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Hamiltonian analysis of higher derivative scalar-tensor theories
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We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which
depend quadratically on the second derivatives of a scalar field. By resorting to a convenient
choice of dynamical variables, we show that the Hamiltonian can be written in a very simple
form, where the Hamiltonian and the momentum constraints are easily identified. In the
case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic
Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced
by the primary and secondary constraints due to the degeneracy, thus leading to the elim-
ination of the dangerous Ostrogradski ghost. We also present the Hamiltonian formulation
for nondegenerate theories and find that they contain four degrees of freedom, as expected.
We finally discuss the status of the unitary gauge from the Hamiltonian perspective.

I. INTRODUCTION

As a possible alternative explanation for the observed cosmological acceleration, theories of
modified gravity have attracted considerable interest in the recent past (see e.g. [1–4] for reviews).
Many, although not all, models of modified gravity are based on scalar-tensor theories, where
one scalar degree of freedom is combined with the gravitational metric. The models that have
been studied in the literature have progressively increased in complexity and generality, from
quintessence models up to Lagrangians involving second-order derivatives of the scalar field. In the
latter case, special care must be taken to avoid the so-called Ostrogradski instability [5]. Indeed,
second or higher order time derivatives in the Lagrangian generically lead to the presence of an
extra degree of freedom, which behaves like a ghost. It has long been believed that, in order to
avoid Ostrogradski’s ghost, it was necessary that the Lagrangian yields second-order equations of
motion. This property is indeed satisfied for flat spacetime galileon [6]. When gravity is included,
the same requirement led to the so-called generalized galileons [7, 8], which coincide with Horndeski
theories [9, 10] in four dimensions.

The statement that second-order equations of motion are necessary to avoid ghost-like insta-
bilities was first questioned in [11] by considering a theory obtained from Einstein-Hilbert via
disformal transformation, and in [12], in the context of Horndeski theories, by proposing two ex-
tensions, denoted LbH

4 and LbH
5 , of the quartic and quintic Horndeski Lagrangians LH

4 and LH
5

(further extensions, leading to Lorentz-breaking theories, were also proposed in [13]). It was later
demonstrated in [14] that combinations of LH

4 and LbH
4 , on one hand, or combinations of LH

5 and
LbH
5 , on the other hand, can be related to a purely Horndeski Lagrangian via a disformal transfor-

mation, thus indicating that the number of degrees of freedom in these subclasses beyond Horndeski
should be the same as in Horndeski theories. This brought further confirmation that at least some
combinations of terms beyond Horndeski with Horndeski’s ones were indeed healthy, although the
status of arbitrary combinations of all terms remained uncertain.
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Further support was apparently provided by a recent work [15] in which it was shown that the
third-order covariant equations of motion for the scalar field and the metric can be rewritten, in an
arbitrary gauge, as a system of equations which are second-order in time derivatives. However, it is
not fully clear what this implies about the number of degrees of freedom, as noted by the authors
themselves. The same paper also presented a Hamiltonian treatment, in an arbitrary gauge, of the
particular Lagrangian LbH

4 and showed that the number of degrees of freedom is strictly less than
four.

In a previous paper [16], we reconsidered the question of the Ostrogradski ghost in higher
derivative scalar-tensor theories from a different perspective, by focusing on the degeneracy of the
Lagrangian. As we showed, the notion of degeneracy is much richer when a variable with second-
order time derivatives is coupled to other degrees of freedom than when it is isolated. Working in
an arbitrary coordinate system, we explored the degeneracy of a large class of scalar-tensor theories
for which the Lagrangian depends quadratically on second derivatives of the scalar field. This class
includes LH

4 and LbH
4 and we could thus demonstrate that these two Lagrangians are degenerate,

as well as their sum. We also found other degenerate Lagrangians, which do not belong to the
extensions beyond Horndeski introduced in [12].

Furthermore, we investigated the special case of LbH
5 , which is cubic in second derivatives of the

scalar field, and found that it is also degenerate, as well as the combination LbH
4 +LbH

5 . By contrast,
we noticed that the combination LH

4 +LbH
4 +LbH

5 is not degenerate, which suggests that combinations
of Horndeski terms with both quartic and quintic terms beyond Horndeski are not viable in general.
Note that this result is compatible with the conclusions of [14] concerning disformal transformations
since the above combination cannot be related to Horndeski via disformal transformation. However,
it may seem at odds with the unitary gauge Hamiltonian analysis of [12, 14, 17], or rather its
extrapolation for the quintic terms (as the detailed analysis was in fact restricted to the quartic
terms). This apparent paradox is resolved by the fact that some nondegenerate, and thus unhealthy,
theories can appear degenerate in the unitary gauge, as discussed in [16]. As the unitary gauge
can sometimes be misleading, it is worth revisiting the Hamiltonian analysis of higher derivative
theories by considering an arbitrary gauge and check whether we can confirm our conjecture that
healthy theories, i.e. without Ostrogradski ghost, correspond to degenerate theories.

In this work, we present the full Hamiltonian analysis for the class of models studied in our
previous work. By using appropriate dynamical variables, we are able to write the full Lagrangian
in a relatively compact form, which greatly simplifies the computation of the Hamiltonian. The
structure of the Hamiltonian is rather simple and exhibits, like in general relativity, a term linear
in the lapse function and another linear in the shift. One thus recognizes the structure associated
with spacetime diffeomorphisms invariance. This enables us to identify the first-class constraints
generating the diffeomorphism invariance. For the detailed Hamiltonian analysis, one needs to
distinguish between degenerate theories and nondegenerate ones. In the former case, the compu-
tation is a bit more involved because of the presence of a primary constraint between momenta,
which in turn generates a secondary constraint. These two constraints, which are second-class,
eliminate one degree of freedom in comparison with nondegenerate theories. One thus ends up
with three degrees of freedom for degenerate theories, compared with the four degrees of freedom
for nondegenerate theories.

This paper is organized as followed. In section 2, we present our general action and compute
the full ADM decomposition of the action in an arbitrary gauge. In section 3, we focus on the
kinetic terms of the Lagrangian, which we rewrite as a bilinear form acting on a 7-dimensional
vector space. Section 4, which is the main section of this paper, is devoted to the Hamiltonian
formulation of degenerate theories, the identification of first-class and second-class constraints and
the counting of the number of degrees of freedom. In section 5, we repeat the same analysis for
nondegenerate theories. We then discuss the unitary gauge in Section 6. We summarize our results
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in the final section. Some technical details are given in three Appendices.

II. GENERAL ACTION AND 3 + 1 ADM DECOMPOSITION

In this section, we perform the (3+1)-decomposition of the action, which is a prerequisite for
the Hamiltonian analysis. We consider scalar-tensor actions of the form

S[gµν , φ] ≡
∫

d4x
√

|g| [f R+ Cµνρσ (∇µ∇νφ) (∇ρ∇σφ)] (2.1)

where R is the 4-dimensional Ricci scalar, and the tensor Cµνρσ, which depends only on φ and
φµ ≡ ∇µφ, can always be written as

Cµνρσ ≡ 1

2
α1 (g

µρgνσ + gµσgνρ) + α2 g
µνgρσ +

1

2
α3 (φ

µφνgρσ + φρφσgµν)

+
1

4
α4(φ

µφρgνσ + φνφρgµσ + φµφσgνρ + φνφσgµρ) + α5 φ
µφνφρφσ. (2.2)

Here f and αi are functions of φ and X = φµφ
µ only.

A. Particular cases

The class of theories (2.1) includes as a particular case the quartic Horndeski term

LH
4 = G4(φ,X) (4)R− 2G4,X(φ,X)(✷φ2 − φµνφµν) . (2.3)

The above Lagrangian is indeed of the form (2.1)-(2.2) with

f = G4 , α1 = −α2 = 2G4,X , α3 = α4 = α5 = 0 . (2.4)

The action (2.1) also includes the extension beyond Horndeski introduced in [12], which can be
written as

LbH
4 = F4(φ,X)ǫµνρσ ǫ

µ′ν′ρ′σφµφµ′φνν′φρρ′ . (2.5)

This corresponds to (2.1)-(2.2) with

α1 = −α2 = XF4 , α3 = −α4 = 2F4 , α5 = 0 . (2.6)

Various aspects of these theories beyond Horndeski have been investigated recently (see e.g [18–31]).

B. ADM decomposition and notations

In the ADM formalism, the metric ds2 = gµνdx
µdxν is parametrized as follows

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt) , (2.7)

where N is the lapse function and N i the shift vector. In matricial form, the metric gµν and its
inverse gµν are given by

gµν =

(

−N2 + γijN
iN j γijN

j

γijN
i γij

)

and gµν =
1

N2

(

−1 N j

N i N2γij −N iN j

)

. (2.8)
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We also need to introduce the second fundamental form which is given by

Kij =
1

2N
(γ̇ij −DiNj −DjNi) , (2.9)

where Di denotes the spatial covariant derivative associated with the spatial metric γij .
In order to make the ADM decomposition of the action, it is convenient to replace second order

derivatives that appear in (2.1) by first order derivatives via the introduction of new dynamical
variables. We thus consider the new action

S[gµν , φ;Aµ, λ
µ] ≡

∫

d4x
√

|g| (f R+Cµνρσ∇µAν ∇ρAσ) + λµ(∇µφ−Aµ), (2.10)

which contains the auxiliary field Aµ, as well as the vector field λµ enforcing the relation

Aµ = ∇µφ . (2.11)

Note that for µ = 0, the previous relation is an equation of motion whereas it is a constraint for
µ = i. It is easy to show that this action is indeed equivalent to the original one (2.1) when one
writes the Euler-Lagrange equations. In this new formulation, the tensor Cµνρσ depends Aµ (and
no longer on φµ).

Furthermore, as a consequence of (2.11), Aµ satisfies the symmetry relation ∇µAν = ∇νAµ.
When distinguishing temporal and spatial indices, this property allows us to replace all the terms
∇0Ai by ∇iA0 in the action without changing the equations of motion, as shown explicitly in
Appendix A.

C. Einstein-Hilbert term

We first present the ADM decomposition of the Einstein-Hilbert Lagrangian multiplied by a
function of φ and X = gµνAµAν , corresponding to the action

SEH =

∫

d4x
√

|g| f R . (2.12)

As is well-known, the (3+1) decomposition of this action yields

SEH =

∫

dt d3xN
√
γ f

(

KijK
ij −K2 +R− 2∇µ(a

µ −Knµ)
)

, (2.13)

where γ ≡ det(γij), R is the 3-dimensional Ricci scalar, Kij is the second fundamental form (2.9)
and K = Ki

i is its trace. The last term in the action (2.13) involves the acceleration aµ and the
normal nµ (of the spatial hypersurface Σ ) whose components are

aµ = nν∇νnµ , nµ =
1

N
(1,−N i) . (2.14)

When f is constant, the last term in the action is a total derivative, which can be discarded. This
term however becomes relevant when f depends on the scalar field or its derivatives. To perform
the (3+1)-decomposition of this term, it is convenient to introduce the new variable

A∗ ≡ Aµn
µ =

1

N
(A0 −N iAi) , (2.15)

which corresponds to the normal component of Aµ with respect to the spatial hypersurface Σ.
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After a straightforward calculation, we find

SEH =

∫

dt d3xN
√
γ

(

2

N
Bij
gravKij(Ȧ∗ − Ξ) +Kij,kl

gravKijKkl + 2Cij
gravKij − Ugrav

)

(2.16)

where we have introduced the function

Ξ ≡ AkDkN +NkDkA∗ , (2.17)

and where the coefficients entering in the Lagrangian are given by

Bij
grav = 2f,XA∗γ

ij , (2.18)

Kij,kl
grav =

1

2
f(γikγjl + γilγjk − 2γijγkl) + 2f,X(γijAkAl + γklAiAj) , (2.19)

Cij
grav ≡ −γij(2f,XAk(DkA∗) + f,φA∗) , (2.20)

Ugrav = −R+ 2Di(f,XDiX + f,φA
i) . (2.21)

We use the notations f,φ ≡ ∂f/∂φ and f,X ≡ ∂f/∂X for partial derivatives. All spatial indices
are raised or lowered by the spatial metric γij. In particular, we define Ai ≡ γijAj , so that
X = −A2

∗ +AiA
i.

D. Scalar-tensor interaction term

We proceed in a similar way to decompose the “scalar-tensor” interaction part of the action

Sφ ≡
∫

d4x
√

|g|Cµνρσ∇µAν ∇ρAσ . (2.22)

In that case, we need to compute the components of the tensor

Aµν ≡ ∇µAν ≡ ∂µAν − Γρ
µν Aρ . (2.23)

Using the expressions of the Christoffel symbols Γρ
µν in term of ADM quantities, given in Appendix

B, one can easily obtain the different components of the covariant derivative of Aµ

A00 = NȦ∗ −
(

A∗N
iN j + 2NA(iN j)

)

Kij +NNkDkA∗ +N iN jDiAj

−NAkDkN +Nk(Ȧk −DkA0) , (2.24)

Ai0 = −(A∗N
j +NAj)Kij +NDiA∗ +NkDiAk , (2.25)

A0i = (Ȧi −DiA0)− (A∗N
j +NAj)Kij +NDiA∗ +NkDiAk , (2.26)

Aij = DiAj −A∗Kij . (2.27)

As discussed in Appendix A, the terms (Ȧk −DkA0) and (Ȧi −DiA0), which appear in (2.24) and
(2.26), can be eliminated. In this way, all the time derivatives of Ai disappear from the action.

Using the results of previous subsections and after a long calculation, one finds that the ADM
decomposition of Sφ reduces to the following form

Sφ =

∫

N
√
γ

[ A
N2

(Ȧ∗ − Ξ)2 +
2

N
Bij
φ (Ȧ∗ − Ξ)Kij +Kijkl

φ KijKkl + 2Cij
φ Kij + 2

C0

N
(Ȧ∗ − Ξ)− Uφ

]

.(2.28)
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We have not labelled A and C0 with the subscript φ because such terms do not show up in the
Einstein-Hilbert part of the action. The coefficients of the quadratic terms in time derivatives have
already been computed in [16], and are given by1

A = α2 + α1 − (α3 + α4)A
2
∗ + α5A

4
∗ , (2.29)

Bij
φ =

A∗
2

(

2α2 − α3A
2
∗
)

γij − A∗
2

(

α3 + 2α4 − 2α5A
2
∗
)

AiAj , (2.30)

Kij,kl
φ = α1A

2
∗γ

i(kγl)j + α2A
2
∗γ

ijγkl − 1

2
α3A

2
∗

(

AiAjγkl +AkAlγij
)

−α1

(

AiA(kγl)j +AjA(kγl)i
)

+ (α5A
2
∗ − α4)A

iAjAkAl . (2.31)

The coefficients of the linear terms are

Cij
φ = A∗(DkAl)[−α1γ

ikγjl − α2γ
klγij +

1

2
α3(γ

klAiAj −AkAlγij) + α5A
iAjAkAl]

+(DkA∗)[A
k((α4 − 2α5A

2
∗)A

iAj + α3A
2
∗γ

ij) + α1(γ
jkAi + γikAj)] ,

C0 =
1

2
(DiAj)[(2α5A

2
∗ − α3)A

iAj + (α3A
2
∗ − 2α2)γ

ij ] + (α3 + α4 − 2α5A
2
∗)A∗A

iDiA∗ .(2.32)

Finally, the potential is given by

Uφ = −(α1γ
ikγjl + α2γ

ijγkl + α3A
iAjγkl + α4A

iAkγjl + α5A
iAjAkAl)(DiAj)(DkAl)

−(4α5A
2
∗ − α4)A

iAj(DiA∗)(DjA∗)− (α4A
2
∗ − 2α1)(DiA∗)(D

iA∗)

+2A∗
(

2α5A
iAjAkDjAk + α3A

iDjA
j + α4A

jDjA
i
)

DiA∗ . (2.33)

It is worth noticing that by using A∗ instead of A0, we have automatically absorbed time derivatives
of the lapse and of the shift, which otherwise would appear explicitly in the action. In general,
terms that depend on Ṅ or Ṅ i indicate the presence of additional degrees of freedom, but this is
not always the case, as illustrated explicitly, for disformal transformations, in [32] and discussed in
more detail in [33].

E. Summary: full (3+1) decomposition of the action

Putting together all our previous results, we finally obtain the full (3+1) decomposition of the
modified action (2.10):

S =

∫

dt d3xN
√
γ
[

AV 2
∗ + 2BijV∗Kij +KijklKijKkl + 2CijKij + 2C0V∗ − U

]

+

∫

dt d3x (pφφ̇−NpφA∗ −N ipφAi + λi(φi −Ai)) (2.34)

where we have introduced the quantity

V∗ ≡
1

N
(Ȧ∗ − Ξ) . (2.35)

The coefficients are given by

Bij = Bij
grav + Bij

φ , Kijkl = Kijkl
grav +Kijkl

φ , Cij = Cij
grav + Cij

φ , U = Ugrav + Uφ . (2.36)

1 Our definitions for A and Bij in [16] differ from the present ones by factors of the lapse N .
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In particular, the tensorial structure of the coefficients Bij and Kijkl, which appear in the kinetic
part of the action, depends only on the metric γij and the vector Ai:

Bij = β1γ
ij + β2A

iAj (2.37)

Kij,kl = κ1γ
i(kγl)j + κ2 γ

ijγkl +
1

2
κ3

(

AiAjγkl +AkAlγij
)

+
1

2
κ4

(

AiA(kγl)j +AjA(kγl)i
)

+ κ5A
iAjAkAl , (2.38)

with

β1 =
A∗
2
(2α2 − α3A

2
∗ + 4f,X) , β2 =

A∗
2
(2α5A

2
∗ − α3 − 2α4) (2.39)

κ1 = α1A
2
∗ + f , κ2 = α2A

2
∗ − f , κ3 = −α3A

2
∗ + 4f,X , κ4 = −2α1 , κ5 = α5A

2
∗ − α4 .(2.40)

In anticipation of the Hamiltonian analysis, we have changed the notation λ0 into pφ. Note that
the coefficients A and C0 are unaffected by the gravitational part of the action.

III. KINETIC TERMS AND DEGENERACY CONDITION

The kinetic part of the action is given by the expression

Skin =

∫

dt d3xN
√
γ Lkin with Lkin = AV 2

∗ + 2BijV∗Kij +Kij,klKijKkl , (3.1)

where Lkin can be viewed as a bilinear form acting on a 7-dimensional vector space (the vector
space of 3×3 symmetric matrices is 6-dimensional). For a better understanding of the structure of
the kinetic terms, it is instructive to introduce a basis where Lkin can be diagonalized, or at least
block diagonalized.

A. Metric kinetic terms

Let us first concentrate on Kij,kl which defines a bilinear form on the 6-dimensional space of
(3× 3) symmetric real matrices Sym(3), or, equivalently, a linear map

K : Sym(3) −→ Sym(3) , U 7−→ KU s.t. (KU)ij = Kij,klUkl . (3.2)

The space Sym(3) is naturally endowed with the scalar product

〈U, V 〉 = Uijγ
jkVklγ

li = UijV
ij , (3.3)

and one can try to construct an orthonormal basis of Sym(3), with respect to this scalar product,
in which K takes a simple form. To do so, let us introduce two unit spatial vectors ui and vj

so that they form, together with the normalized vector Ai/‖A‖ (where ‖A‖ =
√
A2), a complete

orthonormal basis in 3-dimensional space, i.e. such that

uiui = vivi = 1 , uivi = viAi = Aiui = 0 . (3.4)

By using these vectors, one can build an orthonormal basis of Sym(3), which consists of the
following independent 6 matrices U I :

U1
ij =

1

‖A‖2AiAj , U2
ij =

1√
2
(γij − U1

ij) , U3
ij =

1√
2
(uiuj − vivj) ,
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U4
ij =

1√
2
(uivj + ujvi) , U5

ij =
1√
2‖A‖

(uiAj + ujAi) , U6
ij =

1√
2‖A‖

(viAj + vjAi) . (3.5)

An immediate calculation shows that K is block diagonal in this basis. Indeed the four vectors
U I for I ∈ {3, 4, 5, 6} are eigenvectors of K, while the subspace spanned by (U1, U2) is stable under
the action of K. More precisely, we have

KU1 = aU1 + cU2 , KU2 = cU1 + bU2 , (3.6)

KU3 = κ1U
3 , KU4 = κ1U

4 , KU5 = (κ1 +
‖A‖2
2

κ4)U
5 , KU6 = (κ1 +

‖A‖2
2

κ4)U
6 , (3.7)

with

a = κ2 + κ1 +A2(κ3 + κ4) + (A2)2κ5 , b = κ1 + 2κ2 , c =
√
2(κ2 +

1

2
‖A‖2κ3) . (3.8)

We thus find that the 6 × 6 matrix associated with K is decomposed into a 2 × 2 matrix and a
diagonal 4× 4 matrix. Although it is immediate to diagonalize the 2× 2 matrix corresponding to
the subspace spanned by (U1, U2), it is not very useful as we now need to consider the seventh
dimension associated with V∗.

B. Mixing with the scalar field

Interestingly, V∗ mixes only with the projection of Kij on the subspace (U1, U2), since the
mixing coefficient Bij is of the form

B = (β1 +A2β2)U
1 +

√
2β1U

2 . (3.9)

As a consequence, if we decompose Kij according to

Kij = KI U
I
ij , (3.10)

the kinetic term (3.1) can be written as

Lkin = AV 2
∗ + V∗

[

(β1 +A2β2)K1 +
√
2β1K2

]

+ aK2
1 + bK2

2 + 2cK1K2 (3.11)

+κ1(K
2
3 +K2

4 ) + (κ1 +
‖A‖2
2

κ4)(K
2
5 +K2

6 ) . (3.12)

We thus find that the kinetic terms along the four directions U I with I ∈ {3, 4, 5, 6}, corresponding
to the second line above, are trivial. The nontrivial part is embodied by the 3× 3 matrix







A 1
2(β1 +A2β2)

1√
2
β1

1
2(β1 +A2β2) a c

1√
2
β1 c b






, (3.13)

which mixes V∗ with the metric velocities along γij and AiAj.

C. Degeneracy

As discussed in detail in our previous paper [16], one encounters a degenerate theory when the
kinetic part of the action corresponds to a degenerate quadratic form. In general, this degeneracy



9

could arise from the metric kinetic terms, i.e. from K, if κ1 = 0, κ1 = −‖A‖2κ4/2 or ab− c2 = 0.
However, as we are mainly interested in theories which conserve two tensor modes, we focus our
attention on theories where the degeneracy arises from the mixing with the scalar degree of freedom
and we assume that K istself is nondegenerate.

In this case, Kij,kl is invertible and the degeneracy condition reads [16]

A−K−1
ij,klBij Bkl = 0 . (3.14)

It is easy to check that this condition is equivalent to the requirement that the determinant of the
3× 3 matrix (3.13) vanishes.

IV. HAMILTONIAN ANALYSIS FOR DEGENERATE THEORIES

A. Poisson bracket

We start the canonical analysis with the definition of the momenta associated to the dynamical
variables, via the introduction of the Poisson brackets. With the (3+1) decomposition of the action,
we see that the only non-trivial Poisson brackets for the gravitational degrees of freedom are

{γij , πkl} =
1

2
(δki δ

l
j + δliδ

k
j ) , {N,πN} = 1 , {N i, πj} = δij , (4.1)

and those for the scalar field degrees of freedom are

{A∗, p∗} = 1 , {Ai, p
j} = δji , {φ, pφ} = 1 . (4.2)

Note that we have identified the momentum conjugate to φ with pφ = λ0. Furthermore, we have
not introduced momenta for the variables λi which are clearly Lagrange multipliers, and thus are
not dynamical variables. Even if the action does not contain any time derivative of Ai, N and N i,
we cannot a priori consider these variables as Lagrange multipliers, as they appear non linearly
in the action. Nonetheless, we expect the lapse N and the shift N i to be eventually Lagrange
multipliers which impose symmetries under diffeomorphisms. As we will see, this is exactly what
happens.

B. Primary constraints

As we have just emphasized, there is no time derivatives of the lapse and the shift in the action.
This is due to the introduction of the variable A∗ which automatically absorbs the time derivatives
of these variables. Similarly, there is no time derivative of Ai and λi is a Lagrange multiplier. As
a consequence, we get the following 10 primary constraints:

πN ≈ 0 , πi ≈ 0 , pi ≈ 0 and χi ≡ Ai −Diφ ≈ 0 , (4.3)

where the symbol ≈ denotes weak equality (i.e. equality valid on the constraint surface). The
momenta πij and p∗, respectively conjugate to γij and A∗, can be expressed in terms of the
configurational variables in the usual way,

p∗ = 2
√
γ(AV∗ + BijKij + C0) , πij =

√
γ(Kij,klKkl + BijV∗ + Cij) . (4.4)

The degeneracy condition (3.14) implies that p∗ and πij are not independent and satisfy a primary
constraint which can be written as

Ψ ≡ p∗ − 2K−1
ij,klBklπij + 2

√
γ
(

K−1
ij,klBklCij − 2C0

)

≈ 0 . (4.5)

At this point, we can conclude that, as K is invertible, there is no other primary constraint.
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C. Total Hamiltonian

To go further in the analysis, we need to compute and simplify the expression of the total
Hamiltonian Htot defined by

Htot = H +

∫

d3x (λiχi + µNπN + µiπi +mip
i +mΨ) with

H ≈
∫

d3x (p∗Ȧ∗ + πij γ̇ij + pφφ̇)− L0 . (4.6)

Here µN , µi, mi and m are Lagrange multipliers enforcing the primary constraints, L0 = L+ λiχi

where L is the Lagrangian of the theory (we have suppressed the Lagrange multiplier part λiχi to
rewrite it explicitly in the first line above). As a consequence,

H =

∫

d3x(p∗Ȧ∗ + πij γ̇ij −N
√
γL0 +NpφA∗ +N ipφAi) with

L0 = AV 2
∗ + 2BijV∗Kij +KijklKijKkl + 2CijKij + 2C0V∗ − U . (4.7)

To write the Hamiltonian in terms of the phase space variables, one needs to reexpress the velocities
in terms of the momenta. To do so, we first note that, due to the degeneracy condition, the kinetic
term in L0 factorizes according to

L0 = Kij,kl(Kij +K−1
kl,mnBmnV∗)(Kkl +K−1

kl,pqBpqV∗) + 2CijKij + 2C0Ȧ∗ − U . (4.8)

Inverting the second relation in (4.4) allows to express Kij in terms of the momenta πij and Ȧ∗,

Kij = K−1
ij,kl(

1√
γ
πkl − V∗Bkl − Ckl) , (4.9)

which can be substituted in the Lagrangian density L0. Furthermore, (4.9) allows to simplify the
canonical terms of the Hamiltonian (4.7) as follows:

p∗Ȧ∗ + πij γ̇ij =
2N√
γ
K−1

ij,klπ
ijπkl − 2NK−1

ij,klπ
ijCkl + 2πijDiNj

+NV∗
(

(p∗ − 2K−1
ij,klπ

ijBkl
)

(4.10)

Putting everything together, we get the following expression for the Hamiltonian:

H =

∫

d3xN
√
γ

[

K−1
ij,kl

(

πij

√
γ
− Cij

)(

πkl

√
γ
− Ckl

)

+ U
]

+

+

∫

d3x

[

Ξ p∗ +NpφA∗ +N i

(

pφAi − 2
√
γDj

(

πij√
γ

))

+
√
γV∗Ψ

]

. (4.11)

Note that the dependency on V∗ disappears due to the primary constraint Ψ ≈ 0. Furthermore,
we show, after a direct calculation (and ignoring the surface terms that appear in the integration
by parts), that the Hamiltonian takes the expected form

H ≈
∫

d3x (NH0 +N iHi) , (4.12)

with

H0 =
√
γ

[

K−1
ij,kl

(

πij

√
γ
− Cij

)(

πkl

√
γ
− Ckl

)

+ U +
pφ√
γ
A∗ −Di

(

Ai p∗√
γ

)]

, (4.13)

Hi = −2
√
γ Dj

(

πij√
γ

)

+ p∗DiA∗ + pφDiφ . (4.14)
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Finally, the total Hamiltonian, which defines the time evolution, reads

Htot =

∫

d3x (NH0 +N iHi + λiχi + µNπN + µiπi +mip
i +mΨ) . (4.15)

At this point, it is important to recall that one can replace any of the constraints by a new one
which is a linear combination of the original ones, provided the new set of constraints remains
complete (i.e. the linear transformation between the two sets of constraints is invertible). In
particular, we can use this property to replace the variables Ai by Diφ in each term of Htot,
except χi. Furthermore, we use the constraint Ψ ≈ 0 to replace everywhere, except in Ψ, the
momentum p∗ by its expression in terms of πij . To avoid heavy notations, we keep the same
name for the modified constraints. In conclusion, the functions H0, Hi and Ψ now depend only
on the gravitational degrees of freedom γij and πij, on A∗ and p∗ as wellas on φ and pφ, while the
dependence on Ai has been eliminated.

D. Time evolution of the primary constraints and secondary constraints

We now study the time evolution of the primary constraints. Let us recall that the time
evolution of any function F defined on the phase space is determined from the total Hamiltonian
Htot, according to

Ḟ ≡ {F,Htot} . (4.16)

1. Hamiltonian and momentum constraints

Let us start with the primary constraints πN ≈ 0 and πi ≈ 0. One sees immediately that

π̇N ≈ 0 =⇒ H0 ≈ 0 and π̇i ≈ 0 =⇒ Hi ≈ 0 , (4.17)

and it is thus natural to expect that H0 ≈ 0 and Hi ≈ 0 correspond to the usual Hamiltonian and
momentum constraints of the theory and act as generators of the space-time diffeomorphisms.

It is easy to check that Hi generates the spatial diffeomorphisms. Its expression (4.14) is the
usual one for a system involving gravity and several scalar fields. More precisely, if one considers
the action of the smeared function

H( ~N) ≡
∫

d3xNkHk , (4.18)

on the variables A∗, φ and γij , one easily gets

{A∗,H( ~N )} = L ~N
A∗ , {φ,H( ~N )} = L ~N

φ , {γij ,H( ~N )} = L ~N
γij , (4.19)

where L ~N
is the Lie derivative in the direction ~N ≡ N i∂i.

The action of H( ~N) on the momenta is slightly different because conjugate momenta are den-
sities of weight one. For example, p∗ transforms as

{p∗,H( ~N)} = ∂i(N
ip∗) , (4.20)

which is consistent with the fact that p∗/
√
γ transforms as a scalar. Since H0 is also a scalar

density, its transformation is similarly given by

{H0,H( ~N)} = ∂i(N
iH0) . (4.21)
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The Poisson brackets of the momentum constraints with themselves are given by

{H( ~N1),H( ~N2)} = H( ~N) , N i ≡ Nk
1DkN

i
2 −Nk

2DkN
i
1 . (4.22)

The Poisson bracket of H0 with itself, or possibly of a redefined H0 combined with second-class
constraints, is much more complicated to compute explicitly and we will simply assume, since our
starting point is a Lagrangian invariant under four-dimensional diffeomorphisms, that it is given
by the usual result

{H0(N1),H0(N2)} = H( ~N) , with N i ≡ N1D
kN2 −N2D

kN1 , (4.23)

where

H0(N) ≡
∫

d3xN H0 (4.24)

is the smeared version of the Hamiltonian constraint. We have verified in a simple example that
this is indeed the case (see Appendix C).

In conclusion, the time evolution of H0 ≈ 0 and Hi ≈ 0 does not lead to new, i.e. tertiary,
constraints.

2. Fixing the Lagrange multipliers λi and mi

We now study the time evolution of the constraints χi ≈ 0 and pi ≈ 0. The essential ingredient
here is the Poisson bracket

{χi, p
j} = δji , (4.25)

which immediately implies that

χ̇i = mi −Di(NA∗ +N jDjφ) and ṗi = −λi . (4.26)

The time invariance of the constraints χi ≈ 0 and pi ≈ 0 thus fixes the Lagrange multipliers mi

and λi,

mi = Di(NA∗ +N jDjφ) and λi = 0 , (4.27)

and does not lead to secondary constraints.
It is interesting to notice that the Lagrange multiplier mi can be rewritten, according to (2.15),

as mi = DiA0 = Diφ̇ = Ȧi. When we replace this value in the action via the Hamiltonian (4.6),
we obtain a new “canonical term”

mi p
i = piȦi , (4.28)

which indicates that pi and Ai are canonically conjugate variables. This is indeed how the pi were
defined initially, which confirms that the value that we get for the Lagrange multiplier mi is fully
consistent.
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3. Secondary constraint from the time evolution of Ψ

It remains to consider the time evolution of the last primary constraint Ψ ≈ 0. Because Ψ
commutes with the other primary constraints χi, p

i, πi and πN , its evolution is simply given by

Ψ̇ = {Ψ,H0(N)}+ ∂i(N
iΨ) ≈ {Ψ,H0(N)} , (4.29)

where we have used the property that Ψ is a scalar density and thus transforms like (4.20) under
the action of Hi. We thus obtain the secondary constraint

Ω ≡ {H0,Ψ} ≈ 0 with Ω = pφ +Ωrest. (4.30)

The explicit form of Ω is rather involved in general but we do need its explicit form for our
purpose. What matters is that it depends linearly on the variable pφ as shown above, as Ωrest does
not contain pφ. This means that the constraint Ω can be viewed as an equation that determines
the momentum pφ in terms of the other variables2.

In order to complete the Dirac analysis, one must then compute the time evolution of Ω, which
can be written in the form

Ω̇ = {Ω,Htot} =

∫

d3ym {Ω,Ψ}+ {Ω,Htot −
∫

d3ymΨ} , (4.31)

where the second term in the last expression does not depend on m. In the generic case where
∆ ≡ {Ψ,Ω} 6= 0, one thus finds that the Lagrange multiplier m is fixed by the time evolution of
Ω, which does not generate any new constraint.

In the following, we will not consider the special situations where ∆ ≈ 0, in which case one
expects a tertiary constraint or a new symmetry of the theory. All this would amount to is a
further reduction of the physical phase space. This means that the number of physical degrees of
freedom that we are going to compute below, in the generic case, can be seen as an upper bound.

E. Number of physical degrees of freedom

Let us summarize our results. We started with a 30-dimensional phase space, spanned by ten
pairs of conjugate variables describing the metric, given in (4.1), and five pairs of conjugate variables
describing the scalar field, given in (4.2). By performing a Dirac analysis, we have identified 11
primary constraints (the 10 constraints in (4.3) and Ψ ≈ 0, due to the degeneracy) and 5 secondary
constraints (H0 ≈ 0, Hi ≃ 0 and Ω ≈ 0).

As in general relativity, the spacetime diffeomorphism invariance of the initial Lagrangian must
translate into the presence of first-class constraints associated with time and space diffeormor-
phisms. We have showed that the Hi indeed generate spatial diffeomorphisms and argued that H0,
possibly combined with second class constraints, should correspond to the Hamiltonian constraint
that generates time reparametrisation. Furthermore, as none of the constraints depend on the
lapse N and on the shift N i, πN ≈ 0 and πi ≈ 0 are necessarily first-class constraints as well. We
thus have 8 first-class constraints.

2 It is not surprising that pφ is a redundant variable, since the time derivative of φ is already contained in the
variable A∗. The constraint Ω is the analog, from the Lagrangian point of view, of the definition of the momentum
pφ, i.e. pφ = ∂L/∂φ̇ = N−1∂L/∂A∗. This relation may be rather complicated, in particular for A 6= 0 where L

depends on Ȧ∗ quadratically, and on ∂iȦ∗ too. The explicit expression of pφ in terms of phase space variables (or
in terms of velocities) can thus be quite involved.



14

The remaining 8 constraints ΦA = (pi, χi,Ψ,Ω) form a family of second-class constraints, as we
now show. We first recall that we have used of χi ≈ 0 to replace the variables Ai by ∂iφ in all the
constraints, except of course χi. With this in mind, it is immediate to see that the non-vanishing
components of the Dirac matrix MAB(x, y) ≡ {ΦA(x),ΦB(y)} are given by

{χi(x), p
j(y)} = δji δ(x− y) , {Ψ(x),Ω(y)} = ∆ δ(x− y) , {χi(x),Ω(y)} = −∂xiδ(x− y) , (4.32)

where we have made manifest the spatial dependence, due to the presence of the derivative of
δ(x− y). Since ∆ 6= 0, the Dirac matrix is clearly invertible which means that ΦA are second-class
constraints. These constraints allow to eliminate the variables pi and Ai and to reexpress p∗ and
pφ in terms of γij , π

ij, φ and A∗ only. All other variables are redundant and can be eliminated by
solving secondary constraints.

To conclude, let us compute the number of physical degrees of freedom. The dimension of the
physical phase space is given by 30 - 2×(number of first class constraints) - (number of second
class constraints)= 30 − 2 × 8 − 8 = 6, which gives three degrees of freedom. As expected, this
corresponds to two tensor modes and only one scalar degree of freedom. This confirms that the extra
scalar degree of freedom associated with the Ostrogradski instability is not present in degenerate
scalar-tensor theories.

V. NONDEGENERATE THEORIES

For completeness, let us turn to the case of nondegenerate theories. We reproduce the procedure
followed in the previous section, starting with the action (2.34).

As before, our pairs of conjugate variables are defined by (4.1) and (4.2). The nondegeneracy
of the Lagrangian, assumed in this section, implies that the relations between the momenta (p∗,
πij) and the velocities, namely

(

p∗
2
√
γ
− C0

πij
√
γ
− Cij

)

=

(

A Bkl

Bij Kij,kl

)(

V∗
Kkl

)

, (5.1)

can be inverted. This can be done explicitly by introducing the inverse of the kinetic matrix,

(

A Bkl

Bij Kij,kl

)−1

≡
(

Â B̂kl

B̂ij K̂ij,kl

)

with











Â = (A−K−1
ij,klBijBkl)−1

B̂ij = −ÂK−1
ij,klBkl

K̂ij,kl = K−1
ij,kl + Â−1 B̂ijB̂kl

. (5.2)

Here there is no primary constraint between p∗ and πij and the set of primary constraints reduces
to (4.3). The total Hamiltonian of the theory is thus given by

Htot =

∫

d3x(pȦ∗ + πij γ̇ij −N
√

|γ|L0 +NpφA∗ +N ipφAi)

+

∫

d3x(λiχi + µNπN + µiπi +mip
i) . (5.3)

A straightforward calculation easily leads to the following expression for the total Hamiltonian:

Htot =

∫

d3x (NH0 +N iHi + λiχi + µNπN + µiπi +mip
i) , (5.4)

where the Hamiltonian constraint H0 and the momentum constraints Hi are given by:

H0 =
1√
γ
(
1

4
Â p2∗ + B̂ijp∗π

ij + K̂ij,klπ
ijπkl)+
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+A∗pφ −
(

ÂC0 + B̂ijCij
)

p∗ − 2
(

C0B̂kl + CijK̂ij,kl

)

πkl −√
γDi

(

p∗√
γ
Diφ

)

+
√
γ
[

U + 2C0B̂ijCij + K̂ij,klCijCkl
]

, (5.5)

Hi = −2
√
γDj

(

1√
γ
πij

)

+ p∗DiA∗ + pφDiφ . (5.6)

The analysis of the constraints is easier than in the degenerate case. Stability under time
evolution of the constraints πN ≈ 0 and πi ≈ 0 leads to the secondary constraints which are the
Hamiltonian and vectorial constraints. It is immediate to see that Hi is first-class and generates
space diffeomorphims. As for H0, we show in Appendix C that it satisfies the expected Poisson
algebra in a simple example. We expect this to be true in general and we thus assume that H0,
combined with second-class constraints, is first-class. Stability under time evolution of χi ≈ 0 and
pi ≈ 0 leads to fixing the Lagrange multipliers mi and λi.

In summary, the theory admits 30 non-physical degrees of freedom (γij , N , N i, A∗, φ, Ai and
their momenta) for 14 constraints. The constraints are divided into 8 first-class constraints (H0,
Hi, πN and πi) and 6 second-class constraints (pi and χi). Thus, the theory admits 4 degrees
of freedom (8 degrees of freedom in the phase space) which correspond to 2 tensorial degrees of
freedom, 1 scalar and 1 ghost.

Exactly as in the degenerate case, we can solve explicitly the 6 second-class constraints by
replacing everywhere in the theory Ai by φi and eliminating pi. Furthermore, we can consider the
lapse N and the shift N i as Lagrange multipliers and thus eliminate the constraints πN ≃ 0 and
πi ≃ 0. Finally, we end up with a theory that can be formulated in terms of 16 degrees of freedom
in phase space (φ,A∗, γij and their momenta) which satisfy 4 first-class constraints H0 ≈ 0 and
Hi ≈ 0.

VI. ON THE UNITARY GAUGE

In this section, we focus on the unitary gauge, which was used in the early Hamiltonian analyses
of the theories beyond Horndeski [12, 14, 17], because of its simplicity. We will show that, in
general, the unitary gauge is a good gauge, which breaks time reparametrization. However, there
exist particular situations where the unitary gauge is not allowed because it leads to a singular
Hamiltonian in the phase space region where the unitary gauge is imposed. These cases correspond
to theories that are nondegenerate but look degenerate in the unitary gauge, such as those discussed
in the Appendix of [16].

The unitary gauge consists in choosing the scalar field as the clock. More concretely, we impose
a new primary constraint given by

F ≡ φ− t ≈ 0 . (6.1)

We could have imposed φ to be an arbitrary monotonous function f(t), but for simplicity we make
the choice f(t) = t. Gauge fixing means that we consider a new theory with the total Hamiltonian

Hgauge
tot ≡ Htot +

∫

d3x ξF , (6.2)

where the Lagrange multiplier ξ enforces the gauge fixing (6.1). To see whether this is indeed an
appropriate gauge fixing, we repeat the analysis of the constraints and verify that the symmetry
under time reparametrization is indeed broken.
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A. Unitary gauge in nondegenerate theories

Let us first consider nondegenerate theories with the Hamiltonian

Htot =

∫

d3x (NH0 +N iHi + λiχi + µNπN + µiπ
i +mip

i) . (6.3)

In the corresponding gauge fixed Hamiltonian (6.2), one can replace H0 and Hi by their respective
expressions with ∂iφ = 0. Similarly, χi can be replaced by χi = Ai. One thus finds that the
expression of the total Hamiltonian simplifies drastically.

Stability under time evolution of χi and pi fixes both Lagrange multipliers µi and λi, as in
the arbitrary gauge case. To see the effect of the gauge fixing, it is sufficient to study the time
evolution of F . As F depends explicitly on time, its time derivative is now given by

Ḟ ≡ ∂F
∂t

+ {F ,Hgauge
tot } ≈ NA∗ − 1 , (6.4)

which leads to the new secondary constraint

G ≡ NA∗ − 1 ≈ 0 . (6.5)

Requiring the time invariance of G fixes the Lagrange multiplier µN . An analysis of the time
evolution of the other constraints shows that they do not produce additional constraints.

Let us now examine the nature (first or second class) of the constraints. As expected, Hi ≈ 0
and πi ≈ 0 remain first-class because the invariance under space diffeomorphims is not broken. By
contrast, H0 ≈ 0 and πN ≈ 0 are no longer first-class and together with F ≈ 0 and G ≈ 0, χi ≈ 0
and pi ≈ 0, they form a set of second-class constraints. Note that pi and χi commute with the four
others and therefore can be treated separately (in fact, they can be solved explicitly and thus be
ignored in the following). The Dirac matrix MAB = {ΦA,ΦB} associated with the remaining four
constraints (with Φ1 ≡ H0, Φ2 ≡ πN , Φ3 ≡ F , Φ4 ≡ G) is given by









0 0 −1/N {Φ1,Φ4}
0 0 0 −1/N

1/N 0 0 0
−{Φ1,Φ4} 1/N 0 0









(6.6)

because

{H0,F} ≈ − 1

N
, {H0,G} = N{H0, A∗} , {G, πN} ≈ − 1

N
. (6.7)

For any finite value of the Poisson bracket which simplifies in the unitary gauge to

{H0, A∗} ≈ 1√
γ
(
1

2N
Âp∗ + B̂ijπ

ij) (6.8)

the Dirac matrix Mαβ is invertible.
In conclusion, the above analysis shows that the unitary gauge F ≈ 0 is, in general, a valid gauge.

However, it supposes that the Hamiltonian Htot itself is well defined in the unitary gauge. When the
coefficient A−K−1

ij,klBijBkl vanishes in the unitary gauge, even if the theory is nondegenerate, then

the coefficient Â is infinite and the Hamiltonian becomes singular in the unitary gauge. It means
that the unitary gauge is problematic for theories that are nondegenerate but look degenerate when
restricted to ∂iφ = 0.
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B. Unitary gauge in degenerate theories

For degenerate theories, the analysis of the unitary gauge is similar but a bit subtler due to the
presence of the extra primary constraint Ψ ≈ 0 (which generates the secondary constraint Ω ≈ 0).
For that reason, we will give more details than in the non-degenerate case.

The Hamiltonian that appears in (6.2) is

Htot =

∫

d3x (NH0 +N iHi + λiχi + µNπN + µiπ
i +mip

i +mΨ) . (6.9)

The constraints H0, Hi and Ψ, given in (4.13), (4.14) and (4.5) respectively, simplify into

H0 =
1

κ1
√
γ

(

πijπij −
κ2

κ1 + 3κ2
π2

)

+A∗

(

2f,φ
κ1 + 3κ2

π + pφ

)

+
√
γ

(

3ω2

κ1 + 3κ2
+ U

)

(6.10)

Hi = −2Djπij + p∗DiA∗ (6.11)

Ψ = p∗ −
2β1

κ1 + 3κ2
(π + 3

√
γf,φA∗) , (6.12)

where π = πijγij is the trace of the momentum and we have used

Kij,kl = κ1γ
i(kγl)j + κ2γ

ijγkl and K−1
ij,kl =

1

κ1
γi(kγl)j −

κ2
κ1(κ1 + 3κ2)

γijγkl (6.13)

U = −R− 4Di(f,XA∗D
iA∗)− (α4A

2
∗ − 2α1)(DiA∗)(D

iA∗) (6.14)

Bij = β1γ
ij and Cij = −f,φA∗γ

ij . (6.15)

Let us note that the unitary gauge can be used only if Kij,kl remains invertible in this gauge, which
means that κ1 and κ1 + 3κ2 must be non-zero. When Kij,kl becomes degenerate in the unitary
gauge, then the Hamiltonian is ill-defined and thus the gauge is not safe. This happens when

α1X − f = 0 or (α1 + 3α2)X + 2f = 0 , (6.16)

where we have used that A2
∗ = −X in the unitary gauge.

The analysis of secondary constraints is similar to the non-degenerate case with the difference
that time evolution of Ψ leads to the secondary constraint Ω ≈ 0 as expected. We still have the
vectorial constraints Hi ≈ 0 and πi ≈ 0 which form a set of first-class constraints. It remains to
study the following 6 constraints, which we denote ΦA ≈ 0:

Φ1 = H0 , Φ2 = πN , Φ3 = F , Φ4 = G , Φ5 = Ψ, Φ6 = Ω . (6.17)

They must be second-class to ensure that the unitary gauge is applicable. We thus need to compute
the determinant of the full Dirac matrix {ΦA,ΦB}, which is weakly equal to

















0 0 −1/N 0 0 {Φ1,Φ6}
0 0 0 −1/N 0 0

1/N 0 0 0 0 1
0 1/N 0 0 N 0
0 0 0 −N 0 −∆

{Φ6,Φ1} 0 −1 0 ∆ 0

.

















(6.18)

An immediate calculation shows that its determinant is ∆2/N4 which is nonzero when ∆ 6= 0 as we
assumed at the begining. This confirms that the unitary gauge is an appropriate gauge, provided
the Hamiltonian is well defined.
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VII. CONCLUSIONS

In this work, we have presented a Hamiltonian formulation of higher order theories of the form
(2.1), both in the degenerate and nondegenerate cases. The degenerate case is especially important
as it includes the quadratic Horndeski Lagrangian LH

4 , as well as its extension beyond Horndeski
LbH
4 .
By using the variables introduced in our previous work, we have been able to compute the total

Hamiltonian for degenerate and nondegenerate theories. In both cases, our Hamiltonian is linear
in the lapse N and the shift N i and thus reproduces the familiar structure of the GR Hamiltonian,
enabling us to identify the Hamiltonian and momentum first-class constraints associated with the
invariance under spacetime diffeomorphisms. The only caveat in our derivation is that we did
not compute explicitly the Poisson brackets of the Hamiltonian constraint with itself in order to
check the full recovery of the familiar algebra. Or, more precisely, we checked it only for a simple
(nondegenerate) theory, where the brute force calculation is already quite involved. However, it is
natural to believe that this result should be true in general.

Our analysis confirms the conjecture of our previous paper that degenerate theories of the
form (2.1) should contain only three dynamical degrees of freedom whereas the dynamics of their
nondegenerate counterparts should include an extra scalar degree of freedom, which is expected to
behave as an Ostrogradski ghost. To our knowledge, this is the first derivation of the Hamiltonian
formulation for the quadratic Horndeski Lagrangian LH

4 , confirming the absence of an Ostrogradski
ghost. In the special case of the Lagrangian LbH

4 , our Hamiltonian formulation appears rather
simpler than the one presented in [15], based on a completely different choice of canonical variables.
Furthermore, our analysis also applies to the new degenerate theories identified in our previous
work.

In the future, it would be interesting to extend the present results to a larger class of theories,
in particular theories which are cubic in second derivatives of the scalar field, such as the quintic
Horndeski and beyond Horndeski Lagrangians. However, the difficulty to invert explicitly the
relation between the momenta and velocities might be an obstacle in practice. It would also be
instructive to clarify the relation between the number of degrees of freedom and the order of the
equations of motion. As a first step, it would be easier to study this question in the context of
particle mechanics [34].
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Appendix A: Elimination of the time derivatives Ȧi in the Lagrangian

As mentioned in the main text, one can use the property ∇µAν = ∇νAµ, which directly follows
from the relation Aµ = ∇µφ to replace all the terms ∇0Ai by ∇iA0 in the action. Indeed, whenever
one encounters an expression of the form Bi∇0Ai in the Lagrangian, where Bi is an arbitrary
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combination of the variables, one can always write

∫

d4xBi∇0Ai =

∫

d4xBi [∇0(Ai − φi) +∇0∇iφ] (A1)

=

∫

d4xBi [∇0(Ai − φi) +∇i(φ0 −A0) +∇iA0] (A2)

=

∫

d4x
[

−(∇0B
i)(Ai − φi)− (∇iB

i)(φ0 −A0) +Bi∇iA0

]

, (A3)

where the last line is obtained via an integration by parts, leaving aside the boundary terms.
Finally, after a redefinition of the variables λµ, one can check that the Lagrangian is unaffected by
this change. We thus conclude that all the time derivatives of the spatial components Ai can be
eliminated in the Lagrangian.

Appendix B: ADM decomposition of ∇µAν

Here, we compute the components of the covariant derivative

∇µAν ≡ ∂µAν − Γρ
µν Aρ (B1)

using the expressions of the Christoffel symbols Γρ
µν in term of ADM quantities. They are given by

Γ0
00 =

1

N

(

N iN jKij + Ṅ +N iDiN
)

,

Γk
00 = NN i

(

2γjk − N jNk

N2

)

Kij + Ṅk − Nk

N
Ṅ +N iDiN

k +N

(

γkl − NkN l

N2

)

DlN ,

Γ0
0i =

1

N

(

NkKki +DiN
)

,

Γj
0i = N

(

γjk − N jNk

N2

)

Kik +DiN
j − N j

N
DiN ,

Γ0
ij =

1

N
Kij ,

Γk
ij = −Nk

N
Kij + Γ̂k

ij . (B2)

In the last equation, Γ̂k
ij denote the three-dimensional Christoffel symbols associated to the spatial

metric γij. From these expressions, one can easily obtain the different components of the covariant
derivative of Aµ

A00 ≡ ∇0A0 = Ȧ0 − Γ0
00A0 − Γk

00Ak = NȦ∗ −
(

A∗N
iN j + 2NA(iN j)

)

Kij

+NNkDkA∗ +N iN jDiAj −NAkDkN +Nk(Ȧk −DkA0) , (B3)

Ai0 ≡ ∇iA0 = DiA0 − Γ0
0iA0 − Γk

0iAk = −(A∗N
j +NAj)Kij

+NDiA∗ +NkDiAk , (B4)

A0i ≡ ∇0Ai = Ȧi − Γ0
0iA0 − Γk

0iAk = (Ȧi −DiA0)− (A∗N
j +NAj)Kij

+NDiA∗ +NkDiAk , (B5)

Aij ≡ ∇iAj = ∂iAj − Γ0
ijA0 − Γk

ijAk = DiAj −A∗Kij . (B6)

These expressions can also be directly obtained by projecting the 3+1 covariant decomposition of
∇µAν , given in [16], onto a basis associated with the coordinates t and xi.
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Appendix C: Poisson bracket {H0,H0}

This goal of this Appendix is to verify that

{H0(N1),H0(N2)} = (N1DiN2 −N2DiN1)Hi , (C1)

for the special case

S[gµν , φ] ≡
∫

d4x
√

|g| (R+ α(∇µ∇νφ) (∇µ∇νφ)) , (C2)

where α is assumed to be constant. Note that this theory, which is of the form (2.2) with f = 1,
α1 = α2 = α3 = α4 = 0 and α5 = α, is nonegenerate.

According to (5.5), the smeared constraint H0(N) is explicitly given by

H0(N) =

∫

d3xN

[

1√
γ
(
1

4α
p2∗ +K−1

ij,klπ
ijπkl)− 2CijK−1

ij,klπ
kl +

√
γ(U +K−1

ij,klCijCkl) +A∗pφ

]

+

∫

d3x (DiN)p∗γ
ijAj (C3)

with

Kij,kl = (1 + αA2
∗)γ

i(kγl)j − γijγkl − α(AiA(kγl)j +AjA(kγl)j) , (C4)

Cij = −αA∗D
iAj + α(AiDjA∗ +AjDiA∗) , (C5)

U = −R− α(DiAj)(D
iAj) + 2α(DiA∗)(D

iA∗) . (C6)

The Poisson bracket we wish to compute is given by

{H0(N1),H0(N2)} =

∫

d3x

[

δH0(N1)

δA∗

δH0(N2)

δp∗
+

δH0(N1)

δφ

δH0(N2)

δpφ
+

δH0(N1)

δγij

δH0(N2)

δπij

]

− (N1 ↔ N2) (C7)

where (N1 ↔ N2) means that one exchanges the role ofN1 andN2 in the first line. For that purpose,
we need to compute derivatives of H0(N) with respect to the various phase space variables.

Derivatives with respect to the momenta are easy to compute:

δH0(N)

δp∗
= N

1

2α
√
γ
p∗ + (DiN)Ai (C8)

δH0(N)

δpφ
= NA∗ (C9)

δH0(N)

δπij
= 2NK−1

ij,kl(
πkl

√
γ
− Ckl) (C10)

Derivatives with respect to the variables A∗, φ and γij are more involved to compute, and it is
useful to derive some intermediate results. Let us start with the derivatives with respect to Ai and
A∗ of the coefficients that appear in H0(N). For K−1

ij,kl, we get

∂Kij,kl

∂Am
= −α[γimA(kγl)j + γjmA(kγl)i +Aiγm(kγl)j +Ajγm(kγl)i] (C11)

∂K−1
ij,kl

∂A∗
= −2αA∗K−2

ij,kl (C12)

∂K−1
ij,kl

∂Am
= 2αAn

[

K−1
ij

mpK−1
np,kl +K−1

kl
mpK−1

np,ij

]

(C13)
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while the derivatives of Cij are given by

∂Cij

∂A∗
= −αDiAj ,

∂Cij

∂DmA∗
= α

[

Aiγjm +Ajγim
]

(C14)

∂Cij

∂Am
= α

[

γmiDiA∗ + γmjDiA∗
]

,
∂Cij

∂DmAn
= −αA∗γ

i(kγl)j (C15)

and the derivatives of U by

∂U
∂DmAn

= −2αDmAn ,
∂U

∂DmA∗
= 4αDmAn . (C16)

Only terms which depend on derivatives of the metric will enter the Poisson bracket (C7).
Indeed, H0(N) does not depend on the derivatives of the momenta πij and (C7) is antisymmetric
in the exchange N1 ↔ N2. Derivatives of the metric appear only in U through the 3 dimensional
Ricci scalar R and (DiAj)(D

iAj), and also in Cij through the covariant derivatives of Ai. Thus,
we only need the following formulae:

δ

δγij

∫

d3xN
√
γR = N [· · · ]ij +√

γ
[

DiDjN − γijDmDmN
]

(C17)

δ

δγij

∫

d3xN
√
γ(DkAl)

2 = N [· · · ]ij +√
γ(DkN)[Ai(DjAk) +Aj(DiAk)−AkDiAj ] (C18)

δ

δγij

∫

d3xNΘkl Ckl = N [· · · ]ij + α

2
A∗(DkN)[AkΘij −ΘjkAi −ΘikAj ] (C19)

where Θij is any tensor independent of derivatives of γij . Terms proportional to N are not relevant
for the calculation of (C7) and we do not need their explicit form.

Gathering the above results together, we obtain for δH0(N)/δA∗ the expression

δH0(N)

δA∗
=

∂H0(N)

∂A∗
−Di

[

∂H0(N)

Di∂A∗

]

= Npφ + 2αN
√
γ

[

−A∗K−2
ij,kl(

πij

√
γ
− Cij)(

πkl

√
γ
− Ckl)

+ K−1
ij,kl(D

iAj)(
πkl

√
γ
− Ckl) + 2Dj [AiK−1ij

kl (
πkl

√
γ
− Ckl)]− 2DiD

iA∗

]

+ +4α
√
γ(DjN)

[

AiK−1ij
kl (

πkl

√
γ
− Ckl)−DjA∗

]

. (C20)

For the two other derivatives, their component proportional to the lapse N does not contribute to
the Poisson bracket (C7) because (C9) and (C10) are proportional to N . Thus, we concentrate
only on the terms proportional to derivatives of the lapse and we obtain

δH0(N)

δφ
= N [· · · ]− (DiN)

√
γDi(

p∗√
γ
)− (DiD

iN)p∗

− 4α
√
γ(DmN)

[

K−1
ij

msK−1
rs,klA

r(
πij

√
γ
− Cij)(

πkl

√
γ
− Ckl)−K−1

kl
mj(DjA∗)(

πkl

√
γ
− Ckl)

]

+ 2α
√
γ[(DmDnN)− 2(DmN)Dn]

[

A∗K−1
kl

mn(
πkl

√
γ
− Ckl)−DnAm

]

(C21)

and

δH0(N)

δγij
= N [· · · ]− (DiN)Ajp∗ +

√
γ[(DiDjN)− γij(DkDkN)] (C22)

+ α
√
γ(DkN)

[

A∗(2A
(iK−1

mn
j)k −AkK−1

mn
ij)

πmn

√
γ

+
√
γ(AkDiAj − 2A(iDj)Ak)

]

.
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We can now compute the various contributions to the Poisson bracket (C7). The part which is
linear in pφ is by far the easiest to compute. It has a contribution from (C20) only and is given by

∫

d3x[N1(D
iN2)−N2(D

iN1)]Ai pφ . (C23)

The part linear in p∗ receives contributions from the three components of the Poisson bracket (C7),

∫

d3x
δH0(N1)

δA∗

δH0(N2)

δp∗
→
∫

d3x 2p∗[N1(D
iN2)−N2(D

iN1)]

[

DiA∗ −AjK−1
ij,kl(

πkm

√
γ

− Ckl)

]

∫

d3x
δH0(N1)

δφ

δH0(N2)

δpφ
→
∫

d3x [−N1(D
iN2) +N2(D

iN1)] p∗DiA∗

∫

d3x
δH0(N1)

δγij

δH0(N2)

δπij
→
∫

d3x 2p∗[N1(D
iN2)−N2(D

iN1)]A
jK−1

ij,kl(
πkl

√
γ
− Ckl) ,

which give the total contribution

∫

d3x [N1(D
iN2)−N2(D

iN1)] p∗DiA∗ . (C24)

The part linear in derivatives of πij has contributions from the three components of (C7) and
is given by

[N1(DmN2)−N2(DmN1)]
√
γ
[

4αAmAiK−1
kl

in −A∗(1 + 2αA∗ + 2γmnγij)K−1
kl

mn
]

Dn(
πkl

√
γ
)

It is immediate the see that this expression reduces to

[N1(DmN2)−N2(DmN1)]
√
γ2Kmn,ijK−1

ij,klDn(
πkl

√
γ
) (C25)

which leads to

2[N1(DiN2)−N2(DiN1)]Dj(
πij

√
γ
) . (C26)

Gathering (C23), (C24) and (C26) and checking that the other contributions ( i.e. the terms
quadratic in πij, those linear in πij and those independent of the momenta) vanish, we finally
obtain

{H0(N1),H0(N2)} = [N1(DiN2)−N2(DiN1)]Hi . (C27)
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