Electric and magnetic contributions to spatial diffusion in collisionless plasmas
Résumé
We investigate the role played by the different self-consistent fluctuations for particle diffusion in a magnetized plasma. We focus especially on the contribution of the electric fluctuations and how it combines with the (already investigated) magnetic fluctuations and with the velocity fluctuations. For that issue, we compute with a hybrid code the value of the diffusion coefficient perpendicular to the mean magnetic field and its dependence on the particle velocity. This study is restricted to small to intermediate level of electromagnetic fluctuations and focuses on particle velocities on the order of few times the Alfvén speed. We briefly discuss the consequences for cosmic ray modulation and for the penetration of thermal solar wind particles in the Earth magnetosphere.