
HAL Id: hal-01553839
https://hal.science/hal-01553839v2

Preprint submitted on 15 Sep 2017 (v2), last revised 6 Feb 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

INFERENCE FOR ASYMPTOTICALLY
INDEPENDENT SAMPLES OF EXTREMES

Armelle Guillou, Simone A. Padoan, Stefano Rizzelli

To cite this version:
Armelle Guillou, Simone A. Padoan, Stefano Rizzelli. INFERENCE FOR ASYMPTOTICALLY
INDEPENDENT SAMPLES OF EXTREMES. 2017. �hal-01553839v2�

https://hal.science/hal-01553839v2
https://hal.archives-ouvertes.fr


Inference for asymptotically independent samples of extremes
Armelle Guillou(1) , Simone A. Padoan(2) and Stefano Rizzelli(2)

.
(1) Institut Recherche Mathématique Avancée, UMR 7501
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Abstract: An important topic of the multivariate extreme-value theory is to develop probabilistic models and
statistical methods to describe and measure the strength of dependence among extreme observations. The theory
is well established for data whose dependence structure is compatible with that of asymptotically dependence
models. On the contrary, in many applications data do not comply with asymptotic dependence models and in
such cases there are less guidelines available. This is especially true when considering the componentwise maxima
approach. In this paper we contribute to extending this part. We propose a statistical test based on the classical
Pickands dependence function to verify whether asymptotic dependence or independence holds. Then, we present
a new Pickands dependence function to describe the extremal dependence under asymptotic independence. We
propose an estimator of the latter and we study its main asymptotic properties and its performance is illustrated by
a simulation study.

MSC 2010 subject classifications: Primary 62G32, 62G05, 62G20; secondary 60F05, 60G70..
Keywords and phrases: Extremal dependence, extreme-value copula, nonparametric estimation, Pickands depen-
dence function..

1. Introduction

Multivariate extreme-value theory provides the mathematical foundation for performing real data analysis of rare
events. To characterize the joint upper tail of a multivariate distribution, two different approaches can be used: either
by considering the componentwise maxima, or all the observations above a high threshold. A description of these
methodologies can be found for instance in Coles (2001, Ch. 8), Beirlant et al. (2004, Ch. 8-9), de Haan and Ferreira
(2006, Ch. 6) and Resnick (2007, Ch. 6), among others. Unfortunately the flexibility of the dependence structures
provided by the classical theory of multivariate extreme-values may not be sufficient for statistical modelling (see
e.g. Ledford and Tawn, 1996, 1997). To solve this issue, different coefficients of tail dependence or probabilistic
models have been introduced. They allow to govern/describe the strength of the extremal dependence. In this paper,
we are particularly interested in the notion of asymptotic independence which is common in real data analysis. This
concept can be defined as follows.

Let Y be a multivariate random vector of dimension d, with distribution function F and marginals F j, 1 ≤ j ≤ d.
We say that F is in the max-domain of attraction of a multivariate extreme-value distribution G, if there exist
sequences of constants an > 0 and bn ∈ R

d such that

lim
n→∞

Fn(any + bn) = G(y),

for all y ∈ Rd. Under this condition, a particular case arises when G is equal to the product of its marginal
distributions. In this setting, we say that Y satisfies the property of asymptotic independence (or tail independence)
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which is equivalent to say that the elements of Y are asymptotically independent in the upper tail, i.e.

lim
u→1

Pr(F j(Y j) > u|Fi(Yi) > u) = 0

for all 1 ≤ i , j ≤ d. On the contrary the elements of Y are said asymptotically dependent. The classical theory
expects asymptotic dependence and independence as the only two possible scenarios, conceiving extremes as
independent in the second case. Many efforts have been made to characterize a residual tail dependence in the data
(if there is any) by offering new dependence coefficients or probabilistic and statistical models under asymptotic
independence, see Ledford and Tawn (1996), Coles (2001, Ch 8.4), Resnick (2002), Maulik and Resnick (2004),
Ramos and Ledford (2009, 2011), Wadsworth and Tawn (2013) and Wadsworth et al. (2017), to name a few. If we
restrict our framework to the dimension d = 2, several statistical tests for checking asymptotic independence or
tail independence have been proposed, among them, Ledford and Tawn (1996), Draisma et al. (2004), Hüsler and
Li (2009) and Falk et al. (2010, Ch. 6.5) and the references therein. However, the extension to dimensions higher
than 2 are still in its infancy. Recent proposals are based on the kth largest order statistics of the sample. Although
these approaches are simple to implement, the performance of the resulting tests depends strongly on the choice of
k, see e.g. Kiriliouk et al. (2016).

In this paper, we propose in Section 2 an alternative approach to test asymptotic independence for an arbitrary
dimension d ≥ 2, based on the componentwise maxima. We illustrate the performance of our proposal up to di-
mension d = 4. Then, using again the componentwise maxima approach and in particular the framework proposed
by Ramos and Ledford (2011), we introduce, in Section 3, a new dependence function similar to the well-known
Pickands dependence function which allows us to measure the residual dependence under asymptotic indepen-
dence. Finally, we estimate this new dependence function and we establish the main asymptotic properties of the
estimator. By means of a simulation study, its good performance is highlighted. All the proofs are postponed to the
appendix.

Throughout the paper, the following notations are used. For any arbitrary dimension d and f : X ⊂ Rd → R, we
set ‖ f ‖∞ = supx∈X f (x). We denote by `∞(X) the space of all bounded real-valued functions onX. The symbol “ ”
stands for convergence in distribution of random vectors, but also for weak convergence of bounded real-valued
functions in `∞(X), the difference will be clear from the context.

2. A test for asymptotic independence

A d-dimensional random vector X = (X1, . . . , Xd) follows the law of a multivariate extreme-value distribution
if the one-dimensional marginal distributions, G j(x) = Pr(X j ≤ x) for all x ∈ R, j = 1, . . . , d, are Generalized
Extreme-Value (GEV) distributions, and the joint distribution takes the form

G(x) = C
(
G1(x1), . . . ,Gd(xd)

)
, x ∈ Rd,

where C is an extreme-value copula, i.e.,

C(u) = exp
(
−V

(
(− log u1)−1, . . . , (− log ud)−1

))
, u ∈ (0, 1]d,

with V : (0,∞]d → [0,∞) (see de Haan and Ferreira, 2006, Ch. 1, 6, for details). Consider the map L : [0,∞)d 7→

[0,∞), defined by L(z) := V(1/z) with z = 1/y for y ∈ (0,∞]d. The function L is known as the stable tail
dependence. As it is a homogeneous function of order one, i.e. L(az) = aL(z) for all a > 0, we have

L(z) = (z1 + · · · + zd) A(t), z ∈ [0,∞)d,

with t j = z j/(z1 + · · ·+ zd) for j = 2, . . . , d, t1 = 1− t2 − · · · − td, and A is the restriction of L into the d-dimensional
unit simplex,

Sd :=
{
(v1, . . . , vd) ∈ [0, 1]d : v1 + · · · + vd = 1

}
.

The function A is well-known as the Pickands dependence function (see Pickands, 1981), and is often used to
quantify the dependence among the elements of X. Indeed, A satisfies the constraint 1/d ≤ max(t1, . . . , td) ≤

imsart-generic ver. 2014/10/16 file: EtaPickandsHalv2.tex date: September 15, 2017



A. Guillou et al. / Asymptotically independent extremes 3

A(t) ≤ 1 for all t ∈ Sd, with lower and upper bounds corresponding to the complete dependence and independence
cases, respectively (see Falk et al., 2010, Ch. 4, for details). Thus, estimating this Pickands dependence function
is crucial for analysing multivariate extremes, and it has been an extensively discussed topic in the literature, see
Klüppelberg and May (2006), Zhang et al. (2008), Gudendorf and Segers (2011), Bücher et al. (2011), Berghaus
et al. (2013) or Vettori et al. (2017), among others.

2.1. A slightly modified version of the Pickands dependence estimator proposed by Marcon et al. (2017)

This estimator is based on the madogram concept, a notion borrowed from geostatistics in order to capture the
spatial structure. Starting from independent and identically distributed (i.i.d.) copies X1, ..., Xn, of X, our modified
estimator is defined as

Ân(t) :=
ν̂n(t) + c(t)

1 − ν̂n(t) − c(t)
(2.1)

where

ν̂n(t) :=
1
n

n∑
i=1

 d∨
j=1

{
G(1)

n, j(Xi, j)
}1/t j
−

1
d

d∑
j=1

{
G(1)

n, j(Xi, j)
}1/t j

 (2.2)

c(t) :=
1
d

d∑
j=1

t j

1 + t j

with

G(a)
n, j(Xi, j) := Gn, j(Xi, j)

1 + a
a

1
n

n∑
k=1

G1/a
n, j (Xk, j)

−a

, j = 1, . . . , d, for a > 0,

and the empirical distribution functions denoted by

Gn, j(x) :=
1
n

n∑
i=1

1l{Xi, j≤x}, j = 1, . . . , d.

By convention, here u1/0 = 0 for 0 < u < 1. Compared to the proposal in Marcon et al. (2017), our slightly modified
version based on the use of G(1)

n, j instead of Gn, j in (2.2), ensures that the new Pickands estimator Ân now satisfies

Ân(e j) = 1 for all j = 1, . . . , d, where e j = (0, . . . , 0, 1, 0, . . . , 0) is the jth canonical unit vector (see Appendix A.1).
This is a necessary condition that a function needs to satisfy in order to be a valid Pickands dependence function
(see e.g. Marcon et al., 2017). Although as established in Appendix A.1, our modified estimator shares the same
asymptotic properties as the estimator discussed in Marcon et al. (2017), our modification greatly improves the
latter for finite samples.

2.2. Construction of our statistical test

Using our estimator for A, we want now to construct a statistical test to check asymptotic independence in dimen-
sions higher than or equal to two. To this aim, we consider the following system of hypotheses{

H0 : A(t) = 1, ∀ t ∈ Sd

H1 : A(t) < 1, for some t ∈ Sd.

Note that H0 means that all the components of X are asymptotically independent, whereas under H1 some elements
of X are asymptotically dependent.
Assuming that the extreme-value copula C has continuous partial derivatives over the sets {u ∈ [0, 1]d : 0 < ui < 1},
by Theorem 2.4 in Marcon et al. (2017) and according to Appendix A.1, we have under H0

√
n
(
Ân(t) − 1

)
t∈Sd
 −4

(∫ 1

0
A(vt1 , . . . , vtd )dv

)
t∈Sd

, as n→ ∞, (2.3)
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where A is a centered Gaussian process on [0, 1]d with continuous sample paths and covariance function equal to

Cov(A(u),A(v)) =

d∏
j=1

u j ∧ v j −

d∑
j=1

u j ∧ v j

∏
i, j

uivi

 + (d − 1)
d∏

j=1

u jv j.

As a consequence, by the continuous mapping theorem (see e.g. van der Vaart, 2000, Ch. 2.1), it follows that

Ŝ n := sup
t∈Sd

√
n
∣∣∣∣Ân(t) − 1

∣∣∣∣ S := sup
t∈Sd

4

∣∣∣∣∣∣
∫ 1

0
A(vt1 , . . . , vtd ) dv

∣∣∣∣∣∣ , as n→ ∞.

This convergence can be used as the cornerstone of our test. Denoting by QS (α), α ∈ (0, 1), the (1 − α)-quantile
function for the distribution of the random variable S , H0 can be rejected with a (1−α)% confidence level whenever
ŝn, the observed value of Ŝ n, exceeds QS (α). Unfortunately, there is no closed form for the function QS (α), however
an approximation can still be computed with a Monte Carlo simulation as follows.
Note that for any u, v ∈ [0, 1] and t,w ∈ Sd, the covariance function of the Gaussian process A in (2.3), evaluated
at the indexes ut , vw ∈ [0, 1]d, is equal to

Cov(A(vt1 , . . . , vtd ),A(uw1 , . . . , uwd )) =

d∏
j=1

(vt j ∧ uw j ) −
d∑

j=1

(vt j ∧ uw j )v1−t j u1−w j + (d − 1)uv. (2.4)

Thus, for any fixed α ∈ (0, 1), an approximation of the quantile QS (α) can be obtained by adhering to the following
four steps:

1. Divide the unit interval (0, 1) and the simplexSd in p and m equally spaced points, where p and m are positive
integers. Let v1, . . . , vm and t1, . . . , t p be the two partitions of (0, 1) and Sd, respectively. The sequences
v1, . . . , vm and t1, . . . , t p form a finite sequence of positions vtk,1

r , . . . , vtk,d
r ∈ [0, 1]d, with r = 1, . . . ,m and

k = 1, . . . , p, on which the process A is simulated.
2. Sample n∗ realizations

xi(v
t1,1
1 , . . . , vt1,d

1 ), . . . , xi(v
tp,1
m , . . . , vtp,d

m ), i = 1, . . . , n∗,

of a zero-mean Gaussian process at vtk,1
r , . . . , vtk,d

r , for r = 1, . . . ,m and k = 1, . . . , p, with a (mp × mp)
variance-covariance matrix defined through the covariance function in (2.4).

3. Simulate samples that approximately follow the distribution of the random variable S , the integral and the
sup in S being approximated by a sum and the max for sufficiently large values of m and p. This leads to the
realizations

s̃i = max
1≤k≤p

4

∣∣∣∣∣∣∣ 1
m

m∑
r=1

xi(vtk ,1
r , . . . , vtk ,d

r )

∣∣∣∣∣∣∣ , i = 1, . . . , n∗.

4. An approximation of the quantile QS (α), denoted by Q̃S (α), can then be obtained by computing the sample
quantile of the realizations s̃1, . . . , s̃n∗ for sufficiently large n∗.

2.3. Numerical results

We illustrate the performance of our statistical test through a simulation study. Precisely, we estimate some values
of the significance level α and the power 1 − β of the test by computing the empirical proportion of simulated
samples under the null hypothesis and the alternative hypothesis that rejected the null hypothesis, respectively. For
simplicity we focus on the significance levels α = 0.05 and 0.01.
In order to perform the simulation study, the first step consists of computing the approximated quantile Q̃S (α), for a
given α, following our algorithm. In particular, the goodness of the approximation relies on the values of the indexes
m, p and n∗. Clearly, the larger their values are, the more accurate the approximation is. We set n∗ = 500 000.
We consider increasing values of m and p and for each combination we compute Q̃S . We stop the search of a
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better value for these indexes when the value of Q̃S (α) does not increase anymore, up to the second decimal. The
calculation of Q̃S requires a considerable computational effort, therefore we derive its values only for a dimension
d = 2, 3, 4 of the vector X.
Then, in a second step, we compute the rejection rates. To this aim, we consider two experiments:

First experiment: We focus on the multivariate logistic extreme-value model introduced by Tawn (1990), with
dependence parameter ψ ∈ (0, 1], ψ = 1 corresponding to independent components of X, whereas complete
dependence can be reached when ψ → 0. We consider 20 equally spaced values of ψ in (0, 1]. For each of them,
we simulate n independent observations from a logistic extreme-value distribution with unit Fréchet margins. Then
we estimate the Pickands dependence function by (2.1) and we compute ŝn. We repeat this task 5000 times and we
compute the proportion of times that ŝn > Q̃S (α). This experiment is repeated for different values of the samples
sizes n and different dimension d of X. Table 1 reports the estimated values of the significance levels α.

Table 1
Estimated significance levels α. From left to right: the dimension of X, the true significance level, the approximate (1 − α)-quantile and the

empirical proportion of simulated samples under H0 that rejected the null hypothesis.

n
d α Q̃S (α) 25 50 100 200
2 0.05 0.960 0.0380 0.0460 0.0512 0.0524

0.01 1.204 0.0060 0.0082 0.0102 0.0102
3 0.05 1.300 0.0364 0.0452 0.0508 0.0574

0.01 1.540 0.0056 0.0068 0.0084 0.0092
4 0.05 1.480 0.0398 0.0454 0.0548 0.0576

0.01 1.740 0.0064 0.0082 0.0096 0.0126

We see that accurate estimates of α are already obtained with the sample size n = 50, indicating a good performance
of our statistical test. Figure 1 displays the estimated powers of the test. In the top and bottom rows the results
obtained with α = 0.05 and α = 0.01 are reported, respectively. The panels from left to right illustrate the results
for the dimensions 2, 3 and 4. Once again, the test shows a good performance already with the sample size n = 50.
Indeed in the case d = 2 we see that the power of the test reaches 1 with mild dependence levels, i.e. ψ = 0.5.
This figure also outlines that the power of the test improves with the dimensions of X and that, as expected, for any
fixed dimension d = 2, 3, 4, it also improves with the sample size.

Second experiment: We consider the inverted multivariate logistic extreme-value model (see e.g. Ledford and
Tawn, 1997; Wadsworth et al., 2017), with dependence parameter ψ ∈ (0, 1], ψ = 1 corresponding to exact inde-
pendence of the components of X, whereas asymptotic dependence is reached as ψ → 0. This time, we consider
10 equally spaced values of ψ in (0, 1]. For each of them, we simulate 366 values from an inverted logistic dis-
tribution with exponential margins. Then, we compute the normalized componentwise maxima and we repeat this
procedure in order to obtain n normalized maxima from which we estimate the Pickands dependence function and
we calculate ŝn. We repeat this task 5000 times and we compute the proportion of times that ŝn > Q̃S (0.05). This
procedure has been done for different values of d and n and the results are summarized in Table 2.
With d = 2, the rejection rates are close to 0.05 whenever ψ is larger than 0.5. Otherwise, the rejection rate is
greater than 0.05 and it reaches 1 when ψ approaches 0. In these cases, it can be observed that the normalized
maxima show quite a strong dependence, which indeed seems that of an asymptotic dependence model rather
than asymptotic independence. The strength of the dependence is reduced whenever the normalized maxima are
computed on sequences larger than 366, resulting in improvements in the performances of our test. The test per-
formance deteriorates as the dimension of X increases. This behavior is expected, because with our test the null
hypothesis is rejected whenever a pair of variables turns out to be asymptotically dependent. In conclusion this
study highlights the good performance of our statistical test not only for exactly independent multivariate data but
also for asymptotically independent data.

3. Asymptotic independence for componentwise maxima

Being able to test asymptotic independence versus asymptotic dependence is obviously important, but the models
obtained via the classical multivariate extreme-value theory work in general well only under asymptotic depen-
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Fig 1. Estimated power functions 1 − β. Points report the empirical proportion of simulated samples under H1 that rejected the null hypothesis
as a function of ψ. From left to right, the dimension of X: 2, 3 and 4 and from the top to the bottom: α = 0.05 and α = 0.01.

Table 2
Estimated significance levels α. From left to right: the dimension of X, the sample size and the empirical proportion of simulated samples

under H0 that rejected the null hypothesis for different values of ψ.

ψ
d n 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
2 25 0.0398 0.0406 0.0390 0.0458 0.0518 0.0540 0.0898 0.2356 0.6046 0.9846

50 0.0470 0.0428 0.0448 0.0492 0.0580 0.0610 0.1686 0.4350 0.8924 1.0000
100 0.0518 0.0520 0.0512 0.0520 0.0534 0.1200 0.2760 0.7160 0.9948 1.0000
200 0.0492 0.0528 0.0528 0.0552 0.0530 0.1726 0.5038 0.9404 1.0000 1.0000

3 25 0.0316 0.0310 0.0368 0.0416 0.0512 0.0602 0.1674 0.4234 0.8604 0.9990
50 0.0426 0.0440 0.0526 0.0498 0.0524 0.1298 0.3180 0.7344 0.9910 1.0000
100 0.0514 0.0500 0.0560 0.0536 0.0640 0.1208 0.5450 0.9484 1.0000 1.0000
200 0.0548 0.0554 0.0574 0.0652 0.0752 0.1332 0.6332 0.8188 0.9984 1.0000

4 25 0.0580 0.0518 0.0524 0.0654 0.1068 0.1648 0.3490 0.6842 0.8696 1.0000
50 0.0518 0.0554 0.0548 0.0784 0.1120 0.1888 0.3482 0.6454 0.9238 1.0000
100 0.0568 0.0575 0.0577 0.0657 0.1560 0.2900 0.5895 0.9975 0.9996 1.0000
200 0.0532 0.0536 0.0584 0.0932 0.1866 0.3666 0.7316 0.9896 1.0000 1.0000

dence. Since asymptotic independence often arises in applications, it is thus crucial to develop some general models
that accommodate both situations. In this section, we consider the framework of Ramos and Ledford (2009) (see
also Ledford and Tawn, 1997). More precisely, if Y is a d-dimensional random vector with common unit Fréchet
margins, i.e. Pr(Y ≤ y) = e−1/y for every y > 0, this theory relies on the joint survival function of Y which is as-
sumed to be multivariate regularly varying with index −1/η, where η ∈ (0, 1], i.e. Pr(Y > y) = τ(y)(y1 · · · · · yd)−1/dη
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with τ a slowly varying function satisfying

lim
r→∞

τ(r y1, . . . , r yd)
τ(r, . . . , r)

= g(y)

for all y ∈ (0,∞]d. The function g here is homogeneous of order 0, i.e. such that g(a y1, . . . , a yd) = g(y1, . . . , yd)
for any a > 0. This framework implies that the joint survival function can be rephrased for all y > 1, the vector of
ones, as

Pr(Y > y) = lim
r→∞

Pr(Y > ry)
Pr(Y > r1)

= η

∫
Sd

d∧
j=1

(
w j

y j

)1/η

dHη(w)

where Hη is a non-negative measure satisfying the condition

η

∫
Sd

d∧
j=1

w1/η
j dHη(w) = 1.

This measure Hη is a particular case of the hidden angular measure introduced by Resnick (2002) (see also Maulik
and Resnick, 2004) when η < 1 and it is a rescaled version of the classical angular measure when η = 1, see Ramos
and Ledford (2009) for details. According to Ramos and Ledford (2011) we assume that Hη is a finite measure.
We recall that η is the so-called coefficient of tail dependence, which measures the level of dependence within
the asymptotic independence framework. Specifically, η = 1 corresponds to the case of asymptotic dependence,
whereas η < 1 corresponds to the case of asymptotic independence. More precisely, when the coefficient falls in
the following sets: 1/d < η < 1, η = 1/d or 0 < η < 1/d, then we say that among the variables there is a positive
association, independence or negative association, respectively, within asymptotic independence (see e.g. Ledford
and Tawn, 1996).

3.1. A η−Pickands dependence function

Consider now, n i.i.d. copies Y1, . . . ,Yn of Y and for a small ε > 0, define Mn,ε = (Mn,1,ε, . . . ,Mn,d,ε) as the vector
of componentwise maxima, precisely

Mn, j,ε =
∨

i∈In(ε)

Yi, j, j = 1, . . . , d,

with In(ε) := {1 ≤ i ≤ n : Yi > 1ε}. Let bn be a sequence of normalizing constants defined by the equation
nPr(Y > bn) = 1. Then, differently from the classical theory (e.g. de Haan and Ferreira, 2006, Ch. 6), here the
limiting distribution for the normalized vector of componentwise maxima Mn,ε is obtained as

Gη(y) := lim
ε→0

lim
n→∞

Pr(Mn,bnε ≤ bny), y ∈ (0,∞]d,

see Ramos and Ledford (2011) for details. When a limiting distribution exists with nondegenerate margins, then
Gη is called a multivariate η-extreme-value distribution. Specifically, a d-dimensional random vector Z follows
the law of a multivariate η-extreme-value distribution, if the one-dimensional marginal distributions are Gη, j(y) =

exp(−ση, jy−1/η), for all y > 0, j = 1, . . . , d, and the joint distribution takes the form

Gη(y) = Cη
(
Gη,1(y1), . . . ,Gη,d(yd)

)
, y ∈ (0,∞]d, (3.1)

where Cη is an η-extreme-value copula, i.e.

Cη(u) = exp
{
−Vη

((
ση,1

− log u1

)η
, . . . ,

(
ση,d

− log ud

)η)}
u ∈ (0, 1]d

with Vη : (0,∞]d → [0,∞) a homogeneous function of order −1/η and

ση, j := Vη(∞, . . . ,∞, 1,∞, . . . ,∞) = η

∫
Sd

w1/η
j dHη(w). (3.2)
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Introduce now Lη(z) := Vη((σσση/z)η), for all z = σσση/y1/η. This function is called the η-stable tail dependence
function and using the homogeneity property, it can be rewritten as

Lη(z) = (z1 + · · · + zd)Aη(t), z ∈ [0,∞)d,

where t j = z j/(z1 + · · · + zd) for j = 2, . . . , d, t1 = 1 − t2 − · · · − td. Here, the function Aη is called the η-Pickands
dependence function and it satisfies the following properties.

Proposition 3.1. The η-Pickands dependence function Aη satisfies:

1. For all η ∈ (0, 1], Aη(e j) = 1, j = 1, ..., d;
2. A1(t) = A(t), for all t ∈ Sd;
3. For every η ∈ (0, 1] and t ∈ Sd,

1/d ≤ max(t1, . . . , td) ≤ Aη(t) ≤ 1.

4. Aη(t) is convex, i.e. Aη(at1 + (1 − a)t2) ≤ aAη(t1) + (1 − a)Aη(t2), for all a ∈ [0, 1] and t1, t2 ∈ Sd.

Similarly to the classical literature, a η−madogram function can be defined as the expected distance between the
maximum and the mean of the variables G1/ηt1

η,1 (Z1), . . . ,G1/ηtd
η,d (Zd), that is,

νη(t) = E

 d∨
j=1

{
G1/ηt j

η, j (Z j)
}
−

1
d

d∑
j=1

G1/ηt j

η, j (Z j)

 .
This function can also be linked to the η−Pickands dependence function as follows.

Proposition 3.2. Any random vector Z with a η-extreme-value distribution admits a η-Pickands dependence func-
tion Aη which satisfies

Aη(t) =
1
η

νη(t) + cη(t)
1 − νη(t) − cη(t)

(3.3)

for all t ∈ Sd, where

cη(t) =
1
d

d∑
j=1

t j

t j + 1/η
. (3.4)

This η−Pickands dependence function can be used to represent the level of dependence among the elements of Z,
and thus in the next section, we estimate this function and derive the main asymptotic properties of the estimator.

3.2. An estimator of the η−Pickands dependence function

Let Z1, . . . , Zn be i.i.d. copies of Z and define

Hn(y) =
1
n

n∑
i=1

1l{Zi≤y}, y ∈ (0,∞]d

and its associated empirical process

Hn(y) =
√

n(Hn(y) −Gη(y)), y ∈ (0,∞]d.

In order to estimate the η−Pickands dependence function we first assume that we have at our disposal an estimator
η̂n for η satisfying the condition:

Condition 1. Let η̂n be an estimator of η satisfying:

(i) η̂n → η a.s. as n→ ∞;
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(ii) One of the following holds true

(a)
√

n(̂ηn − η) = n−1/2 ∑n
i=1 ρ(Zi) + op(1), where ρ : (0,∞]d 7→ R is a measurable function such that

Eρ(Z) = 0 and Eρ2(Z) < ∞;

(b)
√

n(̂ηn − η) = χ(Hn) + op(1), where χ : `∞((0,∞]d) 7→ R is a bounded linear functional.

In the spirit of (2.1) in Section 2, we propose the following estimator for Aη:

Âη̂n,n(t) :=
1
η̂n

ν̂η̂n,n(t) + ĉη̂n,n(t)
1 − ν̂η̂n,n(t) − ĉη̂n,n(t)

where

ν̂η̂n,n(t) :=
1
n

n∑
i=1

 d∨
j=1

{
H (̂ηn)

n, j (Zi, j)
}1/̂ηnt j

−
1
d

d∑
j=1

{
H (̂ηn)

n, j

(
Zi, j

)}1/̂ηnt j


ĉη̂n,n(t) :=

1
n d

n∑
i=1

d∑
j=1

{
H (̂ηn)

n, j

(
Zi, j

)}1/̂ηnt j
(3.5)

with

H(a)
n, j(Zi, j) = Hn, j(Zi, j)

1 + a
a

1
n

n∑
k=1

H1/a
n, j (Zk, j)

−a

, j = 1, . . . , d, for a > 0,

and the empirical distribution functions denoted by

Hn, j(x) :=
1
n

n∑
i=1

1l{Zi, j≤x}, j = 1, . . . , d.

Note that (3.5) comes from the fact that cη defined in Proposition 3.2 can be viewed as

cη(t) = E

1
d

d∑
j=1

{
Gη, j(Z j)

}1/ηt j


and thus in (3.5) we use the empirical counterpart. Another option would have been to replace η by an estimator in
(3.4).
We are now able to state our main result on the convergence of a rescaled version of Âη̂n,n.

Theorem 3.1. Under Condition 1(i), we have

‖Âη̂n,n − Aη‖∞ → 0 a.s. as n→ ∞. (3.6)

Under Conditions 1(ii), we have in `∞(Sd), as n→ ∞,

√
n(Âη̂n,n(t) − Aη(t))t∈Sd {

(
−

(1 + ηAη(t))2

η

∫ 1

0
Aη(vηt1 , . . . , vηtd ) dv

)
t∈Sd

, (3.7)

where Aη is a stochastic process defined as

Aη(u) := Bη(u) −
d∑

j=1

Ċη, j(u)Bη(1, . . . , 1, u j, 1, . . . , 1), u ∈ [0, 1]d,

with Cη an η-extreme-value copula such that its partial derivative Ċη, j(u) := ∂Cη/∂u j(u) exists and is continuous
on {u ∈ [0, 1]d : 0 < u j < 1}, for all j = 1, . . . , d, and Bη a Cη-Brownian bridge, i.e. a zero-mean Gaussian process
on [0, 1]d with continuous sample paths and covariance function equal to

Cov
(
Bη(u),Bη(v)

)
= Cη(u ∧ v) −Cη(u)Cη(v), u , v ∈ [0, 1]d.
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3.3. Examples of estimators satisfying Condition 1

Our η−Pickands dependence function requires an estimator of η which satisfies Condition 1. Below, two examples
of such estimators are proposed.

Example 1. Let Z∗ = max(Z1, . . . ,Zd), where Z follows the distribution (3.1). Then, for any y > 0, the distribution
of Z∗ is Gη(y) := Gη(y, . . . , y). This distribution can be seen as a two-parameter Fréchet family of distributions.
Let η̂n be the Maximum Likelihood (ML) estimator. By Propositions 3.1 and 3.3 in Bücher and Segers (2017), it
follows that the ML estimator satisfies Conditions 1(i) and 1(ii)(a).

Example 2. Let η̂n be the Generalized Probability Weighted Moment (GPWM) estimator of η introduced by Guil-
lou et al. (2014). The next theorem shows that the GPWM estimator admits a stochastic representation implying
that Condition 1(ii)(b) is satisfied. The almost sure consistency of η̂n is a direct consequence.

Theorem 3.2. Let η̂n be the GPWM estimator. For a, b two integers and Qη(u) := G←η (u), introduce the parameter

µa,b :=
∫ 1

0
Qη(u)ua(− log u)bdu

and on u ∈ (0, 1) the two functions

γ(u) := µ1,2u(− log u) − µ1,1u(− log u)2

ϕ(u) :=
1

ηVη
η (1, . . . , 1)

u (− log u)1+η.

Then,
√

n(̂ηn − η) = −
2
µ2

1,1

∫ 1

0
Hn(Qη(u), . . . ,Qη(u))

γ(u)
ϕ(u)

du + o(1) a.s.. (3.8)

Consequently, as n→ ∞

η̂n → η a.s.
√

n(̂ηn − η) { −
2
µ2

1,1

∫ 1

0
H(Qη(u), . . . ,Qη(u))

γ(u)
ϕ(u)

du

where H is a tight centered Gaussian process on (0,∞]d, with covariance function

Cov(H(z),H(y)) = Gη(z ∧ y) −Gη(z)Gη(y), z, y ∈ (0,∞]d.

3.4. Simulation

The performance of our estimator Âη̂n,n is illustrated in a simulation study with two different experiments.
First experiment: We consider the bivariate η-asymmetric logistic model in equation (4.3) of Ramos and Ledford

(2011), with dependence parameters ψ ∈ (0, 1], % > 0 and η ∈ (0, 1]. For simplicity we focus on % = 1 and the
interesting case given by α < η. In this framework the η-asymmetric logistic model is the limiting distribution
for normalized componentwise maxima obtained from a random vector with the joint tail probability in equation
(3.3) of Ramos and Ledford (2009), which is indeed an asymptotic independence model. For every η ∈ (0, 1], the
strength of the dependence within asymptotic independence increases for decreasing values of the parameter ψ.
We simulate n values from the η-asymmetric logistic model and we estimate the η-Pickands dependence function
with Âη̂n,n. We repeat these steps 1000 times and we compute a Monte Carlo approximation of the Mean Integrated
Squared Error (MISE), i.e.,

MISE(Âη̂n,n, Aη) = E
{∫
Sd

(
Âη̂n,n(t) − Aη(t)

)2
dt

}
.
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Table 3
Estimates (standard deviation) of η and MISE for the η-Pickands dependence function, based on a bivariate η-asymmetric logistic dependence

model with η = 0.7. The first line corresponds to the GPWM method, whereas the second line is the ML method.

η̂n MISE(Âη̂n ,n, Aη)
n n

ψ 25 50 100 200 25 50 100 200
0.1 0.661(0.115) 0.678(0.084) 0.690(0.062) 0.695(0.043) 0.0111 0.0037 0.0013 0.0005

0.800(0.201) 0.763(0.128) 0.741(0.085) 0.728(0.055) 0.0110 0.0036 0.0013 0.0005
0.2 0.667(0.116) 0.679(0.084) 0.688(0.062) 0.692(0.044) 0.0480 0.0195 0.0088 0.0041

0.807(0.204) 0.761(0.128) 0.740(0.088) 0.724(0.057) 0.0457 0.0187 0.0086 0.0040
0.3 0.665(0.116) 0.680(0.087) 0.692(0.064) 0.696(0.046) 0.1176 0.0542 0.0262 0.0133

0.811(0.211) 0.768(0.130) 0.745(0.087) 0.730(0.059) 0.1133 0.0527 0.0256 0.0131
0.4 0.673(0.114) 0.687(0.088) 0.694(0.062) 0.697(0.045) 0.2177 0.1021 0.0523 0.0260

0.810(0.204) 0.770(0.129) 0.744(0.084) 0.729(0.057) 0.2118 0.1000 0.0514 0.0257
0.5 0.670(0.113) 0.684(0.085) 0.692(0.062) 0.695(0.044) 0.3602 0.1795 0.0952 0.0481

0.805(0.201) 0.766(0.129) 0.742(0.085) 0.728(0.057) 0.3531 0.1765 0.0940 0.0476
0.6 0.670(0.115) 0.685(0.085) 0.691(0.062) 0.696(0.046) 0.4566 0.2252 0.1192 0.0556

0.822(0.206) 0.778(0.127) 0.751(0.089) 0.734(0.063) 0.4758 0.2275 0.1156 0.0585

Table 4
Estimates (standard deviation) of η and MISE for the η-Pickands dependence function, based on componentwise maxima with approximate

bivariate η-asymmetric logistic model with η = 0.7. The first line corresponds to the GPWM method, whereas the second line is the ML
method.

η̂n MISE(Âη̂n ,n, Aη)
n n

ψ 25 50 100 200 25 50 100 200
0.1 0.668(0.115) 0.684(0.089) 0.692(0.061) 0.695(0.044) 0.0108 0.0034 0.0013 0.0005

0.800(0.204) 0.764(0.128) 0.742(0.086) 0.730(0.060) 0.0106 0.0033 0.0013 0.0005
0.2 0.664(0.116) 0.681(0.086) 0.687(0.061) 0.693(0.045) 0.0456 0.0187 0.0088 0.0040

0.810(0.213) 0.765(0.133) 0.743(0.091) 0.728(0.064) 0.0442 0.0183 0.0079 0.0039
0.3 0.670(0.120) 0.686(0.089) 0.696(0.063) 0.698(0.045) 0.1088 0.0563 0.0257 0.0119

0.804(0.194) 0.766(0.119) 0.744(0.078) 0.732(0.055) 0.1080 0.0546 0.0255 0.0117
0.4 0.684(0.119) 0.699(0.091) 0.707(0.063) 0.711(0.045) 0.2265 0.1146 0.0593 0.0279

0.829(0.209) 0.783(0.125) 0.759(0.082) 0.745(0.054) 0.2207 0.1129 0.0584 0.0276
0.5 0.711(0.119) 0.727(0.088) 0.734(0.063) 0.738(0.044) 0.3820 0.1970 0.1113 0.0657

0.846(0.197) 0.806(0.122) 0.786(0.080) 0.773(0.049) 0.3819 0.1973 0.1112 0.0661
0.6 0.751(0.125) 0.766(0.094) 0.775(0.070) 0.781(0.050) 0.7105 0.4298 0.3018 0.2333

0.898(0.201) 0.849(0.121) 0.831(0.082) 0.820(0.053) 0.7293 0.4387 0.3096 0.2381

This study is done for different values of the sample size n and different values of the dependence parameter ψ.
The results are summarized in Table 3. For each value of ψ, between the second and the fifth column the mean of
the estimates for η obtained with the GPWM (first row) and ML (second row) estimator are reported for increasing
sample size. In parentheses is the standard deviation. Between the sixth and ninth columns the approximated MISE
is reported. Accurate estimates are obtained with all the dependence levels. GPWM and ML estimators provide
similar results, although those of the former seem slightly better. According to the MISE, the better performances
are obtained with stronger dependence strengths. For every dependence level the accuracy of estimates increases
with increasing sample size.

Second experiment: We show the performance of the estimator Âη̂n,n under a more realistic scenario. We simulate
n × 366 realizations of a bivariate random vector with the joint tail probability given in equation (3.3) of Ramos
and Ledford (2009). To do this we use the algorithm described in Appendix B of Ramos and Ledford (2009).
Precisely, we set u = 10 and λ = 1− exp(−0.1)− 0.2 which satisfies the required monotonicity condition. With the
minimum between pairs of all observations we compute bn as the 1−1/n empirical quantile. For each block of 366
observations we compute the componentwise maxima using only the pairs that are both greater than εbn = 13.780,
i.e. the 0.93-quantile of a unit Fréchet distribution. We standardize the maxima by dividing them by bn. With the
n normalized maxima we estimate the η-Pickands dependence function by Âη̂n,n. We repeat these steps 1000 times
and we compute an approximation of the MISE. Table 4 collects the results. We see that although in this case the
data are only approximately coming from a η-asymmetric logistic model the estimates of η and Aη are similar to
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those obtained in Table 3, indicating a good performance of our estimator.

Appendix A: Proofs

A.1. Some properties of Ân

Note that,

ν̂n(e j) =
1
n

n∑
i=1

(
Gn, j(Xi, j)

2 n−1 ∑n
k=1 Gn, j(Xk, j)

−
1
d

Gn, j(Xi, j)
2 n−1 ∑n

k=1 Gn, j(Xk, j)

)
=

1
2
−

1
2d
, j = 1, . . . , d.

Therefore, Ân(e j) = 1 for all j = 1, . . . , d.
The distribution function of the i.i.d. random variables X1, j, . . . , Xn, j, j = 1, . . . , d, being continuous, almost surely
there are no ties and thus

G(1)
n, j(Xi, j) = Gn, j(Xi, j)

2
n

n∑
k=1

Gn, j(Xk, j)

−1

=
n

n + 1
Gn, j(Xi, j).

Then, with simple adjustments of the proof of Theorem 2.4 in Marcon et al. (2017), the weak convergence of Ân

and its almost sure consistency follow. �

A.2. Proof of Proposition 3.1

Our definition of Lη combining with (6.3) in Ramos and Ledford (2011) entails

Aη(t) = η

∫
Sd

max

 t1w1/η
1

ση,1
, . . . ,

tdw1/η
d

ση,d

 dHη(w), t ∈ Sd.

Then, Property 1 follows by the definition of ση, j given in (3.2).
When η = 1, according to Section 3, we have

lim
n→∞

Pr(Y > nx)
Pr(Y > n1)

=

∫
Sd

d∧
j=1

(
w j

x j

)
dH1(w).

Now, this limit can also be rephrased with the classical theory (see e.g. de Haan and Ferreira, 2006, Ch. 6), where

lim
n→∞

Pr(Y > nx)
Pr(Y > n1)

=

d
∫
Sd

∧d
j=1

(
w j

x j

)
dH(w)

R(1, . . . , 1)
,

with H and R defined in pages 218 and 225 in de Haan and Ferreira (2006). Therefore, Property 2 follows from the
relations

d−1R(1, . . . , 1)dH1(w) = dH(w), w ∈ Sd

and σ1, j = 1/R(1, . . . , 1), j = 1, . . . , d.
For every t ∈ Sd we have

η

∫
Sd

max

 t1w1/η
1

ση,1
, . . . ,

tdw1/η
d

ση,d

 dHη(w) ≤ η
∫
Sd

d∑
j=1

 t jw
1/η
j

ση, j

 dHη(w) = 1,
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from which the upper bound in Property 3 follows. To derive the lower bound, it is sufficient to remark that for
every t ∈ Sd, we have

η

∫
Sd

max

 t1w1/η
1

ση,1
, . . . ,

tdw1/η
d

ση,d

 dHη(w) ≥
∨

1≤i< j≤d

η∫
Sd

max

 tiw
1/η
i

ση,i
,

t jw
1/η
j

ση, j

 dHη(w)


=

∨
1≤i< j≤d

ti + t j − η

∫
Sd

min

 tiw
1/η
i

ση,i
,

t jw
1/η
j

ση, j

 dHη(w)


≥

∨
1≤i< j≤d

(
ti + t j −min

(
ti, t j

))
=

∨
1≤ j≤d

t j.

Finally, the convexity in Property 4 can been shown similar to the convexity of A. �

A.3. Proof of Proposition 3.2

For all η ∈ (0, 1] and t ∈ Sd, set

νη(u; t) :=
d∨

j=1

u1/ηt j

j −
1
d

d∑
j=1

u1/ηt j

j , u ∈ [0, 1]d.

By convention u1/ηt = 0 when t = 0 and u ∈ [0, 1]. By Lemma A.1 in Marcon et al. (2017) we have

νη(t) =

∫
[0,1]d

νη(u; t)dCη(u) (A.1)

=
1
d

d∑
j=1

∫ 1

0
Cη(1, . . . , 1, vηt j , 1, . . . , 1)dv −

∫ 1

0
Cη(vηt1 , . . . , vηtd )dv

=
1
d

d∑
j=1

∫ 1

0
vηt j dv −

∫ 1

0
vηAη(t)dv

=
1
d

d∑
j=1

1
1 + η t j

−
1

1 + η Aη(t)
.

The result (3.3) follows by solving the above equality for Aη. �

A.4. Proof of Theorem 3.1

We start with some notation. Let Ĉn :=
√

n(Ĉn −Cη), where Ĉn is the empirical copula defined as

Ĉn(u) :=
1
n

n∑
i=1

1l
{Ûi≤u}, u ∈ [0, 1]d,

with Ûi =
(
Hn,1(Zi,1), . . . ,Hn,d(Zi,d)

)
. Define now, for all t ∈ Sd,

M(·, t) := 1 −
∫ 1

0
Cη(v· t1 , . . . , v· td )dv, (A.2)

M̂n(·, t) := 1 −
∫ 1

0
Ĉn(v· t1 , . . . , v· td )dv. (A.3)
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We will prove Theorem 3.1 with H (̂ηn)
n, j in ν̂η̂n,n and ĉη̂n,n replaced by Hn, j. Indeed, this slight modification has no

impact on the convergences (3.6) and (3.7) since

H (̂ηn)
n, j (Zi, j) = Hn, j(Zi, j)

(
1 +

1 + η̂n

η̂n
O

(
1
n

))−η̂n

=: H (̂ηn)
n, j (Zi, j) en,

and thus (A.2) and (A.3) can be slightly changed by replacing in the integrals v· t j by v· t j e·n, j = 1, . . . , d, without
any impact. In view of this remark, we pursue the proof of Theorem 3.1 with M(·, t) and M̂n(·, t) defined in (A.2)
and (A.3) without taking care of the adjustment with en.
We start to prove (3.7). To this aim, note that from (A.1) we have

M(η, t) =
ηAη(t)

1 + ηAη(t)

and thus the following decomposition holds

√
n(Âη̂n,n(t) − Aη(t)) =

√
n
 1
η̂n

M̂n (̂ηn, t)
1 − M̂n (̂ηn, t)

−
1
η

M(η, t)
1 − M(η, t)


=

√
n

η̂n

 M̂n (̂ηn, t)
1 − M̂n (̂ηn, t)

−
M(η, t)

1 − M(η, t)

 +
M(η, t)

1 − M(η, t)
√

n
(

1
η̂n
−

1
η

)
=: Ln(t) + Rn(t),

for all t ∈ Sd. We derive a tractable expression for Ln by means of the following three results.

Lemma A.1. We have the following decomposition
√

n(M̂n (̂ηn, t) − M(η, t)) =
√

n(M̂n(η, t) − M(η, t)) +
√

n(M(̂ηn, t) − M(η, t)) + op(1).

Proof. The proof uses arguments from van der Vaart and Wellner (2007). Since

√
n(M̂n (̂ηn, t) − M(η, t)) =

{√
n(M̂n (̂ηn, t) − M(̂ηn, t)) −

√
n(M̂n(η, t) − M(η, t))

}
+
√

n(M̂n(η, t) − M(η, t)) +
√

n(M(̂ηn, t) − M(η, t)),

it remains to show that

‖
√

n(M̂n (̂ηn, t) − M(̂ηn, t)) −
√

n(M̂n(η, t) − M(η, t))‖∞ = op(1). (A.4)

By Condition 1(ii) we have that
√

n(̂ηn − η) is asymptotically tight. Thus, for every ε > 0, there exists a compact
set K ≡ Kε ⊆ R such that

lim inf
n→∞

Pr(
√

n(̂ηn − η) ∈ K) > 1 − ε.

Furthermore, by the compactness of K, there exist δ > 0, p := p(δ) ∈ N and {h1, . . . , hp} ⊆ K such that K ⊆
∪1≤s≤p(hs − δ, hs + δ). Therefore,

{
√

n(̂ηn − η) ∈ K} ⊆

√n(̂ηn − η) ⊆
p⋃

s=1

(hs − δ, hs + δ)


=

p⋃
s=1

{̂
ηn ∈

(
η + n−1/2(hs − δ), η + n−1/2(hs + δ)

)}
.
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Consequently, it follows that, with probability at least 1 − ε,

‖
√

n(M̂n (̂ηn, t) − M(̂ηn, t)) −
√

n(M̂n(η, t) − M(η, t))‖∞
≤ sup

t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

|
√

n(M̂n(ηn,h, t) − M(ηn,h, t)) −
√

n(M̂n(η, t) − M(η, t))|

≤ sup
t∈Sd

max
1≤s≤p

|
√

n(M̂n(ηn,hs , t) − M(ηn,hs , t)) −
√

n(M̂n(η, t) − M(η, t))|

+ sup
t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

|
√

n(M̂n(ηn,hs , t) − M(ηn,hs , t)) −
√

n(M̂n(ηn,h, t) − M(ηn,h, t))|

=: In,1 + In,2

where ηn,• := η+n−1/2•. Showing (A.4) is thus equivalent to proving that both In,1 and In,2 tends to 0 in probability,
as n→ ∞. Using (A.2) and (A.3) we obtain

In,1 = sup
t∈Sd

max
1≤s≤p

∣∣∣∣∣∣
∫ 1

0

(
Ĉn(vηn,hs t1 , . . . , vηn,hs td ) − Ĉn(vηt1 , . . . , vηtd )

)
dv

∣∣∣∣∣∣
≤ sup

t∈Sd

max
1≤s≤p

sup
v∈(0,1)

∣∣∣∣Ĉn(vηn,hs t1 , . . . , vηn,hs td ) − Ĉn(vηt1 , . . . , vηtd )
∣∣∣∣

and

In,2 = sup
t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

∣∣∣∣∣∣
∫ 1

0

(
Ĉn(vηn,hs t1 , . . . , vηn,hs td ) − Ĉn(vηn,ht1 , . . . , vηn,htd )

)
dv

∣∣∣∣∣∣
≤ sup

t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

sup
v∈(0,1)

∣∣∣∣Ĉn(vηn,hs t1 , . . . , vηn,hs td ) − Ĉn(vηn,ht1 , . . . , vηn,htd )
∣∣∣∣ .

Now, for every v ∈ (0, 1) and small ε > 0, the map ϕ : (0, 1) → `∞([η − ε, η + ε]) : v 7→ ϕ(v), defined by
(ϕ(v))(x) = vx, induces continuously differentiable functions on [η − ε, η + ε] for every v ∈ (0, 1). The absolute
value of its first derivative, i.e. (ϕ̇(v))(x) = vx log v, is bounded above by ξv = vη−ε | log v|. Therefore, (ϕ(v))(x) is a
Lipschitz function and it satisfies the condition

|(ϕ(v))(x) − (ϕ(v))(y)| ≤ ξv|x − y|, ∀ x, y ∈ [η − ε, η + ε].

Furthermore, there exists a positive constant ξ such that supv∈(0,1) ξv < ξ, and thus for n sufficiently large ensuring
that ηn,h, ηn,hs ∈ [η − ε, η + ε], we have:

|vηn,hs t j − vηt j | ≤ ξ |η − ηn,hs | = ξ n−1/2|hs| → 0
|vηn,hs t j − vηn,ht j | ≤ ξ |ηn,hs − ηn,h| = ξ n−1/2|hs − h| ≤ ξ δn−1/2 → 0,

as n → ∞, for every t ∈ Sd, indexes s ∈ {1, . . . , p}, j ∈ {1, . . . , d} and for every |h − hs| < δ. These results imply
that

sup
t∈Sd

max
1≤s≤p

sup
v∈(0,1)

max
1≤ j≤d

|vηn,hs t j − vηt j | → 0, n→ ∞ (A.5)

and
sup
t∈Sd

max
1≤s≤p

sup
|h−hs |<δ

max
1≤ j≤d

sup
v∈(0,1)

|vηn,hs t j − vηn,ht j | → 0, n→ ∞. (A.6)

Since the first partial derivative of Cη exists and is continuous on {u ∈ [0, 1]d : 0 < u j < 1} for all j = 1, . . . , d,
Ĉn { Aη in `∞([0, 1]d) as n → ∞ (see e.g. Fermanian et al., 2004; Segers, 2012). Therefore the sequence Ĉn is
asymptotically uniformly equicontinuous in probability (see Theorem 1.5.7 in van der Vaart and Wellner, 1996).
Combining this result with (A.5) and (A.6) entails that In,1 and In,2 tends to 0 in probability, as n → ∞. Therefore
(A.4) is established and thus Lemma A.1 follows. �

Lemma A.2. We have

√
n(M(̂ηn, t) − M(η, t)) =

Aη(t)
(ηAη(t) + 1)2

√
n(̂ηn − η) + op(1).
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Proof. Let
ϕ : ((0,∞), | · |)→ (`∞(Sd), ‖ · ‖∞) : a 7→ M(a, ·)

be the map defined by

M(a, ·) =
a Aη(·)

1 + a Aη(·)
.

Its Hadamard derivative at η ∈ (0, 1] is

h 7→ (ϕ̇η(h)) =
h Aη

(ηAη + 1)2 .

Indeed, for every εn ↓ 0 and hn → h ∈ (0,∞), as n→ ∞, such that η + εnhn ∈ (0,∞), we have

lim
n→∞

sup
t∈Sd

∣∣∣∣∣ (ϕ(η + εnhn))(t) − (ϕ(η))(t)
εn

− (ϕ̇η(h))(t)
∣∣∣∣∣

= lim
n→∞

sup
t∈Sd

∣∣∣∣∣∣ 1
εn

(
(η + εnhn)Aη(t)

(η + εnhn)Aη(t) + 1
−

ηAη(t)
ηAη(t) + 1

)
−

hAη(t)
(ηAη(t) + 1)2

∣∣∣∣∣∣
= lim

n→∞
sup
t∈Sd

∣∣∣∣∣∣ Aη(t)
ηAη(t) + 1

∣∣∣∣∣∣
∣∣∣∣∣∣ hn

(η + εnhn)Aη(t) + 1
−

h
ηAη(t) + 1

∣∣∣∣∣∣
≤ lim

n→∞
d2 |hn − h| + |hhn|εn

(d + η)(d + η + εnhn)
= 0.

Lemma A.2 now follows from Theorem 20.8 in van der Vaart (2000) and under our Condition 1(ii). �

Lemma A.3. We have

√
n
 M̂n (̂ηn, t)

1 − M̂n (̂ηn, t)
−

M(η, t)
1 − M(η, t)

 = (1 + ηAη(t))2 √n(M̂n (̂ηn, t) − M(η, t)) + op(1).

Proof. The proof of this lemma is based on an application of the functional delta method after proving the
Hadamard differentiability of the functional ϕ( f ) = f /(1 − f ), with f in `∞(Sd), and the existence of the weak
limit of

√
n(M(̂ηn, ·) − M(η, ·)) in `∞(Sd).

First, we start showing that the Hadamard derivative of ϕ at M := M(η, ·) is

h 7→ (ϕ̇M(h)) =
h

(1 − M)2 ,

with h in `∞(Sd). Indeed, for every sequence εn ↓ 0 and hn → h as n→ ∞, such that M + εnhn in `∞(Sd), we have

lim
n→∞

sup
t∈Sd

∣∣∣∣∣ (ϕ(M + εnhn))(t) − (ϕ(M))(t)
εn

− (ϕ̇M(h))(t)
∣∣∣∣∣

= lim
n→∞

sup
t∈Sd

∣∣∣∣∣∣ 1
εn

(
M(η, t) + εnhn(t)

1 − M(η, t) − εnhn(t)
−

M(η, t)
1 − M(η, t)

)
−

h(t)
(1 − M(η, t))2

∣∣∣∣∣∣
= lim

n→∞
sup
t∈Sd

(1 + ηAη(t))2

∣∣∣∣∣∣hn(t) − h(t) + h(t)εnhn(t)(1 + ηAη(t))
1 − εnhn(t)(1 + ηAη(t))

∣∣∣∣∣∣
≤ lim

n→∞
(1 + η)2 ‖hn − h‖∞ + εn‖hn h‖∞(1 + η)

1 − εn‖hn‖∞(1 + η)
= 0.

Then, combining Lemmas A.1, A.2 with Proposition 3.1 in Segers (2012), we have under Condition 1(ii)(b) that
√

n(M̂n (̂ηn, ·) − M(η, ·)) =: Tn,1(·) + Tn,2(·) + op(1),
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where for all t ∈ Sd, we have

Tn,1(t) := −
∫ 1

0

Cn(vt1η, . . . , vtdη) −
d∑

j=1

Ċη, j(vt1η, . . . , vtdη)Cn(1, . . . , 1, vt jη, 1, . . . , 1)

 dv

and

Tn,2 :=
Aη

(1 + η Aη)2 χ(Hn) + op(1).

For any u ∈ [0, 1]d, Cn(u) = Hn(G←η,1(u1), . . . ,G←η,d(ud)), and so both terms are asymptotically equivalent to con-
tinuous functionals of the empirical process Hn. Therefore, the weak convergence of Tn,1 + Tn,2 follows from the
continuous mapping theorem. A similar reasoning can be obtained if Condition 1(ii)(b) is replaced by Condition
1(ii)(a). In that case, we have the following decomposition

√
n(M̂n (̂ηn, ·) − M(η, ·)) =: Tn,1 + T̃n,2 + op(1),

where

Tn,1(t) =
1
√

n

n∑
i=1

(Wi,t − E(Wi,t)), T̃n,2(t) :=
1
√

n

n∑
i=1

W̃i,t , t ∈ Sd

and

Wi,t =

d∨
j=1

G1/ηt j
η (Zi, j) +

d∑
j=1

∫ 1

0
Ċη, j(vt1η, . . . , vtdη)1l

{v>G
1/ηt j
η (Zi, j)}

dv,

W̃i,t =
Aη(t)

(1 + ηAη(t))2 ρ(Zi).

Note that the new expression for Tn,1 is obtained by applying Fubini’s theorem. The pair (Tn,1, T̃n,2) is asymptoti-
cally tight and so to show that its weak limit exists, it remains to prove that all its finite dimensional distributions
converge. This can be done by applying the central limit theorem since, for all k = 1, 2, . . ., the i.i.d. random vectors(

Wi,t1 , . . . ,Wi,tk , W̃i,t1 , . . . , W̃i,tk

)
, i = 1, . . . , n,

have finite second order moments under the assumptions of our Theorem 3.1 (see Nelsen, 2006, Theorem 2.2.7).
This achieves the proof of Lemma A.3. �

We come back now to the proof of Theorem 3.1. Combining the three previous lemmas with the definition of
M(η, t), we have

Ln + Rn =
(1 + ηAη(t))2

η̂n

√
n(M̂n(η, t) − M(η, t)) +

Aη(t)
η̂n

√
n(̂ηn − η) + ηAη(t)

√
n
(

1
η̂n
−

1
η

)
+ op(1)

=
(1 + ηAη(t))2

η̂n

√
n(M̂n(η, t) − M(η, t)) + op(1)

= −
(1 + ηAη(t))2

η

∫ 1

0
Ĉn(vηt1 , . . . , vηtd )dv + op(1).

As in the proof of Lemma A.1, using again the convergence Ĉn { Aη in `∞([0, 1]d) as n→ ∞, (3.7) follows from
the continuous mapping theorem and Slutsky’s lemma.
It remains now to prove (3.6). Note that

‖Âη̂n,n − Aη‖∞ = sup
t∈Sd

∣∣∣∣∣∣ 1
η̂n

M̂n (̂ηn, t)
1 − M̂n (̂ηn, t)

−
1
η

M(η, t)
1 − M(η, t)

∣∣∣∣∣∣
= sup

t∈Sd

∣∣∣∣∣∣ 1

η̂nη{1 − M̂n (̂ηn, t)}{1 − M(η, t)}

∣∣∣∣∣∣ × sup
t∈Sd

∣∣∣∣η{1 − M(η, t)}M̂n (̂ηn, t) − η̂n{1 − M̂n (̂ηn, t)}M(η, t)
∣∣∣∣

=: Tn,1 × Tn,2.
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Since η̂n → η a.s., for a small ε > 0 and large n, we have almost surely that

Tn,1 ≤
1 + 1/η

η̂n
∫ 1

0 Ĉn(v1+ε, . . . , v1+ε)dv
−→

1 + 1/η

η
∫ 1

0 Cη(v1+ε, . . . , v1+ε)dv
< ∞.

Now, using the Lipschitz property of order k > 0 of Cη, we have

Tn,2 ≤ ‖η{1 − M(η, t)} − η̂n{1 − M̂(̂ηn, t)}‖∞ + ‖{1 − M̂n (̂ηn, t)}{1 − M(η, t)}‖∞ |̂ηn − η|

≤ |̂ηn − η|‖1 − M(η, t)‖∞ + η̂n‖M(η, t) − M̂n (̂ηn, t)‖∞ + |̂ηn − η|

≤ 2|̂ηn − η| + η̂n‖M(̂ηn, t) − M̂n (̂ηn, t)‖∞ + η̂n‖M(η, t) − M(̂ηn, t)‖∞

≤ 2|̂ηn − η| + η̂n‖Ĉn −Cη‖∞ + η̂nk
∫ 1

0
‖vη̂nt1 − vηt1 , . . . , vη̂ntd − vηtd‖∞dv.

Each term on the right-hand side of this inequality tend to 0 a.s. under our assumptions and according to similar
arguments to those used in Lemma A.1 for the last term. Thus (3.6) is established and the proof of Theorem 3.1 is
thus completed. �

A.5. Proof of Theorem 3.2

According to Guillou et al. (2014), η can be rewritten as

η = 2
(
1 −

µ1,2

µ1,1

)
.

A natural estimator can thus be obtained by replacing Qη(u) by the empirical version G←n (u) where Gn(u) :=
Gn(u, . . . , u). This entails

η̂n = 2
(
1 −

µ̂1,2

µ̂1,1

)
,

where

µ̂a,b :=
∫ 1

0
Qn(u)ua(− log u)bdu.

Consequently, we can decompose the left-hand side of (3.8) as

√
n(̂ηn − η) = 2

√
n
(
µ1,2

µ1,1
−
µ̂1,2

µ̂1,1

)
= 2

∫ 1
0 Qn(u)γ(u)du

n−1/2µ1,1
∫ 1

0 Qn(u)u(− log u)du + µ2
1,1

=: 2
Nn

Dn

with

Qn(u) :=
√

n(Qn(u) − Qη(u)).

We start to study the numerator Nn. To this aim, we define the empirical and quantile processes:

H̃n(u) :=
√

n(G̃n(u) − u), u ∈ (0, 1),
Q̃n(u) :=

√
n(Q̃n(u) − u), u ∈ (0, 1),

where for i.i.d. copies U1, . . . ,Un of U = Gη(max(Z1, . . . ,Zd)), we denote

G̃n(u) :=
1
n

n∑
i=1

1l(Ui ≤ u), u ∈ (0, 1),

and as before Q̃n := G̃←n . Let Ġη(y) and G̈η(y) be the first and second derivatives of Gη(y) with respect to y > 0.
The function defined in Theorem 3.2 is then equal to

ϕ(u) = Ġη(Qη(u)), u ∈ (0, 1).
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We can easily check that Gη satisfies the conditions of Theorem 3 in Csörgő and Révész (1978), where

sup
u∈(0,1)

|ϕ(u)Qn(u) − Q̃n(u)| = o(1) a.s. (A.7)

and by Bahadur-Kiefer theorem (see e.g. Einmahl, 1996) we have

sup
u∈(0,1)

|Q̃n(u) + H̃n(u)| = o(1) a.s.. (A.8)

As by direct computations
∫ 1

0

∣∣∣∣ γ(u)
ϕ(u)

∣∣∣∣ du < ∞, (A.7) and (A.8) entail

Nn = −

∫ 1

0
H̃n(u)

γ(u)
ϕ(u)

du + o(1) a.s..

A similar reasoning implies that almost surely

Dn = −n−1/2µ1,1

∫ 1

0
H̃n(u)

u(− log u)
ϕ(u)

du + µ2
1,1 + o(1) = µ2

1,1 + o(1).

Assembling Nn and Dn, we deduce that

√
n(̂ηn − η) = −

2
µ2

1,1

∫ 1

0
Hn(Qη(u), . . . ,Qη(u))

γ(u)
ϕ(u)

du + o(1) a.s.,

where we used the fact that H̃n(u) = Hn(Qη(u), . . . ,Qη(u)). Thus (3.8) is established. The other statements of the
theorem are direct consequences. �
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