurements from the
δh − δm relation (described in Section 3.1) are both in per-
cent level agreement with b×ξ which is consistent with results
from Manera and Gaztañaga (2011) or Pollack et al. (2012).
Results from the δPDF method tend to be overall slightly
larger with . 7% deviations from b×ξ . A possible reason
for the discrepancies can be inaccuracies in the covariance
estimation from Jackknife sampling, which might affect the
best fit values. Note that we do not expect the discrepan-
cies to result from the truncation of the bias function at
third-order based on our convergence tests in Section 3.1.

In addition to the bias measurements we show pre-
dictions from the PBS model which are based on differ-
ent fits to the MICE-GC mass function, presented in pa-
per II. The different predictions show a very good mu-
tual agreement in the mass range spanned by the samples
M1-M3 which was used for the fits. For the low mass
sample, which was excluded from the fitting range due to
noisy halo detection, the different PBS predictions show
a stronger variation. For the mass samples M2 and M3
(& 1013h−1M⊙) all predictions lie up to ∼ 7 percent be-
low b×ξ , which is consistent with findings in the literat-
ure (e.g. Manera et al. 2010; Manera and Gaztañaga 2011;
Pollack et al. 2012; Paranjape et al. 2013a; Lazeyras et al.
2016).

The agreement between predictions from different mass
function fits indicates that the inaccuracy of PBS bias is
driven by shortcomings of the model, rather than uncertain-
ties in the fits. Such a shortcoming could be the assumption
of a constant matter density threshold for the gravitational
collapse on which the standard PBS model application to
mass functions is based on, as pointed out in recent stud-
ies. In particular Paranjape et al. (2013a) showed that the
scale-independent PBS bias parameters, reconstructed from
scale dependent Lagrangian bias measurements in simula-
tions, are in good agreement with predictions from the ex-
cursion set peak (ESP, Paranjape et al. 2013b) model, when
a halo mass-dependent scatter in the collapse threshold is
included. A percent level agreement between such ESP pre-
dictions for PBS bias and direct measurements of the latter
from separate universe simulations (which do not rely on
a threshold model) was reported by Lazeyras et al. (2016).
These direct PBS bias measurements are also in excellent
agreement with bias measurements from large-scale Four-
ier space clustering, confirming results from Baldauf et al.
(2015) and Li et al. (2015).

4.1.2 non-linear bias

Measurements and prediction of the second- and third-order
bias parameters (c2 ≡ b2/b1 and c3 ≡ b3/b1) are shown in
the central and bottom panels of Fig. 5 respectively. Note
that for this comparison we do not have a reference for
the non-linear bias, such as measurements from separate
universe simulations. Furthermore our measurements from
third-order statistics provide only bias parameters up to
second-order, since they are based on leading order perturb-
ation theory. Measurements of c3 are therefore only obtained
from the δh − δm relation.

Overall we find a stronger variation between the differ-
ent results for the non-linear bias than for the linear bias.
Yet, all the different non-linear bias measurements and pre-
dictions show similar mass dependencies at both redshifts.
The second-order bias c2 depends only weakly on the halo
mass below . 1013h−1M⊙ (covered by the mass samples M0
and M1), with a value of ≃ −0.5 at both redshifts. In the
mass range ≃ 1013 − 1014h−1M⊙, which corresponds to the
mass sample M2, c2 changes from negative to positive val-
ues, and increases rapidly with mass to values of up to 2 at
z = 0.5 for halo masses of higher than 1014h−1M⊙. The PBS
prediction for c2 from all mass function fits show an overall
weaker mass dependence than the corresponding measure-
ments, as the former lie above the results from the ∆Q, τ×

and δh− δm methods in the mass range spanned by M0-M2,
where c2 is negative. For the high mass sample M3, where
c2 is positive at both redshifts we find the opposite. The lat-
ter result confirms findings of Manera and Gaztañaga (2011)
and Lazeyras et al. (2016) on a larger mass range. An overly
weak mass dependence of standard PBS predictions has also
been found for Lagrangian bias by Paranjape et al. (2013a).

In the mass range M0-M2 the measurements from the
∆Q, τ× and δh−δm methods agree mutually at the 1σ level
at both redshifts, while results vary strongly for the high
mass sample M3. Note that we expect the c2 measurements
from the δh − δm and τ× to be biased by non-local contri-
butions with values between zero for b1 = 0 and . 0.3 for
b1 = 4, as discussed in Section 3.4, which is comparable with
the variation among the different results.

In the bottom panel of Fig. 5 we present a validation of
third-order bias prediction from the PBS model with direct
measurements from the δh − δm and δPDF methods. The
predictions and measurements are in an overall agreement
with each other, as both decrease from positive values of
around unity for M0 to negative values of down to . −3 for
M3 at both redshifts. The zero crossings of c3 occur between
1012.5−1013.5M⊙/h, which is consistent with the direct PBS
bias measurements from separate universe simulations from
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Lazeyras et al. (2016). Overall the predictions tend to be
smaller than the measured values. Note that we used third-
order polynomials for the bias function in order to measure
the bias parameters. From our convergence test in Section
3.1, we expect larger deviations from PBS predictions in
the high mass bins M2 and M3 when the third-order bias is
measured using higher order polynomials.

4.2 Universal relation between bias parameters

Our various bias measurements enable us to validate the uni-
versal relation between the linear and non-linear bias para-
meters b2(b1) and b3(b1), which we found for PBS predictions
and linear bias values of b1 & 2 in paper II. Such a universal
behaviour can be expected from a universality of the mass
function for different redshifts and cosmologies.

In Fig. 6 we show the linear bias versus the quadratic
and third-order bias parameters from the different measure-
ments together with the PBS predictions for redshift z = 0.0
and 0.5.

The PBS predictions labeled as Crocce et al. (2010) are
derived from FoF mass function fits of these authors to
nested boxes runs from the MICE simulation suite which
provides a higher mass resolution in the low mass range. The
PBS predictions from the mass functions from Warren et al.
(2006), Tinker et al. (2010) and Watson et al. (2013) are
based on simulation with cosmologies different from the one
of MICE. In addition, Tinker et al. (2010) defined haloes as
spherical over-densities instead of FoF groups. These differ-
ence can lead to deviations in the mass function (see paper
II) and therefore contribute do the differences which we see
among the various PBS bias predictions for the bN(b1) rela-
tion in Fig. 6. Note that the BPS results from Lazeyras et al.
(2016), which also use spherical over-densities as haloes,
have not been predicted from the mass function but were dir-
ectly measured using separate universe simulations. It is in-
teresting to note that the b2(b1) relation from Lazeyras et al.
(2016) agrees best with our measurements derived from the
∆Q method, since the latter also delivers very accurate
measurements of the linear bias. This suggests that also the
c2 measurements and hence the b2 − c2 relations from these
two approaches are reliable. Furthermore we include bias
measurements from Chan et al. (2012), which are based on
the Bispectrum and find a good agreement with our results.

Overall we find consistent results from the different
measurements and predictions from simulations with dif-
ferent cosmologies analysed at different redshifts. This in-
dicates a roughly universal behaviour between the linear
and higher-order bias parameters. In paper II we derived an
analytic expression for bN (b1) from the PBS bias paramet-
ers based on the Press and Schechter (1974) mass function,
which has the form

bN =
N=2
∑

n=0

αnb
n. (21)

Since this expression is independent from the peak-height,
we also do not expect it to depend on how halo masses are
defined. The bN (b1) predictions from paper II shown in Fig.
6, have been fitted to PBS predictions for b2(b1) and b3(b1)
which are based on the the Tinker mass function model, fit-
ted to the MICE-GC mass function at z = 0.0 in the same

article. Fitting the polynomial from equation (21) to meas-
urements from ∆Q we find (α0, α1, α2) = (0.77,−2.43, 1).

5 SUMMARY AND CONCLUSION

This analysis is the last part of a series of articles on the
accuracy of bias parameters derived from the MICE Grand
Challange (MICE-GC) simulation using clustering statistics
and peak-background split (referred to as PBS) predictions
(Hoffmann et al. 2015b, paper I, paper II). In the present
analysis we studied bias parameters derived from the re-
lation between matter and halo density contrasts (δh, δm
respectively) as an additional method for measuring bias.
These measurements are compared to a selection of our most
robust previous results using the same four mass samples
M0-M3 at redshift 0.0 and 0.5. Thanks to the large volume
and resolution of the MICE-GC simulation these samples
span a large mass range from between roughly 1012 and
1015 h−1M⊙, which corresponds to Milky Way like haloes
and massive galaxy clusters respectively.

Our previous have been derived from two-point halo-
matter cross-correlations (ξ×), a combination of three-point
halo-matter auto- and cross-correlations (∆Q) as well as a
combination of the halo-matter cross-skewness and cross-
correlators (τ×). We thereby employ leading-order model-
ling of clustering statistics, at which the linear bias para-
meters from these estimators are not affected by non-local
contributions to the bias model. We therefore obtain the
linear bias from ξ× and the linear and quadratic bias from
∆Q and τ×. The PBS predictions are based on MICE-GC
mass function fits from paper II, using different mass func-
tion models, while we study bias parameters up to order
three, for which we have corresponding measurements from
the δh − δm relation for validation.

We studied in this work bias measurements from the
δh − δm relation in two ways. The more common method is
to fit a polynomial to the δh − δm relation, measured in the
simulation. Alternatively we explore bias measurements ob-
tained from the probability distribution function (referred to
as PDF) of δh and δm. The latter method has the advant-
age that it can be directly applied to observations, since
the PDF of matter density contrasts can be modelled with
theory or simulations (Bel et al. 2016; Di Porto et al. 2014;
Marinoni et al. 2005; Bernardeau et al. 2002). However, it
has not been tested so far how accurately the bias paramet-
ers can be determined with this method.

The results of our bias comparison are summarized in
Fig. 5. In the case of the linear bias b1 we consider res-
ults from ξ× (b×ξ ) as the most reliable since non-linear local
and non-local term can safely be neglected. Furthermore, bξ
is highly relevant for cosmology since it is weakening con-
straints on cosmological parameters inferred from ξ due to
its degeneracy with the growth of matter fluctuations.

Linear bias measurements and predictions from all other
methods are in a ∼ 5 percent agreement with b×ξ , while
∆Q delivers the most accurate measurements with an over-
all percent level accuracy. Standard measurements from the
δh − δm relation are in a slightly better overall agreement
with b×ξ than those from the δPDF-method. The strongest

deviations from b×ξ shows the linear bias predictions from
the different PBS model. These predictions are consistently
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Figure 5. Summary of various bias measurements from second- and third-order halo-mater cross-correlations (ξ×, ∆Q and τ×), δh−δm
relations and PBS predictions, described in Section 3. The top, central and bottom panel show the first- second- and third-order bias
parameters respectively at z = 0.0 and 0.5 (left and right panel) versus the mean halo mass of each mass samples M0-M3 (slightly shifted
along the mass axis for clarity). The subpanel at the bottom of the top panel shows relative deviations from ξ×. The lower and upper
limits of the mass samples are marked by vertical grey dashed lines. Error bars denote σ uncertainties.

up to 7 percent below b×ξ at high masses as reported in the
literature (e.g. Manera and Gaztañaga 2011; Pollack et al.
2012). The fact that we find similar results for different
mass function models indicates shortcomings in the stand-
ard PBS modelling, i.e. the assumption of a constant matter
density threshold for gravitational collapse (Paranjape et al.
2013a,b; Lazeyras et al. 2016). We do not find a clear change
of the variation between the different measurements and pre-
dictions with mass or redshift.

In the case of the quadratic bias c2 ≡ b2/b1 we find
consistent results from the different measurements and pre-
dictions as c2 increases from negative values of & −0.5 at low
halo masses (∼ 1012M⊙/h) to positive values of up to ∼ 2 at
high masses (& 1014M⊙/h). However, the variation between
the different results tends to be larger than in the case of
b1. In the case of the measurements this effect is presum-
ably caused by the strong assumptions such as the validity
of tree-level perturbation theory (∆Q and τ×), Poissonian
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from ∆Q and τ×), δh − δm as well as PBS predictions from paper II are the same as those shown in Fig. 5. In addition we show PBS
prediction based on mass function fits from the literature. Fits to the b1 − c1 and b1 − c3 relations from separate universe simulations in
combination with the PBS model, given by Lazeyras et al. (2016) are shown as long dashed blue lines.

shot-noise (τ×), or a local deterministic bias model (δh−δm).
We therefore do not consider any of these measurements to
be sufficiently reliable for being a reference, such as the res-
ults from ξ× in the case of the linear bias. However, the
fact that the ∆Q method delivers highly accurate measure-
ments of the linear bias suggests that also the quadratic bias
is measured reliably with this approach. We find the PBS
predictions for c2 to be consistently above (below) all meas-
urements in the low (high) mass range as they show overall
weaker mass dependence. The latter finding lines up with re-
ports from Manera and Gaztañaga (2011) and Pollack et al.
(2012).

Both measurements of the third-order bias c3 ≡ b3/b1
from the δh − δm relation agree overall mutually at the 1σ
level. These measurements allow for a validation of the cor-
responding PBS predictions. Results from both methods are
similar as c3 is positive below unity in the low mass range
and decreases to negative values of down to ∼ −3 in the
high masses range. However, deviations are significant, as
the PBS predictions tend to be below the measurements at
low halo masses while results based on different mass func-
tion fits are consistent with each other.

We use our various linear and non-linear bias meas-
urements for validating the universal polynomial relation
between linear and non-linear bias (b2(b1) and b3(b1)), which
we deduced in paper II from PBS predictions based on the
Press and Schechter (1974) mass function. Since this expres-
sion is independent of the peak-height we do not expect a
strong dependence on halo mass definition. Our measure-

ments show an overall agreement with the universal beha-
viour predicted by the PBS model. Furthermore they agree
with results from the literature derived via the Bispectrum
in Fourier space or the separate universe approach from
simulations with cosmologies different to the one of MICE
(i.e. Chan et al. 2012; Lazeyras et al. 2016). We fit a second-
order polynomial to b2(b1) measurements from ∆Q, which
we consider as the most reliable c2 estimator as mentioned
above.

Such a universal relation between linear and non-linear
bias can be useful for reducing errors on the linear bias and
the growth from clustering analysis when the latter is af-
fected by c2, for instance in the case of three-point correla-
tions or two-point correlations at small scales.

For applying universal polynomial relations between
bias parameters in the analysis of galaxy surveys it would
be interesting to show that their universality also holds
for halo samples, which are selected by galaxy properties,
such as luminosity and colour instead of halo mass. A cor-
relation between the linear and quadratic bias from the
3pc and Bispectra has been reported by for SDSS galaxy
samples and mock HOD catalogues by Kayo et al. (2004)
and Nishimichi et al. (2007) and compared with PBS pre-
dictions. The limited accuracy of their measured b1 − c2 re-
lations could be strongly improved using the methods stud-
ied in the present analysis in combination with data from
upcoming galaxy surveys.
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