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Abstract. Numerical schemes for the solution of the Euler equations
have recently been developed, which involve the discretisation of the in-
ternal energy equation, with corrective terms to ensure the correct cap-
ture of shocks, and, more generally, the consistency in the Lax-Wendroff
sense. These schemes may be staggered or colocated, using either struc-
tured meshes or general simplicial or tetrahedral/hexahedral meshes. The
time discretization is performed by fractional-step algorithms; these may
be either based on semi-implicit pressure correction techniques or seg-
regated in such a way that only explicit steps are involved (referred to
hereafter as ”explicit” variants). In order to ensure the positivity of the
density, the internal energy and the pressure, the discrete convection op-
erators for the mass and internal energy balance equations are carefully
designed; they use an upwind technique with respect to the material
velocity only. The construction of the fluxes thus does not need any Rie-
mann or approximate Riemann solver, and yields easily implementable
algorithms. The stability is obtained without restriction on the time step
for the pressure correction scheme and under a CFL-like condition for
explicit variants: preservation of the integral of the total energy over
the computational domain, and positivity of the density and the inter-
nal energy. The semi-implicit first-order upwind scheme satisfies a local
discrete entropy inequality. If a MUSCL-like scheme is used in order to
limit the scheme diffusion, then a weaker property holds: the entropy
inequality is satisfied up to a remainder term which is shown to tend to
zero with the space and time steps, if the discrete solution is controlled
in L∞ and BV norms. The explicit upwind variant also satisfies such a
weaker property, at the price of an estimate for the velocity which could
be derived from the introduction of a new stabilization term in the mo-
mentum balance. Still for the explicit scheme, with the above-mentioned
MUSCL-like scheme, the same result only holds if the ratio of the time
to the space step tends to zero.

Keywords: compressible flows · Euler equations · internal energy · pres-
sure correction · segregated algorithms · entropy estimates.
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1 Introduction

We address in this paper the solution of the Euler equations for an ideal gas,
which read:

∂tρ+ div(ρu) = 0, (1a)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (1b)

∂t(ρE) + div(ρE u) + div(pu) = 0, (1c)

p = (γ − 1) ρ e, E =
1

2
|u|2 + e, (1d)

where t stands for the time, ρ, u, p, E and e are the density, velocity, pressure,
total energy and internal energy respectively, and γ > 1 is a coefficient specific
to the considered fluid. The problem is supposed to be posed over Ω × (0, T ),
where Ω is an open bounded connected subset of Rd, 1 ≤ d ≤ 3, and (0, T ) is
a finite time interval. System (1) is complemented by initial conditions for ρ, e
and u, let us say ρ0, e0 and u0 respectively, with ρ0 > 0 and e0 > 0, and by
suitable boundary conditions which we suppose to be u ·n = 0 at any time and
a.e. on ∂Ω, where n stands for the normal vector to the boundary.

Finite volume schemes for the solution of hyperbolic problems such as the
system (1) generally use a collocated arrangement of the unknowns, which are
associated to the cell centers, and apply a Godunov-like technique for the com-
putation of the fluxes at the cells faces: the face is seen as a discontinuity line for
the beginning-of-time-step numerical solution, supposed to be constant in the
two adjacent cells; the value of the solution of the so-posed Riemann problem
on the discontinuity line is computed, either exactly or approximately; the nu-
merical solution at the end-of-time-step is computed with these values, and is a
piecewise constant function (see e.g. [39, 3] for the development of such solvers).
In one space dimension, this method consists, at least for exact Riemann solvers,
in a projection of the exact solution. Then, thanks to the properties of the pro-
jection, this process applied to the Euler equations yields consistent schemes
which preserve the non-negativity of the density and the internal energy and,
for first-order variants, satisfy an entropy inequality. The price to pay is the
computational cost of the evaluation of the fluxes, and the fact that this issue is
intricate enough to put almost out of reach implicit-in-time formulations, which
would allow to relax CFL time step constraints. In addition, preserving the ac-
curacy for low Mach number flows is a difficult task (see e.g. [18] and references
herein).

The aim here is first to review some recent schemes which follow a different
route, and then prove some discrete entropy estimates and/or consistency results
for these schemes. The space discretization may be colocated [25] or staggered
[21, 17, 23]: in the colocated case, all unknowns are located at the center of the
discretization cells, while in the staggered case, scalar variables are associated
to cell centers while the velocity is associated to the faces, or, equivalently, to
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Fig. 1. Meshes and unknowns – Left: unstructured discretizations (the present sketch
illustrates the possibility, implemented in our software CALIF3S [4], of mixing simpli-
cial and quadrangular cells); scalars variables are associated to the primal cells (here K,
L and M) while velocity vectors are associated to the faces (here, σ and σ

′) or, equiva-
lently, to dual cells (here, Dσ and D

σ
′). – Right: MAC discretization; scalars variables

are associated to the primal cells and each face is associated to the component of the
velocity normal to the face.

staggered mesh(es). The use of staggered discretization for compressible flows
goes back to the MAC scheme [19], and has been the subject of a wide litterature
(see [42] for a textbook and references in [21, 17, 23]). Staggered discretizations
have been preferred in the open source CALIF3S [4] used for nuclear safety ap-
plications because the resulting semi-implicit schemes are asymptotically stable
in the low Mach number regime [24]. Two different staggered space discretiza-
tions may be considered: either the so-called Marker-And-Cell (MAC) scheme for
structured grids [20] or, for general meshes, a space discretization using degrees
of freedom similar to low-order Rannacher-Turek [34] or Crouzeix-Raviart [8] fi-
nite elements (see Figure 1). With this space discretization, the use of Riemann
solvers seems difficult (scalar unknowns and velocities may still be considered
as piecewise constant functions, but not associated to the same partition of the
computational domain). The positivity of the internal energy is thus ensured by
a non-standard argument: the internal energy balance is discretized instead of
the actual (total) energy balance (1c) by a positivity-preserving scheme. This
strategy is known to lead to consistency problems (wrong shock speeds for in-
stance), which are circumvented by some correction terms in the discrete internal
energy correction. Until now, the use of the internal energy equation associated
to a consistency correction seems to be restricted to the context of Lagrangian
approaches, up to a very recent work implementing a Lagrange-remap technique
on staggered meshes [9], and some recent developments extending the techniques
developed here to more general meshes [31]. Two time discretizations are pro-
posed: a pressure correction technique and a segregated scheme involving only
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explicit steps. The resulting schemes offer many interesting properties: both the
density and internal energy positivity are preserved, unconditionally for the pres-
sure correction scheme and under CFL-like conditions for the segregated explicit
variant, and the integral of the total energy on the computational domain is con-
served (which yields a stability result); the construction of the fluxes simply relies
on standard upwinding techniques of the convection operators with respect to
the material velocity; finally, the space approximation, the fluxes and the choice
of the internal energy balance are consistent with usual discretizations of quasi-
incompressible flows, so the pressure correction scheme is asymptotic preserving
by construction in the limit of vanishing low Mach number flows (see [24] for a
study in the case of the barotropic Euler equations).

In addition, a discrete entropy estimate is obtained for the (upwind) pressure
correction scheme, while only a conditional weak entropy estimate seems to hold
for the segregated explicit variant. Note that the schemes studied here belong to
a class often referred to as ”flux splitting schemes” in the literature, since they
may be obtained by splitting the system by a two-step technique (usually into
a ”convective” and ”acoustic” part), applying a standard scheme to each part
(which, for the convection system, indeed yields, at first order, an upwinding
with respect to the material velocity) and then summing both steps to obtain
the final flux. Works in this direction may be found in [37, 30, 43, 29, 40], and we
hope that the discussion presented on the entropy may be extended in some way
to these numerical methods.

The paper is organised as follows; Section 2 is devoted to the derivation
of the previously mentioned internal energy based schemes in the semi-discrete
time setting. Section 3 presents some new and original results concerning some
entropy estimates and/or entropy consistency which hold for both the colocated
and staggered schemes, first for implicit schemes, and then for explicit schemes.

2 Derivation of the numerical schemes

2.1 A basic result on convection operators

Let ρ and u be regular respectively scalar and vector-valued functions such that

∂tρ+ div(ρu) = 0.

Let z be a regular scalar function. Then

C(z) = ∂t(ρz) + div(ρzu) = ρ
(
∂tz + u ·∇z

)
+ z

(
∂tρ+ div(ρu)

)

= ρ
(
∂tz + u ·∇z

)
.

(2)

Let ϕ be a regular real function. Then:

ϕ′(z) C(z) = ϕ′(z) ρ
(
∂tz + u ·∇z

)
= ρ

(
∂tϕ(z) + u ·∇ϕ(z)

)
.

Now, reversing the computation performed in Relation (2) with ϕ(z) instead of
z leads to

ϕ′(z) C(z) = ∂t
(
ρϕ(z)

)
+ div

(
ρϕ(z)u

)
. (3)

The following lemma states a time semi-discrete version of this computation.
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Lemma 1 (Convection operator). Let ρn, ρn+1, zn and zn+1 be regular
scalar functions, let u be a regular vector-valued function and let ϕ be a twice-
differentiable real function. Let us suppose that

1

δt
(ρn+1 − ρn) + div(ρn+1u) = 0, (4)

with δt a positive real number. Then

ϕ′(zn+1)
[ 1
δt

(ρn+1zn+1 − ρnzn) + div(ρn+1zn+1u)
]

=
1

δt

(
ρn+1ϕ(zn+1)− ρnϕ(zn)

)
+ div

(
ρn+1ϕ(zn+1)u

)
+Rn, (5)

with

Rn =
1

2 δt
ρnϕ′′(z̄) (zn+1 − zn)2, z̄ = θzn + (1− θ)zn+1, θ ∈ [0, 1].

Proof. We first begin by deriving a discrete analogue to Identity (2):

1

δt
(ρn+1zn+1 − ρnzn) + div(ρn+1zn+1u)

=
1

δt
ρn (zn+1 − zn) + ρn+1u ·∇zn+1 + zn+1

[ 1

δt
(ρn+1 − ρn) + div(ρn+1u)

]

=
1

δt
ρn (zn+1 − zn) + ρn+1u ·∇zn+1.

(6)
Then the result follows by multiplying this relation by ϕ′(zn+1), using a Taylor
expansion for the first term and the same combination of partial derivative as
in the continuous case for the second term, and finally, still as in the continuous
cas, by performing this computation in the reverse sense with ϕ(zn) and ϕ(zn+1)
instead of zn and zn+1.

2.2 Internal energy formulation

We begin with a formal reformulation of the energy equation. Let us suppose that
the solution is regular, and let Ek be the kinetic energy, defined by Ek = 1

2 |u|
2.

Taking the inner product of (1b) by u yields, after the formal compositions of
partial derivatives described in the previous section:

∂t(ρEk) + div
(
ρEk u

)
+∇p · u = 0. (7)

This relation is referred to as the kinetic energy balance. Subtracting this relation
to the total energy balance (1c), we obtain the so-called internal energy balance
equation:

∂t(ρe) + div(ρeu) + p divu = 0. (8)

Since,
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- as seen in the previous section, thanks to the mass balance equation, the first
two terms in the left-hand side of (8) may be recast as a transport operator,

- and, from the equation of state, the pressure vanishes when e = 0,

this equation implies that, if e ≥ 0 at t = 0 and with suitable boundary condi-
tions, then e remains non-negative at all time. The same result would hold if (8)
featured a non-negative right-hand side, as for the compressible Navier-Stokes
equations. Solving the internal energy balance (8) instead of the total energy
balance(1c) is thus appealing, to preserve this positivity property by construc-
tion of the scheme. In addition, it avoids introducing a space discretization for
the total energy which, for a staggered discretization, combines cell-centered
(internal energy and density) and face-centered (velocity) variables. However,
a raw discretization of a non-conservative equation derived from a conservative
system (formally, i.e. supposing unrealistic regularity properties of the solution)
may be non-consistent (and the numerical test presented in Section 2.6 shows
that, for the problem at hand, such a scheme would be unable to capture shock
solutions). To deal with this problem, we implement the following strategy:

- First, we derive a discrete kinetic energy balance, by mimicking at the discrete
level the computation leading to Equation (7), so as to identify the terms
which are likely to lead to non-consistency: the numerical diffusion in the
momentum balance equation yields dissipation terms in the kinetic energy
balance which are observed to behave, when the space and time step tend to
zero, as measure born by the shocks which modify the jump conditions.

- These terms are thus compensated in the internal energy balance.

At the fully discrete level, for staggered discretizations, the kinetic and internal
energy balances are not posed on the same mesh (the dual and primal mesh
respectively); however, it is possible to derive from the kinetic energy balance on
the dual mesh a counterpart posed on the primal mesh and, adding to the internal
energy balance yields a conservative total energy balance. The scheme then can
be proven to be consistent in the Lax-Wendroff sense to the weak form of the
total energy balance: for a given sequence of discrete solutions (obtained with a
sequence of discretizations whith space and time steps tending to zero) controlled
and converging to a limit in suitable norms (namely, uniformly bounded and
converging in Lr norms, for r ∈ [1,+∞)), we show that the limit is a weak
solution to the Euler equations [23, 22]. In the colocated case, both kinetic and
internal energy balances are posed on the same mesh and a discrete local total
energy balance is easily recovered [25].

2.3 The time semi-discrete pressure correction scheme

This semi-discrete pressure correction scheme takes the following general form:

1

δt
(ρn ũn+1 − ρn−1 un) + div(ρn un ⊗ ũn+1) + ζn∇pn = 0, (9a)

1

δt
ρn (un+1 − ũn+1) +∇pn+1 − ζn∇pn = 0, (9b)



Internal Energy Based Schemes for the Euler Equations 7

1

δt
(ρn+1 − ρn) + div(ρn+1 un+1) = 0, (9c)

1

δt
(ρn+1 en+1 − ρn en) + div(ρn+1 en+1 un+1) + pn+1divun+1 = Sn+1, (9d)

pn+1 = (γ − 1) ρn+1 en+1. (9e)

Solving the first equation yields a tentative velocity ũn+1; this is the velocity
prediction step, which is decoupled from the other equations of the system.
Equations (9b)-(9e) constitute the correction step and are solved simultaneously;
in the relation (9d), the term ρn+1 en+1 is recast as a function of the pressure
only thanks to the equation of state (1d) and the velocity un+1 is eliminated
thanks to the divergence of (9b) divided by ρn. The result is a nonlinear and
nonconservative elliptic problem for the pressure only. This process must be
performed at the fully discrete level to preserve the properties of the scheme.
The coefficient ζn in Equation (9a) and the correction term Sn+1 in (9d) are
chosen so as to ensure stability and consistency, as shown below. The first step
of this process is to obtain a discrete kinetic energy balance. To this purpose, let
us multiply (9a) by ũn+1 and apply Lemma 1 component by component, with
ϕ(s) = 1

2s
2. We get:

1

2 δt

(
ρn |ũn+1|2 − ρn−1 |un|2

)
+

1

2
div

(
ρn |ũn+1|2un

)
+ ζn∇pn · ũn+1 +Rn

1 = 0,

(10)
with

Rn
1 =

1

2 δt
|ũn+1 − un|2.

Note that the mass balance equation (9c), which is a fundamental assumption
in Lemma 1, only holds at this stage of the algorithm with the previous time
step values, hence the shift of the time level of the density in (9a). Let us now
recast Equation (9b) as

αnun+1 +
1

αn
∇pn+1 = αnũn+1 +

ζn

αn
∇pn, αn =

[ρn
δt

]1/2

and square this relation, to get

1

2 δt
ρn |un+1|2 +∇pn+1 · un+1 +Rn

2 =
1

2 δt
ρn |ũn+1|2 + ζn∇pn · ũn+1, (11)

with

Rn
2 =

δt

ρn
|∇pn+1|2 − (ζn)2

δt

ρn
|∇pn|2.

Summing (10) and (11) yields the kinetic energy balance that we are seeking:

1

2 δt

(
ρn |un+1|2−ρn−1 |un|2

)
+
1

2
div

(
ρn |ũn+1|2un

)
+∇pn+1·un+1+Rn

1+R
n
2 = 0.
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The coefficient ζn is then chosen in such a way that the remainder term Rn
2 is

a difference of two consecutive time levels of the same quantity; this is the case
for

ζn =
[ ρn

ρn−1

]1/2
.

Supposing the control in L1(0, T, BV ) of the pressure and in L∞ of the pressure
and of the inverse of the density, the term Rn

2 may thus be seen to tend with zero
with the discretization parameters in a distributional sense. The term Rn

1 is com-
pensated in the internal energy balance, by choosing Sn+1 = Rn

1 , thus ensuring
that Sn+1 ≥ 0. The definition of the time-discrete scheme is now complete.

2.4 The fully discrete pressure correction scheme

The fully discrete scheme is obtained from System (9) by applying the following
guidelines:

- The mass and internal energy balances (i.e. Equations (9c) and (9d) respec-
tively) are discretized on the primal mesh, while the velocity prediction (9a)
and correction (9b) are discretized on the dual mesh(es). The equation of
state only involves cell quantities, and its expression is obtained by writing
(9e) for these latter.

- The space arrangement of the unknowns (density discretized at the cell and
velocity at the faces) yields a natural expression of the mass fluxes in the
mass balance, performed by a first-order upwind scheme (with respect to
the velocity). By construction, the density is thus non-negative; in fact at the
discrete level, it remains positive if the initial density is positive. The discrete
mass balance equation on the cell K whose measure is denoted by |K| takes
the form:

|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn+1
K,σ = 0, (12)

where E(K) denotes the set of edges of K and FK,σ is the mass flux across
σ outward K.

- Let CK(en+1) denote the sum of the discrete time-derivative and convection
operator in the internal energy balance (9d); this quantity reads:

CK(en+1) =
|K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

FK,σe
n+1
σ ,

where en+1
σ is the upwind approximation of en+1 at σ with respect to Fn+1

K,σ

(or, equivalently, since the density is positive, with respect to the velocity).
The structure of CK(en+1) (precisely speaking, the fact that CK(en+1) van-
ishes thanks to the mass balance if the internal energy en+1 is constant over
Ω) was shown in [27] to yield a positivity-preserving operator, and is also
a necessary condition for a fully discrete version of Lemma 1 to hold; this
is of course linked since both results rely on the possibility to recast CK as
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a transport operator, and the positivity-preserving property of CK may be
proved by applying Lemma 1 with ϕ(s) = min(s, 0)2. Once again, thanks
to the arrangement of the unknowns, a natural discretization for divun+1 is
available. Since pn+1 is a function of en+1 (given by the equation of state)
which vanishes for en+1 = 0 and since the corrective term is non-negative,
we are able to show that the discrete internal energy is kept positive by the
scheme.

- To allow to derive a discrete kinetic energy balance, the same structure is
needed for the time-derivative and convection operator in the velocity pre-
diction step (9a). This raises a difficulty since this equation is posed on the
dual mesh, and thus we need an analogue of the mass balance (12) to also hold
on this mesh. The way to build the face density and the mass fluxes across
the faces of the dual mesh for such a relation to hold, while still ensuring the
scheme consistency, is a central ingredient of the scheme; it is detailed in [13]
for the MAC discretization and in [28] for unstructured discretizations.
Once the face density is defined, the discretization of the coefficient ζn is
straightforward. In order to combine the discrete equivalents of u·∇p (kinetic
energy balance) and p divu (internal energy balance), the discrete gradient is
defined as the transposed of the divergence operator with respect to the L2

inner product (if u ·∇p+p divu = div(pu), the integral of this quantity over
the computational domain vanishes when the normal velocity is prescribed to
zero at the boundary). Note that this definition is consistent with the usual
treatment in the incompressible case, and is a key ingredient for the scheme
to be asymptotic preserving in the limit of vanishing Mach number flows [24].
As in the incompressible case, it also allows to control the L2 norm of the
pressure by a weak norm of its gradient, which is central for convergence
studies; with this respect, a discrete inf-sup condition is required in some
sense, which is true for staggered discretizations.

2.5 A segregated variant

A variant of the proposed scheme which consists only in explicit steps (in the
sense that these steps do not require the solution of any linear or non-linear
algebraic system) reads, in the time semi-discrete setting:

1

δt
(ρn+1 − ρn) + div(ρn un) = 0, (13a)

1

δt
(ρn+1 en+1 − ρn en) + div(ρn en un) + pndivun = Sn, (13b)

pn+1 = (γ − 1) ρn+1 en+1, (13c)

1

δt
(ρn+1 un+1 − ρn un) + div(ρn un ⊗ un) +∇pn+1 = 0. (13d)

The update of the pressure before the solution of the momentum balance equa-
tion is crucial in our derivation of entropy estimates (see Section 3 below). This
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issue seems to be supported by numerical experiments: omitting it, we observe
the appearance of non-entropic discontinuities in rarefaction waves [23].

The space discretization differs from the pressure correction scheme described
in the above section in two points:

- the discretization of the convection operator in the momentum balance equa-
tion (13d) is performed by the first order upwind scheme (still with respect
to the material velocity un),

- the corrective term Sn is still obtained by deriving a kinetic energy balance
multiplying Equation (13d) by un+1, but its expression is quite different, due
to the time-level used in the convection operator. The time-discretization
is now anti-diffusive but, as usual for explicit schemes, this anti-diffusion
is counterbalanced by the diffusion in the approximation of the convection
(hence the upwinding) and Sn is non-negative only under a CFL condition.

2.6 A numerical test

In this section, we reproduce a test performed in [21] to assess the behaviour of
the scheme on a one dimensional Riemann problem. We choose initial conditions
such that the structure of the solution consists in two shock waves, separated
by the contact discontinuity, with sufficiently strong shocks to allow an easy
discrimination of correct numerical solutions. These initial conditions are those
proposed in [39, chapter 4], for the test referred to as Test 5. The computations
are performed with the open-source software CALIF3S [4].

The density fields obtained with h = 1/2000 (or a number of cells n = 2000)
at t = 0.035, with and without assembling the corrective source term in the
internal energy balance, together with the analytical solution, are shown on
Figure 2. We observe that both schemes seem to converge, but the corrective
term is necessary to obtain the right solution. Without a corrective term, one
can check that the obtained solution is not a weak solution to the Euler system
(Rankine-Hugoniot conditions are not verified). We also observe that the scheme
is rather diffusive especially at contact discontinuities for which the beneficial
compressive effect of the shocks does not apply; this may be cured in the explicit
variant by implementing MUSCL-like algorithms [14].

Extensive multidimensional tests were performed in both the staggered case
[17] and the colocated case [25].

3 Entropy

In the case of regular solutions to the Euler equations (1), an additional con-
servation law can be written for an additional quantity called entropy; however,
in the presence of shock waves, the (mathematical) entropy decreases. It is now
known that weak solutions of the Euler system satisfying an entropy inequality
may be non unique [5]; nevertheless, entropy inequalities play an important role
in providing global stability estimates [3].
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Fig. 2. Test 5 of [39, chapter 4] - Density obtained with n = 2000 cells, with and
without corrective source terms in pressure correction scheme, and analytical solution.

When solving the Euler equations numerically, it is thus natural to design
numerical schemes such that some entropy inequalities are satisfied by the ap-
proximate solutions; these inequalities should enable to prove that, as the mesh
and time steps tend to 0, the limit of the approximate solutions, if it exists,
satisfies an entropy inequality. A classical way of doing so is to design so-called
“entropy stable schemes” [38]. Discrete entropy inequalities are known for the
one dimensional case for the Godunov scheme [15] and have been derived for
Roe-type schemes in the one space dimension case [26]. Entropy stability has
also been proven in the multi-dimensional case for semi-discrete schemes on un-
structured meshes [32, 35]. In the sequel we show that an implicit upwind scheme
(at least with the upwinding with respect to the material velocity used here) is
indeed entropy stable. However it is not always possible to obtain entropy sta-
bility, especially for fully discrete schemes such as the explicit schemes studied
below; in this case, weaker discrete entropy inequalities or estimates are ob-
tained which allow to fulfil our goal, namely to show that the possible limits of
the approximate solutions satisfy an entropy inequality. Such a technique was
used for the convergence study of a time implicit mixed finite volume–finite el-
ement scheme for the Euler-Fourier equations [11], with a special equation of
state which allows to obtain a priori estimates.
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Both the pressure correction scheme (9) and the segregated scheme (13)
involve a discrete equivalent of the following subsystem:

∂tρ+ div(ρu) = 0, (14a)

∂t(ρ e) + div(ρ eu) + p div(u) = R ≥ 0, (14b)

p = (γ − 1) ρ e, (14c)

with the same initial and boundary conditions as for the full system (1).

The derivation of an entropy for the continuous Euler system may be deduced
from the subsystem (14) in the following way. We seek an entropy function η
satisfying:

∂tη(ρ, e) + div
[
η(ρ, e)u

]
≤ 0. (15)

To this end, we introduce the functions ϕρ and ϕe defined as follows:

ϕρ(z) = z ln(z), ϕe(z) =
−1

γ − 1
ln(z), for z > 0. (16)

For regular functions, the function η defined by

η(ρ, e) = ϕρ(ρ) + ρϕe(e) (17)

satisfies (15). Indeed, multiplying (14a) by ϕ′
ρ(ρ), a formal computation yields:

∂t
[
ϕρ(ρ)

]
+ div

[
ϕρ(ρ)u

]
+

[
ρϕ′

ρ(ρ)− ϕρ(ρ)
]
div(u) = 0. (18)

Then, multiplying (14b) by ϕ′
e(e) yields, once again formally, since ϕ′

e(z) < 0
for z > 0:

∂t
[
ρϕe(e)

]
+ div

[
ρϕe(e)u

]
+ ϕ′

e(e) p div(u) ≤ 0. (19)

Summing (18) and (19) and noting that ϕρ and ϕe are chosen such that

ρϕ′
ρ(ρ)− ϕρ(ρ) + ϕ′

e(e) p = 0, (20)

we obtain (15), which is an entropy balance for the Euler equations, for the
specific entropy defined by (17).

In the sequel we derive some analogous discrete entropy inequalities (with a
possible remainder tending to 0) for the fully discrete, time semi-implicit (and
fully implicit, i.e. backward Euler, as far as System (14) only is concerned)
or segregated schemes (fully explicit regarding System (14) only) presented in
Section 2, with a possible upwinding limited to that of the convection terms with
respect to the material velocity. Note that the entropy inequalities that we obtain
here apply to both the staggered schemes [21, 17, 14] and to the colocated scheme
[25] which is also based on the internal energy; indeed the entropy depends only
on the mass and internal energy which are scalar unknowns located at the center
of the (primal) cells in both schemes, so System (14) involves only equations
posed on the primal mesh.

Depending on the time and space discretization, we obtain three types of
results:
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- local entropy estimates, i.e. discrete analogues of (15), in which case the
scheme is entropy stable,

- global entropy estimates, i.e. discrete analogues of:

d

dt

∫

Ω

η(ρ, e) dx ≤ 0; (21)

such a relation is a stability property of the scheme; this kind of relation was
also proven in e.g. [7] for a higher order scheme for the 1D Euler equations;

- “weak local” entropy inequalities, i.e. results of the form:

∂tη(ρ, e) + div
[
η(ρ, e)u

]
+ R̃ ≤ 0,

with R̃ tending to zero in a suitable sense with respect to the space and
time discretization steps (or combination of both parameters), provided that
the approximate solutions are controlled in reasonable norms, here, L∞ and
BV norms. Then a ”Lax-consistency” property holds, of the form: a limit
(ρ̄, ū, ē) of a convergent subsequence of approximate solutions given by the
considered numerical scheme and bounded in the L∞ and BV norms, satisfies
the following weak entropy inequality:

−

∫ T

0

∫

Ω

η(ρ̄, ē) ∂tϕ+η(ρ̄, ē)u ·∇ϕdx dt−

∫

Ω

η(ρ̄, ē)(x, 0) ϕ(x, 0) dx ≤ 0,

for any function ϕ ∈ C∞
c

(
[0, T )× Ω̄

)
, ϕ ≥ 0. (22)

In the sequel we address implicit schemes (Section 3.2) and segregated ex-
plicit schemes (Section 3.3). For implicit schemes, we first consider an upwind
discretization for which we get a local discrete entropy inequality (Theorem 1),
and then a MUSCL-like improvement of the discretization of the convection term
in order to reduce the numerical diffusion, for which we only get a global entropy
estimate and a weak local entropy inequality (Theorem 2). The case of explicit
schemes is a little more tricky: we again consider the same two discretizations
(i.e. upwind and MUSCL-like) but we first deal with the mass balance equa-
tion, then with the internal energy equation, and combine the results to address
entropy inequalities.

3.1 Meshes and discrete norms

Let M be a mesh of the domain Ω, supposed to be regular in the usual sense of
the finite element literature (see e.g. [6]). By E and E(K) we denote the set of all
(d− 1)-faces σ of the mesh and of the cell K ∈ M respectively, and we suppose
that the number of the faces of a cell is bounded. The set of faces included in
Ω (resp. in the boundary ∂Ω) is denoted by Eint (resp. Eext); a face σ ∈ Eint
separating the cells K and L is denoted by σ = K|L. For K ∈ M and σ ∈ E ,
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we denote by |K| the measure of K and by |σ| the (d − 1)-measure of the face
σ. The following quantities related to the mesh are used in the sequel:

hM = max
K∈M

hK with hK = diam(K), hM = min
K∈M

|K|∑

σ∈E(K)

|σ|
. (23)

CM = max
K∈M, (σ,σ′)∈E(K)2

(|σ|+ |σ′|)hK
|K|

, fM = max
K∈M

card E(K). (24)

Let (tn)0≤n≤N , with 0 = t0 < t1 < . . . < tN = T , define a partition of the
time interval (0, T ), which we suppose uniform for the sake of simplicity, and let
δt = tn+1 − tn for 0 ≤ n ≤ N − 1 be the (constant) time step.

The discrete pressure, density and the internal energy unknowns are associ-
ated with the cells of the mesh M; they are denoted by:

{
pnK , ρ

n
K , e

n
K , K ∈ M, 0 ≤ n ≤ N

}
.

In the estimates given below, we shall need some discrete norms that we now
define.

Definition 1 (Discrete BV semi-norms and weak L1(0, T ; (W 1,+∞
0 )′) norm).

For a family (znK)K∈M,0≤n≤N ⊂ R, let us define the following norms of the as-
sociated piecewise constant function z:

‖z‖T ,t,BV =

N∑

n=0

∑

K∈M

|K| |zn+1
K − znK |,

‖z‖T ,x,BV =

N∑

n=0

δt
∑

σ=K|L∈Eint

|σ| |znL − znK |,

‖z‖−1,1,⋆ = sup
ψ ∈ C∞

c ([0, T )×Ω)

1

‖∇ψ‖∞

[ N∑

n=0

δt
∑

K∈M

|K| znKψ
n
K

]
,

(25)

where ψn
K stands for ψ(xK , tn), with xK the mass center of K. Note that this

latter weak norm is the discrete equivalent of the continuous dual norm of v ∈
L1(Ω × (0, T )), defined by

‖v‖L1(0,T ;(W 1,+∞

0 )′) = sup
ψ ∈ C∞

c ([0, T )×Ω)

1

‖∇ψ‖∞

∫ T

0

∫

Ω

v ψ dxdt.

Some of the proofs below are based on the following convexity result [12, Lemma
2.3]. In its formulation, and throughout the paper, |[a, b]| stands for the interval
[min(a, b), max(a, b)], for any real numbers a and b.
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Lemma 2. Let ϕ be a strictly convex and continuously differentiable function
over an open interval I of R. Let xK ∈ I and xL ∈ I be two real numbers. Then
the relation

ϕ(xK) + ϕ′(xK) (xKL − xK) = ϕ(xL) + ϕ′(xL) (xKL − xL) if xK 6= xL,

xKL = xK = xL otherwise (26)

uniquely defines the real number xKL in |[xK , xL]|.

Remark 1 (xKL for ϕ(z) = z2). Let us consider the specific function ϕ(z) =
z2. Then, an easy computation yields xKL = (xK + xL)/2 i.e. the centered
approximation.

3.2 Implicit schemes

With the above notations, the space time discretization of System (14) reads:

For K ∈ M, 0 ≤ n ≤ N − 1,

|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn+1
K,σ = 0, (27a)

|K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ + pn+1

K

∑

σ∈E(K)

|σ|un+1
K,σ ≥ 0, (27b)

pn+1
K = (γ − 1) ρn+1

K en+1
K , (27c)

where Fn+1
K,σ is the mass flux through the face σ, en+1

σ is an approximation of

the internal energy at the face σ, and un+1
K,σ stands for an approximation of the

normal velocity to the face σ; note that the velocity is solved in the full scheme
by a space discretization of the momentum prediction and correction equations
(9a)-(9b). Consistently with the boundary conditions, un+1

K,σ vanishes on every

external face. The mass flux Fn+1
K,σ reads:

Fn+1
K,σ = |σ| ρn+1

σ un+1
K,σ , (28)

where ρn+1
σ stands for an approximation of the density on σ. Throughout the

paper, we suppose that ρnK , enK , ρnσ and enσ are positive, for any K ∈ M, σ ∈ Eint,
0 ≤ n ≤ N , which is verified by the solutions of the schemes presented in [21,
23, 14, 16] (of course, with positive initial conditions for ρ and e).

The two following lemmas are straigthforward consequences of Lemmas A1
and A2 in [21] and state discrete analogues of (18) and (19) respectively which
are used to obtain the entropy inequalities.
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Lemma 3. Let K ∈ M, n be such that 0 ≤ n ≤ N − 1 and let us suppose that
the discrete mass balance (27a) holds. Let ϕ be a twice continuously differentiable
function defined over (0,+∞). Then

|K|

δt

[
ϕ(ρn+1

K )− ϕ(ρnK)
]
+

∑

σ∈E(K)

|σ| ϕ(ρn+1
σ )un+1

K,σ

+
[
ρn+1
K ϕ′(ρn+1

K )− ϕ(ρn+1
K )

] ∑

σ∈E(K)

|σ| un+1
K,σ + |K| (Rm)n+1

K = 0, (29)

with

|K| (Rm)n+1
K =

1

2

|K|

δt
ϕ′′(ρ

n+1/2
K ) (ρn+1

K − ρnK)2

+
∑

σ∈E(K)

|σ|
[
ϕ(ρn+1

K )− ϕ(ρn+1
σ ) + ϕ′(ρn+1

K )(ρn+1
σ − ρn+1

K )
]
un+1
K,σ ,

where ρ
n+1/2
K ∈ |[ρnK , ρ

n+1
K ]|.

Lemma 4. Let K ∈ M and n be such that 0 ≤ n ≤ N − 1. Let ϕ be a twice
continuously differentiable function defined over (0,+∞). Then:

ϕ′(en+1
K )

[ |K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ

]
=

|K|

δt

[
ρn+1
K ϕ(en+1

K )− ρnKϕ(e
n
K)

]
+

∑

σ∈E(K)

Fn+1
K,σ ϕ(en+1

σ ) + |K| (Re)
n+1
K , (30)

with

|K| (Re)
n+1
K =

1

2

|K|

δt
ρnK ϕ′′(e

n+1/2
K )(en+1

K − enK)2

+
∑

σ∈E(K)

Fn+1
K,σ

[
ϕ(en+1

K )− ϕ(en+1
σ ) + ϕ′(en+1

K )(en+1
σ − en+1

K )
]
,

where e
n+1/2
K ∈ |[enK , e

n+1
K ]|.

Upwind implicit schemes – In this section, we suppose that the convection
fluxes are approximated with a first order upwind scheme, i.e., for σ ∈ Eint,
σ = K|L, ρn+1

σ = ρn+1
K and en+1

σ = en+1
K if uK,σ ≥ 0, ρn+1

σ = ρn+1
L and en+1

σ =
en+1
L otherwise. In this case, the scheme (27) satisfies a local entropy estimate
(i.e. a discrete analogue of Inequality (15)) which is stated in Theorem 1 below.
Of course, this local entropy inequality also yields the global discrete inequality
analogue to (21); furthermore, passing to the limit on the upwind implicit (or
pressure correction) scheme applied the Euler equations, this local estimate also
yields the Lax consistency, i.e. any limit (ρ̄, ū, ē) of a convergent subsequence of
approximate solutions satisfies the weak entropy inequality (22).
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Theorem 1 (Discrete entropy inequality, implicit upwind scheme). Let
η be defined by (17), and, for 0 ≤ n ≤ N−1, let ηmK = η(ρmK , e

m
K) for m = n, n+1

and K ∈ M, and ηn+1
σ = η(ρn+1

σ , en+1
σ ) for σ ∈ Eint. Then any solution of the

scheme (27) satisfies, for any K ∈ M and 0 ≤ n ≤ N − 1:

|K|

δt
(ηn+1

K − ηnK) +
∑

σ∈E(K)

|σ| ηn+1
σ un+1

K,σ ≤ 0.

Proof. Let ϕ be a twice continuously differentiable function. By Lemma 3, we get
that (29) holds. For σ ∈ Eext, thanks to the boundary conditions, the convection
fluxes vanish. For 0 ≤ n ≤ N − 1 and K ∈ M, consider the term (Tm)n+1

K,σ

associated to an internal face σ = K|L in the remainder term (Rm)n+1
K :

(Tm)n+1
K,σ =

[
ϕ(ρn+1

K )− ϕ(ρn+1
σ ) + ϕ′(ρn+1

K )(ρn+1
σ − ρn+1

K )
]
un+1
K,σ

= −
1

2
ϕ′′(ρn+1

σ,K ) (ρn+1
σ − ρn+1

K )2un+1
K,σ ,

where ρn+1
σ,K ∈ |[ρn+1

σ , ρn+1
K ]|. With the upwind choice, if un+1

K,σ ≥ 0, ρn+1
σ = ρn+1

K

and (Tm)n+1
K,σ vanishes. If un+1

K,σ < 0 and ϕ′′ is a non-negative function (i.e. ϕ is

convex), (Tm)n+1
K,σ is non-negative and so is (Rm)n+1

K , for any K ∈ M. Since ϕρ

defined by (16) is indeed convex, Lemma 3 implies that any solution {ρnK ,K ∈
M, 0 ≤ n ≤ N} to Equation (27a) of the scheme satisfies, for K ∈ M and
0 ≤ n ≤ N − 1:

|K|

δt

[
ϕρ(ρ

n+1
K )− ϕρ(ρ

n
K)

]
+

∑

σ∈E(K)

|σ| ϕρ(ρ
n+1
σ )un+1

K,σ

+
[
ρn+1
K ϕ′

ρ(ρ
n+1
K )− ϕρ(ρ

n+1
K )

] ∑

σ∈E(K)

|σ| un+1
K,σ ≤ 0. (31)

Now turning to Lemma 4, by similar arguments, the remainder term (Re)
n+1
K

in (30) is nonnegative for any regular convex function ϕ, for any K ∈ M and
0 ≤ n ≤ N − 1. Hence, since ϕe defined by Equation (16) is convex, we get that
any solution to (27b) satisfies:

|K|

δt

[
ρn+1
K ϕe(e

n+1
K )− ρnKϕe(e

n
K)

]

+
∑

σ∈E(K)

Fn+1
K,σ ϕe(e

n+1
σ ) + ϕ′

e(e
n+1
K ) pn+1

K

∑

σ∈E(K)

|σ| un+1
K,σ ≤ 0. (32)

The desired relation is then obtained by summing the inequalities (31) and (32),
using (20).

MUSCL-like schemes – The aim of this section is to improve the approxima-
tion of the convection fluxes in (27a) and (27b) in order to reduce the numerical
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diffusion, while still satisfying an entropy inequality. This leads to a condition
similar to the limitation procedure which is the core of a MUSCL procedure
[41]; indeed, in order to yield an entropy inequality (instead of, for a MUSCL
technique, to yield a maximum principle), the approximation of the unknowns
at the face must be ”sufficiently close to” the upwind approximation. The en-
tropy inequality is then obtained only in the weak sense. The technique to reach
this result consists in splitting the remainder terms appearing in Lemma 3 and
4 in two parts: the first one is non-negative under some condition for the face
approximation (hence the above mentioned limitation requirement); the second
one is conservative and can be bounded in a discrete negative Sobolev norm (this
explains why the entropy estimate is only a weak one).

Let ϕρ and ϕe be the functions defined by (16) and let σ ∈ Eint, σ = K|L;
by Lemma 2, there exists a unique ρn+1

KL ∈ |[ρn+1
K , ρn+1

L ]| and en+1
KL ∈ |[en+1

K , en+1
L ]|

such that

ϕρ(ρ
n+1
K )+ϕ′

ρ(ρ
n+1
K )

[
ρn+1
KL −ρn+1

K

]
= ϕρ(ρ

n+1
L )+ϕ′

ρ(ρ
n+1
L )

[
ρn+1
KL −ρn+1

L

]
, (33a)

ϕe(e
n+1
K )+ϕ′

e(e
n+1
K )

[
en+1
KL −en+1

K

]
= ϕe(e

n+1
L )+ϕ′

e(e
n+1
L )

[
en+1
KL −en+1

L

]
. (33b)

Entropy estimates are obtained in Theorem 2 under the following conditions:

ρn+1
σ ∈ |[ρn+1

K , ρn+1
KL ]| if un+1

K,σ ≥ 0, ρn+1
σ ∈ |[ρn+1

L , ρn+1
KL ]| otherwise, (34a)

en+1
σ ∈ |[en+1

K , en+1
KL ]| if un+1

K,σ ≥ 0, en+1
σ ∈ |[en+1

L , en+1
KL ]| otherwise, (34b)

where ρn+1
KL and en+1

KL are defined by (33). Note that these conditions are satisfied
by the upwind scheme (27). They may be seen as an additional constraint to be
added to the limitation of a MUSCL-like procedure (see also the conclusion of
the last section of this paper).

Theorem 2 (Entropy inequalities, implicit MUSCL-like scheme). Let
us assume that, for σ ∈ Eint, σ = K|L and for 0 ≤ n ≤ N − 1, the approximate
density ρn+1

σ and internal energy en+1
σ in the numerical mass fluxes (28) and in

the internal energy balance (27b) satisfy the conditions (34).
Then any solution of the scheme (27) satisfies, for any K ∈ M and 0 ≤ n ≤

N − 1:

|K|

δt
(ηn+1

K − ηnK) +
∑

σ∈E(K)

|σ| ηn+1
σ un+1

K,σ + |K| (δRη)
n+1
K ≤ 0,

where the remainder term δRη satisfies
∑

K∈M |K| (δRη)
n+1
K = 0 so that, in-

tegrating in space (i.e. summing over the cells), the following global discrete
entropy estimate holds for 0 ≤ n ≤ N − 1:

∑

K∈M

|K| ηn+1
K ≤

∑

K∈M

|K| ηnK .

In addition, let us suppose that there exists M > 0 such that ρnK ≤ M , 1/ρnK ≤
M , enK ≤ M , 1/enK ≤ M and |unK,σ| ≤ M for K ∈ M, σ ∈ E(K) and 0 ≤
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n ≤ N , and let us define the quantities |ϕ′
ρ|∞ = max(|ϕ′

ρ(1/M)|, |ϕ′
ρ(M)|) and

|ϕ′
e|∞ = max(|ϕ′

e(1/M)|, |ϕ′
e(M)|). Then the remainder term δRm satisfies the

following bound:

‖δRm‖−1,1,⋆ ≤ 3 M
(
|ϕ′

ρ|∞ ‖ρ‖T ,x,BV +M |ϕ′
e|∞ ‖e‖T ,x,BV ) hM. (35)

Therefore, a Lax-consistency property holds; more precisely, any limit (ρ̄, ū, ē)
of a converging sequence of approximate solutions bounded in the L∞ and BV
norms satisfies (22).

Proof. Let (δϕρ)
n+1
σ be defined by:

(δϕρ)
n+1
σ = ϕρ(ρ

n+1
K )− ϕρ(ρ

n+1
σ ) + ϕ′

ρ(ρ
n+1
K )

[
ρn+1
KL − ρn+1

K

]

+
1

2

[
ϕ′
ρ(ρ

n+1
K ) + ϕ′

ρ(ρ
n+1
L )

] [
ρn+1
σ − ρn+1

KL

]
. (36)

By Lemma 3, (29) holds; an easy computation shows that the term associated
to the face σ in the expression of the remainder term (Rm)n+1

K satisfies:

(Fm)n+1
K,σ = |σ|

[
ϕρ(ρ

n+1
K )− ϕρ(ρ

n+1
σ ) + ϕ′

ρ(ρ
n+1
K )(ρn+1

σ − ρn+1
K )

]
un+1
K,σ

= |σ| (δϕρ)
n+1
σ un+1

K,σ + (FR
m)n+1

K,σ

with (FR
m)n+1

K,σ = |σ|
1

2

[
ϕ′
ρ(ρ

n+1
K ) − ϕ′

ρ(ρ
n+1
L )

]
(ρn+1

σ − ρn+1
KL ) un+1

K,σ . Thanks to

the assumption (34a), since ϕ′
ρ is an increasing function, (FR

m)n+1
K,σ ≥ 0. Let us

define (δRm)n+1
K , K ∈ M, 0 ≤ n ≤ N − 1 by:

|K| (δRm)n+1
K =

∑

σ∈E(K)

|σ| (δϕρ)
n+1
σ un+1

K,σ . (37)

Then, under assumption (34a), we get:

|K|

δt

[
ϕρ(ρ

n+1
K )− ϕρ(ρ

n
K)

]
+

∑

σ∈E(K)

|σ| ϕρ(ρ
n+1
σ )un+1

K,σ

+
[
ρn+1
K ϕ′

ρ(ρ
n+1
K )− ϕρ(ρ

n+1
K )

] ∑

σ∈E(K)

|σ| un+1
K,σ + |K| (δRm)n+1

K ≤ 0. (38)

Let us prove that δRm satisfies:

‖δRm‖−1,1,⋆ ≤ 3M |ϕ′
ρ|∞ ‖ρ‖T ,x,BV hM. (39)

Indeed, since both ρn+1
σ and ρn+1

KL lie in the interval |[ρn+1
K , ρn+1

L ]|, we have by
convexity of ϕρ:

|(δϕρ)
n+1
σ | ≤ 3 max

(
|ϕ′

ρ(ρ
n+1
K )|, |ϕ′

ρ(ρ
n+1
L )|

)
|ρn+1

K − ρn+1
L |.
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Let ψ be a function of C∞
c (Ω× (0, T )). We have, thanks to the conservativity of

the remainder term:

T =
N−1∑

n=0

δt
∑

K∈M

|K| (δRm)n+1
K ψn+1

K

=

N−1∑

n=0

δt
∑

σ=K|L∈Eint

|σ| (δϕρ)
n+1
σ (ψn+1

K − ψn+1
L ) uK,σ.

Therefore,

|T | ≤ 3 |ϕ′
ρ|∞M

[
‖∇ψ‖∞

]
hM

N−1∑

n=0

δt
∑

σ=K|L∈Eint

|σ| |ρn+1
K − ρn+1

L |,

which concludes the proof of (39).

Following the same line of thought for the internal energy balance, let (δϕe)
n+1
σ

be defined by:

(δϕe)
n+1
σ = ϕe(e

n+1
K )− ϕe(e

n+1
σ ) + ϕ′

e(e
n+1
K )

[
en+1
KL − en+1

K

]

+
1

2

[
ϕ′
e(e

n+1
K ) + ϕ′

e(e
n+1
L )

] [
en+1
σ − en+1

KL

]
, (40)

and (δRe)
n+1
K the remainder term given by:

|K| (δRe)
n+1
K =

∑

σ∈E(K)

(δϕe)
n+1
σ Fn+1

K,σ . (41)

Thanks to the assumption (34b) we get:

|K|

δt

[
ρn+1
K ϕe(e

n+1
K )− ρnKϕe(e

n
K)

]
+

∑

σ∈E(K)

ϕe(e
n+1
σ )Fn+1

K,σ

+ ϕ′
e(e

n+1
K )pn+1

K

∑

σ∈E(K)

|σ| un+1
K,σ + |K| (δRe)

n+1
K ≤ 0. (42)

In addition, δRe satisfies the following inequality:

‖δRe‖−1,1,⋆ ≤ 3M2 |ϕ′
e|∞ ‖e‖T ,x,BV hM. (43)

Combining the inequalities (38) and (42) and thanks to (20), (39) and (43)
concludes the proof of the theorem.

3.3 Explicit schemes

The general form of the discrete analogue of System (14) for an explicit scheme
reads:

For K ∈ M, 0 ≤ n ≤ N − 1,

|K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn
K,σ = 0, (44a)
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|K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn
K,σe

n
σ + pnK

∑

σ∈E(K)

|σ|unK,σ ≥ 0, (44b)

pnK = (γ − 1) ρnK enK , (44c)

where the numerical mass flux Fn
K,σ is still defined by (28).

Let ρnKL (resp. enKL) be the real number defined by Equation (26) with xK =
ρnK (resp. xK = enK) and xL = ρnL (resp. xL = enL) and ϕ = ϕρ (resp. ϕ = ϕe)
and let us assume that for σ ∈ Eint, σ = K|L and for 0 ≤ n ≤ N − 1,

ρnσ ∈ |[ρnK , ρ
n
KL]| if u

n
K,σ ≥ 0, ρnσ ∈ |[ρnL, ρ

n
KL]| otherwise. (45)

enσ ∈ |[enK , e
n
KL]| if u

n
K,σ ≥ 0, enσ ∈ |[enL, e

n
KL]| otherwise. (46)

With these two conditions, Theorem 3 below yields a weak discrete entropy
inequality, in the sense that a remainder term exists which tends to 0 (under some
conditions) with the mesh and time steps, but its sign is unknown. However, in
the case of an upwind approximation of the density and the internal energy on the
faces of the mesh (note that (45) and (46) are satisfied for such approximations),
a local discrete entropy inequality can be obtained under the following additional
conditions.

1. First, the normal face velocities uK,σ in the mass flux (28) are assumed to
be either

- computed from a discrete velocity field u:

uK,σ = uσ · nK,σ, (47)

where nK,σ is the unit normal vector to σ outward K and uσ is an
approximation of the velocity at the face, which may be the discrete
unknown itself (when the velocity degrees of freedom are those of a non
conforming Crouzeix-Raviart or Rannacher-Turek approximation, see e.g.
[14]) or an interpolation (for instance, for a colocated arrangement of the
unknowns, as in [25]).

- the unknown themselves in the case of the staggered MAC scheme, since
only the normal velocity is approximated in this case, see e.g. [14].

For 1 ≤ r, we then define the following discrete norm:

‖u‖
r
Lr(0,T ;W 1,r

M
) =

d∑

i=1

N∑

n=0

δt
∑

K∈M

∑

(σ,σ′)∈E(i)(K)2

|K|

(
unσ,i − unσ′,i

hK

)r

, (48)

where E(i)(K) = E(K) for the Crouzeix-Raviart or Rannacher-Turek case
and E(i)(K) is restricted to the two faces of K perpendicular to the ith

vector of the canonical basis of Rd in the case of the MAC scheme.
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Remark 2 (Discrete Lr(W 1,r) norm of the velocity). It is reasonable to sup-
pose that, under regularity assumptions of the mesh whose precise statement
depends the space approximation at hand, this norm is equivalent to the
standard finite-volume discrete Lr(0, T ;W 1,r) norm [10]; it is indeed true
for usual cells (in particular, with a bounded number of faces) for staggered
discretizations and for a convex interpolation of the velocity at the faces for
colocated schemes.

2. Second, the following CFL conditions hold:

δt ≤
|K|

∑

σ∈E(K)

ϕ′′
ρ(ρ̃

n+1/2
K )2

ϕ′′
ρ(ρ

n
K,σ)

|σ| (unK,σ)
−

, (49)

δt ≤
ϕ′′
e (e

n+1/2
K ) |K| ρn+1

K

∑

σ∈E(K)

ϕ′′
e (ẽ

n+1/2
K )2

ϕ′′
e (e

n
K,σ)

(Fn
K,σ)

−

. (50)

where ρ̃
n+1/2
K ∈ |[ρnK , ρ

n+1
K ]|, ρnK,σ ∈ |[ρnK , ρ

n
L]|, ẽ

n+1/2
K ∈ |[enK , e

n+1
K ]| and

enK,σ ∈ |[enK , e
n
L]| are defined by:

ϕ′′
ρ(ρ̃

n+1/2
K ) (ρn+1

K − ρnK)2 = ϕ′
ρ(ρ

n+1
K )− ϕ′

ρ(ρ
n
K), (51)

ϕ′′
ρ(ρ

n
K,σ)

(
ρnK − ρnL

)2
= ϕ(ρnL)− ϕρ(ρ

n
K)− ϕ′

ρ(ρ
n
K)

(
ρnK − ρnL

)
, (52)

ϕ′′
e (ẽ

n+1/2
K ) (en+1

K − enK)2 = ϕ′
e(e

n+1
K )− ϕ′

e(e
n
K), (53)

ϕ′′
e (e

n
K,σ)

(
enK − enL

)2
= ϕe(e

n
L)− ϕe(e

n
K)− ϕ′

e(e
n
K)

(
enK − enL

)
. (54)

Theorem 3 (Discrete entropy inequalities, explicit schemes). Let ρ and
e satisfy the relations of the scheme (44). Let M ≥ 1 and let us suppose that
ρnK ≤ M , 1/ρnK ≤ M , enK ≤ M , 1/enK ≤ M and |uK,σ| ≤ M , for K ∈ M,
σ ∈ E(K) and 0 ≤ n ≤ N . Assume that the discretization of the convection term
in (44a) and (44b) satisfies the assumptions (45) and (46) respectively. Let η be
defined by (17). Then any solution of the scheme (44) satisfies, for any K ∈ M
and 0 ≤ n ≤ N − 1:

|K|

δt
(ηn+1

K − ηnK) +
∑

σ∈E(K)

|σ| ηnσu
n
K,σ + |K| (Rη)

n
K ≤ 0,

where Rη = Rη,1 +Rη,2 with:

‖Rη,1‖−1,1,⋆ ≤ 3M
(
|ϕ′

ρ|∞ ‖ρ‖T ,x,BV +M |ϕ′
e|∞ ‖e‖T ,x,BV

)
hM,

‖Rη,2‖L1 ≤M2
(
|ϕ′′

ρ |∞ ‖ρ‖T ,t,BV + |ϕ′′
e |∞ ‖e‖T ,t,BV

) δt

hM
,
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where hM is defined by (23), |ϕ′
ρ|∞ = max(|ϕ′

ρ(1/M)|, |ϕ′
ρ(M)|), |ϕ′

e|∞ =
max(|ϕ′

e(1/M)|, |ϕ′
e(M)|), and |ϕ′′

ρ |∞ and |ϕ′′
e |∞ denote the maximum value

taken by ϕ′′
ρ and ϕ′′

e respectively on the interval [1/M, M ].

Moreover, if the discretization of the convection term in (44a) and (44b)
is upwind, and if the normal face velocities uK,σ satisfy (47), under the CFL
conditions (49) and (50), we also have (with a different expression for Rη):

‖Rη‖L1 ≤ fM CM M (2q−1)/q |ϕ′′
ρ |∞ ‖ρ‖T ,t,BV

1
q ‖u‖

Lq′ (0,T ;W 1,q′

M
)
δt

1
q . (55)

where q ≥ 1, q′ ≥ 1 and
1

q
+

1

q′
= 1, fM and CM are defined by (24).

Proof. The results are obtained by applying the propositions 1 and 2 below with
ϕ = ϕρ and ϕ = ϕe respectively.

The aim of the following proposition is to derive a discrete analogue of Re-
lation (18).

Proposition 1 (Discrete renormalized forms of the mass balance equa-
tion). Let ϕ be a twice continuously differentiable convex function from (0,+∞)
to R, and let ρ satisfy (44a). Let M ≥ 1 and let us suppose that ρnK ≤ M ,
1/ρnK ≤ M and |uK,σ| ≤ M , for K ∈ M, σ ∈ E(K) and 0 ≤ n ≤ N . Let
|ϕ′|∞ = max(|ϕ′(1/M)|, |ϕ′(M)|) and |ϕ′′|∞ be the maximum value taken by
ϕ′′ on the interval [1/M, M ]. Assume that ρnσ satisfies (45). Then the following
inequality holds:

|K|

δt

[
ϕ(ρn+1

K )− ϕ(ρnK)
]
+

∑

σ∈E(K)

|σ|ϕ(ρnσ)u
n
K,σ

+
(
ϕ′(ρnK)ρnK − ϕ(ρnK)

) [ ∑

σ∈E(K)

|σ|unK,σ

]
+ |K| (Rρ)

n+1
K ≤ 0, (56)

where the remainder (Rρ)
n+1
K = (Rρ,1)

n+1
K + (Rρ,2)

n+1
K with:

‖Rρ,1‖−1,1,⋆ ≤ 3M |ϕ′|∞ ‖ρ‖T ,x,BV hM,

‖Rρ,2‖L1 ≤M2 |ϕ′′|∞ ‖ρ‖T ,t,BV
δt

hM
,

where hM is defined by (23).

Assume furthermore that the normal face velocities uK,σ satisfy (47), that
the discretization of the convection term in (44a) is upwind and that the CFL
condition (49) holds with ϕ instead of ϕρ. Then (56) still holds (with a different
expression for Rρ) and:

‖Rρ‖L1 ≤ fM CM M (2q−1)/q |ϕ′′|∞ ‖ρ‖T ,t,BV
1/q ‖u‖

Lq′ (0,T ;W 1,q′

M
)
δt1/q,
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where q ≥ 1, q′ ≥ 1,
1

q
+

1

q′
= 1, ‖·‖

Lq′ (0,T ;W 1,q′

M
)
is defined by (48), fM and CM

are defined by (24) and C only depends on the maximal number of faces of the
mesh cells.

Proof. Mimicking the formal computation performed at the continuous level, let
us multiply (44a) by ϕ′(ρn+1

K ). We get:

ϕ′(ρn+1
K )

[ |K|

δt
(ρn+1

K − ρnK) +
∑

σ∈E(K)

Fn
K,σ

]
= (T1)

n+1
K + (T2)

n+1
K + |K|Rn+1

K = 0,

with

(T1)
n+1
K = ϕ′(ρn+1

K )
|K|

δt
(ρn+1

K − ρnK), (T2)
n+1
K = ϕ′(ρnK)

∑

σ∈E(K)

Fn
K,σ,

|K|Rn+1
K =

(
ϕ′(ρn+1

K )− ϕ′(ρnK)
) ∑

σ∈E(K)

Fn
K,σ. (57)

By a Taylor expansion, there exists ρ
n+1/2
K ∈ |[ρnK , ρ

n+1
K ]| such that:

(T1)
n+1
K =

|K|

δt

[
ϕ(ρn+1

K )− ϕ(ρnK)
]
+ |K| (R1)

n+1
K ,

with (R1)
n+1
K =

1

2δt
ϕ′′(ρ

n+1/2
K ) (ρn+1

K − ρnK)2 ≥ 0. (58)

The term (T2)
n+1
K reads:

(T2)
n+1
K =

∑

σ∈E(K)

|σ|ϕ(ρnσ)u
n
K,σ

+
(
ϕ′(ρnK)ρnK − ϕ(ρnK)

) ∑

σ∈E(K)

|σ|unK,σ + |K| (R2)
n+1
K , (59)

with

|K| (R2)
n+1
K =

∑

σ∈E(K)

|σ|
[
ϕ(ρnK) + ϕ′(ρnK)(ρnσ − ρnK)− ϕ(ρnσ)

]
unK,σ.

Thanks to assumption (45), the remainder R2 is a sum of a non-negative part
and a term tending to zero; indeed there exists δR2 such that:

R2 ≥ δR2 and ‖δR2‖−1,1,⋆ ≤ 3M |ϕ′|∞ ‖ρ‖T ,x,BV hM.

This result is obtained by adapting the proof of the implicit case (indeed, up to
a change of time exponents at the right-hand side from n to n+1, the expression
of (R2)

n+1
K is the same than the second term of (Rm)n+1

K in the expression (29),
and the computation from Relation (36) up to the end of the proof of (39) may
be reproduced, still with the same change of time exponents).
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Let us now prove that the remainder term R = (Rn
K)n=0,...,M

K∈M defined by (57)
satisfies:

‖R‖L1 =

N−1∑

n=0

δt
∑

K∈M

|K|Rn+1
K ≤M2 |ϕ′′|∞ ‖ρ‖T ,t,BV

δt

hM
. (60)

Indeed, for K ∈ M and 0 ≤ n ≤ N , we get:

|K|Rn+1
K =

(
ϕ′(ρn+1

K )− ϕ′(ρnK)
) ∑

σ∈E(K)

Fn
K,σ (61)

= ϕ′′(ρ̃
n+1/2
K )

(
ρn+1
K − ρnK

) ∑

σ∈E(K)

|σ| ρnσu
n
K,σ, (62)

where ρ̃
n+1/2
K is defined by (51). Thus,

‖R‖L1 =

N−1∑

n=0

δt
∑

K∈M

|K|Rn+1
K ≤ |ϕ′′|∞M2

N−1∑

n=0

δt
( ∑

K∈M

|σ|
)
|ρn+1

K − ρnK |,

which yields (60).

Let us now turn to the case where the discrete normal velocities satisfy (47)
and the discretization of the density at the face ρnσ is upwind; in this case the
remainder R2 defined by (3.3) satisfies:

|K| (R2)
n+1
K =

∑

σ=K|L

1

2
|σ| ϕ′′(ρnK,σ)

(
ρnK − ρnL

)2
(unK,σ)

−, (63)

where ρnK,σ is defined by (52). Therefore, R2 is non-negative. Starting from

Equation (61), we may now reformulate the remainder term Rn+1
K as Rn+1

K =
(R01)

n+1
K + (R02)

n+1
K with:

|K| (R01)
n+1
K = ϕ′′(ρ̃

n+1/2
K )

(
ρn+1
K − ρnK

)
ρnK

[ ∑

σ∈E(K)

|σ| unK,σ

]
,

|K| (R02)
n+1
K = ϕ′′(ρ̃

n+1/2
K )

(
ρn+1
K − ρnK

) [ ∑

σ∈E(K)

|σ|(ρnσ − ρnK)unK,σ

]
.

(64)

By Young’s inequality, the second term may be estimated as follows:

|K| |(R02)
n+1
K | ≤

1

2

∑

σ∈E(K)

|σ| ϕ′′(ρnK,σ) (u
n
K,σ)

−
(
ρnK − ρnL

)2

+
1

2

∑

σ∈E(K)

|σ|
ϕ′′(ρ̃

n+1/2
K )2

ϕ′′(ρnK,σ)
(unK,σ)

−
(
ρn+1
K − ρnK

)2
.

Therefore, in view of the expressions (58) and (63) of (R1)
n
K and (R2)

n
K respec-

tively, we get (R1)
n+1
K + (R2)

n+1
K + (R02)

n+1
K ≥ 0 under the CFL condition (49)

(with ϕ instead of ϕρ). Let us now show that

‖R01‖L1 ≤ fM CM M (2q−1)/q |ϕ′′|∞ ‖ρ‖T ,t,BV
1/q ‖u‖

Lq′ (0,T ;W 1,q′

M
)
δt1/q, (65)
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with q ≥ 1, q′ ≥ 1 and
1

q
+

1

q′
= 1, where fM and CM is defined by (24). To

this purpose, we first observe that, in the Crouzeix-Raviart or Ranncher-Turek
case, since

∑
σ∈E(K) |σ| nK,σ = 0, we may write:

∑

σ∈E(K)

|σ| unK,σ =
∑

σ∈E(K)

|σ| un
σ · nK,σ =

∑

σ∈E(K)

|σ| (un
σ − un

K) · nK,σ,

where un
K stands for the mean value of the normal face velocities (un

σ)σ∈E(K).
In the MAC case, we have

∑
σ∈E(i)(K) |σ| u

n
K,σ = 0 for 1 ≤ i ≤ d, and thus

∑

σ∈E(K)

|σ| unK,σ =
d∑

i=1

∑

σ∈E(i)(K)

|σ| unσ,i j
(i) · nK,σ =

d∑

i=1

∑

σ∈E(i)(K)

|σ| (unσ,i − unK,i) j
(i) · nK,σ,

where j(i) stands for the ith vector of the canonical basis of Rd and unK,i stands

for the mean value of the velocity over the two faces of E(i)(K). In both cases,
we obtain that:

∣∣∣
∑

σ∈E(K)

|σ| unK,σ

∣∣∣ ≤ 2

d∑

i=1

∑

(σ,σ′)∈E(i)(K)2

(|σ| + |σ′|) |unσ,i − unσ′,i|.

Therefore,

|K| |(R01)
n+1
K | ≤ 2 |ϕ′′|∞M

∣∣ρn+1
K − ρnK

∣∣
d∑

i=1

∑

(σ,σ′)∈E(i)(K)2

(|σ| + |σ′|) |unσ,i − unσ′,i|.

We thus have, thanks to a Hölder estimate, for q ≥ 1, q′ ≥ 1 and
1

q
+

1

q′
= 1:

‖R01‖L1 =

N−1∑

n=0

δt
∑

K∈M

|K| (R01)
n+1
K

≤ 2 |ϕ′′|∞M
[
δt

N−1∑

n=0

∑

K∈M

|K|
∣∣ρn+1

K − ρnK
∣∣q
( d∑

i=1

∑

(σ,σ′)∈E(i)(K)2

1
)]1/q

[N−1∑

n=0

∑

K∈M

d∑

i=1

∑

(σ,σ′)∈E(i)(K)2

δt |K|

(
|unσ,i − unσ′,i|

hK

)q′ (
(|σ| + |σ′|)hK

|K|

)q′]1/q′
.

Using |ρn+1
K − ρnK |q ≤ (2M)q−1 |ρn+1

K − ρnK | yields (65).
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The object of the following proposition is to mimick at the fully discrete level
the computation of (2) and (3), applying it to z = e.

Proposition 2 (Inequalities derived from the internal energy balance).
Let M ≥ 1 and let us suppose that ρnK ≤M , enK < M , 1/enK ≤M and |uK,σ| ≤
M , for K ∈ M, σ ∈ E(K) and 0 ≤ n ≤ N . Assume that the face approximation
of the internal energy satisfies (45). Let ϕ be a twice continuously convex function
from (0,+∞) to R. Then

ϕ′(en+1
K )

[ |K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn
K,σe

n
σ

]

≥
|K|

δt

(
ρn+1
K ϕ(en+1

K )− ρnK ϕ(enK)
)
+

∑

σ∈E(K)

Fn
K,σ ϕ(e

n
σ) + |K| (Re)

n
K , (66)

with

‖Re‖L1 ≤ 3M2 |ϕ′|∞ ‖e‖T ,x,BV hM +M2 |ϕ′′|∞ ‖e‖T ,t,BV
δt

hM
, (67)

where |ϕ′|∞ = max(|ϕ′(1/M)|, |ϕ′(M)|), |ϕ′′|∞ stands for the maximum value
taken by ϕ′′ over the interval [1/M, M ], and hM is defined by (23). If, further-
more, the approximation of enσ in (66) is upwind, and the CFL condition (50)
holds (with ϕ instead of ϕe) then (Re)

n
K = 0.

Proof. First, the fully discrete identity corresponding to the semi-discrete iden-
tity (5) with z = e is obtained thanks to the discrete mass equation; it reads:

|K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn
K,σe

n
σ =

|K|

δt
ρn+1
K (en+1

K − enK)

+
∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK), ∀K ∈ M, 0 ≤ n ≤ N − 1.

Now let ϕ be a twice continuously differentiable function from(0,+∞) to R, and
let us multiply the first two terms of the discrete internal energy balance (44b)
by ϕ′(en+1

K ); switching from the conservative to the non conservative form, we
get:

ϕ′(en+1
K )

[ |K|

δt
(ρn+1

K en+1
K − ρnKe

n
K) +

∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK)

]

= (T1)
n+1
K + (T2)

n+1
K + |K|Rn+1

K ,

with

(T1)
n+1
K = ϕ′(en+1

K )
|K|

δt
ρn+1
K (en+1

K − enK),
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(T2)
n+1
K = ϕ′(enK)

∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK),

|K|Rn+1
K =

(
ϕ′(en+1

K )− ϕ′(enK)
) ∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK). (68)

The remainder term Rn+1
K is quite similar to the remainder defined by (57) in

the proof of Proposition 1; following the proof of (60), we get that it satisfies:

‖R‖L1 ≤M2 |ϕ′′|∞ ‖e‖T ,t,BV
δt

hM
.

Now

(T1)
n+1
K =

|K|

δt
ρn+1
K

(
ϕ(en+1

K )− ϕ(enK)
)
+ |K| (R1)

n+1
K ,

(T2)
n+1
K =

∑

σ∈E(K)

Fn
K,σ

(
ϕ(enσ)− ϕ(enK)

)
+ |K| (R2)

n+1
K ,

with:

|K| (R1)
n+1
K =

|K|

δt
ρn+1
K

(
ϕ(enK)− ϕ(en+1

K )− ϕ′(en+1
K )(enK − en+1

K )
)
,

|K| (R2)
n+1
K =

∑

σ∈E(K)

Fn
K,σ

(
ϕ(enK) + ϕ′(enK)(enσ − enK)− ϕ(enσ)

)
.

The remainder (R1)
n+1
K may be written:

(R1)
n+1
K =

1

2δt
ρn+1
K ϕ′′(e

n+1/2
K ) (en+1

K − enK)2, (69)

where e
n+1/2
K ∈ |[enK , e

n+1
K ]|. Since ϕ is supposed to be convex, this term is non-

negative. Let enKL be the real number defined by Equation (26) (and denoted in
this latter relation by xKL) with xK = enK and xL = enL. Thanks to (45), by a
computation similar to the implicit case, the remainder R2 satisfies

R2 ≥ δR2 and ‖δR2‖L1 ≤ 3M2 |ϕ′|∞ ‖e‖T ,x,BV hM. (70)

Switching back from the non-conservative formulation to the conservative for-
mulation yields:

ϕ′(en+1
K )

|K|

δt
ρn+1
K (en+1

K − enK) + ϕ′(enK)
[ ∑

σ∈E(K)

Fn
K,σ(e

n
σ − enK)

]
≥

|K|

δt

(
ρn+1
K ϕ(en+1

K )− ρnK ϕ(enK)
)
+

∑

σ∈E(K)

Fn
K,σ ϕ(e

n
σ) + |K|(R2)

n+1
K , (71)

which, thanks to (70), leads to (66) and (67).
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Let us now suppose that the discretization of the internal energy convection
term is upwind. In this case, we obtain for (R2)

n+1
K :

|K| (R2)
n+1
K =

1

2

∑

σ∈E(K)

(Fn
K,σ)

− ϕ′′(enK,σ)(e
n
K − enL)

2, (72)

where enK,σ ∈ |[enK , e
n
L]|. The remainder Rn+1

K yields in the upwind case:

|K|Rn+1
K = −ϕ′′(ẽ

n+1/2
K ) (en+1

K − enK)
[ ∑

σ∈E(K)

(Fn
K,σ)

−(enL − enK)
]
,

where e
n+1/2
K ∈ |[enK , e

n+1
K ]|. So, thanks to the Young inequality:

|K| |Rn+1
K | ≤

1

2

∑

σ∈E(K)

(Fn
K,σ)

− ϕ′′(enK,σ)(e
n
L − enK)2

+
1

2
(en+1

K − enK)2
∑

σ∈E(K)

(Fn
K,σ)

−ϕ
′′(ẽ

n+1/2
K )2

ϕ′′(enK,σ)
.

In view of the expressions (69) and (72) of (R1)
n+1
K and (R2)

n+1
K respectively, we

obtain that (R1)
n+1
K + (R2)

n+1
K + Rn+1

K ≥ 0 thanks to the CFL condition (50),
which yields the result.

Theorem 3 deserves the following comments:

- First, in the explicit case, we are able to prove neither a local nor a global
discrete entropy inequality; we only obtain some weak inequalities that allow
to show the consistency of the scheme, under some conditions.

- The convergence to zero with the space and time step of the remainders
is obtained, supposing a control of discrete solutions in L∞ and discrete
BV norms, in two cases: first when the ratio δt/hM tends to zero, second
when the Lq(0, T ;W 1,q

M ) norm of the velocity does not blow-up too quickly
with the space step. To this respect, let us suppose that we implement a
stabilization term in the momentum balance equation reading (in a pseudo-
continuous setting, for short and to avoid the technicalities associated to the
space discretization), for 1 ≤ i ≤ d:

∂t(ρui) + div(ρuiu) + ∂ip− hαM∆qui = 0, (73)

where ∆qui is such that

‖ui‖
q

W 1,q
M

≤ C

∫

Ω

−∆qui ui dx,

where C is independent of hM. This kind of viscosity term may be found in
turbulence models [1, 36]. Multiplying (73) by ui and integrating with respect
to space and time yields:
∫ T

0

∫

Ω

−∆qui ui dx dt = −

∫ T

0

∫

Ω

(
∂t(ρui)+div(ρuiu)+∂ip

)
ui dx dt. (74)



30 R. Herbin et al.

In this relation, the right-hand side may be controlled under L∞ and BV
stability assumptions (remember that, at the discrete level, the BV andW 1,1

norms are the same), and we obtain an estimate on ‖u‖Lq(0,T ;W 1,q
M

) which

may be used in (55). A standard first order diffusion-like stabilizing term

corresponds to q = 2 and α = 1; it yields a bound on h
1/2
M ‖u‖L2(0,T ;H1

M
), so

that (55) becomes

‖Rη‖L1 ≤ fM CM M
3
2 |ϕ′′|∞ ‖ρ‖T ,t,BV

1
2 C̃(

δt

hM
)

1
2 .

Such a stabilization is thus not sufficient to ensure that the remainder term
tends to zero. What is needed is in fact:

α < q − 1.

To avoid an over-diffusion in the momentum balance, this inequality suggests
to implement a non-linear stabilization with q > 2 which, in turn, will allow
α > 1. With such a trick, we will be able to obtain for first-order upwind
schemes the desired ”Lax-consistency” result: the limit of a convergent se-
quence of solutions, bounded in L∞ and BV norms, and obtained with space
and time steps tending to zero, satisfies a weak entropy inequality.

- We introduced in [33] a limitation process for a MUSCL-like algorithm for
the transport equation, which consists in deriving an admissible interval for
the approximation of the unknowns at the mesh faces, in convection terms,
thanks to extrema preservation arguments. This limitation process has been
extended to the Euler equations in [14]. The conditions (45) and (46) may
easily be incorporated in this limitation: indeed, they also define an admissible
interval, which is not disjoint from the MUSCL-like admissible interval of [33],
since the upwind value belongs to both. A similar idea (namely restricting the
choice for the face approximation in order to obtain an entropy inequality)
may be found in [2].

——————————————————————————————————–
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