
HAL Id: hal-01553800
https://hal.science/hal-01553800v1

Submitted on 23 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Nonlinear electron acoustic structures generated on the
high-potential side of a double layer

Raymond Pottelette, Matthieu Berthomier

To cite this version:
Raymond Pottelette, Matthieu Berthomier. Nonlinear electron acoustic structures generated on the
high-potential side of a double layer. Nonlinear Processes in Geophysics, 2009, 16, pp.373-380.
�10.5194/npg-16-373-2009�. �hal-01553800�

https://hal.science/hal-01553800v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Nonlin. Processes Geophys., 16, 373–380, 2009
www.nonlin-processes-geophys.net/16/373/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Nonlinear Processes
in Geophysics

Nonlinear electron acoustic structures generated on the
high-potential side of a double layer

R. Pottelette and M. Berthomier

LPP-CNRS/INSU, 4 avenue de Neptune, 94107 Saint-Maur des Fossés, France

Received: 26 January 2009 – Revised: 8 April 2009 – Accepted: 14 April 2009 – Published: 30 April 2009

Abstract. High-time resolution measurements of the elec-
tron distribution function performed in the auroral upward
current region reveals a large asymmetry between the low-
and high-potential sides of a double-layer. The latter side
is characterized by a large enhancement of a locally trapped
electron population which corresponds to a significant part
(∼up to 30%) of the total electron density. As compared to
the background hot electron population, this trapped com-
ponent has a very cold temperature in the direction paral-
lel to the static magnetic field. Accordingly, the differential
drift between the trapped and background hot electron pop-
ulations generates high frequency electron acoustic waves in
a direction quasi-parallel to the magnetic field. The den-
sity of the trapped electron population can be deduced from
the frequency where the electron acoustic spectrum maxi-
mizes. In the auroral midcavity region, the electron acoustic
waves may be modulated by an additional turbulence gen-
erated in the ion acoustic range thanks to the presence of a
pre-accelerated ion beam located on the high-potential side
of the double layer. Electron holes characterized by bipolar
pulses in the electric field are sometimes detected in correla-
tion with these electron acoustic wave packets.

1 Introduction

Electron acoustic waves (EAW) are known to contribute
most to electrostatic high frequency noise excited in a two-
component electron plasma when the density of the cold pop-
ulation is smaller than the density of the hot electrons. The
real part of the dispersion relation of these waves is given by:
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whereλDc and λDh are the cold and hot electron Debye
lengths, kea the wave number andfpc the cold plasma fre-
quency.

When the hot to cold temperature ratio becomes larger
than 10, the electron acoustic mode becomes more excited
than the Langmuir mode and can be considered as the prin-
cipal high frequency mode of the plasma (Tokar and Gary,
1984; Singh and Lakhina, 2001). Under conditions of strong
excitation and in the absence of simultaneously excited ion
acoustic waves, the EAW readily evolve into electron acous-
tic solitons which propagate at a speed faster than the elec-
tron acoustic velocity vea .

Since the pioneer work by Dubouloz (1993), electron
acoustic solitary structures have been extensively studied
(Berthomier et al., 2000; Berthomier et al., 2003; Shukla
et al., 2004; Singh and Lakhina, 2004; Kakad et al., 2007;
Lakhina et al., 2008). Structures of this type leading to the
formation of bipolar pulses in the electric field (generally
identified as electron holes) have been detected in the Earth’s
magnetosphere. Evidence for them to exist has been accu-
mulated in many regions preferentially where magnetic field-
aligned currents are expected to flow: in the plasma sheet
boundary layer (Matsumoto et al., 1994), in the auroral re-
gion (Ergun et al., 1998), at the magnetopause (Cattell et al.,
2002), the bow shock ramp (Bale et al., 2002), and even in
the magnetosheath (Pickett et al., 2003).

Usually, electron holes evolve in the interaction of hot and
cold electron plasmas; they are known as nonlinear BGK
modes (Omura et al., 1996; Muschietti et al., 1999, 2002).
The property of two electron temperatures populations al-
lows for electron acoustic turbulence which has similar prop-
erties as ion acoustic waves. In its nonlinear state, it there-
fore consists essentially of solitary waves leading to elec-
tron phase space holes generation with much lower threshold
for excitation than ordinarily believed. EAW like Langmuir
waves are high frequency density waves. They may become
trapped and modulated by ion acoustic density perturbations
leading to modulation and generation of electron acoustic en-
velope solitons. As we are going to demonstrate below this
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FIGURE 1 The 6 s high resolution overview of the FAST auroral magnetosphere passage 
(orbit 1750) in the inverted-V anti-earthward current region described in the text.: 
a) magnetometer data. b) 32 kHz waveform of the parallel electric field component. c).Fourier 
transform of the parallel waveform. d) Spectrum of the Auroral Kilometric Radiation 
generated near the electron gyrofrequency. e) and f) Electron energy flux and pitch angle 
distributions. g)and h) Ion energy flux and pitch angle distributions. 

a)

b)

c)

d)

e)

f)

g)

h)

 1

Fig. 1. The 6 s high resolution overview of the FAST auroral magnetosphere passage (orbit 1750) in the inverted-V anti-earthward current
region described in the text:(a) magnetometer data.(b) 32 kHz waveform of the parallel electric field component.(c) Fourier transform of
the parallel waveform.(d) Spectrum of the Auroral Kilometric Radiation generated near the electron gyrofrequency.(e) and(f) Electron
energy flux and pitch angle distributions.(g) and(h) Ion energy flux and pitch angle distributions.

happens in the so-called auroral midcavity region (Ergun et
al., 2004), when a pre-accelerated ion beam is located on the
high-potential side of a double layer.

In the present paper, we use high-time resolution data
from the FAST spacecraft in the auroral upward current
region (Carlson et al., 1988). We show that – on the high-
potential side of a double layer – the source of free energy for
EAW lies in the difference in the parallel drift and tempera-
ture of the hot and trapped electron populations. The waves
are mostly excited in a direction parallel to the magnetic field
B where the temperature of the trapped population (∼5 eV)

is small as compared to that of the hot drifting electron pop-
ulation (several keV). As expected, the turbulent spectrum
of the excited waves exhibits a maximum in the neighbour-
hood of the plasma frequency corresponding to the trapped
electron population density.

2 Observations

Previous studies have indicated that the trapped electron pop-
ulation plays an important role by structuring the auroral par-
allel electric field (Ergun, 2004). In order to illustrate the sys-
tematic presence of such a population on the high-potential
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FIGURE 2 DC electric field measurement during the time interval when particle acceleration 
processes take place. The parallel field exhibits a unipolar anti-earthward field typical for a 
potential ramp (double layer). 
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Fig. 2. DC electric field measurement during the time interval when
particle acceleration processes take place. The parallel field exhibits
a unipolar anti-earthward field typical for a potential ramp (dou-
ble layer).
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FIGURE 3 Electron pitch angle distributions averaged over 300 ms at the times when a 
trapped electron population is measured in the high side of a double layer: Left: orbit 1750, 
Right: orbit 1843. 
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Fig. 3. Electron pitch angle distributions averaged over 300 ms at
the times when a trapped electron population is measured in the
high side of a double layer: Left: orbit 1750, Right: orbit∼1843.

side of a double-layer, we have selected two FAST orbits,
namely orbits 1750 and 1843. These orbits have been pre-
viously studied either in a somewhat different scientific con-
text or we give in the present paper a new approach look-
ing at the observations (Pottelette et al., 1999; Pottelette and
Treumann, 2005).

2.1 Orbit 1750

The 6 s sequence of FAST particle and wave observations
on 30 January 1997 at∼22.30 MLT (orbit 1750) forming
one basis of our discussion is shown in Fig. 1. FAST was
on a poleward pass at invariant latitude∼68◦ and altitude
4300 km. Panel a) shows it crossing the upward current re-
gion (negative magnetic field gradient). Electron energy flux
and pitch angle distributions are given in panels e) and f),
respectively. Before 06:16:55.000 UT the electrons form a
downward beam, broadened toward larger pitch angles but
with empty loss cone, typical for the presence of a parallel

electric potential drop above the spacecraft. Starting from
06:16:55.000 UT, in about 1.5 s, the earthward parallel en-
ergy of the electron beam is accelerated from∼10 to 20 keV.
During this elapsed time, the entire ionospheric ion popula-
tion (panel g) in the vicinity of the spacecraft is accelerated
anti-earthward (180◦ in panel h) forming a cold ion beam
with peak energy at about 10 keV. The ion pitch angle dis-
tribution does not show evidence for either down-going or
a detectable low energy component. The entirety of these
observations is consistent with the spacecraft crossing a lo-
calized region of∼10 keV parallel potential drop.

From 06:16:55.000 UT, Fig. 2 shows the FAST spacecraft
approaching and passing (during∼1.5 s) a negative (upward
directed) unipolar electric field ramp in a direction parallel
to B. In this figure, the DC-coupled electric field fluctua-
tions are sampled at∼512 Hz; it can be seen that the par-
allel field reaches values∼700 mV/m. As depicted in panel
d) of Fig. 1, the presence of intense auroral kilometric ra-
diation (AKR) generated near the electron gyro-frequency
fce (black line at∼340 kHz) indicates also that the space-
craft is in the auroral acceleration region.

We note that the spacecraft approaches the double layer
from the low potential side. On the high potential side,
starting from 06:16:56.000 UT, panel (f) indicates a large
increase of electrons – at perpendicular pitch angles with
well expressed peak fluxes at 90◦ and 270◦. The left part
of Fig. 3 displays the electron pitch angle distribution aver-
aged over 300 ms during this time period. The trapped elec-
trons are detected in the 1–10 keV energy range. Panels (b)
and (c) of Fig. 1 show the 32 kHz waveform of the parallel
electric component and its Fourier transform, respectively.
A large increase in the wave activity is observed in corre-
lation with the appearance of the trapped electron popula-
tion. Broadband noise excitation in the kHz frequency range
is clearly visible in panel (c) at the time when trapped ener-
getic electrons are present. This broadband noise excitation
is almost electrostatic as no measurable magnetic signal is
detected.

The left part of Fig. 4 displays 20 ms of the waveform
data covering this event, while in the right part we show the
spectrum of these waves averaged over 300 ms. The elec-
tric field signal is dominated by a series of large amplitude
(∼100 mV/m), strongly modulated coherent wave packets
which are spatially periodic and have a recurrence period
of ∼3 ms corresponding to waves of frequency∼300 Hz,
well in the hydrogen ion acoustic frequency range. Note
the strong localization of the wave packets in time and space
and their separation by gaps of nearly vanishing wave am-
plitude. Also note the strong monochromaticity of the high
frequency waves trapped in the localized wave packets as in-
dicated by the intense∼6 kHz peak in the spectrum. Dur-
ing this event, the density of the energetic trapped electrons
(in the 1–10 keV energy range) can be calculated from the
electron spectrometer data. Selecting an opening angle of
±11◦ (experimental constraints) around the perpendicular to
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FIGURE 4. Left: Waveform of broadband noise recorded during the time when a trapped 
electron population is present during orbit 1750. Right: Frequency spectrum showing the 
electron acoustic waves (at ~ 6 kHz ) and total plasma frequency (at ~ 12 kHz) peaks. The 
broadband LF maximum near 300 Hz belongs to the ion acoustic wave spectrum. 
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Fig. 4. Left: Waveform of broadband noise recorded during the time when a trapped electron population is present during orbit∼1750.
Right: Frequency spectrum showing the electron acoustic waves (at 6 kHz ) and total plasma frequency (at∼12 kHz) peaks. The broadband
LF maximum near 300 Hz belongs to the ion acoustic wave spectrum.

B direction; this density amounts to 0.55 cm-3. So, the 6 kHz
emission line of the EAW spectrum can be safely interpreted
as the plasma frequencyf t

p of the trapped electrons within
a ∼10% accuracy. The total electron density peaks near
∼2 cm−3 corresponding to the weaker emission recorded at
∼12 kHz. It turns out that the density of the trapped electrons
amounts to about 30% of the total electron density.

Four different particle populations can be identified on
the high-potential side of the double layer. The first is
the downward directed anisotropic energetic auroral elec-
tron beam (or electron conic) near 20 keV. This beam is
fast, vb∼7104 km s−1, and relatively dense nb∼0.0024 cm−3,
which is about 0.1% of the total plasma density. Its distribu-
tion peaks parallel to the magnetic field and its parallel tem-
perature is Tbll ∼1 keV.

In addition to the electron beam, one has the hot auroral
electron component with a parallel temperature Thll ∼1 keV
comparable to the beam, and the trapped electron population
with a weak parallel temperature Ttll ∼5 eV. The hot electron
component is moving downward at an average drift velocity
VDh ∼1000 kms−1, this is substantially faster than the drift
of the trapped component which is nearly standing. The ion
beam, on the other hand, propagates upward at a speed of
about vbi ∼100 kms−1, while the temperature of the ions,
taken from the spread of the distribution function is∼200 eV.
There are no cold background ions.

2.2 Orbit 1843

We show in this paragraph some data gathered by FAST dur-
ing a rather similar event to the one previously studied. Fig. 5
collects a 6 s sequence of wave and particles data recorded
throughout the upward current auroral region on 7 Febru-
ary 1997 at∼2300 MLT. The spacecraft was at invariant
latitude∼66◦ and was travelling poleward at an altitude of
3950 km. The data exposed in panels (a) to (h) are of the

same kind as those shown earlier in Fig. 1. Again, the pres-
ence of intense AKR emissions generated near the electron
gyro-frequency (panel d) indicates that the spacecraft is in
the auroral acceleration region, while the negative magnetic
field gradient displayed in panel (a) characterizes the upward
current region.

Starting from 20:50:12.000 UT, Fig. 6 shows FAST ap-
proaching and passing a negative unipolar parallel electric
field ramp in the fluctuations sampled at∼512 Hz of the
DC-coupled electric field. The parallel field assumes values
larger than 1 V m−1 in anti-earthward direction for roughly
0.5 s, being capable of accelerating electrons earthward
and ions anti-earthward as observed. The simultaneously
measured large perpendicular field corresponds to the cross-
ing of a convergent electric field structure associated with an
oblique double layer (Ergun et al., 2004). As seen in panels
(e) and (g) of Fig. 5, in close connection with the detection of
the double layer, the parallel energy of the ions drops from
4 keV to 200 eV, while the parallel energy of the electrons
increases continuously from 4 keV to 8 keV. This fact pro-
vides strong support for the crossing of a localized parallel
potential ramp of∼4 keV amplitude.

On the high potential side of this double layer, starting
from 20:50:12.700 UT, panel f) of Fig. 5 indicates a substan-
tial increase of the electron density at perpendicular pitch
angles in the 1–8 keV energy range. As compared to or-
bit 1750, the increase is however less pronounced and more
distributed over pitch angles larger than 60◦ (see right part
of Fig. 3). The density of the energetic trapped electrons
(in the 1–8 keV energy range) calculated from the electron
spectrometer data in an opening angle of±11◦ around the
perpendicular to B direction amounts to 0.25 cm-3. This
leads tof t

p ∼4.5 kHz for the characteristic plasma frequency
of trapped electrons. On the other hand, the measured to-
tal electron density is∼1.5 cm−3 corresponding to a plasma

Nonlin. Processes Geophys., 16, 373–380, 2009 www.nonlin-processes-geophys.net/16/373/2009/
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FIGURE 5 Same data as in Fig. 1 but for orbit 1843: A 6 s high resolution overview in the 
inverted-V anti-earthward current region. The different panels are described in the text. 
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Fig. 5. Same data as in Fig. 1 but for orbit 1843: A 6 s high resolution overview in the inverted-V anti-earthward current region. The different
panels are described in the text.

frequency of∼11 kHz. In the present case, the density of the
trapped population is about 20% of the total electron density.

Left part of Fig. 7 displays 20 ms of the waveform data
covering this event, while the spectrum of the excited waves
averaged over 300 ms is displayed in the right part. The
waveform is dominated by a series of moderate amplitude
(∼20 mV/m), strongly modulated coherent wave packets
with a recurrence period of∼4 ms. In the LF frequency
range, the most excited frequency is located around 250 Hz
corresponding to waves well in the hydrogen ion acoustic fre-
quency range. A broadband secondary peak in the spectrum
occurs in the 2–5 kHz frequency range. This latter corre-
sponds to the plasma frequency range of trapped electrons

and thus to the excitation of EAW. Note however that, as
compared to orbit 1750, the excitation is weaker and occurs
in a broader frequency range due to the fact that the electrons
are more widely distributed around the perpendicular toB di-
rection. The weaker emission recorded at∼11 kHz matches
with the total plasma frequency.

Again, as for orbit 1750, four different particle popu-
lations can be identified on the high-potential side of the
double layer with different characteristics. The first is the
downward directed anisotropic energetic auroral electron
beam near 8 keV. This beam drifts with a parallel speed
vb ∼5104 km s−1, its density is nb ∼0.002 cm−3. Its dis-
tribution peaks parallel to the magnetic field and its parallel

www.nonlin-processes-geophys.net/16/373/2009/ Nonlin. Processes Geophys., 16, 373–380, 2009
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FIGURE 6 DC electric field measurements for orbit 1843 during the same time interval in 
parallel (gray) and perpendicular (black) directions. The parallel field exhibits a unipolar anti-
earthward field typical for a potential ramp (double layer). 
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Fig. 6. DC electric field measurements for orbit 1843 during the
same time interval in parallel (gray) and perpendicular (black) di-
rections. The parallel field exhibits a unipolar anti-earthward field
typical for a potential ramp (double layer).

temperature is Tbll ∼1 keV.
The hot auroral electron component has a parallel tempera-

tures Thll ∼1 keV comparable to the beam, while the parallel
temperature of the trapped electron population is Ttll ∼6 eV.
The hot electron component is moving downward at an av-
erage drift velocity VDh ∼1500 kms−1, again substantially
faster than the drift of the trapped component which is nearly
standing. The ion beam, on the other hand, propagates up-
ward at a speed of about vbi ∼100 kms−1, while the temper-
ature of the ions, taken from the spread of the distribution
function is∼300 eV. In the present case, in addition to the
ion beam, hot plasma sheet ions are present; their density is
about 10% the ion beam density.

3 Discussion

Except for the auroral electron beam which excites the to-
tal plasma frequency, the three other particle components
provide the free energy and the propagation conditions for
ion and EAW. Figure 8 shows a sketch of their distribu-
tion functions. In the frame of the trapped electron distribu-
tion, the hot auroral electrons form a broad distribution cen-
tred at VDh. In order to determine the instability conditions
for these waves, we take the following characteristic values
for the main plasma parameters as derived from the mea-
surements performed by the FAST spacecraft on the high-
potential side of a double-layer: Thll ∼1 keV, Ttll ∼5 eV,
f t

p ∼6 kHz, fph ∼10 kHz, fpi ∼300 Hz, VDh ∼1000 kms−1.
This leads toλDt ∼20 m and toλDh ∼120 m for the values
of the trapped and hot electron Debye lengths, respectively.

The excitation of the electron-acoustic waves is due to
the drift of the hot electron component with respect to the
background trapped electrons. The instability requires that
kea . V Dh>2π f t

p, where kea is the wave vector (Treumann
and Baumjohann, 1996). In addition, the following in-
equality must be fulfilled keaλDt<1. Both inequalities lead
to 3 10−2<kea<5.10−2. Taking kea∼4. 10−2, one finds
λea ∼150 m for the typical wavelength of EAW associated
with a phase velocity vea≈ 900 km/s. We have keaλDh>1,
so the waves are generated in the short wavelengths limit
where they become cold electron Langmuir waves as shown
by Eq. (1). The trapped electron population, with its weak
parallel electron temperature, plays indeed the role of the
cold electron population with regard to waves excited par-
allel to B.

The excitation of ion acoustic waves can be understood
when neglecting the cold trapped electrons. The condition
for instability is that VDh>cia , where the ion acoustic ve-
locity can be expressed in term of the electron to ion mass
ratio and of the hot thermal velocity as cia=Vh (me/mi)

1/2.
With the typical plasma parameters defined above, we get
cia∼300 km/s assuming that hydrogen is the main back-
ground ion species.

Since the ion beam is upward propagating in the oppo-
site direction of the hot electrons the condition for instability
is easily satisfied (see Fig. 8). The ion acoustic waves
are excited in a broad range of phase velocities such that
cia<2π fia /kia<VDh. These waves can be excited up to the
ion plasma frequency fpi ; their typical wavelength is of the
order of a kilometre. In the fixed system of the Earth, the
ion acoustic waves move downward together with the higher
frequency EAW because their phase velocity is so close to
VDh. We therefore end up with a situation where all the
electrostatic waves are essentially moving down. In such a
scenario the ion acoustic waves can both modulate and trap
EAW to generate wave packets similar to the observed pack-
ets. Trapping is in principle possible up to any multiple half
of the electron acoustic wavelength.

4 Conclusions

It has already been argued that double layers may be the
dominant physical mechanism that supports the parallel field
leading to auroral particles acceleration (Mozer and Hull,
2001). It should be emphasized that the characteristics of
the turbulence generated on the low- and high- potential
sides of a double layer appear very disparate (Pottelette and
Treumann, 2005). From the FAST spacecraft observations
we have inferred that:

1. EAW are generated on the high-potential side of a dou-
ble layer, these observations enable to determine the
density fraction of trapped electrons. In the absence of a
retarding electric field these electrons would overwhelm
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FIGURE 7 Left: Waveform of broadband noise recorded during the time when a trapped 
electron population is present during orbit 1843. Right: Frequency spectrum showing the 
electron acoustic waves (at ~ 4 kHz ) and total plasma frequency (at ~ 11 kHz) peaks. The 
broadband LF maximum near 250 Hz belongs to the ion acoustic wave spectrum. 
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Fig. 7. Left: Waveform of broadband noise recorded during the time when a trapped electron population is present during orbit 1843. Right:
Frequency spectrum showing the electron acoustic waves (at∼4 kHz ) and total plasma frequency (at∼11 kHz) peaks. The broadband LF
maximum near 250 Hz belongs to the ion acoustic wave spectrum.

 
 
 
 
 
 
 
 
 
 

 
FIGURE 8 Sketch of the particle distribution functions f(v) leaving out the auroral electron 
beam. Unstable spectra of electron and ion acoustic waves as function of ω/k are indicated by 
the shading. Both types of waves move downward in the cold (trapped) electron frame (After 
Pottelette et al., 1999, with permission by the American Geophysical Union). 
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Fig. 8. Sketch of the particle distribution functions f(v) leaving
out the auroral electron beam. Unstable spectra of electron and ion
acoustic waves as function ofω/k are indicated by the shading. Both
types of waves move downward in the cold (trapped) electron frame
(After Pottelette et al., 1999, with permission by the American Geo-
physical Union).

the auroral cavity. The trapped electrons resulting from
velocity space diffusion account for a significant frac-
tion of the local background electron density. As previ-
ously stated by Ergun et al. (2002), they appear to play
an important role in determining the spatial distribution
of auroral potential.

2. The EAW have typical parallel scalesλea∼150 m and
are moving downward at a velocity of∼1000 km/s.
They are generated in the short wavelengths limit
(keaλDh>1) where they become cold electron Lang-
muir waves. The additional presence of ion acoustic

 
 
 
 
 
 
 
 

 
 
FIGURE 9 Zoom of the left part of Fig.7: High time resolution of the quasi-parallel electric 
field showing well defined bipolar electric field structures (labelled 1 and 2). 
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Fig. 9. Zoom of the left part of Fig. 7: High time resolution of
the quasi-parallel electric field showing well defined bipolar electric
field structures (labelled 1 and 2).

turbulence excited by a weak energetic ion beam leads
to the generation of modulated electron acoustic soli-
tons.

3. The nonlinear excitation of the EAW may sometimes
lead to the generation of electron holes. This is
well illustrated by the 5 ms time sequence shown in
Fig. 9 (which is an enlargement of the right part of
Fig. 7) revealing the presence of well defined bipolar
electric field structures (labelled 1 and 2) which reflect
the presence of electron holes. This observation pro-
vides a convincing example regarding the possible non-
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linear evolution of EAW into nonlinear structures sim-
ilar to those described by BGK modes (Shukla et al.,
2004).

4. The nonlinear EAW waves are the ultimate result of a
parallel electric field in the upward auroral current re-
gion, they may, however, themselves self-consistently
contribute to the generation of such large-scale parallel
electric fields.
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