
HAL Id: hal-01553841
https://hal.science/hal-01553841v2

Preprint submitted on 22 Jul 2017 (v2), last revised 23 Nov 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey of exemplar-based texture synthesis
Lara Raad Cisa, Axel Davy, Agnès Desolneux, Jean-Michel Morel

To cite this version:
Lara Raad Cisa, Axel Davy, Agnès Desolneux, Jean-Michel Morel. A survey of exemplar-based texture
synthesis. 2017. �hal-01553841v2�

https://hal.science/hal-01553841v2
https://hal.archives-ouvertes.fr

A survey of exemplar-based texture synthesis

Lara Raad∗1, Axel Davy†2, Agnès Desolneux‡2, and Jean-Michel
Morel§2

1
Dept. of Information & Communications Technologies, Universitat Pompeu Fabra

2
CMLA, École normale supérieure Paris-Saclay

July 22, 2017

Abstract

Exemplar-based texture synthesis is the process of generating, from an
input sample, new texture images of arbitrary size and which are percep-
tually equivalent to the sample. The two main approaches are statistics-
based methods and patch re-arrangement methods. In the first class, a
texture is characterized by a statistical signature; then, a random sam-
pling conditioned to this signature produces genuinely different texture
images. The second class boils down to a clever “copy-paste” procedure,
which stitches together large regions of the sample. Hybrid methods try
to combines ideas from both approaches to avoid their hurdles. Current
methods, including the recent CNN approaches, are able to produce im-
pressive synthesis on various kinds of textures. Nevertheless, most real
textures are organized at multiple scales, with global structures revealed
at coarse scales and highly varying details at finer ones. Thus, when con-
fronted with large natural images of textures the results of state-of-the-art
methods degrade rapidly.

1 Introduction

This paper proposes a review of exemplar-based texture theory, a topic that oc-
cupied David Mumford at the end of the last century [66, 68], and again in his
book on pattern theory [43]. Textures are ubiquitous in our visual environment.

∗lara.raad@upf.edu
†axel.davy@cmla.ens-cachan.fr
‡desolneux@cmla.ens-cachan.fr
§morel@cmla.ens-cachan.fr
The images in this document are lossy compressed. To compare the zoomed-in images,

please refer to the uncompressed pdf, which can be found at http://desolneux.perso.math.

cnrs.fr/papers/exemplar-based-texture-synthesis-full-res.pdf

1

In the past fifty years their definition has occupied psychophysicists, mathemati-
cians and computer scientists who have built increasingly sophisticated models.
The main progress on the elusive topic of defining textures has come from com-
puter graphics with the problem of reproducing other examples of the same
texture given a sample. There is so far no complete mathematical theory that
would, first, give a formal axiomatic of texture, and then prove that some tex-
ture synthesis algorithm matches this definition. Rather, each exemplar-based
texture method formulates its own definition of texture. Thus, while some of the
texture models are mathematically sophisticated, the reader should not expect
here any proof of consistency of any definition of texture. The method to work
on texture modeling still relies on a visual exploration of synthesized textures,
where their defects are interpreted in a literary interpretation and linked to
some shortcoming of the mathematical model. All the more, texture modeling
remains a valid challenge for mathematicians, as textures represent arguably the
vaster and most common class of observable functions. This article accounts for
the very rapid and impressive recent apparition of new texture synthesis meth-
ods with striking results. We shall retrace their theoretical roots. By performing
objective experiments and not hiding the failures of each method, this paper will
uncover some flaws in the current definition of exemplar-based texture modeling.
This will lead us to propose a slightly different definition of the problem that
seems to address better its challenges.

The Oxford Dictionary of English defines texture as the feel, appearance, or
consistency of a surface or a substance. Focusing on visual appearance, texture
is analog to color, a perceived quality of a surface, where the RGB bands are
replaced by the output of a specific bank of filters [43, p.215]. Julesz defined
textures as classes of pictures that cannot be discriminated in preattentive vi-
sion and advanced two statistical hypotheses to characterize them [29, 26, 28].
Grenander proposed to use the term “texture” for strictly stationary stochastic
processes [21, p.398]. Giving a precise definition of textures is a slippery task;
in a sense, each model implicitly proposes one and as we will see the jury is still
out.

Exemplar-based texture synthesis is the process of generating, from an input
texture sample, new texture images of arbitrary size and which are perceptually
equivalent to the input. It is common to classify them under two categories:
parametric methods and non-parametric methods. The parametric methods aim
at characterizing a given texture sample by estimating a set of statistics which
will define an underlying stochastic process. The new images will then be sam-
ples of this stochastic process, i.e. they will have the same statistics as the input
sample. The question here is what would be the appropriate set of statistics to
yield a correct synthesis for the wide variety of texture images. The results of
these methods are satisfying but only on a small group of textures, and often
fail when important structures are visible in the input. The non-parametric
methods reorganize local neighbourhoods from the input sample in a consistent
way to create new texture images. These methods return impressive visual re-
sults. Nevertheless, they often yield verbatim copies of large parts of the input
sample. Furthermore, they can diverge, starting to reproduce in an iterative

2

way one part of the input sample and neglecting the rest of it, thus growing
what experts call “garbage”. Because “non-parametric” methods are not com-
pletely parameter-free, and “parametric” methods can have a reduced set of
parameters, in this paper we will denote by patch re-arrangement methods the
former and by statistics-based methods the latter.

The statistical characterization of texture images was initiated by Béla Julesz
[26, 30]. Julesz was the first to point out that texture images could be reliably
organized according to their N-th order statistics into groups of textures that
are preattentively indistinguishable by humans [26]. Julesz [30] demonstrated
that many texture pairs sharing the same second-order statistics would not be
discerned by human preattentive vision. This hypothesis constitutes the first
Julesz axiom for texture perception. One consequence of this axiom is that
two textures sharing the same Fourier modulus but with different phase should
be perceptually equivalent. Indeed, the square Fourier modulus of an image
corresponds to its spatial auto-correlation, thus the second-order statistics. This
motivates a class of algorithms (random phase methods) aiming at creating
textures with a given second-order statistic. An example of such algorithms is
[60]. In a more recent extension [17], a texture is generated by randomizing the
Fourier phase while maintaining the Fourier modulus. The Random Phase Noise
method in [17] correctly synthesizes textures with no salient details, namely
microtexture, which adapt well to a Gaussian distribution, but it fails for more
structured ones, macrotextures, as can be experimented in the executable paper
[16]. Indeed, textures may share the same second and even third order statistics
while being visually different [31, 9]. This led Julesz [28, 27] to propose a
second theory to explain texture preattentive discrimination by introducing the
notion of textons. Textons are local conspicuous features like bars or corners,
but no mathematical definition was ever proposed for them. This new theory
states that only the first order statistics of these textons are relevant for texture
perception: images having the same texton densities (Thus, just a first order
statistic) could not be discriminated. Texton theory proposes the main axiom
that texture perception is invariant to random shifts of the textons [28]. This
axiom is extensively used in the stochastic dead leaves models [42, 53, 6].

Heeger and Bergen [23] extended Julesz’ approach to multiscale statistics.
They characterized a texture sample by the histograms of its wavelet coefficients.
By enforcing the same histograms on a white noise image they obtained a new
multiscale exemplar-based texture synthesis method. Yet this method only mea-
sures marginal statistics. It misses important correlations between pixels across
scales and orientations which are crucial to generate edges and conspicuous
patterns. We refer to the on-line execution of this method [7] where some suc-
cesses but many failures are evident, as is also the case for RPN [16]. Within
a similar range of results, De Bonet [11] randomizes the initial texture image
and preserves only a few statistics, namely the dependencies across scales of a
multi-resolution filter bench response. In [22] the authors proposed to synthe-
size a texture by picking random patches from the sample texture and placing
them randomly in the output texture image. A blending step is applied across
the overlapping blocks to avoid edge artifacts. The results achieved are similar

3

to [23, 11]. Other methods are also based on statistics of wavelet coefficients or
more involved multiscale image representations [48, 47, 50]. The Heeger-Bergen
method was extended by Portilla and Simoncelli [48] who proposed to evalu-
ate on the sample some 700 cross-correlations, autocorrelations and statistical
moments of the wavelet coefficients. Enforcing the same statistics on synthetic
images, starting from white noise, achieves striking results for a wide range of
texture examples. This method, which for a decade represented the state-of-
the-art for psychophysically and statistically founded algorithms is neverthe-
less computationally heavy, and its convergence is not guaranteed. Its results,
though generally indiscernible from the original samples in a pre-attentive exam-
ination, often present blur and phantoms. Earlier, Zhu, Wu and Mumford [68]
proposed to model texture images by inferring a probability distribution on a
set of images with the same texture appearances and then to sample from it. To
infer this probability distribution, the set of images is filtered by a pre-selected
set of filters (which capture the important features of a given texture image)
and their histograms are extracted. These are estimates of the marginals of
the probability distribution sought for. Then the maximum entropy probability
distribution is constructed matching the previous marginals. To sample from
this probability distribution the Gibbs sampler is adopted, thus generating new
texture images. The resulting model is a Markov random field. The limitation
of this method is its practical aspect. Inferring the probability distribution and
sampling from it are complex tasks. In contrast to the other methods, Zhu et al.
do not seek for a set of characteristics that define all textures but for models
that adapt independently to the set of images of similar textures. These two
texture generators have been recently revisited with neural networks. Gatys’
texture generator [19] and DeepFrame [41] can be seen respectively as extended
versions of [48] and [68], and get significantly better results. Some new neural
network methods, based on generative neural networks, also get notable results
[25].

It is worth mentioning that texture models can be used to complete missing
parts of an image or texture inpainting. These methods rely on the definition
of texture images as the realization of a random field. For inpainting this boils
down to the estimation of a random texture model on the masked input image (a
set of valid pixels of the image) from which a new image is sampled conditioned
to some of the known values of input image. The method presented in [18] is
particularly well adapted for micro-textures. A Gaussian model is estimated on
the masked input image; then the result is generated by a conditional sampling
from the estimated model using the kriging estimation framework.

Patch re-arrangement methods constitute a totally different category of tex-
ture synthesis algorithms. The initial Efros and Leung [13] method was in-
spired by Shannon’s Markov random field model for the English language [54].
In analogy with Shannon’s algorithm for synthesizing sentences, the texture is
constructed pixel by pixel. For each new pixel in the reconstructed image, a
patch centered in the pixel is compared to all the patches of the input sample.
The patches in the sample that are similar help predict the pixel value in the
synthetic image. Several optimizations have been proposed to accelerate this

4

algorithm. Among them Wei and Levoy [62] managed to fix the shape and size
of the learning patch, and Ashikhmin [3] proposed to extend existing patches
whenever possible instead of searching in the entire sample texture. Yet, as al-
ready pointed out in the original paper [13], an iterative procedure may fail by
producing “garbage” when the neighborhood’s size is too small. On the other
hand, it can lead to a trivial verbatim reproduction of big pieces of the sample
when the neighborhood is too large. This can be experimented in the online ex-
ecutable paper [1]. Many extensions of [13] have been proposed that manage to
accelerate the procedure and reduce the “garbage” problem by stitching entire
patches instead of pixels. In [38] the authors proposed to synthesize the image
by quilting together patches that were taken from the input image among those
who best match the patch under construction. A blending step was also added
to overcome some edge artifacts. Efros and Freeman [14] proposed an extension
of the latter introducing the quilting method (a blending step) that computes
a path with minimal contrast across overlapping patches, thus mitigating the
transition effect from patch to patch.

Kwatra et al. [35] extended [14] by using a graph-cut algorithm to define the
edges of the patch to quilt in the synthesis image. Another extension of [13]
was proposed by Kwatra et al. [34] where to synthesize a texture image they
improve the quality of the synthesis image sequentially by minimizing a patch-
based energy function. In the same spirit as [34], where texture optimization
is performed, the authors in [37] proposed to synthesize textures in a multi-
scale framework using the coordinate maps of the sample texture at different
scales. They introduced spatial randomness by applying a jitter function to the
coordinates at each level, combined to a correction step inspired by [3]. One
of the key strengths of the method is that it is a parallel synthesis algorithm
which makes it extremely fast. These patch-based approaches often present sat-
isfactory visual results. In particular they have the ability to reproduce highly
structured textures (macrotextures). However, the risk remains of copying even
several times verbatim large parts of the input sample. For practical applica-
tions this may result in the appearance of repeated patterns in the synthesized
image. Furthermore, a fidelity to the global statistics of the initial sample is not
guaranteed, in particular when the texture sample is not stationary. We refer
to [61] for an extensive overview of the different patch re-arrangement methods.

Recent research tries to revisit the use of previous methods. Using neural
networks has seen some success, as well as combining patch re-arrangement and
statistics-based methods to overcome the drawbacks mentioned previously [46,
57]. These approaches will be called hybrid methods. Peyré [46] proposed to use
a patch-based approach where all the patches of the synthesized image are cre-
ated from a sparse dictionary learnt on the input sample. Tartavel et al. [57] ex-
tended [46] by minimizing an energy that involves a sparse dictionary of patches
combined to constraints on the Fourier spectrum of the input sample in a mul-
tiscale framework. Raad et al. [49] proposed to model the self-similarities of
a given input texture with conditional multivariate Gaussian distributions in
the patch space in a multiscale framework. A new image is generated patch
by patch, where for each given patch a multivariate Gaussian model is inferred

5

from its nearest neighbours in the patch space of the input sample, and hereafter
sampled from this model.

The academic literature shows that current methods are able to produce
impressive texture synthesis on various kinds of textures. Our experiments will
illustrate this, and the opposite. Indeed, this literature is still working, in a
sense, on toy examples. Most textures are defined by texture samples of rela-
tively small size and the structures are present in a small range of scales. When
confronting the methods with more challenging data, the quality of the results
degrades rapidly. This can be seen for most natural images of textures, which
are non-stationary, due for example to the presence of illumination changes and
perspective. As a matter a fact large photographs of textures are non-stationary
because even homogeneous material always shows an internal variation of struc-
ture. Thus the classic exemplar-based texture synthesis problem can be seen
in this light as an almost impossible Fourier spectrum extrapolation, given a
very small texture example. Hence our exploration not only of the solutions,
but of the problem itself will illustrate the limitations of the current question,
and introduce a more general question: how to emulate the real, non-stationary
textures, for which we dispose of large samples? Then the question is no longer
to “extend” a small patch into a larger texture of the same kind, but rather to
be able to fabricate other examples of a given large and complex texture, given
only one sample of it.

We now sketch our plan. We shall present the main trends in exemplar-based
texture synthesis by describing in detail several methods illustrating the three
main families. In each case, the strength and limitations will be commented as
well as some relevant variations. Section 2 introduces the statistics-based meth-
ods which perform statistical optimization and describes several algorithms.
Then Section 3 focuses on patch re-arrangement methods, presenting two funda-
mental works. The third main class of hybrid methods is discussed in Section 4.
The experimental Section 5 first compares the main families of algorithms in a
varied set of textures; then, the limitations of all current methods are revealed
with high-resolution and non-stationary examples. Finally, Section 6 concludes
the paper.

2 Statistics-based methods

Statistics-based texture synthesis methods follow the general approach proposed
by Julesz, illustrated in Figure 2. The synthesis is performed in two steps: first,
a set of statistics is estimated from the sample texture; second, a random image
is generated, subject to these statistical constraints. Methods in this class differ
in the set of statistics considered and in the optimization method used to impose
them on a random image. We will describe several algorithms of this class with
increasing sophistication. It will appear that the number of statistics enforced
plays a key role in the success.

6

input

output

input

output

Figure 1: Synthesis results of the RPN method [60, 17]. This method works
extremely well for micro-textures including tissues and granular textures with
no geometric structures [16]. For more structured texture images it fails. Two
examples are shown: a successful synthesis on the left and a failure case on the
right.

2.1 Micro-texture synthesis by phase randomization

The Random Phase Noise (RPN) method synthesizes a new texture from a rect-
angular sample by simply randomizing the phase of the Fourier coefficients of
the input sample. The results are very satisfying for textures that are charac-
terized by their Fourier modulus, a class called micro-texture by some authors.
This method is also able to create a random texture from any input image,
not necessarily a texture sample. It is in spirit quite close to the noise gener-
ators from computer graphics [45, 60]. The rest of this section describes the
main ideas of this method and we refer the reader to [16] for more detail and a
catalog of several synthesis examples.

The RPN of an image u is obtained by adding a random phase θ to the
Fourier phase of the input sample image. The random phase is a white noise
image uniformly distributed over [−π, π] and is constrained to be symmetric. In
the case of an RGB color image u = (uR, uG, uB), the RPN image is obtained by
adding the same random phase to the Fourier transform of each color channel.
Adding the same random phase to the original phases of each color channel
preserves the phase displacements between channels. This is important as it
permits to create new textures without creating false colors [17].

More precisely, a uniform random phase is defined as a random image θ ∈
RM×N satisfying the following conditions:

• θ is odd: ∀x ∈ Ω, θ(−x) = −θ(x);

• θ(x) is uniform on the interval (−π, π] for x 6∈ {(0, 0), (M/2, 0), (0, N/2), (M/2, N/2)};

• θ(x) is uniform on the set {0, π} x ∈ {(0, 0), (M/2, 0), (0, N/2), (M/2, N/2)};

• for every subset S of the Fourier domain which does not contain distinct
symmetric points, the family of random variables {θ(x)|x ∈ S} is inde-
pendent.

7

The RPN of an image u ∈ RM×N is defined as the random image v where there
exists a uniform random phase θ such that

v̂(ξ) = û(ξ)eiθ(ξ), ξ ∈ Ω. (1)

An equivalent definition is

v̂(ξ) = |û(ξ)|eiθ(ξ), (2)

where θ is a uniform random phase. Given the phase φ of a real-valued image and
a uniform random phase θ, the random image (θ+φ) mod 2π is also a uniform
random phase, which proves this equivalence. The first definition (1) leads to a
natural extension of RPN to color images [17], while the second definition (2)
highlights the fact that the RPN depends only on the Fourier modulus of the
sample image u.

Similarly, an Asymptotic Discrete Spot Noise (ADSN) associated with an
image u is defined as the convolution of a normalized zero-mean copy of u
with a Gaussian white noise. A Gaussian white noise image has a uniform
random phase and its Fourier modulus is a white Rayleigh noise; the phase
and modulus are independent. Thus, the phase of the ADSN is a uniform
random phase whereas its Fourier modulus is the pointwise multiplication of
the Fourier modulus of u by a Rayleigh noise [17]. Both ADSN and RPN
have uniform random phases, but the modulus distributions are different. RPN
keeps the Fourier modulus of the original image, while for ADSN the Fourier
modulus is degraded by a pointwise multiplication by a white Rayleigh noise.
Regardless of their theoretical differences, ADSN and RPN produce results that
are perceptually very similar [17].

The RPN method is the fastest method presented in this review since it
basically needs the computation of two FFTs. Nevertheless, this method is lim-
ited to micro-textures and it will fail synthesizing structured textures, namely
macro-textures. In Figure 1 two synthesis examples are shown. The first syn-
thesis (left example in Figure 1) shows outstanding results. This micro-texture
is indeed well represented by its Fourier modulus. However this is not at all
the case for the second texture synthesis (right example in Figure 1). Clearly,
the knowledge of the modulus of the Fourier coefficients of this texture is not
sufficient to recover the strong contrast of the input.

2.2 The Heeger and Bergen pyramid based texture syn-
thesis

Heeger and Bergen [23] proposed to characterize a texture by the first order
statistics of both its color and its responses to multi-scale and multi-orientation
filters organized in a steerable pyramid [15]. This proposition, motivated by the
study of human texture perception, focuses on the synthesis of microtextures
defined as images that don’t have conspicuous patterns (e.g., granite, bark,
sand).

8

Input
statistics

Noise Output
optimization

Figure 2: Statistics-based methods. A set of statistics is extracted from an
input sample (analysis step). Then, starting with a noise image, an optimization
procedure is applied to enforce these statistics on the output image (synthesis
step).

Let us describe the input texture image u and the synthesized texture v
using the Heeger and Bergen method. First the image u is filtered using a
steerable pyramid decomposition [15] with P scales and Q orientations at each
scale. The steerable pyramid is a linear multi-scale and multi-orientation image
decomposition (see Appendix A). Given an input image, it is first filtered to
provide a high frequency image and a low frequency image. Band-pass oriented
filters are then sequentially applied to the low frequency image which is also
down-sampled. These band-pass oriented filters are applied P times to the cor-
responding low frequency image. This decomposition yields images of different
sizes corresponding to the different scales and orientations on which the gray
level histograms are extracted as well as the gray level histogram of u. These
histograms define the set of statistics that characterize u.

The second step consists in generating the output image v, which is initial-
ized with a noise image. Its pixel values are iteratively modified to match the
histograms of u and of its steerable decomposition. These histogram match-
ings are performed on v alternately in the image domain and in the multi-scale
transform domain, until all the output histograms match the ones of u. A third
parameter is introduced here and it is the number of iterations used to achieve
a stabilization of the histogram matching.

To the best of our knowledge, no theorem guarantees that this iteration will

9

end with an image respecting all statistics; there is of course one solution to it,
namely the example image. But the goal is to create an image different from
the example. Hence the random initialization, which is supposed to lead always
to different samples of the same texture. This remark applies to all texture
synthesis methods we will consider: their success will mainly be judged visually
and experimentally.

To treat RGB color images, instead of applying the method to each color
channel of the input image which are highly correlated, the authors proposed
to change the color space RGB to a more adapted color space. This new color
space is obtained by principal component analysis of the RGB values of the
input image u. In [7] a detailed explanation of the original method of Heeger
and Bergen [23] is provided with a complete analysis of the steerable pyramid
decomposition and the histogram matching step. The authors also provide
in [7] a minor improvement in the edge handling of the convolutions as well
as an experimental section illustrating the influence of the parameters, namely
the number of iterations, the number of scales and the number of orientations.
As we said, there is no theoretical proof of convergence of the method but
an experimental study shows that the results tend to stabilize after five to
ten iterations [7]. Increasing the number of orientations changes the results
slightly, but four orientations are enough in general. The number of scales is
very important. Taking the highest number permits to take into account all the
scales of the texture. When the input texture has no evident structure then this
parameter has less influence in the result.

As our experiments here will show, the results yielded by this approach are
convincing for some stochastic textures, but the method fails for most com-
plex texture images. In particular it generally fails (visually) for quasi-periodic
textures, random mosaic textures, textures having more than one dominant ori-
entation, and textures having correlations of high frequency content over large
distances. This demonstrates experimentally that all the spatial information
characterizing a texture is not captured by the first order statistics of a set of
linear filter outputs. In Figure 3 two synthesis examples are shown: a successful
synthesis and a failure case.

2.3 The Portilla and Simoncelli algorithm

Portilla and Simoncelli [48] proposed an important improvement on Heeger and
Bergen’s method [23]. The texture is again synthesized starting from a noise
image and coercing it to have the same statistics as the input image. As we have
seen, marginal statistics are not enough to capture the relations across scales and
orientations. Portilla and Simoncelli proposed to match a set of joint statistics
measurements of the coefficients of the steerable pyramid decomposition of the
input texture. The statistics used to characterize the input texture are the
autocorrelation and cross-correlation coefficients (inner and intra scales), as well
as the statistical moments of order one, two, three and four of the input sample’s
values. The complete set is listed in Table 1. To enforce these statistics on the
result, the image under construction is projected iteratively into the subspace

10

input

output

input

output

Figure 3: Synthesis results of the Heeger and Bergen method [23]. This method
works for microtextures. For more structured texture images it fails. Two
examples are shown: a successful synthesis on the left and a failure case on the
right.

of constraints using a gradient projection approach until stabilization. The final
output image may not have exactly the same statistics as the input sample. It
merely represents a local minimum. Again there is no proof of a convergence of
the method anyway.

Portilla and Simoncelli’s technique is based on the theories of human visual
perception, in particular Julesz’ hypothesis stating that two images are percep-
tually equivalent if and only if they agree on a same set of statistic measure-
ments. The goal is to establish the minimal set of measurements in a way that
all types of textures are correctly synthesized using that set of measurements.
In the same way as Heeger and Bergen’s method, the input texture sample is
decomposed with a multiscale oriented linear basis: the steerable pyramid (Ap-
pendix A). For each pair of coefficients at nearby positions, orientations and
scales, the average value of their product, of their magnitude product and their
relative phase is measured. In addition to these parameters, some marginal
statistics on the input image pixels distribution are kept: the mean, the vari-
ance, the skewness, the kurtosis and the range. The number of parameters will
depend on the number of sub-band images and on the size of the neighbourhood
considered to estimate the statistical constraints of the example texture.

The second part of the algorithm is the synthesis step coercing the measure-
ments previously computed to a random noise image. The synthesized image is
initialized with a Gaussian white noise image and then iteratively the algorithm
alternates between: 1) constructing the steerable pyramid and enforcing the
sample statistics of each sub-band image matching those of the corresponding
sub-bands of the target image; 2) reconstructing an image from the pyramid
and then forcing it to have the same marginal statistics as the input texture.

A texture is defined as a two-dimensional stationary random field X(n,m)
on a finite lattice (n,m) ∈ Ω ⊂ Z2. Julesz’ hypothesis is the basis to connect
this statistical definition to perception: there exists a set of constraint functions
{φk, k = 1, . . . , Nc} such as if two random fields, X and Y , are identical in
expectation over this set of functions then any two samples drawn from X
and Y will be perceptually equivalent under some fixed comparison conditions.

11

The importance of human perception as a fundamental criterion of equivalence
between textures can be seen through this hypothesis, as well as the existence
of such a set of statistical measurements capable of capturing this equivalence.
To choose the set of constraint functions Portilla and Simoncelli proceeded as
follows:

1. Set an initial set of constraints and synthesize a large library of texture
examples;

2. Group the synthesis failures classifying them according to visual features
that distinguish them from their original texture examples and keep the
group with the poorest results;

3. Add a new statistical constraint to the set capturing the missing feature
of the failure group;

4. Re-synthesize the failure group and verify the wanted feature is captured;
otherwise go back to the previous point;

5. Verify that the original constraints are still needed; for each constraint,
find a texture example that fails when the constraint is removed from the
set;

6. Delete the unnecessary constraint, re-synthesize the library and go back
to the second point.

Following this strategy, the constraint set is adapted to a reference set of
textures and not just to one texture, and it is driven by perceptual criteria.
The set of constraints is composed of:

1. Marginal statistics formed by: skewness and kurtosis of the low-pass im-
ages of each level of the pyramid, variance of the high-pass image of the
pyramid, skewness, kurtosis, variance, mean and range of the image. The
marginal statistics set the general degree of pixel intensity and their distri-
bution. This is why they cannot be discarded from the statistics set [48];

2. Autocorrelation of the low-band coefficients. This allows to capture the
periodic structures of a texture as well as long-range correlation. Omitting
this constraint from the original set yields unsatisfying results for textures
having periodic or long-range correlation patterns [48].

3. Autocorrelation and cross-correlation of the magnitude of the sub-bands.
These statistics appear to be relevant because observation reveals that
oriented bands have a particular behaviour concerning certain pattern
and their periodicity whatever the orientation [48]. The cross-correlations
kept are of each sub-band image with others of the same scale (inner
cross-correlation) and of each sub-band with sub-bands at the coarser
scale (intra cross-correlation);

12

4. Cross-correlation of the real part of the sub-bands with the real and imag-
inary parts of the coefficients’ phase of the coarser scale. This statistic
is important to capture the strong illumination effects present in some
texture images. In particular, the synthesized image looses its three-
dimensional effect and the shadows structure if they are not considered [48].

The set of statistics is summarized in Table 1. As mentioned previously, the
number of parameters used depends on the number of scales P and orientations
Q of the steerable decomposition as well as the size of the neighbourhood Na
used to compute the auto-correlations. The total number of parameters is 6+1+
2(P+1)+(P+1)(N2

a +1)/2+PQ(N2
a +1)/2+PQ(Q−1)/2+(P−1)Q2 +2(P−

1)Q2, where the terms correspond (from left to right) to: the marginal statistics
of u, the variance of high pass image, the skewness and kurtosis of the low band
images, the auto-correlation of the low band images, the auto-correlation of the
sub band images, the inner cross-correlation of the sub band images, the intra
cross-correlation of the low band images and the cross correlation of the real
part of the sub band images with the real and imaginary part of the phase sub
band images. In general P = 4, Q = 4 and Na = 7 are used, leading to a total
of 710 parameters.

After setting the set of statistical constraints, a sample verifying them has
to be generated. Let ck be the corresponding estimated values of the constraint
functions for a particular texture image. Portilla and Simoncelli [48] “samples”
an image from the set of images that yield the same estimated constraints val-
ues A~φ,~c = {~x : φk(~x) = ck, ∀k}. To pick at random from this set the authors

proposed to select at random a sample ~x0 from R|Ω| and then project it sequen-
tially onto subsets of A~φ,~c. To emulate this the authors proposed a gradient
projection. That is moving in the direction of the gradient of the constraint
φk(~x):

~x′ = ~x+ λk
−→
∇φk(~x)

choosing λk such that
φk(~x′) = ck. (3)

Computing
−→
∇φk(~x) is usually simple, and it remains to find the λk that solves (3).

When there are multiple solutions for λk, the one with smaller amplitude is cho-
sen, modifying as little as possible the image. In that way, we stay as close as
possible to the already projected set. When there is no solution, the λk is the
one that comes closest to satisfying (3). Finally this method can be extended to
the adjustment of a subset of constraints. Once the set of statistical measure-
ments is defined and a method to sample from the Julesz’ ensemble of textures,
the synthesis can be performed as explained previously.

In a pre-attentive examination, the results are in general indistinct from the
original samples textures. Nevertheless, on attentive examination the synthesis
of structured textures often present blurry and jammed results. Long range
structures are missed and the method tends to homogenize the output texture.
Figure 4 shows two synthesis results. The first example (left in Figure 4) repre-
sents a quasi-periodic image where the method yields excellent results although

13

range of u max(u) and min(u)

mean of u µ1(u)

variance of u µ2(u)

skewness of u µ3(u)/(µ2(u))1.5

kurtosis of u µ4(u)/(µ2(u))2

lowband’s skewness µ3(lp)/(µ2(lp))
1.5, 1 ≤ p ≤ P + 1

lowband’s kurtosis µ4(lp)/(µ2(lp))
2, 1 ≤ p ≤ P + 1

highband’s variance µ2(h)

<{lp} auto-correlation Γ<{lp} (x, y) , 1 ≤ p ≤ P + 1

|up,q| auto-correlation Γ|up,q| (x, y) , 1 ≤ p ≤ P, 0 ≤ q ≤ Q− 1

inner cross-correlation C
(
|up,q| ,

∣∣∣up,q′ ∣∣∣) , 1 ≤ p ≤ P, 0 ≤ q, q′ ≤ Q− 1

intra cross-correlation C
(
|up,q| ,

∣∣∣up+1,q′
∣∣∣) , 1 ≤ p ≤ P − 1, 0 ≤ q, q′ ≤ Q− 1

cross-correlation with
the real part of the
phase

C
(
<{up,q} ,

<
{
up+1,q′

}
|up+1,q′ |

)
, 1 ≤ p ≤ P − 1, 0 ≤ q, q′ ≤

Q− 1

cross-correlation with
the imaginary part of
the phase

C
(
<{up,q} ,

=
{
up+1,q′

}
|up+1,q′ |

)
, 1 ≤ p ≤ P − 1, 0 ≤ q, q′ ≤

Q− 1

Central sample mo-
ment

µn(u) =

{
1

MN

∑M−1
k=0

∑N−1
l=0 uk,l if n = 1

1
MN

∑M−1
k=0

∑N−1
l=0 (uk,l − µ1 (u))

n
if n > 1

Translation operator τx,y (u) : uk,l 7→ ubk−xcM ,bl−ycN 0 ≤ k ≤ M − 1, 0 ≤
l ≤ N − 1, (x, y) ∈ Ω

Correlation C(u, v) = 1
MN

∑M−1
k=0

∑N−1
l=0 (uk,l −m(u)) (vk,l −m(v))

∗

Auto-correlation Γu (x, y) = C (u, τx,y (u))

Table 1: Summary of the set of statistical constraints for the Portilla-Simoncelli
method.

14

input

output

input

output

Figure 4: Synthesis results of the Portilla and Simoncelli method [48]. It is sat-
isfactory for many small grain textures (left) but may miss the global structure
(right).

it contains some global structures. In the second example (right in Figure 4),
even though we recognize the nature of the input sample, one can observe that
strong structures are missing. It is impossible to recover the lined up tiles.

Increasing the number of orientations Q will improve the results since more
information is captured. However for Q > 4 the improvement is hardly notice-
able. The number of levels P of the steerable pyramid is the most influential
parameter. Depending on the nature of the texture, it will need to be increased
to capture the details at all scales. Once again, for microtextures this parameter
is less influential. Finally, the size of the neighborhood Na used to compute the
autocorrelation is important whenever the texture has periodic information.

As we will see in Section 5, even though imperfect, the results are very im-
pressive, as they succeed modeling most textures using a moderately large set
of global statistics. This brings us to the following two questions. Is the set of
statistics considered enough to describe any kind of textures? Is the optimiza-
tion step enough to enforce these statistics? Fifteen years later, Gatys et al. [19]
proposed a texture synthesis method based on Convolutional Neural Networks
(CNN) which can be seen as an extension of Portilla and Simoncelli’s work,
where the set of statistics used is much larger and unknown; also, the optimiza-
tion is performed by the back propagation method.

2.4 Texture synthesis using CNN

It is hard to define metrics to determine if two textures are similar or not ac-
cording to human taste. Julesz’ conjecture that humans cannot distinguish two
textures with same second order statistics was invalidated. Yet this does not
rule out a more general hypothesis, according to which there is a set of low-level
filters such that if two textures respect the same statistics for these filters, they
are indistinguishable. Portilla and Simoncelli’s approach [48] and Zhu, Wu, and
Mumford’s FRAME (Filters, Random field, And Maximum Entropy) [67] can
be seen as fixing a set of hand-picked filters and synthesing new textures by en-
forcing the response to the filters to have similar statistics. The set of filters is
chosen to match human expectations about textures. However determining the

15

exact set of filters equivalent to human vision is very hard, and both approaches
use only a subset of them. Portilla and Simoncelli achieve similar statistics by
iterating specific projections, starting from white noise, while FRAME achieves
that with a Gibbs Sampler and some simplifications (quantizing the image in-
tensities, etc). Recently, Convolutional Neural Networks (CNNs) have given a
breath of fresh air to these approaches. CNNs are compositions of layers of con-
volutions, non-linearities and pooling. In the past few years, CNNs have been
successfully applied in a wide variety of domains, in particular in image related
tasks. Arguably, the win by a large margin of CNNs [33] in the 2012 ILSVRC
challenge [52], an image classification challenge, helped spark interest of the
global community to these methods. We refer the reader to the corresponding
literature for more details on the working of CNNs.

By taking a fully trained CNN on some visual classification task, and re-
stricting to lower layers, one gets a set of low level filters which can directly
be used for synthesizing texture, as shown in several works. The topic is quite
active recently, and the question “how to best synthesize a texture with the
help of neural networks” is far from being solved. In the following, we will focus
on two different approaches: Gatys’ texture generator [19] and DeepFrame [41].
Gatys’ approach is to minimize the distance between the Gram matrices defined
by the local filter responses of the network layers, while DeepFrame generates
textures by sampling from an exponential model. The use of CNNs by these new
approaches solves the issues of their ancestors: first the filters do not need to
be handpicked anymore, they are encoded directly by the CNN. A pre-trained
CNN successful on some image-related tasks can be selected for the texture gen-
eration. The choice of the CNN and whether it is pre-trained or the weights are
random, affect the result. Second, the architecture of Neural Networks eases the
generation process. The statistics of all the filters can be handled at the same
time, via back-propagation for example. DeepFrame needs no quantization, un-
like its predecessor, and synthesizes textures at a faster speed. Because the
filter responses at a given Neural Network layer also encode the image content,
texture transfer – also named style transfer – can be achieved by applying the
statistics of the filter responses of a source image to a target image while keep-
ing overall the filter responses similar [20]. While initially both Gatys’ texture
generator and DeepFrame used the VGG network [56] trained on ImageNet [12],
more recent work obtained good results with networks with random weights [59]
or by integrating the network training with the generation process [64].

We now take a closer look at Gatys’ texture generator and at DeepFrame.
Gatys’ texture model is a generalization of Julesz’ model. It postulates that tex-
tures are described by the correlations between the neural network activations
(features). Thus, by starting from random noise and imposing the correlations
between the features to be the same as for a given input texture, one should get
a new sample of this texture.

More precisely, Gatys’s texture generator seeks to minimize the cost

E =
∑
l

wl||Gl − T l||2F

16

where ||.||F is the Frobenius norm, wl are weights and Gl, T l are the Gram
matrices, respectively for the image and the target texture, of the feature maps
of a pretrained neural network at a layer l. In [19], a custom 19-layer VGG
network was used where max pooling was replaced by average pooling and the
network weights were rescaled. Let Nl be the number of feature maps at layer
l (this usually corresponds to the number of “channels”), and Ml the size of
each feature map at layer l (Ml ×Nl is the number of outputs of layer l). If we
denote by F lij , i ∈ Nl, j ∈Ml, the j-th output with the i-th feature map at layer
l, then (

Gl
)
ij

=
1

Ml

∑
k∈Ml

F likF
l
jk.

The texture generator minimizes the cost via backpropagation in the network,
and thus falls into a local minimum. Starting from white noise, several thousand
iterations can be needed to reach visual convergence. While in [19] the features
were extracted from VGG [56], a Deep Convolutional Neural Network trained
on image classification tasks, in [59] it is noted that taking a pre-trained network
is not necessary and a network with random weights can give satisfying results.
The minimization of E is done with L-BFGS-B [65] and the bounds are set to
the minima and maxima of the source texture. After convergence, the histogram
of the source is enforced.

To generate the results in this article, we made a few changes compared
to [19]. The 19-layer VGG network used in [19] pads the outputs at every
convolution layer with zeros on each layer (to have the layer outputs be the
same size as the layer inputs). That, plus the fact that pixels on the border are
“seen” by fewer features than the pixels in the center, means that all pixels on
the image are not imposed the same distribution. If we take the same layers
than in [19] (conv1_1, pool1, pool2, pool3, pool4) the top layer’s outputs
(pool4) depend each on a 124× 124 area of the source. Thus 123 pixels should
be removed on each border in order to have all remaining pixels seen by the same
number of features. Removing 123 pixels on each border is not sufficient however
to get the same constraints on the border and the center since the neighbouring
pixels affect the features, and those neighbouring pixels are not affected by
the same features. Thus to generate the results in this article, we decided to
both remove the padding and generate bigger images – 256 pixels more on each
border – which we then crop. The impact of this change can be see on Figure 5.
Other than that, we took the same parameters. In [2] the method solves the
same problem by removing the network padding and enforcing periodicity. With
the default network and parameters of Gatys’ texture generator, except for the
boundaries, a pixel is seen by 37504 filters. In Gatys’ method, textures are
only described by the Gram matrices. The number of elements in the Gram
matrices totals 352256, 176640 if we remove the redundant values (the matrices
are symmetric). This number of parameters doesn’t depend on the image size,
and once the Gram matrices of the source computed, the output texture can be
any size.

To fix some of the shortcomings of Gatys’ texture generator [19], several

17

input no padding + crop no padding padding

Figure 5: This figure shows the impact of the padding in the neural network.
The second image shows the result of a 1024× 1024 generated texture without
the network padding, cropped to 512× 512, while the figures on the right show
512 × 512 sized generated results without or with padding. The same random
initialization was used for all three results (and cropped for the last two results).
The differences are particularly visible on the border of the pictures, since it’s
where each variant imposes different statistics.

works complete the objective function. The method in [39] incorporates spec-
trum constraints to significantly improve the generation of textures with low
frequency patterns. In [5] the proposed method considers spatial co-occurences
of features to help handling long-range consistency constraints. In [63] it is
noticed that the Gram matrices have several particularities that decrease the
quality of the texture obtained in several cases with instabilities, particularly
visible when generating a texture of difference size than the source. In our ex-
periments we didn’t notice such an instability problem, although we observed
some instabilities (see for example the fourth column of figure 19 and the first
column of figure 20). It is possible that the instabilities are affected by the
parameter choice. To solve the instability problem, the authors added to the
objective function a term to force the feature maps histograms to be the same as
for the source. The authors of [44] also discussed some insufficiencies of Gram
matrices in the case of style transfer, and in particular proposed to shift the
activations to avoid sparsity. To accelerate the speed of the texture generation,
the method of [58] trains for a given texture a new CNN, which outputs new
samples of the texture. The CNN is trained with the same objective function
as for Gatys’ texture generator. Once the CNN is trained, generation is fast.

DeepFrame’s texture generator samples from an exponential model. The
model is defined by the probability density function

p(I;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈Ω

wkFk(I)(x)

]
q(I),

where Fk corresponds to a filter map extracted from a CNN, Ω is the image
domain of I the image, Z(w) is a normalizing constant and where q(I) is a
reference distribution, like

q(I) =
1

(2πσ2)|Ω|/2
exp

[
− 1

2σ2
||I||2

]
.

18

In contrast, the FRAME model defined the probability density function

p(I;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈Ω

λk[Fk ∗ I(x)]

]

where the (Fk)k=1..K were kernels, such as Gabor filters, or Difference of Gaus-
sian filters, and λk was a discretization function with finite number of possible
outputs.

In a first phase, the DeepFrame parameters w = (wk) are tuned for the
source texture, then in a second phase new samples of the texture are generated
via Langevin dynamics. While in [41] a pre-trained network is used, in the
method of [64] its own network is trained on the source.

While both Gatys’ texture generator and DeepFrame have a fixed texture
model used to generate new samples, for which they learn parameters, a third
successful CNN method to synthesize texture learns directly its model: in [25]
a generative CNN is trained to synthesize new images from one or several sam-
ples of a source. The training is based on the adversarial model: a discriminator
tries to distinguish the fake generated samples from true ones, while a gener-
ator creates new samples. Spatial invariance assumptions are encoded in the
networks, but else, the texture model is in some sense learned by the two net-
works. This method can still be considered as statistics-based method, because
in some sense the discriminator checks the statistics of the texture are correct.
To generate samples with this method (“SGAN” for Spatial Generative Ad-
versarial Networks), we took the default network parameters, and applied the
source histogram. We stopped after a few hundred epochs. The outputs suffer
from a sort of noise pattern, which changes after every epoch. When the noise
pattern was too important, we decided to select among the last twenty epochs
the generator’s result with the less noise. SGAN is a recent method, and there
are certainly ways to better select the parameters and reduce this noise, but
this goes beyond our goals here.

3 Patch re-arrangement methods

In contrast to the statistics-based methods, the patch re-arrangement methods
do not attempt to characterize textures by a statistical model. Spanning from
the groundbreaking work by Efros and Leung [13], this family of algorithms
consists of clever heuristics to re-arrange parts of the sample texture in a random
way in order to create a new texture. By copying directly from the sample image,
these methods often are able to keep complex structures from the input. By the
same token, the process is frequently limited to copying and the results show
little innovation relative to the sample. We will illustrate the family here by the
original algorithm Efros and Leung [13] and a further extension by Efros and
Freeman [14] which incorporate more recent techniques.

19

input Gatys DeepFrame SGAN

input Gatys DeepFrame SGAN

Figure 6: Comparison between Gatys’ texture generator [19], DeepFrame [41]
and SGAN [25]. For all three methods, we used the default parameters, except
that in the case of Gatys we used the method we described above where we
remove the network padding and crop the result and in case of DeepFrame and
SGAN, we specified the result’s histogram on the source histogram. Overall,
SGAN looks the best when looking from far, but when zoomed in, Gatys seems
to respect the best the local structures.

3.1 The Efros and Leung algorithm

In his foundational paper of information theory [54], Claude E. Shannon pro-
posed to approximate the information contents of natural languages by the
entropy of generative stochastic processes. He used a Markov chain to generate
English text sequentially, letter by letter. Given a piece of already generated
text, the next letter is sampled from the probability distribution of English text
conditioned to the previous n letters. The following sequence was generated by
Shannon using a third-order model:

in no ist lat whey cratict froure birs grocid pondenome of demons-
tures of the reptagin is regoactiona of cre

Although very few words are real English words, this simple model produces
surprisingly good English “textures”. Inspired by Shannon’s method, Efros and
Leung [13] proposed to adapt the same ideas for image texture synthesis.

Efros and Leung in [13] synthesize a new texture image by considering that
a pixel value depends on the values of its neighbouring pixels. The method is
illustrated in Figure 7 and works as follows. For a given input texture, a new
image is synthesized sequentially, pixel by pixel. For a pixel p being synthesized,
the algorithm finds all the neighbourhoods in the input image that are similar
to the neighbourhood of p up to a patch distance tolerance. Then one of these

20

input

(1) (2)

output

Figure 7: Overview of the Efros and Leung algorithm [13]. Given a texture im-
age (left) a new image (right) is being synthesized a pixel at a time. For a pixel
p (red point in the output) being synthesized the method finds all neighbour-
hoods in the left image that match the neighbourhood of p (dashed squares) and
then chooses randomly one of the neighbourhoods (yellow square) and assigns
its central pixel value to p.

input

output

input

output

Figure 8: Synthesis results of the Efros and Leung method [13]. Left: the exam-
ple shows the garbage growing effect. Right: the example shows the strength of
this method to synthesize macrotextures. The patch size used for both synthesis
is n = 40.

neighbourhoods is randomly chosen and its central pixel value is affected to the
pixel p. The neighbourhood of p is a square patch centered in p but only the
known pixels (coming from the seed or already synthetized) of this patch are
considered when comparing to the neighbourhoods of the input. Denoting the
neighbourhood of p by N (p), the comparison is made using a Gaussian-weighted
distance defined as

d
(
N (p),N (p′)

)
=

1∑
i∈N0

Gσ(i)

∑
i∈N0

(
u1(p′ + i)− u2(p+ i)

)2

Gσ(i), (4)

where p and p′ are two pixels taken from two images u1 and u2 respectively, Gσ
is a Gaussian kernel with standard deviation σ and N0 is an n×n square patch
centered in the origin.

In general the visual results are very impressive, especially for structured

21

Figure 9: From left to right: texture sample, position map, synthesized image
and synthesis map. The synthesis map shows for each synthesized patch its
initial position in the texture sample. It allows then to identify exactly the
verbatim copy regions (they correspond to continuous color areas of the map).
This method reveals the verbatim copies of the input in the generated texture
and the repetitions (garbage).

textures. Nevertheless this algorithm suffers from two important drawbacks:
verbatim copies of the input and garbage growing (the algorithm starts repro-
ducing iteratively one part of the example and neglects the rest). Figure 8 shows
two synthesis examples. The first synthesis result illustrates a failure case. In
particular one can observe the effect of garbage growing, which reproduces inco-
herently the right side of the wood sample texture. The second example shows
the strength of this method when it comes to synthesize textures with conspic-
uous patterns as in this case the brick patterns. To illustrate the verbatim-copy
regions, position and synthesis maps are used to visualize from which regions
of the input texture each synthetized pixel comes from. A synthesis and the
corresponding map are shown in Figure 9 (obtained with the online demo [1]).
Large continuous zones are identified in the synthesis maps which corresponds
to the verbatim copies produced by the method. This representation also shows
that the synthesized image is indeed a re-arrangement of pieces of the input
sample.

Increasing the patch size n results in increasing the verbatim copied regions.
However if the patch size is too small the local aspect of this method fails in
recovering the global configuration of the input texture in particular for macro-
textures. A second parameter of the method is the tolerance parameter ε which
is used to select the most similar patches in the input image. Large tolerance
values increase the garbage growing effect.

The Efros and Leung method also suffers from its high complexity. Several
optimizations have been proposed to accelerate this algorithm. Among them
Wei and Levoy [62] managed to fix the shape and size of the learning patch and
Ashikhmin [3] proposed to extend existing patches whenever possible instead
of searching in the entire sample texture. The following section describes a
particularly important extension of the method.

22

3.2 The Efros and Freeman algorithm

Efros and Freeman’s method [14] is an extension of Efros and Leung’s. It is
based on the same principle where the pixel values are conditioned to their
neighbourhood values. Efros and Freeman proposed to generate a new image
sequentially, patch by patch (instead of pixel by pixel) in a raster scan order
as illustrated in Figure 10. At each step a patch that is only partially defined
on a region called overlap region is completed. This overlap region is of width
wo. This is the patch under construction. To do so a patch of the input image
among those who match the patch under construction on its overlap region is
randomly selected (patch selection step). An optimal boundary cut between
the chosen patch (Pin) and the one under construction (Pold) is then computed
across the overlap region (stitching step). This optimal boundary cut is used
to construct a new patch (Pnew) by blending the (Pin) and (Pold) along the
cut. There are three possible overlap regions: vertical overlap for the first row,
horizontal overlap for the first column, and L-shaped overlap everywhere else
(Figure 10).

In the patch selection step, to select a patch Pin of an input image u one
computes the square distance between the overlap region of the patch Pold and
the corresponding regions of all the patches of u. The minimal distance dmin

is determined and Pin is randomly picked among all patches whose distance to
Pold is lower than (1 + ε)dmin where ε is the tolerance parameter. A patch of
u is represented by the position of its top-left corner (m,n) ∈ {0, . . . ,M0 −
wp} × {0, . . . , N0 − wp}, where Mo ×No is the size of u. The squared distance
image D contains at each position (m,n) the distance between Pold and the
patch from u who’s top-left corner is (m,n) according to some binary weight Q
that equals one in the overlap region and zero otherwise. More precisely for all
(m,n) ∈ {0, . . . ,M0 − wp} × {0, . . . , N0 − wP }, one has

D(m,n) =

wp−1∑
i,j=0

Q(i, j)(Pold(i, j)− u(m+ i, n+ j))2. (5)

The patch Pin of u having coordinates (m,n) is similar to the partially
defined patch Pold on their overlap region. To get the final patch Pnew one
must combine the patches Pold and Pin. Denoting Q the binary weight for the
overlap regions as in (5), then, for any binary image M such that 0 ≤M(i, j) ≤
Q(i, j), (i, j) ∈ {1, . . . , wp}2, P can be defined as the combination

Pnew = MPold + (1−M)Pin.

The main contribution of Efros and Freeman [14] is to look for a binary shape M
where the transition between Pold and Pnew along the boundary of the shape is
minimal. For simplicity, and to be able to use linear programming, the authors
do not allow for any shape, but only for the ones whose boundaries are simple
forward paths from one end to the other of the overlap region. This results
in two pieces of image being sewn together along some general boundary path,
hence the algorithm’s name “quilting”.

23

Vertical overlap

Iteration 10

Horizontal overlap

Iteration 115

L-shape overlap

Iteration 239

Figure 10: Three different iterations of the synthesis process are shown. At each
iteration a patch is being synthesized. This patch is represented by the pink
square in the three iterations shown. From left to right the three overlap cases
are represented: vertical, horizontal and L-shape.

This method yields very impressive visual results, in particular for highly
structured textures. In terms of speed the gain is truly significant with respect
to the methods which synthesize an image pixel by pixel. The patch size being
larger, the risk of garbage growing is reduced compared to the Efros-Leung al-
gorithm. Nevertheless the risk of verbatim copies remains and is even amplified.
Moreover, the respect of the global statistics of the input is not guaranteed and
this is quite visible when the input texture is not stationary (for example if there
is a change of illumination across the image). Figure 11 shows two synthesis ex-
amples. The first one (left) shows an excellent synthesis result where the strong
structures of the input are perfectly recovered. The second one (right) puts in
evidence the verbatim copy of parts of the input and the garbage growing effect.
To illustrate this the synthesis map of the second example is shown in Figure 12.

As in Efros and Leung’s method the influence of the parameters n and ε is
the same. A third parameter, the overlap size wo is used. Increasing this value
tends to increase the verbatim copies of large regions. However if this value is
too small then garbage growing increases. It is satisfactory to consider a value
wo = 0.25.

4 Hybrid methods

The two main approaches to texture synthesis are the statistics-based methods
and the patch re-arrangement methods. In the first class, a texture is char-
acterized by a statistical signature; then, a random sampling conditioned to
this signature produces genuinely different texture images. Nevertheless, these
methods often fail for macrotextures. The second class boils down to a clever
“copy-paste” procedure, which stitches together verbatim copies of large regions
of the example. A third kind of hybrid methods combines ideas from both ap-
proaches, leading to synthesized textures that are everywhere different from the

24

input

output

input

output

Figure 11: Synthesis results of the Efros and Freeman method [14]. It works
for microtextures but risks losing the example’s global statistics. It works for
macrotextures too, but risks verbatim copys. Two examples are shown: a suc-
cess (left) and a failure (right). The parameters used for are n = 80 and o = n/4.

Figure 12: From left to right: texture sample, position map, synthesized image
and synthesis map. The synthesis map shows for each synthesized patch its
initial position in the texture sample. It allows then to identify exactly the
verbatim copy regions (they correspond to continuous color areas of the map)
and the repetitions (corresponding to repeated continuous patches of the same
color).

original but with better quality than the purely statistics-based methods. We
will describe one such method, its multiscale extension and the explicit combi-
nation of complementary algorithms.

4.1 Local Gaussian models for texture synthesis

Raad et al.’s method [49] uses locally Gaussian (LG) texture model in the patch
space. Each texture patch is modeled by a multivariate Gaussian distribution
learned from its similar patches. Inspired by [14], the idea of searching for
patches to stitch together in the original sample is maintained. However, instead
of using the exact patch taken in the input texture, the stitched patch is sampled
from its Gaussian model. Locally Gaussian patch models have been proved very
useful in image denoising [8]. This approach permits to maintain the coherence
between patches with respect to the input sample, while creating new patches
that do not exist in the sample texture but are still perceptually equivalent to
it.

The multivariate Gaussian models involved are defined by their mean vector

25

µ(x,y) and their covariance matrix Σ(x,y). For a given patch p
(x,y)
u , of size n× n

pixels, these parameters are estimated from the set of the m nearest patches

U = {p(xi,yi)
u , i = 1, . . . ,m} as defined

µ(x,y) = 1
m

∑m
i=1 p

(xi,yi)
u

Σ(x,y) = 1
m−1

∑m
i=1

(
p

(xi,yi)
u − µ(x,y)

)(
p

(xi,yi)
u − µ(x,y)

)t
.

(6)

The sampled vector p̃
(x,y)
u is defined as

p̃(x,y)
u =

1√
m− 1

m∑
i=1

ai(p
(xi,yi)
u − µ(x,y)) + µ(x,y), ai ∼ N (0, 1), i = 1, . . . ,m

(7)
and it follows the distribution N (µ(x,y),Σ(x,y)). These models have reasonable
variances, confirming that effectively the patches simulated have an acceptable
degree of innovation [49].

The new texture image is synthesized by stitching together patches sampled
from multivariate Gaussian distributions (7) in the input sample patch space.
The method is iterative: the patches are synthesized in a raster-scan order
(top to bottom and left to right). The goal of each iteration is to generate a

new patch p
(x,y)
ũ that is partially defined on a region called the overlap area (see

Figure 10). The known part of the patch defines the set of patches U from which

its Gaussian model is inferred. The generated patch p
(x,y)
ũ is then sampled as

defined in (7). The last step consists in stitching the patch into the output
texture using the quilting method of [14].

This synthesis algorithm generates a texture that is perceptually equivalent
to the sample texture yet not composed of patches existing in the input texture.
Thus, this method reduces some of the drawbacks of the statistics-based and
the patch-based methods. Indeed the method yields satisfying results for micro-
and macro-textures, and reduces the verbatim copies of the input. However,
this methods remains local and is (like all patch based approaches) not forced
to respect the global statistics of the texture sample.

The algorithm remains dependent on the choice of the patch size n and of the
number of nearest neighbours m as illustrated in Figure 14. These values may
have to be adjusted for each texture sample. As for the overlap size a convenient
value is wo = n/2. If this value is too small then the region used to infer the
Gaussian models is not enough. The patches used to infer the model can be very
different on a high portion of the patch. The algorithm has a low complexity,
compared for instance with classic patch-based denoising algorithms [36, 10].
An alternative to reduce the dependency of the method to the patch size is to
work in a multiscale approach.

4.2 Multiscale texture synthesis methods

Most real textures are organized at multiple scales: the global structure is re-
vealed at coarse scales but important detail are present at finer ones. As we

26

input

output

input

output

Figure 13: Synthesis results of the locally Gaussian method [49]. It works well
for macrotextures. As one can observe in both examples the result is slightly
blurry, a characteristics of the Gaussian model. The parameters used for are
n = 40, m = 30 and wo = n/2.

have seen, the results of patch-based methods depend strongly on the patch size.
Small patch sizes may capture the finer details of the input but the resulting tex-
ture will lack global coherence. On the other hand, using large patches will main-
tain the global structures at the risk of a “copy-paste” effect. Furthermore, with
large patches it becomes impossible to model the patch variability due to the
lack of sufficient samples. This is apparent in the examples of Figure 13, where
modeling patches as multivariate Gaussian vectors leads to a slightly blurry
texture. A natural solution is to use a multiscale approach [34, 57, 37, 24, 49]
using several patch sizes for a single texture synthesis, capturing different levels
of details.

This section illustrates the ideas and difficulties of a multi-scale extension
using as example the local Gaussian models for texture synthesis presented in
the previous section [49]. The Multi-Scale Locally Gaussian (MSLG) method
works at K scales and can be summarized in a few sentences. The synthesis
begins at the coarsest scale (k = K−1) using the local Gaussian method where
the quilting step is replaced by a simple average of the overlapping patches. For
the remaining scales (k = K − 2, . . . , 0), a synthesis is performed by using the
result of the previous scale (k + 1) and the sample image at the corresponding
resolution. At each scale the synthesis is done patch by patch in a raster-scan
order. Each new patch, added to the synthesized image, overlaps part of the
previously synthesized patch and it is the combination of a low resolution patch
and a high resolution one sampled from a multivariate Gaussian distribution.
The Gaussian distribution of the high frequencies of a given patch is estimated
from the high frequencies of its m nearest neighbours in the corresponding scale
input image. The synthesis result of the finer scale is the desired output image.

Let us denote the sample texture by u and uk, k = 1, . . . ,K − 1 are the
zoomed out versions by a factor 2k, k = 1, . . . ,K − 1. The synthesis result at
each scale is denoted by wk, k = 1, . . . ,K − 1 and w is the synthesis result
returned by the multiscale algorithm. An additional image vk is needed at each
scale, corresponding to a low resolution version of wk obtained by zooming in

27

input m = 10, n = 20 m = 10, n = 30

m = 20, n = 10 m = 20, n = 20 m = 20, n = 30

m = 30, n = 10 m = 30, n = 20 m = 30, n = 30

Figure 14: Texture synthesis result for the left top corner texture image. We
show the results obtained for different values of m (the number of similar
patches) and n (the side patch size). From left to right n = 10, 20, 30. From top
to bottom, the number of nearest neighbours is m = 10, 20, 30. All the results
are obtained for an overlap of a half patch size o = n/2.

28

input

output

input

output

Figure 15: Synthesis results of the multi-scale locally Gaussian method [49].
Both examples show that the details of different scales are correctly synthesized
when using a patch size n = 20. However the results are slightly blurred with
respect to the input. The number of scales is K = 3 for the first example (left)
and K = 2 for the second example (right).

wk+1. The patch sizes go from n × n to 2K−1n × 2K−1n. To estimate the

parameters of the Gaussian distribution of the patch p
(x′,y′)
wk being processed,

the set U of m nearest patches in uk is considered. The m nearest neighbours
in uk to the current patch are those minimizing the L2 distance restricted to
the overlap area:

d(p(x,y)
uk

, p(x′,y′)
wk

)2 =
1

|O|
∑

(i,j)∈O

(uk(x+ i, y + j)− wk(x′ + i, y′ + j))2

+
1

n2

n−1∑
i,j=0

(Luk(x+ i, y + j)− vk(x′ + i, y′ + j))2, (8)

where Luk denotes the low resolution of the image uk, Luk = uk ∗ Gσ and
vK−1 = uK−1 ∗ Gσ. In (8), the overlap area is denoted as O and the size of

patch overlap is fixed to n/2. On the set U = {p(xi,yi)
uk , i = 1, . . . ,m} only

the high frequency of the patches (p
(xi,yi)
uk − p(xi,yi)

uk∗Gσ) is considered to infer the

multivariate Gaussian distribution N (µH ,ΣH). The patch p
(x,y)
wk is synthesized

as the combination of a low resolution patch p
(x,y)
vk yield from the previous scale

with a high resolution one p̃(x,y) ∼ N (µH ,ΣH), thus p
(x,y)
wk = p

(x,y)
vk + p̃(x,y). For

more details please refer to [49].
Figure 15 shows two synthesis examples. In both cases the result is satis-

fyingly recovering the details of the different scales for reasonable values of the
patch size n = 20. However one can notice that the results are blurry with
respect to the input and this effect is increased with respect to the single scale
approach.

4.3 Combination of methods

A smart combination of complementary methods may keep the advantages of
each one. We will illustrate the methodology by combining a multi-scale ap-
proach with three other methods:

29

input

MSLG MSLG+EF

Figure 16: Synthesis results of the combination of the Multi-Scale Locally Gaus-
sian method with the Efros and Freeman (MSLG+EF).

MSLG+EF The Multi-Scale Locally Gaussian method combined with the
Efros and Freeman method.

MSLG+PS The Multi-Scale Locally Gaussian method combined with the Por-
tilla and Simoncelli method.

MSLG+Gatys The Multi-Scale Locally Gaussian method combined with the
Gatys et al. method.

The combination of the Multi-Scale Locally Gaussian method with the Efros
and Freeman method (MSLG+EF) consists of two steps. The first step synthe-
sizes the given input u with the Multi-Scale Locally Gaussian method generating
a new texture image that we denote umslg. The second step consists in apply-
ing the Efros and Freeman algorithm to the given input sample, initializing the
output image that we denote uef with the image umslg. The method is basically
the same as the one described in section 3.2. The only step of the algorithm
that is modified is the patch selection step. In the method described in [14] at
each iteration the added patch was chosen among those (in the input sample)
whose overlap region was similar to the one of the patch under construction.
When combining the methods, instead of only comparing the overlap areas, the
entire patches are compared. Initializing the output with a first synthesis umslg

enables the method to use the whole patch under construction to find a candi-
date in the input sample u. The candidate patch taken from u is then quilted
in uef at the corresponding position with the same stitching step as in [14].
This combination allows to recover the lost resolution of the MSLG synthesis
as illustrated in Figure 16. However it is not capable of masking the garbage
growing effects as effectively MSLG+PS combination does.

The combination of the Multi-Scale Locally Gaussian method with the Por-
tilla and Simoncelli method (MSLG+PS) consists of two steps. In the first step,
given the input image u a new texture umslg is generated using MSLG. The sec-
ond step uses PS where the initialization “noise image” is replaced by umslg

generating the output image that we denote ups. As explained in section 2.3,

30

input

MSLG MSLG+PS

Figure 17: Synthesis results of the combination of the Multi-Scale Locally Gaus-
sian method with the Portilla and Simoncelli methods (MSLG+PS).

input

MSLG MSLG+Gatys

Figure 18: Synthesis results of the combination of the Multi-Scale Locally Gaus-
sian method with Gatys’ texture generator (MSLG+Gatys).

the statistics to impose are learnt on the input u. What follows is a synthesis
step where the output image is projected on the subspaces of constraints. There
exist several local solutions to this projection step. When initializing PS with
the result of MSLG, the initialization image is generally quite close to the images
living in the sub-space of the whole set of constraints. Thus the result obtained
is improved compared to PS images starting from a random noise image. Nat-
urally fixing the initialization of the PS algorithm removes the randomness of
the generated texture. But this is not the case since the initialization is itself
random as it is generated from another random process. This combination is
illustrated in Figure 17.

The combination of the Multi-Scale Locally Gaussian method with Gatys’
texture generator (MSLG+Gatys) is very similar to its combination with the
Portilla and Simoncelli method. The texture generator is initialized with the
result of MSLG umslg, and the statistics of the target image are enforced via
several iterations of back-propagation generating the output image denoted as
ugatys. This combination is illustrated in Figure 18.

31

5 Experiments

The first part of this section compares the exemplar-based texture synthesis
methods described before on a set of standard textures. These results illustrate
the advantages and limitations of each one. Then, the second part attempts at
the synthesis of real life and more complex textured images, revealing the short-
comings still present in all the methods when confronted with such a demanding
task.

5.1 Comparative evaluation

We will compare the results of the following texture synthesis methods: Ran-
dom Phase Noise (RPN) [60, 17], Heeger and Bergen (HB) [23], Portilla and
Simoncelli (PS) [48], Gatys (Gatys) [19], SGAN [25], Efros and Leung (EL) [13],
Efros and Freeman (EF) [14] and MSLG [49]. Figures 19 and 20 show results
for various texture samples, one per column; in each figure, the first row shows
the sample image and the following rows corresponds, as indicated, to one of the
algorithms. We focus on these original texture synthesis algorithms, and do not
show the numerous variants. For several of our sample textures, these variants
could get better results, but we think that showing the results of the original
algorithms better underlines their intrinsic strengths and weaknesses. Similarly
we won’t present the results of all the combinations of the different methods.

The second to sixth rows correspond to statistics-based methods described
in Section 2, namely Random Phase Noise, Heeger-Bergen, Portilla-Simoncellli,
Gatys and SGAN. Early statistics-based methods: Heeger and Bergen (1995),
Portilla and Simoncelli (2000) and Random Phase Noise (1991) yield good re-
sults for microtextures, i.e. textures with no conspicuous structures, as can be
seen in the first row of Figure 19 and, in a lesser extent, the second and third
row. However, for textures with local structures, the results are blurry and
unsatisfying. Among these three methods, the results obtained by Portilla and
Simoncelli are by far the most remarkable. These results contain recognizable
configurations from the sample. This can be observed for the last texture ex-
ample in Figure 19 and the first two examples in Figure 20. Notice that the
Heeger and Bergen and RPN methods yield unsatisfying results for these three
examples. Clearly the global statistics considered by these methods are not
enough to characterize these highly structured textures.

The seventh and eighth rows of the figures correspond to the patch re-
arrangement methods Efros-Leung (1999) and Efros-Freeman (2001) described
in Sections 3. The first three textures in Figure 19 have no conspicuous struc-
tures but are not stationary (for example, there are small changes of illumina-
tion). The Efros and Leung method, being too local, fails to recover the global
characteristics of these textures. A similar and attenuated behavior is observed
in Efros-Freeman’s results. The methods are significantly better than their pre-
decessors in the presence of local structure, but have their specific problems.
Efros and Leung’s results for the third and fourth texture in Figure 19 show
two clear examples of garbage growing. The method has repeated a very small

32

MSLG [49]

EF [14]

EL [13]

SGAN [25]

Gatys [19]

PS [48]

HB [23]

RPN [17]

input

Figure 19: Comparison of texture synthesis methods. From top to bottom:
input sample, Random Phase Noise (RPN) [17], Heeger and Bergen (HB) [23],
Portilla and Simoncelli (PS) [48], Gatys (Gatys) [19], SGAN [25], Efros and
Leung (EL) [13], Efros and Freeman (EF) [14] and MSLG [49].

33

MSLG [49]

EF [14]

EL [13]

SGAN [25]

Gatys [19]

PS [48]

HB [23]

RPN [17]

input

Figure 20: Comparison of texture synthesis methods. From top to bottom:
input sample, Random Phase Noise (RPN) [17], Heeger and Bergen (HB) [23],
Portilla and Simoncelli (PS) [48], Gatys (Gatys) [19], SGAN [25], Efros and
Leung (EL) [13], Efros and Freeman (EF) [14] and MSLG [49].

34

part of the input in an inconsistent way creating “garbage”. In general this
phenomenon is more evident in Efros and Leung’s results, compared to those
of Efros and Freeman. The results of Efros-Leung and Efros-Freeman for the
first texture in Figure 20 show that the global organization is sometimes missed,
mostly due to the fact that these methods work at a single scale. The second
texture example in Figure 20 yields impressive results in the case of Efros-
Freeman’s method. Nevertheless, looking carefully one can notice the verbatim
copies of the piece of chalks in the input image. On the second texture of Fig-
ure 20, discontinuities can be observed with both methods. The hybrid method
MSLG (2016) described in Section 4, whose results are on the ninth row, faces
the same issues for the three first examples in Figure 19. This is less visible
though, since the Gaussian models tend to smooth slightly the result. However,
the original granularity of the input sample is lost in MSLG. As mentioned in
Section 3, Efros and Leung’s and Efros and Freeman’s results depend on the
patch size, while the multi-scale approach (MSLG) is more robust to that pa-
rameter. When the former two methods fail to preserve global organization,
MSLG, working at multiple scales, manages to preserve this organization. In
the second texture example in Figure 20, MSLG avoids the verbatim copy since
the patches are being sampled from their Gaussian model and therefore are dif-
ferent from their original patches. Nevertheless, the Gaussian model strongly
smooths the output. The synthesis of the flower texture (Figure 20 third row)
is very satisfying for the three methods. Finally, the pumpkin texture shows a
clear example of the verbatim copy effect in the Efros-Leung and Efros-Freeman
methods.

The recent CNN based methods, which are statistics-based method, as dis-
cussed in Section 2.4, show significant improvement over their predecessors.
Gatys (2015) is the best statistics-based method at respecting the fine details
for all the textures of Figures 19 and 20, which can be well noticed with a zoom-
in. However, some low frequencies or structure organizations are missed, as seen
on the fourth texture of Figure 19, and some contrast instabilities can be no-
ticed, for example on the first texture of Figure 20. As discussed in Section 2.4,
some variants were proposed to fix these problems. SGAN (2016), on the other
hand, better respects the low frequencies, and the results often look better than
Gatys when zoomed-out. However on the fine scale, the results are incomplete
and noisy, as seen on all the textures of the Figures 19 and 20. SGAN fails
to generate correctly the first texture of Figure 19, possibly because this tex-
ture has no structure and is a microtexture. It is likely that better results can
be obtained by tuning the parameters, but as said in Section 2.4, the default
parameters were used.

Among all these methods, the CNN based methods are the most expensive in
computational time. Pixel based methods, like Efros-Leung, are more expensive
than patch based methods like Efros-Freeman or MSLG. The speed of statistics-
based methods depends on how global the optimization is, and on the number
of iterations needed. Portilla-Simoncelli’s and Heeger-Bergen’s speeds are com-
parable to patch based methods, while Random Phase Noise is the cheapest of
the methods reviewed here.

35

These comparative evaluations show the strengths and weaknesses of the
different original methods described in this survey. As said previously, some
variants of these methods can get better results on some pictures. For example,
a better result for the fourth texture of the Figure 19 can be seen on Figure 18.
For this texture, first generating with MSLG, then refining with Gatys’ texture
generator, enables to combine the best of both algorithms: The fabric elements
are well aligned, and look good at a fine scale. Overall, over the last three
decades, tremendous progress was made to generate convincing new texture
samples from a small and stationary texture sample. However one could argue
that the samples used in this comparison are toy examples. Indeed, except for
the third texture of Figure 19, and fourth texture of Figure 20, the samples
do not suffer much of illumination changes or perspective, and are essentially
stationary. Nevertheless, most textures are not stationary. Think for example of
a wood texture. Which leads us to now wonder whether the presented algorithms
get acceptable results on these complex scenarios.

5.2 Getting out of toy examples

The previous examples present some quite impressive texture synthesis results
by several algorithms. The texture synthesis problem seems to be almost solved
for “academic” textures. Still, those results were obtained for pictures of rel-
atively small size and taken in almost ideal conditions, in order to get almost
stationary textures. In this section, we discuss the situation for more complex
textures: When the same methods are applied to sample images of real and
non-stationary textures, where long-range structure is present as well as vary-
ing detail at every scale. Figures 21 and 22 show some realistic examples of real
world images that nobody would hesitate calling textures. Nevertheless on sec-
ond thoughts they do have a complex, non-stationary structures, because every
large enough image has it. But these are precisely the examples that need being
emulated! In this endeavor, we can relax the requirement that the synthesis
must make a larger image. Let’s just ask if a method is able to reproduce a
perceptually similar texture at the very same size.

Each of textures in Figures 21 and 22 show different salient sub-textures
within the same image. Since the methods in Section 5.1 usually assume that
the texture is stationary, it is not completely fair to use these methods on
these samples. Several works have investigated ways to handle these complex
cases [51, 4, 32, 40]. In this section we show the results of the state of the art
algorithms presented in this paper, and will show that they are still far from
emulating to real world textures, even without the requirement of building a
larger texture patch from the sample.

Figures 23 and 24 show the results of the presented statistics-based, patch re-
arrangement and hybrid methods on some of these more complex examples. The
best results are Gatys’ texture generator on the second texture and MSLG+PS
and MSLG+Gatys on the first texture and fourth texture. When applying
RPN or PS to them the results obtained are often too blurry. Gatys’ texture
generator fails to catch the low frequency structures for the last two textures.

36

crop 1 crop 2

Figure 21: Two crops of different parts of a larger wood texture. The cropped
images are of size 500 × 500 pixels. Each one represents a different texture
belonging to a single “big texture”.

EF and MSLG suffer from garbage growing and verbatim copies on the first
three textures. This is true especially when the input is stationary. SGAN fails
to generate properly on the first two textures, and while the global organization
of the third and fourth pictures is good, it suffers from the noise at small scale
mentioned previously. As noticed in the previous section the MSLG results are
slightly blurry.

These results show that while some methods can get good results on some of
these challenging texture samples, no method manages to get satisfying results
for all four textures.

6 Conclusion

With the multiplication of applications in computer graphics to the entertain-
ment industry, the interest in the generation of synthetic objects with realistic
texture has grown rapidly. High budget film sets, computer games, and in
some cases digital art, spend intensive human efforts to imitate the appearance
and feel of real world items. For this reason, exemplar-based texture synthesis
has been the focus of intensive work for three decades. And as the available
computational power increased, so has the sophistication of these methods.

In the end of the last millennium, statistics-based methods, such as RPN,
Heeger-Bergen and Portilla-Simoncelli focused on a reduced set of statistics. The
results were quite satisfactory on micro-textures, but could be blurry and far
from the originals for more complex structures. Patch re-arrangement methods,
such as Efros-Leung and Efros-Freeman, managed to respect significantly bet-
ter the feel and the low level structures of these textures, but could have issues,
such as discontinuities, verbatim copy, garbage growing or simply not respecting
some essential statistics of the textures, such as the average intensity. Hybrid
methods, such as MSLG, fix some of the issues of patch re-arrangement meth-

37

crop 1 crop 2

Figure 22: Two crops of different parts of a larger stone texture. The cropped
images are of size 512 × 512 pixels. Each one represents a different texture
belonging to a single “big texture”.

ods, but still share some of their issues. Very recently, statistics-based methods
have been revisited with Convolutional Neural Networks (CNNs). CNN based
methods significantly increase the number of texture statistics involved in their
model, by a factor of 25 approximately. The results show a spectacular progress
over their predecessors, but no method is perfect yet. In this review, we pre-
sented three neural methods with different models: Gatys’ texture generator,
DeepFrame and SGAN. When zoomed-in, the outputs of Gatys’ texture gener-
ator are the best among the statistics-based methods, but miss some important
low frequency constraints of the texture when zoomed-out. Some variants aim
at fixing this shortcoming. SGAN succeeds better on several examples to re-
spect the global structure of the texture, but the details of the texture are poor.
While all the other statistics-based methods have an explicit texture model, the
SGAN model is more implicit.

Our experimental results look no doubt sometimes worse than in the original
papers, but precisely we did not select the best examples. Our examination of
the history of the method leads to the following conclusions.
- The exemplar-based texture synthesis problem is implicitly ill-posed, as it re-
quires to extrapolate a Fourier spectrum by enlarging the image given a very
small sample of it. Having very small samples may have been historically in-
teresting in computer graphics, but is no longer a technical issue, given the
available memories and computational power in all computers.
- By working on small texture examples the literature has somehow unrealisti-
cally restricted the problem. Indeed it is simply not true that textures are as
stationary as those examples suggest.
- When trying to work on larger examples, we have seen that no texture sample
is really stationary. A realistically large texture sample in fact contains smaller
patches of very different textures.
- This explains first why patch based copy-paste methods are doomed in spite
of some apparent success in some quasi-periodic texture with no conspicuous

38

EF [14]

SGAN [25]

Gatys [19]

PS [48]

RPN [17]

input

Figure 23: Synthesis results for statistical based and patch re-arrangement
methods on complex texture. They show the current limitations of all best
methods. RPN scrambles the textures. PS loses long range coherence of the
wood veins. EF’s copy paste is quite visible for all textures and incurs in garbage
growing. PS and Gatys have satisfying results on the left hand two textures,
but miss to emulate long range interactions on the wood textures. SGAN grows
periodic noise patterns. EF presents verbatim copy and garbage growing.

39

MSLG+Gatys

MSLG+PS

MSLG+EF

MSLG

input

Figure 24: Synthesis results for the hybrid methods. In columns 2) and 3),
MSLG has repetitions and garbage growing; thus all the generated results based
on the MSLG outputs keep this defect. In columns 1) and 4), MSLG respects
well the global statistics of the textures, and the combination with other meth-
ods indeed improves the result. MSLG+PS and MSLG+Gatys perform better
on these examples than MSLG+EF.

40

detail. On more involved samples, they cannot but reproduce recognizable de-
tails.
- This also explains why progress in this topic is linked to the design of methods
enforcing more and more statistical parameters. The number of statistics en-
forced by statistical models is growing fast: 710 for Portilla-Simoncelli, 176640
for the default model in Gatys’ texture generator. With some results showing
that the filters can be chosen with random weights [59], one can wonder if the
solution is not to just use the highest number of statistics possible to emulate a
texture. One may also wonder where to draw a reasonable limit between syn-
thesizing complex textures and rendering scenes containing textured objects.
- Thus, the Portilla-Simoncelli method, of enforcing a high number of statistics,
wins, but it is somewhat a Pyrrhic victory. Indeed, the more random statis-
tics we pile up, the better the exemplar-based results. But it remains to find
numerical tools applying automatically an Occam’s razor as Portilla and Simon-
celli did manually. This is still needed to realize the goal of Julesz’ program,
which was to find the minimal sufficient set of statistics rendering two textures
indistinguishable.

A The steerable decomposition

An image pyramid is a particular type of sub-band transformation [15]. It takes
an image and decomposes it in several sub-bands, generally convolving the input
image with a set of bandpass filters and sub-sampling the results. Each sub-
sampled sub-band image encodes a particular portion of the frequency spectrum,
corresponding to information occurring at a particular spatial scale. The recon-
struction of the signal is achieved by up-sampling the sub-band images, filtering
them and then combining them additively. The image pyramid is characterized
by having basis/projections functions that are translated and dilated copies of
one and another.

The steerable pyramid is one type of pyramid image decomposition. It de-
composes the image into scale and orientation sub-bands (a multiscale pyramid
is constructed and differential operators are applied to the sub-bands of the
pyramid both in one operation). The basis functions of this decomposition are
directional derivative operators of any desired order. The orientation decomposi-
tion at each level of the pyramid is steerable. Each level of the pyramid consists
of oriented basis sub-bands generated from rotated copies of a single kernel.
This property is important since it implies that the pyramid representation is
locally invariant to rotations. The filters used in the steerable decomposition
are polar-separable in the Fourier domain and can be written as follows:

L(r, θ) =

 1 if r ≤ π
4

cos (π2 log2 (4r
π)) if π

4 ≤ r ≤
π
2

π
4 ≤ r ≤

π
2 if 0

(9)

41

H(r, θ) =

 0 if r ≤ π
4

cos (π2 log2 (2r
π)) if π

4 ≤ r ≤
π
2

π
4 ≤ r ≤

π
2 if 1

(10)

Bq(r, θ) = Gq(r, θ)H(r, θ), Gq(r, θ) = αQ

∣∣∣∣cos

(
θ − πq

Q

)∣∣∣∣Q−1

(11)

L0(r, θ) = L
(r

2
, θ
)
, H0(r, θ) = H

(r
2
, θ
)
. (12)

L and H represent the low and high pass filter respectively. The steerable filters
are Bq, where Q is the number of orientations of the steerable decomposition,
K the number of scales of the pyramid, (r, θ) the polar frequency coordinates

and αQ = 2K−1 (K−1)!√
K[2(K−1)]!

. Finally L0 and B0 represent the initial low and

high pass filters.
The steerable pyramid captures some of the oriented structure of images

in a similar way this information is represented in the human visual system.
This motivates the use of this kind of decomposition (instead of the Laplacian
pyramid for instance) for texture synthesis. The steerable pyramid is a non-
orthogonal transformation thus it reduces the aliasing effects within each sub-
band. It is an over-complete transformation and it is self-inverting enabling the
reconstruction of the decomposed image by applying the same filters used to
generate the pyramid. The steerable filters are designed so that each stage has
a flat system response [55]. For all (r, θ) ∈ R× (−π, π],

H0(r, θ)2 + L0(r, θ)2 = 1

and for all (r, θ) ∈ [0, π]× (−π, π],

Q−1∑
k=0

Bq(t, θ)
2 + L(r, θ)2 = 1.

This ensures that if the input of the reconstruction algorithm is the steerable
pyramid of an image u, then the output of the reconstruction algorithm is
exactly the image u.

Acknowledgements

We thank Rafael Grompone von Gioi for valuable corrections and suggestions,
and Arthur Leclaire and Yang Lu for their feedback and for helping produce
some of the experiments.

References

[1] Cecilia Aguerrebere, Yann Gousseau, and Guillaume Tartavel. Exemplar-
based texture synthesis: the Efros-Leung algorithm. Image Processing On
Line, 2013:213–231, 2013.

42

[2] Miika Aittala, Timo Aila, and Jaakko Lehtinen. Reflectance modeling by
neural texture synthesis. ACM Transactions on Graphics, 35(4), 2016.

[3] Michael Ashikhmin. Synthesizing natural textures. In Proceedings of the
2001 symposium on Interactive 3D graphics, pages 217–226. ACM, 2001.

[4] Abdourrahmane M. Atto, Zhangyun Tan, Olivier Alata, and Maxime More-
aud. Non-stationary texture synthesis from random field modeling. In
Image Processing (ICIP), 2014 IEEE International Conference on, pages
4266–4270. IEEE, 2014.

[5] Guillaume Berger and Roland Memisevic. Incorporating long-range consis-
tency in cnn-based texture generation. In Proceedings of the International
Conference on Learning Representations (ICLR), 2017.

[6] Charles Bordenave, Yann Gousseau, and François Roueff. The dead leaves
model: a general tessellation modeling occlusion. Advances in Applied
Probability, pages 31–46, 2006.

[7] Thibaud Briand, Jonathan Vacher, Bruno Galerne, and Julien Rabin. The
Heeger & Bergen pyramid based texture synthesis algorithm. Image Pro-
cessing On Line, 4:276–299, 2014.

[8] Antoni Buades, Marc Lebrun, and Jean-Michel Morel. Implementation of
the “Non-Local Bayes” (NL-Bayes) Image Denoising Algorithm. Image
Processing On Line, 2013:1–42, 2013.

[9] Terry Caelli and Béla Julesz. Experiments in the visual perception of tex-
ture. Biol. Cybernetics, 28:167–175, 1978.

[10] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazar-
ian. Image denoising by sparse 3-D transform-domain collaborative filter-
ing. Image Processing, IEEE Transactions on, 16(8):2080–2095, 2007.

[11] Jeremy S. De Bonet. Multiresolution sampling procedure for analysis and
synthesis of texture images. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, pages 361–368. ACM
Press/Addison-Wesley Publishing Co., 1997.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
248–255. IEEE, 2009.

[13] Alexei Efros, Thomas K. Leung, et al. Texture synthesis by non-parametric
sampling. In Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, volume 2, pages 1033–1038. IEEE, 1999.

[14] Alexei A. Efros and William T. Freeman. Image quilting for texture synthe-
sis and transfer. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 341–346. ACM, 2001.

43

[15] William T. Freeman, Edward H. Adelson, et al. The design and use of
steerable filters. IEEE Transactions on Pattern analysis and machine in-
telligence, 13(9):891–906, 1991.

[16] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. Micro-texture
synthesis by phase randomization. Image Processing On Line, 2011, 2011.

[17] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. Random phase
textures: Theory and synthesis. Image Processing, IEEE Transactions on,
20(1):257–267, 2011.

[18] Bruno Galerne, Arthur Leclaire, and Lionel Moisan. Microtexture inpaint-
ing through Gaussian conditional simulation. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1204–1208. IEEE, 2016.

[19] Leon Gatys, Alexander S. Ecker, and Matthias Bethge. Texture synthesis
using convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 262–270, 2015.

[20] Leon Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2414–2423, 2016.

[21] Ulf Grenander. General Pattern Theory. Oxford University Press, 1993.

[22] Baining Guo, Harry Shum, and Ying-Qing Xu. Chaos mosaic: Fast and
memory efficient texture synthesis. Microsoft research paper MSR-TR-
2000-32, 2000.

[23] David J. Heeger and James R. Bergen. Pyramid-based texture analy-
sis/synthesis. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 229–238. ACM, 1995.

[24] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and
David H. Salesin. Image analogies. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 327–
340. ACM, 2001.

[25] Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. Texture syn-
thesis with spatial generative adversarial networks. arXiv preprint
arXiv:1611.08207, 2016.

[26] Béla Julesz. Visual pattern discrimination. Information Theory, IRE
Transactions on, 8(2):84–92, 1962.

[27] Béla Julesz. Textons, the elements of texture perception, and their inter-
actions. Nature, 290(5802):91–97, 1981.

[28] Béla Julesz. A theory of preattentive texture discrimination based on first-
order statistics of textons. Biological cybernetics, 41(2):131–138, 1981.

44

[29] Béla Julesz. Dialogues on Perception. The MIT Press, 1995.

[30] Béla Julesz, Edgar N. Gilbert, Larry A. Shepp, and Harry L. Frisch. In-
ability of humans to discriminate between visual textures that agree in
second-order statistics—revisited. Perception, 2(4):391–405, 1973.

[31] Béla Julesz, Edgar N. Gilbert, and Jonathan D. Victor. Visual discrimina-
tion of textures with identical third-order statistics. Biological Cybernetics,
31(3):137–140, 1978.

[32] Alexandre Kaspar, Boris Neubert, Dani Lischinski, Mark Pauly, and Jo-
hannes Kopf. Self tuning texture optimization. In Computer Graphics
Forum, volume 34, pages 349–359. Wiley Online Library, 2015.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[34] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture op-
timization for example-based synthesis. In ACM Transactions on Graphics
(TOG), volume 24, pages 795–802. ACM, 2005.

[35] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick.
Graphcut textures: image and video synthesis using graph cuts. In ACM
Transactions on Graphics (ToG), volume 22, pages 277–286. ACM, 2003.

[36] Marc Lebrun, Antoni Buades, and Jean-Michel Morel. A nonlocal Bayesian
image denoising algorithm. SIAM Journal on Imaging Sciences, 6(3):1665–
1688, 2013.

[37] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture synthesis.
ACM Transactions on Graphics (TOG), 24(3):777–786, 2005.

[38] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum.
Real-time texture synthesis by patch-based sampling. ACM Transactions
on Graphics (ToG), 20(3):127–150, 2001.

[39] Gang Liu, Yann Gousseau, and Gui-Song Xia. Texture synthesis through
convolutional neural networks and spectrum constraints. In 23rd Interna-
tional Conference on Pattern Recognition, ICPR 2016, Cancún, Mexico,
December 4-8, 2016, pages 3234–3239. IEEE, 2016.

[40] Yitzchak David Lockerman, Basile Sauvage, Rémi Allègre, Jean-Michel
Dischler, Julie Dorsey, and Holly E Rushmeier. Multi-scale label-map ex-
traction for texture synthesis. ACM Trans. Graph., 35(4):140–1, 2016.

[41] Yang Lu, Song-chun Zhu, and Ying Nian Wu. Learning frame models using
cnn filters. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

45

[42] Georges Matheron. Schéma booléen séquentiel de partition aléatoire.
Rapport technique N-83, Centre de Morphologie Mathématique, École des
Mines de Paris, 214, 1968.

[43] David Mumford and Agnès Desolneux. Pattern Theory: The Stochastic
Analysis of Real-World Signals. A K Peters, Ltd., 2010.

[44] Roman Novak and Yaroslav Nikulin. Improving the neural algorithm of
artistic style. arXiv preprint arXiv:1605.04603, 2016.

[45] Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics,
19(3):287–296, 1985.

[46] Gabriel Peyré. Sparse modeling of textures. Journal of Mathematical Imag-
ing and Vision, 34(1):17–31, 2009.

[47] Gabriel Peyré. Texture synthesis with grouplets. IEEE Trans. Pattern.
Anal. Mach. Intell., 4(32):733–746, 2010.

[48] Javier Portilla and Eero P. Simoncelli. A parametric texture model based
on joint statistics of complex wavelet coefficients. International Journal of
Computer Vision, 40(1):49–70, 2000.

[49] Lara Raad, Agnès Desolneux, and Jean-Michel Morel. A conditional multi-
scale locally Gaussian texture synthesis algorithm. Journal of Mathematical
Imaging and Vision, 56(2):260–279, 2016.

[50] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein
barycenter and its application to texture mixing. In Scale Space and Varia-
tional Methods in Computer Vision, volume 6667 of Lecture Notes in Com-
puter Science, pages 435–446. Springer Berlin / Heidelberg, 2012.

[51] Amir Rosenberger, Daniel Cohen-Or, and Dani Lischinski. Layered shape
synthesis: automatic generation of control maps for non-stationary tex-
tures. In ACM Transactions on Graphics (TOG), volume 28, page 107.
ACM, 2009.

[52] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[53] Jean Serra. Image analysis and mathematical morphology, v. 1. Academic
press, 1982.

[54] Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948.

46

[55] Eero P. Simoncelli and William T. Freeman. The steerable pyramid: a
flexible architecture for multi-scale derivative computation. In ICIP (3),
pages 444–447, 1995.

[56] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[57] Guillaume Tartavel, Yann Gousseau, and Gabriel Peyré. Variational tex-
ture synthesis with sparsity and spectrum constraints. Journal of Mathe-
matical Imaging and Vision, 52(1):124–144, 2014.

[58] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky.
Texture networks: Feed-forward synthesis of textures and stylized images.
In Int. Conf. on Machine Learning (ICML), 2016.

[59] Ivan Ustyuzhaninov, Wieland Brendel, Leon Gatys, and Matthias Bethge.
What does it take to generate natural textures? In Proceedings of the
International Conference on Learning Representations (ICLR), 2017.

[60] Jarke J. van Wijk. Spot noise texture synthesis for data visualization. In
SIGGRAPH ’91, pages 309–318, New York, NY, USA, 1991. ACM.

[61] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State of the
art in example-based texture synthesis. In Eurographics 2009, State of the
Art Report, EG-STAR, pages 93–117. Eurographics Association, 2009.

[62] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vec-
tor quantization. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 479–488. ACM Press/Addison-
Wesley Publishing Co., 2000.

[63] Pierre Wilmot, Eric Risser, and Connelly Barnes. Stable and controllable
neural texture synthesis and style transfer using histogram losses. arXiv
preprint arXiv:1701.08893, 2017.

[64] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. A theory
of generative convnet. In International Conference on Machine Learning,
pages 2635–2644, 2016.

[65] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Lbfgs-b:
Fortran subroutines for large-scale bound constrained optimization. Report
NAM-11, EECS Department, Northwestern University, 1994.

[66] Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy
principle and its application to texture modeling. Neural computation,
9(8):1627–1660, 1997.

[67] Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy
principle and its application to texture modeling. Neural computation,
9(8):1627–1660, 1997.

47

[68] Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random fields
and maximum entropy (frame): Towards a unified theory for texture mod-
eling. International Journal of Computer Vision, 27(2):107–126, 1998.

48

