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ENTROPY ESTIMATES FOR A CLASS OF SCHEMES

FOR THE EULER EQUATIONS

T. Gallouët1, R. Herbin2, J.-C. Latché3 and N. Therme4

Abstract. In this paper, we derive entropy estimates for a class of schemes for the Euler equations
which present the following features: they are based on the internal energy equation (eventually with a
positive corrective term at the righ-hand-side so as to ensure consistency) and the possible upwinding
is performed with respect to the material velocity only. The implicit-in-time first-order upwind scheme
satisfies a local entropy inequality. A generalization of the convection term is then introduced, which
allows to limit the scheme diffusion while ensuring a weaker property: the entropy inequality is satisfied
up to a remainder term which is shown to tend to zero with the space and time steps, if the discrete
solution is controlled in L∞ and BV norms. The explicit upwind variant also satisfies such a weaker
property, at the price of an estimate for the velocity which could be derived from the introduction
of a new stabilization term in the momentum balance. Still for the explicit scheme, with the above-
mentioned generalization of the convection operator, the same result only holds if the ratio of the time
to the space step tends to zero.

2010 AMS Subject Classification. 35Q31,65N12,76M10,76M12.

April 2017.

1. Introduction

The Euler system of equations is a hyperbolic system of conservation laws (mass, momentum and energy)
describing the motion of a compressible fluid. In the case of regular solutions, an additional conservation law can
be written for an additional quantity called entropy; however, in the presence of shock waves, the (mathematical)
entropy decreases. It is now known that weak solutions of the Euler system satisfying an entropy inequality
may be non unique [4]; nevertheless, entropy inequalities play an important role in providing global stability
estimates.

In order to compute approximate solutions of the Euler equations, it is natural to seek numerical schemes
which satisfy some entropy inequalities; these inequalities should enable to prove that, as the mesh and time
steps tend to 0, the limit of the approximate solutions, if it exists, satisfies an entropy inequality. A classical
way of doing so is to design so-called “entropy stable schemes” [27]. Discrete entropy inequalities are known
for the one dimensional case for the Godunov scheme [11] and have been derived for Roe-type schemes in the
one space dimension case [18]. Entropy stability has also been proven in the multi-dimensional case for semi-
discrete schemes on unstructured meshes [22, 24]. However it is not always possible to obtain entropy stability,
especially for fully discrete schemes; here we are interested in proving more general discrete entropy inequalities
or estimates for some fully discrete numerical schemes for the system of the Euler equations for a perfect gas, in
the multi-dimensional case; these inequalities allow to fulfill our goal, namely to show that the possible limits
of the approximation satisfy an entropy inequality. Such a technique was used for the convergence study of a
time implicit mixed finite volume–finite element scheme for the Euler-Fourier equations with a special equation
of state [8] allowing to obtain a priori estimates.

Our aim here is to derive such discrete entropy inequalities for a class of fully discrete, time explicit or implicit,
multidimensional schemes introduced for the Euler and Navier-Stokes equations in [10,12–15,17] (some of them
are implemented in the open-source CALIF3S software [3] developed at the French Institut de Radioprotection
et de Sûreté Nucléaire); these schemes share the characteristic of solving the internal energy balance, with
positive correction terms to ensure the consistency. Such a class of schemes is referred to in the litterature as
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”flux splitting scheme”, since it may be obtained by splitting the system by a two-step technique (usually into
a ”convective” and ”acoustic” part), apply a standard scheme to each part (which, for the convection system,
indeed yields, at first order, an upwinding with respect to the material velocity) and then sum both steps to
obtain the final flux. Works in this direction may be found in [20,21,26,28,30], and we hope that the discussion
presented in this paper may be extended in some way to these numerical methods.

Let us recall the derivation of an entropy for the continuous Euler system. Consider the following system:

∂tρ+ div(ρu) = 0, (1.1a)

∂t(ρ e) + div(ρ eu) + p div(u) ≥ 0, (1.1b)

p = (γ − 1) ρ e, (1.1c)

where t stands for the time, ρ, u, p and e are the density, velocity, pressure and internal energy respectively,
and γ > 1 is a coefficient specific to the considered fluid. System (1.1) may be derived from the Euler equations,
subtracting the kinetic energy balance from the total energy balance. The first equation is the mass balance,
the second one is the internal energy balance, and the third one is the equation of state for a perfect gas. It is
complemented by initial conditions for ρ and e, denoted by ρ0 and e0 respectively, with ρ0 > 0 and e0 > 0, and
by a boundary condition which we suppose to be u ·n = 0 at any time and a.e. on ∂Ω, where n stands for the
normal vector to the boundary.

Starting from these equations, we seek an entropy function η satisfying:

∂tη(ρ, e) + div
[

η(ρ, e)u
]

≤ 0. (1.2)

To this end, we introduce the functions ϕρ and ϕe be defined as follows:

ϕρ(z) = z log(z), ϕe(z) =
−1

γ − 1
log(z), for z > 0, (1.3)

and show that, formally, the function η defined by

η(ρ, e) = ϕρ(ρ) + ρϕe(e). (1.4)

satisfies (1.2).
Indeed, multiplying (1.1a) by ϕ′

ρ(ρ), a formal computation yields:

∂t
[

ϕρ(ρ)
]

+ div
[

ϕρ(ρ)u
]

+
[

ρϕ′
ρ(ρ)− ϕρ(ρ)

]

div(u) = 0. (1.5)

Then, multiplying (1.1b) by ϕ′
e(e) yields, once again formally, since ϕ′

e(z) < 0 for z > 0:

∂t
[

ρϕe(e)
]

+ div
[

ρϕe(e)u
]

+ ϕ′
e(e) p div(u) ≤ 0. (1.6)

Summing (1.5) and (1.6) and noting that ϕρ and ϕe have chosen such that

ρϕ′
ρ(ρ)− ϕρ(ρ) + ϕ′

e(e) p = 0, (1.7)

we obtain (1.2), which is an entropy balance for the Euler equations, for the specific entropy defined by (1.4).
In this paper, we derive some analogous discrete entropy inequalities (with a possible remainder tending to

0) for the fully discrete, time implicit or explicit schemes of [10, 12–15, 17], with a possible upwinding limited
to that of the convection terms with respect to the material velocity. Note that the entropy estimates that we
obtain here apply both the staggered schemes [10, 13, 14] and to the colocated scheme of [17]; indeed in both
cases the mass and internal energy are written on the same cells.

Depending on the time and space discretization, we obtain three types of results:

- local entropy estimates, i.e. discrete analogues of (1.2), in which case the scheme is entropy stable,

- global entropy estimates, i.e. discrete analogues of:

d

dt

∫

Ω

η(ρ, e) dx ≤ 0. (1.8)
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(such a relation is a stability property of the scheme; this kind of relation was proven in e.g. [6] for a
higher order scheme for the 1D Euler equations),

- “weak local” entropy estimates, i.e. results of the form:

∂tη(ρ, e) + div
[

η(ρ, e)u
]

+R ≤ 0,

with R tending to zero with respect to the space and time discretization steps (or combination of both
parameters), provided that the solution is controlled in reasonable norms, here, L∞ and BV norms. Such
an inequality readily yieds a ”Lax-consistency” property, of the form: the limit of a convergent sequence
of solutions, bounded in suitable norms, satisfies the following weak entropy inequality:

−

∫ T

0

∫

Ω

η(ρ, e) ∂tϕ+ η(ρ, e)u ·∇ϕdxdt−

∫

Ω

η(ρ, e)(x, 0) ϕ(x, 0) dx ≤ 0,

for any function ϕ ∈ C∞
c

(

[0, T )× Ω̄
)

, ϕ ≥ 0.

The precise statement of this result for the explicit, implicit and semi-implicit schemes of [10, 12–14,17]
may be found in [16].

This paper is organized as follows. We first address implicit schemes (Section 2), then explicit schemes
(Section 3). In these two sections, the exposition is not structured in the same way: for implicit schemes, we
first consider an upwind discretization for which we get a local discrete entropy inequality (Theorem 2.3), and
then a variant with reduced numerical diffusion, for which we only get a global entropy estimate and a weak
local entropy inequality (Theorem 2.9). The case of explicit schemes is a little more tricky: we again consider the
same two discretizations (i.e. upwind and reduced diffusion) but we first deal with the mass balance equation,
then with the internal energy equation, and combine the results to address entropy inequalities.

Note that the term ”implicit scheme” refers to a scheme where the discrete analogue of System (1.1) is
solved by an implicit (i.e. backward Euler) time discretization; this does not prevent from any fractional
step technique that would the momentum balance equation separately. For instance, the pressure correction
algorithms introduced in [13, 14, 17] satisfy this property.

2. Implicit schemes

Let M be a decomposition of the domain Ω, supposed to be regular in the usual sense of the finite element
literature (see e.g. [5]). By E and E(K) we denote the set of all (d − 1)-faces σ of the mesh and of the cell
K ∈ M respectively, and we suppose that the number of the faces of a cell is bounded. The set of faces included
in Ω (resp. in the boundary ∂Ω) is denoted by Eint (resp. Eext); a face σ ∈ Eint separating the cells K and L is
denoted by σ = K|L. For K ∈ M and σ ∈ E , we denote by |K| the measure of K and by |σ| the (d−1)-measure
of the face σ. Let (tn)0≤n≤N , with 0 = t0 < t1 < . . . < tN = T , define a partition of the time interval (0, T ),
which we suppose uniform for the sake of simplicity, and let δt = tn+1 − tn for 0 ≤ n ≤ N − 1 be the (constant)
time step.

The discrete pressure, density and the internal energy unknowns are associated with the cells of the mesh
M; they are denoted by:

{

pnK , ρ
n
K , e

n
K , K ∈ M, 0 ≤ n ≤ N

}

.

The general form of the discrete analogue of System (1.1) reads:

For K ∈ M, 0 ≤ n ≤ N − 1,

|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn+1
K,σ = 0, (2.1a)

|K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ + pn+1

K

∑

σ∈E(K)

|σ|un+1
K,σ ≥ 0, (2.1b)

pn+1
K = (γ − 1) ρn+1

K en+1
K , (2.1c)
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where Fn+1
K,σ is the mass flux through the face σ, en+1

σ is an approximation of the internal energy at the face

σ, and un+1
K,σ stands for an approximation of the normal velocity to the face σ. Consistently with the boundary

conditions, un+1
K,σ vanishes on every external face. The mass flux Fn+1

K,σ reads:

Fn+1
K,σ = |σ| ρn+1

σ un+1
K,σ , (2.2)

where ρn+1
σ stands for an approximation of the density on σ. Throughout the paper, we suppose that ρnK , enK ,

ρnσ and enσ are positive, for any K ∈ M, σ ∈ Eint, 0 ≤ n ≤ N , which is verified by the solutions of the schemes
presented in [10, 12, 14, 15] (of course, with positive initial conditions for ρ and e).

We recall the following two lemmas, which where proven in [14]. They state discrete analogues of (1.5) and
(1.6) respectively. In their formulation, and throughout the paper, |[a, b]| stands for [min(a, b), max(a, b)], for
any real numbers a and b.

Lemma 2.1. Let K ∈ M, n be such that 0 ≤ n ≤ N − 1 and let us suppose that (2.1a) is verified. Let ϕ be a
twice continuously differentiable function defined over (0,+∞). Then we have:

|K|

δt

[

ϕ(ρn+1
K )− ϕ(ρnK)

]

+
∑

σ∈E(K)

|σ| ϕ(ρn+1
σ )un+1

K,σ

+
[

ρn+1
K ϕ′(ρn+1

K )− ϕ(ρn+1
K )

]

∑

σ∈E(K)

|σ| un+1
K,σ + |K| (Rm)n+1

K = 0,

with:

|K| (Rm)n+1
K =

1

2

|K|

δt
ϕ′′(ρ

n+1/2
K ) (ρn+1

K − ρnK)2

+
∑

σ∈E(K)

|σ|
[

ϕ(ρn+1
K )− ϕ(ρn+1

σ ) + ϕ′(ρn+1
K )(ρn+1

σ − ρn+1
K )

]

un+1
K,σ , (2.3)

where ρ
n+1/2
K ∈ |[ρnK , ρ

n+1
K ]|.

Lemma 2.2. Let K ∈ M and n be such that 0 ≤ n ≤ N − 1. Let ϕ be a twice continuously differentiable
function defined over (0,+∞). Then:

ϕ′(en+1
K )

[ |K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ

]

=
|K|

δt

[

ρn+1
K ϕ(en+1

K )− ρnKϕ(e
n
K)

]

+
∑

σ∈E(K)

Fn+1
K,σ ϕ(en+1

σ ) + |K| (Re)
n+1
K ,

with:

|K| (Re)
n+1
K =

1

2

|K|

δt
ρnK ϕ′′(e

n+1/2
K )(en+1

K − enK)2

+
∑

σ∈E(K)

Fn+1
K,σ

[

ϕ(en+1
K )− ϕ(en+1

σ ) + ϕ′(en+1
K )(en+1

σ − en+1
K )

]

, (2.4)

where e
n+1/2
K ∈ |[enK , e

n+1
K ]|.

2.1. Upwind schemes

In this section, we suppose that the convection fluxes are approximated with a first order upwind scheme,
i.e., for σ ∈ Eint, σ = K|L, ρn+1

σ = ρn+1
K and en+1

σ = en+1
K if uK,σ ≥ 0, ρn+1

σ = ρn+1
L and en+1

σ = en+1
L

otherwise. For σ ∈ Eext, thanks to the boundary conditions, the convection fluxes vanish. Let us consider the
term associated to the faces in the expression (2.3) of the remainder term (Rm)n+1

K . We have, for any twice
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continuously differentiable function ϕ, any internal face σ = K|L and 0 ≤ n ≤ N − 1:

(Tm)n+1
K,σ =

[

ϕ(ρn+1
K )− ϕ(ρn+1

σ ) + ϕ′(ρn+1
K )(ρn+1

σ − ρn+1
K )

]

un+1
K,σ

= −
1

2
ϕ′′(ρn+1

σ,K ) (ρn+1
σ − ρn+1

K )2un+1
K,σ ,

where ρn+1
σ,K ∈ |[ρn+1

σ , ρn+1
K ]|. With the upwind choice, if un+1

K,σ ≥ 0, ρn+1
σ = ρn+1

K and (Tm)n+1
K,σ vanishes. If

un+1
K,σ < 0 and ϕ′′ is a non-negative function (i.e. ϕ is convex), (Tm)n+1

K,σ is non-negative and so is (Rm)n+1
K , for

any K ∈ M. Since ϕρ defined by (1.3) is indeed convex, we thus have, applying Lemma 2.1, that any solution
to Equation (2.1a) of the scheme satisfies, for K ∈ M and 0 ≤ n ≤ N − 1:

|K|

δt

[

ϕρ(ρ
n+1
K )− ϕρ(ρ

n
K)

]

+
∑

σ∈E(K)

|σ| ϕρ(ρ
n+1
σ )un+1

K,σ

+
[

ρn+1
K ϕ′

ρ(ρ
n+1
K )− ϕρ(ρ

n+1
K

]

∑

σ∈E(K)

|σ| un+1
K,σ ≤ 0. (2.5)

By the same arguments, we get that (Re)
n+1
K ≥ 0 for any regular convex function ϕ, for any K ∈ M and

0 ≤ n ≤ N − 1. Hence, since ϕe defined by Equation (1.3) is convex, we get that any solution to (2.1b) satisfies:

|K|

δt

[

ρn+1
K ϕe(e

n+1
K )− ρnKϕe(e

n
K)

]

+
∑

σ∈E(K)

Fn+1
K,σ ϕe(e

n+1
σ )

+ ϕ′
e(e

n+1
K ) pn+1

K

∑

σ∈E(K)

|σ| un+1
K,σ ≤ 0. (2.6)

We are thus in position to state the following local entropy estimate (i.e. the following discrete analogue of
Inequality (1.2)).

Theorem 2.3 (Discrete entropy inequality, implicit upwind scheme). Any solution of the scheme (2.1) satisfies,
for any K ∈ M and 0 ≤ n ≤ N − 1:

|K|

δt
(ηn+1

K − ηnK) +
∑

σ∈E(K)

|σ| ηn+1
σ un+1

K,σ ≤ 0,

with ηmK = ϕρ(ρ
m
K) + ρmK ϕe(e

m
K), m = n, n+ 1, and ηn+1

σ = ϕρ(ρ
n+1
σ ) + ρn+1

σ ϕe(e
n+1
σ ).

Proof. The desired relation is obtained by summing the inequalities (2.5) and (2.6), using (1.7). �

Of course, this local entropy inequality also yields the global discrete inequality analogue to (1.8); furthermore,
passing to the limit on the upwind implicit (or pressure correction) scheme applied the Euler equations, this
local estimate also yields the Lax consistency property stated in the introduction.

2.2. Beyond the upwind approximation: reducing the diffusion

The aim of this section is to try to relax the requirement of an upwind approximation for the convection fluxes
in (2.1a) and (2.1b), in order to reduce the numerical diffusion. We shall see that this leads to a condition which
is reminiscent of the limitation requirement which is the core of a MUSCL procedure [29]: in order to yield an
entropy inequality (instead of, for a MUSCL technique, to yield a maximum principle), the approximation of the
unknowns at the face must be ”sufficiently close to” the upwind approximation. The entropy inequality is then
obtained only in the weak sense. The technique to reach this result consists in splitting the rest terms appearing
in Lemma 2.1 and 2.2 in two parts: the first one is non-negative under condition for the face approximation
(hence the above mentioned limitation requirement); the second one is conservative, which allows to bound it in
a discrete negative Sobolev norm (this explains why the entropy estimate is only a weak one). This construction
relies on the following technical lemma [9, Lemma 2.3].
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Lemma 2.4. Let ϕ be a strictly convex and continuously differentiable function over I ⊂ R. Let xK ∈ I and
xL ∈ I be two real numbers. Then the relation

ϕ(xK) + ϕ′(xK) (xKL − xK) = ϕ(xL) + ϕ′(xL) (xKL − xL) if xK 6= xL, (2.7)

xKL = xK = XL otherwise (2.8)

uniquely defines the real number xKL in |[xK , xL]|.

Remark 2.5 (xKL for ϕ(z) = z2). Let us consider the specific function ϕ(z) = z2. Then, an easy computation
yields xKL = (xK + xL)/2 i.e. the centered approximation. icici

Let ϕρ be the function defined by (1.3) For σ ∈ Eint, σ = K|L, let ρn+1
KL be the real number defined by

Equation (2.7) with ϕ = ϕρ, xK = ρn+1
K and xL = ρn+1

L , and let (δϕρ)
n+1
σ be the following quantity:

(δϕρ)
n+1
σ = ϕρ(ρ

n+1
K )− ϕρ(ρ

n+1
σ ) + ϕ′

ρ(ρ
n+1
K )

[

ρn+1
KL − ρn+1

K

]

+
1

2

[

ϕ′
ρ(ρ

n+1
K ) + ϕ′

ρ(ρ
n+1
L )

] [

ρn+1
σ − ρn+1

KL

]

. (2.9)

Note that, since

ϕρ(ρ
n+1
K ) + ϕ′

ρ(ρ
n+1
K )

[

ρn+1
KL − ρn+1

K

]

= ϕρ(ρ
n+1
L ) + ϕ′

ρ(ρ
n+1
L )

[

ρn+1
KL − ρn+1

L

]

,

the quantity (δϕρ)
n+1
σ only depends on σ. An easy computation shows that the term associated to the face σ

in the expression (2.3) of the remainder term (Rm)n+1
K satisfies:

(Fm)n+1
K,σ = |σ|

[

ϕρ(ρ
n+1
K )− ϕρ(ρ

n+1
σ ) + ϕ′

ρ(ρ
n+1
K )(ρn+1

σ − ρn+1
K )

]

un+1
K,σ

= |σ| (δϕρ)
n+1
σ un+1

K,σ + (FR
m)n+1

K,σ

with (FR
m)n+1

K,σ = |σ|
1

2

[

ϕ′
ρ(ρ

n+1
K )− ϕ′

ρ(ρ
n+1
L )

]

(ρn+1
σ − ρn+1

KL ) un+1
K,σ .

Let us assume that, for σ ∈ Eint, σ = K|L and for 0 ≤ n ≤ N − 1:

(H imp
ρ ) ρn+1

σ ∈ |[ρn+1
K , ρn+1

KL ]| if un+1
K,σ ≥ 0, ρn+1

σ ∈ |[ρn+1
L , ρn+1

KL ]| otherwise. (2.10)

Then, since ϕ′
ρ is an increasing function, (FR

m)n+1
K,σ ≥ 0. Let us define (δRm)n+1

K , K ∈ M, 0 ≤ n ≤ N − 1 by:

|K| (δRm)n+1
K =

∑

σ∈E(K)

|σ| (δϕρ)
n+1
σ un+1

K,σ . (2.11)

Then, under assumption (H imp
ρ ), we get:

|K|

δt

[

ϕρ(ρ
n+1
K )− ϕρ(ρ

n
K)

]

+
∑

σ∈E(K)

|σ| ϕρ(ρ
n+1
σ )un+1

K,σ

+
[

ρn+1
K ϕ′

ρ(ρ
n+1
K )− ϕρ(ρ

n+1
K )

]

∑

σ∈E(K)

|σ| un+1
K,σ + |K| (δRm)n+1

K ≤ 0. (2.12)

This inequality is an important step in proving that a limit of the discrete solutions satisfy a weak entropy
inequality, provided that the remainder term δRm vanishes when the space and time discretization step tend to
zero, under stability assumptions on the solution of the scheme; we now state this estimate on the remainder.
We first start by some discrete norms. Let hM be the space discretization:

hM = max
K∈M

diam(K).
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Definition 2.6 (Discrete BV semi-norm and weak W−1,1 norm). For a family (znK)K∈M,0≤n≤N ⊂ R, let us
define the following norms:

‖z‖T ,x,BV =
N
∑

n=0

δt
∑

σ=K|L∈Eint

|σ| |znL − znK |,

‖z‖−1,1 = sup
ψ ∈ C∞

c ([0, T )× Ω̄)

1

sup
x∈Ω, t∈(0,T )

‖∇ψ(x, t)‖

[

N
∑

n=0

δt
∑

K∈M

|K| znKψ
n
K

]

,

(2.13)

where ψn
K stands for ψ(xK , tn), with xK the mass center of K. Note that this latter weak norm is the discrete

equivalent of the continuous dual norm of v ∈ L1(Ω), defined by

‖v‖(W 1,+∞)′ = sup
ψ ∈ C∞

c ([0, T )× Ω̄)

1

sup
x∈Ω, t∈(0,T )

‖∇ψ(x, t)‖

∫ T

0

∫

Ω

vψ dx dt.

Then, with these notations, we may state the following bound for δRm.

Lemma 2.7. Let M > 1 and let us suppose that ρnK ≤M , 1/ρnK ≤M and |uK,σ| ≤M , for K ∈ M, σ ∈ E(K)
and 0 ≤ n ≤ N . Let us denote by |ϕ′

ρ|∞ the maximum value taken by |ϕ′
ρ| over the interval [1/M, M ] (which,

by convexity of ϕρ is equal to either |ϕ′
ρ(1/M)| or |ϕ′

ρ(M)|). Then, under assumption (2.10), the quantity δRm

defined by (2.11),(2.9) satisfies:

‖δRm‖−1,1 ≤ 3M |ϕ′
ρ|∞ ‖ρ‖T ,x,BV hM.

Proof. Let us consider the quantity (δϕρ)
n+1
σ defined by (2.9). Since both ρn+1

σ and ρn+1
KL lie in the interval

|[ρn+1
K , ρn+1

L ]|, we have, by convexity of ϕρ:

|(δϕρ)
n+1
σ | ≤ 3 max

(

|ϕ′
ρ(ρ

n+1
K )|, |ϕ′

ρ(ρ
n+1
L )|

)

|ρn+1
K − ρn+1

L |.

Let ψ be a function of C∞
c (Ω× (0, T )). We have, thanks to the conservativity of the remainder term:

T =

N−1
∑

n=0

δt
∑

K∈M

|K| (δRm)n+1
K ψn+1

K

=

N−1
∑

n=0

δt
∑

σ=K|L∈Eint

|σ| (δϕρ)
n+1
σ (ψn+1

K − ψn+1
L ) uK,σ.

Therefore,

|T | ≤ 3 |ϕ′
ρ|∞M

[

max
x∈Ω, t∈(0,T )

‖∇ψ(x, t)‖
]

hM

N−1
∑

n=0

δt
∑

σ=K|L∈Eint

|σ| |ρn+1
K − ρn+1

L |,

which concludes the proof. �

Following the same line of thought for the internal energy balance, for σ ∈ Eint, σ = K|L, and 0 ≤ n ≤ N−1,
we denote by en+1

KL the real number defined by Equation (2.7) with ϕ being the function ϕe defined by (1.3),
xK = eK and xL = eL. Then we denote by (δϕe)

n+1
σ the following quantity:

(δϕe)
n+1
σ = ϕe(e

n+1
K )− ϕe(e

n+1
σ ) + ϕ′

e(e
n+1
K )

[

en+1
KL − en+1

K

]

+
1

2

[

ϕ′
e(e

n+1
K ) + ϕ′

e(e
n+1
L )

] [

en+1
σ − en+1

KL

]

, (2.14)

and by (δRe)
n+1
K the remainder term given by:

|K| (δRe)
n+1
K =

∑

σ∈E(K)

(δϕe)
n+1
σ Fn+1

K,σ (2.15)
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Next we introduce the assumption:

(H imp
e )

∣

∣

∣

∣

en+1
σ ∈ |[en+1

K , en+1
KL ]| if un+1

K,σ ≥ 0,

en+1
σ ∈ |[en+1

L , en+1
KL ]| otherwise.

(2.16)

Then, under assumption (H imp
e ), we get:

|K|

δt

[

ρn+1
K ϕe(e

n+1
K )− ρnKϕe(e

n
K)

]

+
∑

σ∈E(K)

ϕe(e
n+1
σ )Fn+1

K,σ

+ ϕ′
e(e

n+1
K )pn+1

K

∑

σ∈E(K)

|σ| un+1
K,σ + |K| (δRe)

n+1
K ≤ 0. (2.17)

In addition, δRe satisfies the following estimate.

Lemma 2.8. Let M be a real number greater than 1 and let us suppose that ρnK ≤ M , enK ≤ M , 1/enK ≤ M
and |uK,σ| ≤ M , for K ∈ M, σ ∈ E(K) and 0 ≤ n ≤ N . Let us define |ϕ′

e|∞ = max(|ϕ′
e(1/M)|, |ϕ′

e(M)|).
Then, under assumption (2.16), the quantity δRe defined by (2.15),(2.14) satisfies:

‖δRe‖−1,1 ≤ 3M2 |ϕ′
e|∞ ‖e‖T ,x,BV hM.

Combining the inequalities (2.12) and (2.17) and thanks to (1.7), Lemma 2.7 and Lemma 2.8, we obtain the
following result.

Theorem 2.9 (Global and weak local entropy inequalities, implicit reduced diffusion scheme). Under assump-
tions (H imp

ρ ) and (H imp
e ), any solution of the scheme (2.1) satisfies, for any K ∈ M and 0 ≤ n ≤ N − 1:

|K|

δt
(ηn+1

K − ηnK) +
∑

σ∈E(K)

|σ| ηn+1
σ un+1

K,σ + |K| (δRη)
n+1
K ≤ 0,

where the remainder term δRη = δRm+δRe is conservative, so integrating in space (i.e. summing over the cells)
yields the following global entropy estimate, for 0 ≤ n ≤ N − 1:

∑

K∈M

|K| ηn+1
K ≤

∑

K∈M

|K| ηnK .

In addition, let us suppose that ρnK ≤ M , 1/ρnK ≤ M , enK ≤ M , 1/enK ≤ M and |uK,σ| ≤ M for K ∈ M,
σ ∈ E(K) and 0 ≤ n ≤ N , and let us define the quantities |ϕ′

ρ|∞ = max(|ϕ′
ρ(1/M)|, |ϕ′

ρ(M)|) and |ϕ′
e|∞ =

max(|ϕ′
e(1/M)|, |ϕ′

e(M)|). Then the remainder term satisfies the following bound:

‖δRm‖−1,1,⋆ ≤ 3 M
(

|ϕ′
ρ|∞ ‖ρ‖T ,x,BV +M |ϕ′

e|∞ ‖e‖T ,x,BV ) hM.

The entropy inequality is thus satisfied in the global sense and in the local weak sense for the proposed
reduced diffusion adaptation of the implicit upwind scheme. As mentioned in the introduction of this section,
conditions (H imp

ρ ) and (H imp
e ) may be seen as an additional constraint to be added to the limitation of a

MUSCL-like procedure (see also the conclusion of the last section of this paper).

3. Explicit schemes

The general form of the discrete analogue of System (1.1) for an explicit scheme reads:

For K ∈ M, 0 ≤ n ≤ N − 1,

|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn
K,σ = 0, (3.1a)

|K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn
K,σe

n
σ + pnK

∑

σ∈E(K)

|σ|unK,σ ≥ 0, (3.1b)

pnK = (γ − 1) ρnK enK , (3.1c)
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where the numerical mass flux Fn
K,σ is still defined by (2.2).

3.1. Discrete renormalized forms of the mass balance equation

The aim of this section is to derive a discrete analogue of Relation (1.5). Let ϕ be a twice continuously
differentiable convex function from (0,+∞) to R, and, mimicking the formal computation performed at the
continuous level, let us multiply (3.1a) by ϕ′(ρn+1

K ). We get:

ϕ′(ρn+1
K )

[ |K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn
K,σ

]

= (T1)
n+1
K + (T2)

n+1
K + |K|Rn+1

K = 0,

with

(T1)
n+1
K = ϕ′(ρn+1

K )
[ |K|

δt
(ρn+1

K − ρnK)
]

,

(T2)
n+1
K = ϕ′(ρnK)

[

∑

σ∈E(K)

Fn
K,σ

]

,

|K|Rn+1
K =

(

ϕ′(ρn+1
K )− ϕ′(ρnK)

) [

∑

σ∈E(K)

Fn
K,σ

]

.

(3.2)

By a Taylor expansion, we obtain for the first term that there exists ρ
n+1/2
K ∈ |[ρnK , ρ

n+1
K ]| such that:

(T1)
n+1
K =

|K|

δt

[

ϕ(ρn+1
K )− ϕ(ρnK)

]

+ |K| (R1)
n+1
K ,

with (R1)
n+1
K =

1

2δt
ϕ′′(ρ

n+1/2
K ) (ρn+1

K − ρnK)2 ≥ 0. (3.3)

The term (T2)
n+1
K reads:

(T2)
n+1
K =

∑

σ∈E(K)

|σ|ϕ(ρnσ)u
n
K,σ +

(

ϕ′(ρnK)ρnK − ϕ(ρnK)
) [

∑

σ∈E(K)

|σ|unK,σ

]

+ |K| (R2)
n+1
K ,

with

|K| (R2)
n+1
K =

∑

σ∈E(K)

|σ|
[

ϕ(ρnK) + ϕ′(ρnK)(ρnσ − ρnK)− ϕ(ρnσ)
]

unK,σ.

As for the implicit case, let us define ρnKL the real number defined by Equation (2.7) (and denoted in this relation
by xKL) with xK = ρnK and xL = ρnL and let us assume that, for σ ∈ Eint, σ = K|L and for 0 ≤ n ≤ N − 1:

(Hexp
ρ ) ρnσ ∈ |[ρnK , ρ

n
KL]| if u

n
K,σ ≥ 0, ρnσ ∈ |[ρnL, ρ

n
KL]| otherwise. (3.4)

Then, under assumption (Hexp
ρ ), the remainder R2 is a sum of a non-negative part and a term tending to zero,

as stated in the following lemma. The proof of this result is very close to the implicit case and is not reproduced
here (indeed, up to a change of time exponents at the right-hand side from n to n+1, the expression of (R2)

n+1
K

is the same that the expression (2.3) of (Rm)n+1
K , and the computation from Relation (2.9) up to the end of the

proof of Lemma 2.7 may be reproduced, still with the same change of time exponents).

Lemma 3.1. Let M > 1 and let us suppose that ρnK ≤M , 1/ρnK ≤M and |uK,σ| ≤M , for K ∈ M, σ ∈ E(K)
and 0 ≤ n ≤ N . Let us define |ϕ′|∞ = max(|ϕ′(1/M)|, |ϕ′(M)|). Then there exists δR2 such that:

R2 ≥ δR2 and ‖δR2‖−1,1,⋆ ≤ 3M |ϕ′|∞ ‖ρ‖T ,x,BV hM.

Finally, let hM be defined by:

hM = min
K∈M

|K|
∑

σ∈E(K)

|σ|
. (3.5)

Then the term R defined by Equation (3.2) satisfies the estimate stated in Lemma 3.3 below, which uses the
time BV semi-norm.
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Definition 3.2 (Discrete time BV semi-norm). For a family (znK)K∈M,0≤n≤N ⊂ R, the time BV semi norm is
defined by

‖z‖T ,t,BV =

N
∑

n=0

∑

K∈M

|K| |zn+1
K − znK |, (3.6)

Lemma 3.3. Let M > 1 and let us suppose that ρnK ≤M , 1/ρnK ≤M and |uK,σ| ≤M , for K ∈ M, σ ∈ E(K)
and 0 ≤ n ≤ N . Let us denote by |ϕ′′|∞ the maximum value taken by ϕ′′ on the interval [1/M, M ]. The
remainder term R defined in (3.2) satisfies:

‖R‖L1 =

N−1
∑

n=0

δt
∑

K∈M

|K|Rn
K ≤M2 |ϕ′′|∞ ‖ρ‖T ,t,BV

δt

hM
.

Proof. For K ∈ M and 0 ≤ n ≤ N , we get:

|K|Rn+1
K =

(

ϕ′(ρn+1
K )− ϕ′(ρnK)

) [

∑

σ∈E(K)

Fn
K,σ

]

(3.7)

= ϕ′′(ρ̃
n+1/2
K )

(

ρn+1
K − ρnK

) [

∑

σ∈E(K)

|σ| ρnσu
n
K,σ

]

, (3.8)

where ρ̃
n+1/2
K ∈ |[ρnK , ρ

n+1
K ]|. Thus we have:

‖R‖L1 =

N−1
∑

n=0

δt
∑

K∈M

|K|Rn
K ≤ |ϕ′′|∞M2

N−1
∑

n=0

δt
(

∑

K∈M

|σ|
)

|ρn+1
K − ρnK |,

which yields the result. �

Let us now suppose that the discretization of the density at the face ρnσ is upwind. Then R2 satisfies:

|K| (R2)
n+1
K =

∑

σ=K|L

1

2
|σ| ϕ′′(ρnK,σ)

(

ρnK − ρnL
)2
(unK,σ)

−, (3.9)

where ρnK,σ ∈ |[ρnK , ρ
n
L]|. Therefore, R2 is non-negative. Starting from Equation (3.7), we may now reformulate

the remainder term Rn+1
K as Rn+1

K = (R01)
n+1
K + (R02)

n+1
K with:

|K| (R01)
n+1
K = ϕ′′(ρ̃

n+1/2
K )

(

ρn+1
K − ρnK

)

ρnK
[

∑

σ∈E(K)

|σ| unK,σ

]

,

|K| (R02)
n+1
K = ϕ′′(ρ̃

n+1/2
K )

(

ρn+1
K − ρnK

) [

∑

σ∈E(K)

|σ|(ρnσ − ρnK)unK,σ

]

.
(3.10)

By Young’s inequality, the second term may be estimated as follows:

|K| |(R02)
n+1
K | ≤

1

2

∑

σ∈E(K)

|σ| ϕ′′(ρnK,σ) (u
n
K,σ)

−
(

ρnK − ρnL
)2

+
1

2

∑

σ∈E(K)

|σ|
ϕ′′(ρ̃

n+1/2
K )2

ϕ′′(ρnK,σ)
(unK,σ)

−
(

ρn+1
K − ρnK

)2
.

Therefore, in view of the expressions (3.3) and (3.9) of (R1)
n
K and (R2)

n
K respectively, we get (R1)

n+1
K +(R2)

n+1
K +

(R02)
n+1
K ≥ 0 under the CFL condition:

δt ≤
|K|

∑

σ∈E(K)

ϕ′′(ρ̃
n+1/2
K )2

ϕ′′(ρnK,σ)
|σ| (unK,σ)

−

. (3.11)
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To proceed, we now need to suppose that the normal face velocities uK,σ are computed from a discrete velocity
field u by the formula uK,σ = uσ · nK,σ, where nK,σ is the unit normal vector to σ outward K and uσ is an
approximation of the velocity at the face, which may be the discrete unknown itself (in the case of a staggered
discretization) or an interpolation (for instance, for a colocated arrangement of the unknowns). For 1 ≤ q, let
us now define the following discrete norm for a velocity field u:

‖u‖q
Lq(0,T ;W 1,q

M
)
=

d
∑

i=1

N
∑

n=0

δt
∑

K∈M

∑

(σ,σ′)∈E(K)2

|K|

(

unσ,i − unσ′,i

hK

)q

.

It is reasonable to suppose that, under regularity assumptions of the mesh which need to be made precise
in view of the space approximation at hand, this norm is equivalent to the standard finite-volume discrete
Lq(0, T ;W 1,q) norm [7]; it is indeed true for usual cells (in particular, with a bounded number of faces) for
staggered discretizations and for a convex interpolation of the velocity at the faces for colocated schemes. Let
CM be the following parameter, measuring the regularity of the mesh:

CM = max
K∈M, (σ,σ′)∈E(K)2

(|σ|+ |σ′|)hK
|K|

. (3.12)

With these notations, we are in position to state the following estimate for R01.

Lemma 3.4. Let M > 1 and let us suppose that ρnK ≤ M and 1/ρnK ≤ M , for K ∈ M and 0 ≤ n ≤ N . Let
us denote by |ϕ′′|∞ the maximum value taken by ϕ′′ on the interval [1/M, M ]. Then the remainder term R01

satisfies the following estimate:

‖R01‖L1 ≤ C CM M (2p−1)/p |ϕ′′|∞ ‖ρ‖T ,t,BV
1/p ‖u‖Lq(0,T ;W 1,q

M
) δt

1/p,

where p ≥ 1, q ≥ 1 and
1

p
+

1

q
= 1 and the positive real number C only depends on the maximal number of faces

of the mesh cells.

Proof. Since
∑

σ∈E(K)

|σ| nK,σ = 0, we may write:

|K| (R01)
n+1
K = ϕ′′(ρ̃

n+1/2
K )

(

ρn+1
K − ρnK

)

ρnK
[

∑

σ∈E(K)

|σ| (un
σ − u

n
K) · nK,σ

]

,

where u
n
K stands for the mean value of the face velocities (un

σ)σ∈E(K). We now observe that:

∣

∣

∣

∑

σ∈E(K)

|σ| (un
σ − u

n
K) · nK,σ

∣

∣

∣
≤ 2

d
∑

i=1

∑

(σ,σ′)∈E(K)2

(|σ|+ |σ′|) |unσ,i − unσ′,i|.

Therefore,

|K| |(R01)
n+1
K | ≤ 2 |ϕ′′|∞M

∣

∣ρn+1
K − ρnK

∣

∣

d
∑

i=1

∑

(σ,σ′)∈E(K)2

(|σ|+ |σ′|) |unσ,i − unσ′,i|.

We thus have, thanks to a Hölder estimate, for p ≥ 1, q ≥ 1 and
1

p
+

1

q
= 1:

‖R01‖L1 =

N−1
∑

n=0

δt
∑

K∈M

|K| (R01)
n+1
K

≤ 2 |ϕ′′|∞M
[

δt

N−1
∑

n=0

∑

K∈M

|K|
∣

∣ρn+1
K − ρnK

∣

∣

p
(

d
∑

i=1

∑

(σ,σ′)∈E(K)2

1
)]1/p

[

N−1
∑

n=0

∑

K∈M

d
∑

i=1

∑

(σ,σ′)∈E(K)2

δt |K|

(

|unσ,i − unσ′,i|

hK

)q (
(|σ|+ |σ′|)hK

|K|

)q
]1/q

.

Using |ρn+1
K − ρnK |p ≤ (2M)p−1 |ρn+1

K − ρnK | yields the result. �
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Gathering the results of this section, we obtain the following proposition.

Proposition 3.5. Let ϕ be a twice continuously differentiable convex function from (0,+∞) to R, and let ρ
satisfy (3.1a). Let M ≥ 1 and let us suppose that ρnK ≤M , 1/ρnK ≤M and |uK,σ| ≤M , for K ∈ M, σ ∈ E(K)
and 0 ≤ n ≤ N . Let |ϕ′|∞ = max(|ϕ′(1/M)|, |ϕ′(M)|) and |ϕ′′|∞ be the maximum value taken by ϕ′′ on the
interval [1/M, M ]. Then the following inequality holds:

|K|

δt

[

ϕ(ρn+1
K )− ϕ(ρnK)

]

+
∑

σ∈E(K)

|σ|ϕ(ρnσ)u
n
K,σ

+
(

ϕ′(ρnK)ρnK − ϕ(ρnK)
) [

∑

σ∈E(K)

|σ|unK,σ

]

+ |K| (Rρ)
n+1
K ≤ 0,

where the remainder (Rρ)
n+1
K is defined as follows.

- If the discretization of the convection term in (3.1a) satisfies the assumption (Hexp
ρ ), Rρ = Rρ,1 + Rρ,2

with:

‖Rρ,1‖−1,1,⋆ ≤ 3M |ϕ′|∞ ‖ρ‖T ,x,BV hM,

‖Rρ,2‖L1 ≤M2 |ϕ′′|∞ ‖ρ‖T ,t,BV
δt

hM
,

where hM is defined by (3.5).

- If the discretization of the convection term in (3.1a) is upwind, under the CFL condition (3.11), we also
have (with a different expression for Rρ):

‖Rρ‖L1 ≤ C CM M (2p−1)/p |ϕ′′|∞ ‖ρ‖T ,t,BV
1/p

‖u‖Lq(0,T ;W 1,q

M
) δt

1/p,

where p ≥ 1, q ≥ 1 and
1

p
+

1

q
= 1, CM is defined by (3.12) and C only depends on the maximal number

of faces of the mesh cells.

3.2. Inequalities derived from the internal energy balance

Thanks to the discrete mass balance equation, for any scalar field z, a discrete analogue of the expression
∂t(ρz)+div(ρzu) may be transformed to a discrete analogue of ρ∂tz+ρu ·∇z. Of course, these two expressions
are (formally) equal at the continuous level; in the fluid mechanics context, the first form is often referred to as
the conservative form, while the second one is called the non-conservative form. Since the second operator is a
transport operator, known to preserve the minimum and maximum bounds of the solution, the transformation,
in the discrete setting, from the conservative to the non-conservative formulation was first used to derive
maximum preservation properties for the discretization [19]. The second form also naturally allows to combine
the derivatives as follows:

ϕ′(z)
[

ρ∂tz + ρu ·∇z
]

= ρ∂t
(

ϕ(z)
)

+ ρu ·∇
(

ϕ(z)
)

so

ϕ′(z)
[

∂t(ρz) + div(ρzu)
]

= ∂t(ρϕ(z)) + div
(

ρϕ(z)u
)

,

for any regular function of ϕ from R to R. Note that this computation is closely linked to maximum principle
properties (think of ϕ(z) = (z−)2 for instance). The object of this section is to mimick this computation at the
discrete level, so the first ingredient is the discrete identity corresponding to the equality of the conservative
and non-conservative forms of the convection operator, which read:

|K|

δt
(ρn+1

K zn+1
K − ρnKz

n
K) +

∑

σ∈E(K)

Fn
K,σz

n
σ =

|K|

δt
ρn+1
K (zn+1

K − znK)

+
∑

σ∈E(K)

Fn
K,σ(z

n
σ − znK), K ∈ M, 0 ≤ n ≤ N − 1, (3.13)
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for any discrete scalar function z. Let now ϕ be a twice continuously differentiable function of (0,+∞) to R,
and let us multiply the first two terms of the discrete internal energy balance (3.1b) by ϕ′(en+1

K ). Switching
from the conservative to the non conservative form, we get:

ϕ′(en+1
K )

[ |K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn
K,σe

n
σ

]

= ϕ′(en+1
K )

[ |K|

δt
ρn+1
K (en+1

K − enK) +
∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK)

]

.

We now write:

ϕ′(en+1
K )

[ |K|

δt
ρn+1
K (en+1

K − enK) +
∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK)

]

= ϕ′(en+1
K )

|K|

δt
ρn+1
K (en+1

K − enK) + ϕ′(enK)
[

∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK)

]

+ |K|Rn+1
K ,

with:

|K|Rn+1
K =

[

ϕ′(en+1
K )− ϕ′(enK)

][

∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK)

]

.

As in the previous section, this remainder term satisfies the following estimate.

Lemma 3.6. Let M ≥ 1 and let us suppose that ρnK ≤M , enK < M , 1/enK ≤M and |uK,σ| ≤M , for K ∈ M,
σ ∈ E(K) and 0 ≤ n ≤ N . Let us denote by |ϕ′′|∞ the maximum value taken by ϕ′′ on the interval [1/M, M ].
Then, the remainder term R satisfies:

‖R‖L1 ≤M2 |ϕ′′|∞ ‖e‖T ,t,BV
δt

hM
,

where hM is defined by (3.5).

Let us now introduce two additional remainder terms as follows:

ϕ′(en+1
K )

|K|

δt
ρn+1
K (en+1

K − enK) + ϕ′(enK)
[

∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK)

]

=
|K|

δt
ρn+1
K

(

ϕ(en+1
K )− ϕ(enK)

)

+
∑

σ∈E(K)

Fn
K,σ

(

ϕ(enσ)− ϕ(enK)
)

+ |K| (R1)
n+1
K + |K| (R2)

n+1
K , (3.14)

with:

|K| (R1)
n+1
K =

|K|

δt
ρn+1
K

(

ϕ(enK)− ϕ(en+1
K )− ϕ′(en+1

K )(enK − en+1
K )

)

,

|K| (R2)
n+1
K =

∑

σ∈E(K)

Fn
K,σ

(

ϕ(enK) + ϕ′(enK)(enσ − enK)− ϕ(enσ)
)

.

Switching now from the non-conservative formulation to the conservative one yields:

ϕ′(en+1
K )

|K|

δt
ρn+1
K (en+1

K − enK) + ϕ′(enK)
[

∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK)

]

=
|K|

δt

(

ρn+1
K ϕ(en+1

K )− ρnK ϕ(enK)
)

+
∑

σ∈E(K)

Fn
K,σ ϕ(e

n
σ) + |K|(R1)

n+1
K + |K|(R2)

n+1
K . (3.15)

The remainder (R1)
n+1
K may be written:

(R1)
n+1
K =

1

2δt
ρn+1
K ϕ′′(e

n+1/2
K ) (en+1

K − enK)2, (3.16)
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where e
n+1/2
K ∈ |[enK , e

n+1
K ]|. Since ϕ is supposed to be convex, this term is non-negative. Let enKL be the real

number defined by Equation (2.7) (and denoted in his latter relation by xKL) with xK = enK and xL = enL, and
let us assume that, for σ ∈ Eint, σ = K|L and for 0 ≤ n ≤ N − 1:

(Hexp
e ) enσ ∈ |[enK , e

n
KL]| if u

n
K,σ ≥ 0, enσ ∈ |[enL, e

n
KL]| otherwise. (3.17)

Then, by a computation similar to the implicit case, the remainder R2 enjoys the following properties.

Lemma 3.7. Let M ≥ 1 and let us suppose that ρnK ≤M , enK < M , 1/enK ≤M and |uK,σ| ≤M , for K ∈ M,
σ ∈ E(K) and 0 ≤ n ≤ N . Let us define |ϕ′|∞ = max(|ϕ′(1/M)|, |ϕ′(M)|). Then, under the assumption
(Hexp

e ), there exists δR2 such that:

R2 ≥ δR2 and ‖δR2‖L1 ≤ 3M2 |ϕ′|∞ ‖e‖T ,x,BV hM.

Let us now suppose that the discretization of the internal energy convection term is upwind. In this case, we
obtain for (R2)

n+1
K :

|K| (R2)
n+1
K =

1

2

∑

σ∈E(K)

(Fn
K,σ)

− ϕ′′(enK,σ)(e
n
K − enL)

2, (3.18)

where enK,σ ∈ |[enK , e
n
L]|. The remainder Rn+1

K yields in the upwind case:

|K|Rn+1
K = −ϕ′′(ẽ

n+1/2
K ) (en+1

K − enK)
[

∑

σ∈E(K)

(Fn
K,σ)

−(enL − enK)
]

,

where e
n+1/2
K ∈ |[enK , e

n+1
K ]|. So, thanks to the Young inequality:

|K| |Rn+1
K | ≤

1

2

∑

σ∈E(K)

(Fn
K,σ)

− ϕ′′(enK,σ)(e
n
L − enK)2

+
1

2
(en+1

K − enK)2
∑

σ∈E(K)

(Fn
K,σ)

−ϕ
′′(ẽ

n+1/2
K )2

ϕ′′(enK,σ)
.

In view of the expressions (3.16) and (3.18) of (R1)
n+1
K and (R2)

n+1
K respectively, we obtain that (R1)

n+1
K +

(R2)
n+1
K +Rn+1

K ≥ 0 under the following CFL condition:

δt ≤
ϕ′′(e

n+1/2
K ) |K| ρn+1

K

∑

σ∈E(K)

ϕ′′(ẽ
n+1/2
K )2

ϕ′′(enK,σ)
(Fn

K,σ)
−

. (3.19)

Results of this section are gathered in the following proposition.

Proposition 3.8. Let ϕ be a twice continuously convex function from (0,+∞) to R. Then a discrete identity
of the following form holds:

ϕ′(en+1
K )

[ |K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn
K,σe

n
σ

]

≤
|K|

δt

(

ρn+1
K ϕ(en+1

K )− ρnK ϕ(enK)
)

+
∑

σ∈E(K)

Fn
K,σ ϕ(e

n
σ) + |K| (Re)

n
K , (3.20)

where the remainder term Re may be chosen to enjoy the following properties:

- Case 1: the approximation of enσ in (3.20) satisfies the assumption (Hexp
e ). Let M ≥ 1 and let us suppose

that ρnK ≤ M , enK < M , 1/enK ≤ M and |uK,σ| ≤ M , for K ∈ M, σ ∈ E(K) and 0 ≤ n ≤ N . Let
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us define |ϕ′|∞ = max(|ϕ′(1/M)|, |ϕ′(M)|), and let |ϕ′′|∞ be the maximum value taken by ϕ′′ on the
interval [1/M, M ]. Then, the remainder term Re satisfies:

‖Re‖L1 ≤ 3M2 |ϕ′|∞ ‖e‖T ,x,BV hM +M2 |ϕ′′|∞ ‖e‖T ,t,BV
δt

hM
,

where hM is defined by (3.5).

- Case 2: the approximation of enσ in (3.20) is upwind. Under the CFL condition (3.19), (Re)
n+1
K = 0.

3.3. Entropy inequalities

Entropy inequalities are obtained by applying the results of Sections 3.1 and 3.2 with ϕ = ϕρ and ϕ = ϕe

respectively.

Let us define by ρnKL (resp. enKL) the real number defined by Equation (2.7) with xK = ρnK (resp. xK = enK)
and xL = ρnL (resp. xL = enL) and ϕ = ϕρ (resp. ϕ = ϕe) and let us assume that, for σ ∈ Eint, σ = K|L and for
0 ≤ n ≤ N − 1:

(Hexp
ρ ) ρnσ ∈ |[ρnK , ρ

n
KL]| if u

n
K,σ ≥ 0, ρnσ ∈ |[ρnL, ρ

n
KL]| otherwise,

(Hexp
e ) enσ ∈ |[enK , e

n
KL]| if u

n
K,σ ≥ 0, enσ ∈ |[enL, e

n
KL]| otherwise.

(3.21)

Theorem 3.9 (Discrete entropy inequalities, explicit schemes). Let ρ and e satisfy the relations of the scheme
(3.1). Let M ≥ 1 and let us suppose that ρnK ≤ M , 1/ρnK ≤ M , enK ≤ M , 1/enK ≤ M and |uK,σ| ≤ M , for
K ∈ M, σ ∈ E(K) and 0 ≤ n ≤ N . Let |ϕ′

ρ|∞ = max(|ϕ′
ρ(1/M)|, |ϕ′

ρ(M)|), |ϕ′
e|∞ = max(|ϕ′

e(1/M)|, |ϕ′
e(M)|)

and let us denote by |ϕ′′
ρ |∞ and |ϕ′′

e |∞ the maximum value taken by ϕ′′
ρ and ϕ′′

e respectively on the interval
[1/M, M ]. Let η be defined as in Theorem 2.3. Then any solution of the scheme (3.1) satisfies, for any K ∈ M
and 0 ≤ n ≤ N − 1:

|K|

δt
(ηn+1

K − ηnK) +
∑

σ∈E(K)

|σ| ηnσu
n
K,σ + |K| (Rη)

n
K ≤ 0,

where the remainder term Rη enjoys the following properties, depending on the discretization of the convection
term:

- Case 1: the discretization of the convection term in (3.1a) and (3.1b) satisfies the assumption (Hexp
ρ )

and (Hexp
e ) respectively. We have Rη = Rη,1 +Rη,2 with:

‖Rη,1‖−1,1,⋆ ≤ 3M
(

|ϕ′
ρ|∞ ‖ρ‖T ,x,BV +M |ϕ′

e|∞ ‖e‖T ,x,BV

)

hM,

‖Rη,2‖L1 ≤M2
(

|ϕ′′
ρ |∞ ‖ρ‖T ,t,BV + |ϕ′′

e |∞ ‖e‖T ,t,BV

) δt

hM
,

where hM is defined by (3.5).

- Case 2: the discretization of the convection term in (3.1a) and (3.1b) is upwind. Under the CFL condi-
tions (3.11) and (3.19), we also have (with a different expression for Rη):

‖Rη‖L1 ≤ C CM M (2p−1)/p |ϕ′′|∞ ‖ρ‖T ,t,BV
1/p ‖u‖Lq(0,T ;W 1,q

M
) δt

1/p. (3.22)

where p ≥ 1, q ≥ 1 and
1

p
+

1

q
= 1, CM is defined by (3.12) and C only depends on the number of faces

of the mesh cells.

This result deserves the following comments:

- First, in the explicit case, we are not able to prove an entropy inequality, neither local nor global.

- The convergence to zero with the space and time step of the remainders is obtained, supposing a control
of discrete solutions in L∞ and discrete BV norms, in two cases: first when the ratio δt/hM tends to

zero, second when the Lq(0, T ;W 1,q
M ) norm of the velocity does not blow-up too quickly with the space

step. To this respect, let us suppose that we implement a stabilization term in the momentum balance
equation appearing in certain turbulence models [1,25], and reading (in a pseudo-continuous setting, for
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short and to avoid the technicalities associated to the space discretization, which may be, for instance,
colocated or staggered), for 1 ≤ i ≤ d:

∂t(ρui) + div(ρuiu) + ∂ip− hαM∆qui = 0, (3.23)

where ∆qui is such that

‖ui‖
q

W 1,q

M

≤ C

∫

Ω

−∆qui ui dx,

where C is independent of hM. This kind of viscosity term may be found in turbulence models Multiplying
(3.23) by ui and integrating with respect to space and time yields:

∫ T

0

∫

Ω

−∆qui ui dx dt = −

∫ T

0

∫

Ω

(

∂t(ρui) + div(ρuiu) + ∂ip
)

ui dx dt, (3.24)

In this relation, the right-hand side may be controlled under L∞ and BV stability assumptions (remem-
ber that, at the discrete level, the BV and W 1,1 norms are the same), and we obtain an estimate of
the ‖u‖Lq(0,T ;W 1,q

M
) which may be used in (3.22). A standard first order diffusion-like stabilizing term

corresponds to q = 2 and α = 1, so yields and estimate of the L2(0, T ;H1
M) norm of the velocity as 1/h

1/2
M

which is just counterbalanced by the term δt1/2 (p = 2), supposing that the CFL number is constant;
such a stabilization is thus not sufficient to ensure that the remainder term tends to zero. What is needed
is in fact:

α < q − 1.

To avoid an over-diffusion in the momentum balance, this inequality suggests to implement a non-linear
stabilization with q > 2 which, in turn, will allow α > 1. With such a trick, we will be able to obtain the
desired ”Lax-convergence” result: the limit of a convergent sequence of solutions, bounded in L∞ and
BV norms, and obtained with space and time steps tending to zero, satisfies a weak entropy inequality.

- We introduced in [23] a limitation process for a MUSCL-like algorithm for the transport equation, which
consists in deriving an admissible interval for the approximation of the unknowns at the mesh faces, in
convection terms, thanks to extrema preservation arguments. This limitation process has been extended
to Euler equations in [10]. The conditions (Hexp

ρ ) and (Hexp
e ) may easily be incorporated in this limitation:

indeed, they define also an admissible interval, which is not disjoint from the initial one, since the upwind
value belongs to both. A similar idea (namely restricting the choice for the face approximation in order
to obtain an entropy inequality) may be found in [2].
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