Structures of the High-Temperature Solid Phases of the Odd-Numbered Fatty Acids from Tridecanoic Acid to Tricosanoic Acid

Gabin Gbabode, Philippe Négrier, Denise Mondieig, Evelyn Moreno Calvo, Teresa Calvet, Miquel àngel Cuevas-Diarte

To cite this version:

Gabin Gbabode, Philippe Négrier, Denise Mondieig, Evelyn Moreno Calvo, Teresa Calvet, et al.. Structures of the High-Temperature Solid Phases of the Odd-Numbered Fatty Acids from Tridecanoic Acid to Tricosanoic Acid. Chemistry - A European Journal, 2007, 13 (11), pp.3150-3159. 10.1002/chem.200600955 . hal-01553049

HAL Id: hal-01553049

https://hal.science/hal-01553049

Submitted on 24 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License
destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires

Structures of the High-Temperature Solid Phases of the Odd-Numbered Fatty Acids from Tridecanoic Acid to Tricosanoic Acid

Gabin Gbabode, $*{ }^{[a]}$ Philippe Negrier, ${ }^{[\text {a] }}$ Denise Mondieig, ${ }^{[a]}$ Evelyn Moreno Calvo, ${ }^{[b]}$ Teresa Calvet, ${ }^{[b]}$ and Miquel Àngel Cuevas-Diarte ${ }^{[b]}$

Abstract

Crystal structures of the high temperature phases of odd num bered fatty acids $\left(\mathrm{C}_{n} \mathrm{H}_{2 n-1} \mathrm{OOH}\right)$ from tridecanoic acid $\left(\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}\right)$ to trico sanoic acid $\left(\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}\right)$ are present ed in this article. They have been deter mined from high quality X ray powder diffraction patterns. Two types of high temperature phases are adopted: one monoclinic $A 2 / a$ with $Z=8$ for the fatty acids with $n=13$ and $n=15$, de

noted as $\mathrm{C}^{\prime \prime}$, and one monoclinic $P 2_{1} / a$ with $Z=4$ for the longer chain fatty acids, denoted as C^{\prime}. It appears that the packing arrangement of the alkyl chains and of the carboxyl groups is similar in all of the structures. Howev

Keywords: bilayers • hydrogen bonds - polymorphism - thermal motion • van der Waals interactions
er, the arrangement at the methyl group interface differs between the C^{\prime} and $\mathrm{C}^{\prime \prime}$ forms. A survey of the intermo lecular interactions involved in these polymorphs coupled with a study of the effects of temperature on the struc tures have led us to a better under standing of the arrangement of the molecules within the high temperature solid phases of odd numbered fatty acids.

Introduction

Higher fatty acids of the formula $\mathrm{C}_{n} \mathrm{H}_{2 n-1} \mathrm{OOH}$ are com posed of long, saturated aliphatic chains with a carboxyl group at one of their extremities. It is well known that long chain aliphatic compounds adopt several solid forms, with different configurations of the packing of the molecules in and between the layers. ${ }^{[15]}$ Typically, the $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{C}^{\prime \prime}$, and D^{\prime} forms ${ }^{[69]}$ are adopted by the saturated fatty acids with an odd number of carbon atoms, whereas the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and E forms ${ }^{[60]}$ are adopted by those with an even number of carbon atoms. All of these fatty acids exhibit at least one solid solid transition prior to melting, ${ }^{[79]}$ and we usually dis tinguish the high temperature phase that is stable just below the melting point from the low temperature phase observa ble at lower temperatures. For odd numbered fatty acids, the high temperature phase may be the C^{\prime} or the $\mathrm{C}^{\prime \prime}$ form. ${ }^{[6]}$

[^0]For years, only the structure of the C^{\prime} form of hendecanoic acid $\left(\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OOH}\right)$ had been reported, ${ }^{[11]}$ and, moreover, it had not been fully resolved (two dimensional (2D) struc ture). Recently, Bond solved the crystal structures of the high temperature solid phases of all fatty acids from hexano ic acid $\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OOH}\right)$ to pentadecanoic acid $\left(\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}\right)$ from single crystals. ${ }^{[6]}$ The results obtained for the odd num bered fatty acids showed that, just below their respective melting points, the fatty acids with chain length from $n=7$ to $n=11$ adopt the C^{\prime} form, whereas tridecanoic acid and pentadecanoic acid adopt the $\mathrm{C}^{\prime \prime}$ form.

In the present article, we focus on longer chain odd num bered fatty acids, specifically those with 13 to 23 carbon atoms. These compounds have high enthalpies of melting and they are also thermo adjustable by means of their chain length. These fatty acids, as well as their mixed samples, could therefore be potential candidates for applications in the field of energy storage or thermal protection, as has been demonstrated for alkanes ${ }^{[12,13]}$ and alkanols. ${ }^{[14,15]}$ In this context, it is important to know the crystal structures of the high temperature solid phases, as it is these that are in volved in the melting process.

Crystal structure determination of the high temperature phases of odd numbered fatty acids is not an easy task. These solid forms are only stable in a narrow temperature range just below the melting point, and this temperature in terval becomes narrower with increasing chain length. ${ }^{[16,17]}$

The growth of single crystals is therefore very complicated, and the degree of difficulty goes on increasing for the longer acids. Some attempts have been made to grow such crystals, but without success. As a consequence, we have now determined their crystal structures from X ray powder diffraction patterns measured at the appropriate tempera tures. The module POWDER SOLVE ${ }^{[18]}$ of the MATERI AL STUDIO application ${ }^{[19]}$ has been used to resolve the crystal structures.

In the first part of this paper, the polymorphism of the fatty acids from $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$ is briefly de scribed. Data from both calorimetric and X ray powder dif fraction measurements are presented. A detailed analysis of the X ray powder diffraction patterns of the high tempera ture solid forms is then described. Their crystal structures are presented and the packing arrangement of the molecules throughout the studied series is discussed. In particular, the results obtained for tridecanoic acid and pentadecanoic acid are compared with those obtained by Bond. Finally, the ef fects of temperature are analysed and related to the packing arrangement of the molecules.

Results

Calorimetric analysis: The DSC traces obtained for the six fatty acids were, in each case, indicative of the occurrence of a solid solid transition before melting (Figure 1). The tem

Figure 1. Extract of the DSC signals obtained with a heating rate of $2 \mathrm{~K}_{\mathrm{min}}{ }^{1}$.
perature interval between the two transitions diminishes with increasing chain length (at least up to $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$; this temperature interval is a little wider for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OOH}$ and $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$ than for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$).
The various transitions observed for these materials have been characterised by both X ray diffraction and thermal analysis. The measured temperatures, entropies, and enthal pies are displayed in Table 1. As mentioned in the litera ture, ${ }^{[7]} \mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ adopts the A^{\prime} form at room tempera ture. A low energy reversible transition was observed at 287.7 K , which we attribute to an A_{1}^{\prime} (1 for low) $\rightarrow \mathrm{A}_{\mathrm{h}}^{\prime}$ (h for high) transition. Such a transition has been previously ob served by Kaneko et al. ${ }^{[20]}$ for pentadecanoic acid. All of the other acids adopt the B^{\prime} form at room temperature, as pre dicted by many authors. ${ }^{[8,9]}$ However, we have also observed A_{1}^{\prime} and $\mathrm{A}_{\mathrm{h}}^{\prime}$ solid phases for samples of $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$. The temperature of the $\mathrm{A}_{\mathrm{h}}^{\prime} \rightarrow \mathrm{C}^{\prime \prime}$ transition is lower than that of the $\mathrm{B}^{\prime} \rightarrow \mathrm{C}^{\prime \prime}$ transition (Table 1). Therefore, B^{\prime} is more stable than A^{\prime} in the vicinity of the transition point for pentadeca noic acid. Irrespective of the low temperature phases, the high temperature phases are the $\mathrm{C}^{\prime \prime}$ form for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ and the C^{\prime} form for the four other acids.

The evolution of the solid solid transition temperatures and the melting points shown in Figure 2 is in agreement with the work of von Sydow and Stenhagen, ${ }^{[16]}$ in which these parameters were plotted for the odd numbered acids from $n=13$ to $n=29$.

The enthalpies and entropies of melting increase almost linearly with increasing chain length. These trends reflect the regular incremental lengthening of the hydrocarbon chain by the addition of two CH_{2} groups on going from one acid to the next.

Indexing of the \mathbf{X}-ray powder-diffraction patterns: Taking into account the temperatures of the transitions determined by thermal analysis, X ray powder diffraction patterns of the high temperature phases were recorded at 313.0, 324.0, $333.0,340.0,346.4$, and 351.7 K for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$, $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}, \mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}, \mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}, \mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OOH}$, and $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$, respectively. All of the reflections of the powder patterns of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ have been indexed to the $\mathrm{C}^{\prime \prime}$ form, which is monoclinic with space group $A 2 / a$ and has eight molecules in the unit cell. For the fatty acids from $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$, the reflections have been indexed to the C^{\prime} form, which is also monoclinic, but has space group $P 2_{1} / a$ and $Z=4$. The measured and cal

Table 1. Temperatures (T in K), enthalpies $\left(\Delta H\right.$ in $\left.\mathrm{kJ} \mathrm{mol}{ }^{1}\right)$, and entropies $\left(\Delta S\right.$ in $\left.\mathrm{Jmol}^{1} \mathrm{~K}^{1}\right)$ of the various phase transitions.

	Solid solid transition ($\mathrm{S}_{\text {III }} \rightarrow \mathrm{S}_{\text {II }}$)				Solid solid transition ($\mathrm{S}_{\text {II }} \rightarrow \mathrm{S}_{\mathrm{I}}$)				Melting ($\mathrm{S}_{\mathrm{I}} \rightarrow$ liquid)			
	$\mathrm{S}_{\text {III }}$	T	ΔH	ΔS	$\mathrm{S}_{\text {II }}$	T	ΔH	ΔS	$\mathrm{S}_{\text {I }}$	T	ΔH	ΔS
$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$	A_{1}^{\prime}	287.7(6)	0.06(1)	0.21(4)	$\mathrm{A}_{\mathrm{h}}^{\prime}$	309.1(4)	8.5(3)	27(1)	$\mathrm{C}^{\prime \prime}$	314.6(5)	33(1)	105(3)
$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$	A_{1}^{\prime}	295.5(5)	0.27(7)	0.9(2)	$\mathrm{A}^{\prime}{ }^{\prime}$	320.8(3)			$\mathrm{C}^{\prime \prime}$	325.5(4)	40.4(6)	124(2)
$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$					B^{\prime}	321.9(4)	8.2(6)	25(2)	$\mathrm{C}^{\prime \prime}$	325.5(4)	40.4(6)	124(2)
$\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$					B^{\prime}	331.2(5)	7.5(9)	23(3)	C^{\prime}	333.5(5)	46.5(9)	139(3)
$\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$					B^{\prime}	339.0(4)	7.4(6)	22(1)	C^{\prime}	340.4(3)	57(1)	167(3)
$\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OOH}$					B^{\prime}	344.6(4)	5(1)	13(3)	C^{\prime}	346.7(5)	63(3)	183(9)
$\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$					B^{\prime}	349.9(4)	2.5(6)	7(2)	C^{\prime}	352.0(5)	75(3)	212(9)

Figure 2. Evolution of some thermodynamic quantities with increasing chain length: a) temperatures of solid solid transition ($T_{\text {trs }}$) and of melt ing $\left(T_{\text {fus }}\right), \mathrm{b}$) enthalpies of melting, and c) entropies of melting.
culated powder patterns (Pawley refinement ${ }^{[21]}$) of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$ are shown superimposed in Figure 3.
For the fatty acids from $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$, the hypothetical cell parameters of the $A 2 / a \mathrm{C}^{\prime \prime}$ forms have also been calculated by analogy with the cell parameters of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ by using the Win CELREF and Win CRISDR programs. ${ }^{[22]}$ Figure 4 shows the Pawley fits for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$ and $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$ obtained for the $P 2_{1} / a$ and $A 2 / a$ arrangements in the 2θ domain (2532°), which ex hibits the most marked differences between the two ar rangements for each compound. Trial assignments of the $A 2 / a$ phase for the fatty acids from $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$ to

Figure 3. Superimposition of the experimental and calculated X ray powder diffraction patterns (Pawley refinement) obtained for a) $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and b) $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$.
$\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$ invariably gave worse agreement of the experi mental and calculated X ray diffraction patterns. As an ex ample, the relatively strong reflection at around 29° is never taken into account in the $A 2 / a$ lattice, whereas it corre sponds to the $\overline{2} 11$ reflection in the $P 2_{1} / a$ lattice for the four fatty acids. All reflections are indexed with the $P 2_{1} / a$ lattice of the C^{\prime} form for the fatty acids from $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$, whereas this is not quite the case for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$. Indeed, it is evident from Figure 4a that the weak reflection at 29.5° is not possible with the $P 2_{1} / a$ lattice, whereas it is with the $A 2 / a$ lattice. It may be assumed that this sample also contains a small amount of the $\mathrm{C}^{\prime \prime}$ form, as this fatty acid is at the limit between the occurrence of the C^{\prime} and $\mathrm{C}^{\prime \prime}$ forms in the series.

The cell parameters, the space groups, and the calculated densities determined for the high temperature solid forms of the six fatty acids are displayed in Table 2. The agreement factor, Rwp, obtained after Pawley refinement, is also given for each acid. In addition, the crystallographic data deter mined by von Sydow ${ }^{[11]}$ for the C^{\prime} form of $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OOH}$ and by Bond ${ }^{[6]}$ for the C^{\prime} form of $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OOH}$ and the $\mathrm{C}^{\prime \prime}$ forms of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ are also included.

The cell parameters determined for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ are in good agreement with those obtained by Bond. The a parameter decreases as the number of carbon

Figure 4. Superimposition in the $2532^{\circ} 2 \theta$ domain of the Pawley fits ob tained using the $P 2_{1} / a$ and $A 2 / a$ lattices for a) $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$ and b) $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$.

Figure 5. Evolution of the a parameter with increasing chain length from $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$.

As a conclusion of the two previous sections, it can be stated that the evolution with increasing chain length of sev eral measured quantities (transition temperature, enthalpy, a parameter) are described by continuous curves from $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$, irrespective of the high temper ature solid phase that is adopted ($\mathrm{C}^{\prime \prime}$ for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH} ; \mathrm{C}^{\prime}$ for the longer acids).

Crystal structures of the high-temperature phases: The crys tal structures determined for the six fatty acids correspond to the best compromise between Rietveld refinement and energy minimisation (see the Experimental Section for more details). Projections in the (a, c) plane of the crystal structures of the $\mathrm{C}^{\prime \prime}$ form of $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ and of the C^{\prime} form of $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OOH}$ are pre sented in Figure 6. The mole cules are stacked in bilayers in both forms, with dimers being formed by hydrogen bonding between the carboxyl groups. The crystal structures show al ternating methyl and carbox yl group interfaces along the c axis, as is visible in Figure 6. The $A 2 / a$ structure is a twofold version of the $P 2_{1} / a$ structure. The two types of structures are centrosymmetric and the hy drogen bonds bridge the car boxyl groups of molecules re lated by inversion centres. In these representations, it can be seen that the molecules are not situated in the same posi tions in the $A 2 / a$ lattice and the $P 2_{1} / a$ lattice, which clearly indicates that these two types of structure are different.

The values of the final agreement factor, $R w p$, range be tween 4.0 and 5.5% for the structures solved (Table 3), indi cating a very good agreement between the calculated and experimental X ray diffraction patterns. Besides, they do not differ markedly from the values obtained after Pawley refinement (Table 2), which did not take into account the

Figure 6. Representations in the (a, c) plane of the crystal structures of the high temperature solid forms of $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}\left(\mathrm{C}^{\prime \prime}\right.$ form) and $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OOH}$ (C^{\prime} form).

Table 3. Selected structural data determined from the crystal structures of the $\mathrm{C}^{\prime \prime}$ (this work and Bond's ${ }^{[6]}$) and C^{\prime} forms of the six fatty acids.

	Rwp	Angle of tilt of the alkyl chain $\left[{ }^{\circ}\right]$		Packing arrangement of the carboxyl groups			$\mathrm{H} \cdots \mathrm{H}$ distances at the methyl group interface $[\AA]$			
		towards a axis	towards b axis	CCCO torsion angle [${ }^{\circ}$]	$\begin{aligned} & \mathrm{O} \mathrm{H} \cdots \mathrm{O} \\ & \text { angle }\left[{ }^{\circ}\right] \end{aligned}$	$\mathrm{O} \cdots \mathrm{O}$ distance [Å]		and (2)		
$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$	0.041	125.8(3)	88.92(6)	3	165	2.54(4)	2.70	2.82	2.90	2.58
$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}^{[6]}$				179	177	2.63				2.51
$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$	0.047	125.2(2)	90.71(4)	4	164	2.55(4)	2.73	2.77	2.83	2.62
$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}^{[6]}$				179	156	2.63				2.60
$\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$	0.054	125.2(3)	89.91(6)	7	161	2.72(9)	2.51	2.62	2.84	2.74
$\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$	0.053	124.9(2)	89.49(5)	13	153	2.62(7)	2.49	2.69	3.01	2.92
$\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OOH}$	0.055	124.6(1)	89.30(3)	9	152	2.60(5)	2.83	2.95	3.09	2.93
$\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$	0.050	124.6(1)	89.62(4)	4	159	2.70(7)	2.74	2.80	2.84	3.07

A similar hydrogen bonding framework is obtained for both the powder and single crystal $\mathrm{C}^{\prime \prime}$ structures of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$. The $\mathrm{O} \mathrm{H} \cdots \mathrm{O}$ angle formed between the ac ceptor and the donor in the hy drogen bond is close to 180° in both cases (Table 3), indicative of strong hydrogen bonds. The C C C O torsion angle (O being the oxygen atom bearing the hydrogen atom) is close to 0° (this work) or 180° (Bond's work), which shows that the carboxyl group is always almost coplanar with the alkyl chain. However, there are dis crepancies between the values obtained for the $\mathrm{O} \cdots \mathrm{O}$ distan ces, that is, around $2.63 \AA$ in the single crystal study (stan dard values for crystal struc tures of solid forms of fatty acids ${ }^{[2326]}$) as opposed to much shorter distances in our study. The uncertainties in our values have been assessed by estimat ing the uncertainties in the po sitions of the oxygen atoms, as these were not available from
agreement between the calculated and measured intensities of the various reflections. Table 3 also contains selected structural data that serve to describe the packing arrange ment of the fatty acids within (alkyl chains, carboxyl groups) and between (methyl groups) the layers, and that have been determined from this work and from the $\mathrm{C}^{\prime \prime}$ structures of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ solved by Bond.

Description of the $\mathbf{C l}^{\prime \prime}$ structures and comparison with the single-crystal data: ${ }^{[6]}$ The alkyl chains are packed in the or thorhombic packing arrangement $\mathrm{O} \perp$, as described long ago by Bunn, ${ }^{[1]}$ in accordance with the single crystal struc tures. This motif is very common in long chain aliphatic compounds. ${ }^{[4,5]}$ The chains are almost parallel and the zigzag planes of neighbouring molecules are perpendicular to one another (Figure 7). Moreover, the alkyl chains are tilted from the (a, b) plane. The angles of tilt of the chain axis with respect to the a and b axes have been evaluated and are dis played in Table 3. The chains are almost perpendicular to the b axis, but are tilted towards the a axis with angles of 125.8° and 125.2° for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$, respec tively. These values are consistent with those of the θ_{1} angles (125.9° for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and 125.3° for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$), defined by Bond as the angle between the plane parallel to the chain axis and the methyl group interface, in the present case the (a, b) plane.
the refinement program. Our measurements are much less precise (average deviation of $0.06 \AA$, taking into account the values obtained for the C^{\prime} structures) than those based on the single crystal data (precision of around $0.01 \AA$). This lack of accuracy of the $\mathrm{O} \cdots \mathrm{O}$ distances is directly related to the method used for the crystal structure determination as the final structure is a compromise between the agreement of the measured and calculated X ray powder diffraction patterns and the energy minimisation. However, taking into account the evaluated uncertainties, the $\mathrm{O} \cdots \mathrm{O}$ distances de

Figure 7. Packing arrangement of the alkyl chains of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ perpen dicular to the chain axis.
termined from the powder data are almost consistent with those obtained from the single crystal data.
At the methyl group interface, the packing arrangement is also similar for the $\mathrm{C}^{\prime \prime}$ structures determined by the two different techniques. A given methyl group, denoted as (0), just below the (a, b) plane has three closest neighbouring methyl groups just above the (a, b) plane, denoted as (1), (2), and (3) (see Figure 8). (1) and (2) are related to each other by a translation of the lattice along the b vector. They are situated either side of (0) along the b axis. (3) is situated almost immediately below (0) along the a axis. The shortest $\mathrm{H} \cdots \mathrm{H}$ distances between (0) and (3) are consistent between the two sets of data (Table 3).

Figure 8. Packing arrangement of the methyl groups in the (a, b) plane at the methyl group interface for a) $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ and b) $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$. The methyl groups in black are just above the plane, the others are just below. The two arrangements are derived from one another by a translation of $1 / 2 a+1 / 2 b$ of one methyl group layer with respect to the other.

On the other hand, the C C C O torsion angle is close to 180° for the $\mathrm{C}^{\prime \prime}$ structures solved by Bond, which corre sponds to a cis conformation of the carboxyl groups. In the latter case, however, the C O and $\mathrm{C}=\mathrm{O}$ distances are very close (1.291(5) and 1.233(5) \AA for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH} ; 1.280(6)$ and $1.237(7) \AA$ for $\left.\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}\right)$. Thus, it may well be the case that these structures exhibit both conformations, as Hayashi and Umemura have ascertained for several fatty acids from $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OOH}$ to $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{OOH}$ by means of polarized infrared spectroscopy. ${ }^{[27]}$ In the present work, structures with a cis conformation of the carboxyl group, that is, with the C C C O torsion angle equal to 180°, have also been tested. These structures were invariably found to be less energetically fa vourable than those featuring a trans conformation of the carboxyl groups. Although this result does not disprove that the actual structures might ex hibit both conformations, it nevertheless indicates that the trans conformation must be the dominant one for the structures we have solved.

The crucial differences be tween the C^{\prime} and $\mathrm{C}^{\prime \prime}$ structures lie in the packing arrange ments at the methyl group in terface. Figure 8 shows the packing arrangements of the methyl groups in the (a, b) plane for the $\mathrm{C}^{\prime \prime}$ form of

Finally, it may be noted that the crystal structures of the $\mathrm{C}^{\prime \prime}$ forms of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ presented herein are in good agreement with those already solved from single crystal data. Hence, it may be assumed that the crys tal structures of the longer fatty acids determined by appli cation of the same technique should be equally reliable.

Comparison of the \mathbf{C}^{\prime} and $\mathbf{C}^{\prime \prime}$ structures: The C^{\prime} and $\mathrm{C}^{\prime \prime}$ forms exhibit a similar packing arrangement of the mole cules within the bilayers. In the C^{\prime} structures, the alkyl chains are stacked in the orthorhombic packing arrangement $\mathrm{O} \perp$, as in the case of the $\mathrm{C}^{\prime \prime}$ structures. Moreover, they are tilted in the same way towards the (a, b) plane, at an angle close to 90° with respect to the b axis and at an angle of around 125° with respect to the a axis. As regards the pack ing arrangement of the carboxyl groups, no significant varia tion in the CCCO torsion angle, the $\mathrm{O} \mathrm{H} \cdots \mathrm{O}$ angle, or the $\mathrm{O} \cdots \mathrm{O}$ distance can be seen on going from $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$. In particular, the $\mathrm{O} \cdots \mathrm{O}$ distance ranges from 2.60 to $2.72 \AA$ for the C^{\prime} structures, but taking into account the evaluated uncertainties, these values are all consistent with the $2.63 \AA$ determined from the single crystal C" struc tures. One interesting point worthy of mention concerns the C C C O torsion angle. For the six structures investigated, this parameter is close to 0° (it varies from 3 to 13°), which corresponds to a trans conformation of the carboxyl groups.
$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ and the C^{\prime} form of $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$. The methyl groups of the molecules above the plane are shaded black, whereas those situated just below the plane are in grey. (0) has three closest neighbours above the methyl group inter face, (1), (2) and (3), which are situated at similar positions relative to (0) in both the C^{\prime} and $\mathrm{C}^{\prime \prime}$ structures. However, (1), (2) and (3) are differently related to (0) in terms of the symmetry elements involved, and hence according to the space groups. In the $A 2 / a$ structures ($\mathrm{C}^{\prime \prime}$ form), (1) and (2) are related to (0) through inversion centres, whereas they are related by a 2_{1} axis in the $P 2_{1} / a$ structures (C^{\prime} form). Thus, (1) and (2) are equidistant from (0) in the $P 2_{1} / a$ struc tures, whereas in the $A 2 / a$ structures the relative positions of (1) and (2) with respect to (0) depend on the relative po sition of (0) with respect to the inversion centres. (3) is relat ed to (0) by a 2 axis in the $A 2 / a$ structures, whereas it is re lated by an inversion centre in the $P 2_{1} / a$ structures. The shortest $\mathrm{H} \cdots \mathrm{H}$ distances measured between (0) and its three closest neighbours exceed $2.4 \AA$ (sum of the van der Waals radii of two hydrogen atoms) in each of the six structures (Table 3). It may also be noted that the distances between the hydrogen atoms of (0) and (3) increase with increasing chain length. This trend can be attributed to the increased thermal motion, as the temperature of measurement also in creases with increasing chain length. Actually, the C^{\prime} and $\mathrm{C}^{\prime \prime}$ forms contain identical 2D layers: the methyl group ar
rangements in both the above and below layers (in black and grey, respectively, in Figure 8) are the same for the $P 2_{1} /$ a and $A 2 / a$ structures. The difference between these struc tures lies in the way in which these layers are stacked. It can clearly be seen in Figure 8 that when (1), (2) and (3) are dis placed along the $1 / 2 a+1 / 2 b$ vector in the $P 2_{1} / a$ structure (or $A 2 / a$ structure), they become related to (0) with the symme try elements involved in the $A 2 / a$ arrangement (or $P 2_{1} / a$ ar rangement).

Discussion

According to the crystal structures of the high temperature phases of odd numbered fatty acids determined in the pres ent work and in that of Bond, ${ }^{[6]}$ the $\mathrm{C}^{\prime \prime}$ form is only seen for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{OOH}$ in the series from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$. The question then arises as to why this solid phase is only adopted by these two fatty acids. In the follow ing, we propose an explanation based on a survey of the en ergetic contributions that are operative in the packing ar rangements of the molecules within the C^{\prime} and $\mathrm{C}^{\prime \prime}$ crystal structures.

Two major intermolecular interactions are involved in the cohesion of the structures of the high temperature phases of fatty acids, namely hydrogen bonds and van der Waals inter actions. The former influence the packing arrangement of the carboxyl groups, whereas the latter relate more to the interactions between the atoms of the hydrocarbon chains. These two interactions are evaluated in the potential energy descriptions of the structures through van der Waals and electrostatic contributions. The overall potential energies of the structures and the potential energies of the latter two contributions are listed in Table 4 for the six structures in vestigated, together with those determined from the crystal structures of the high temperature phases of the odd num bered fatty acids solved by Bond (from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$). The energy values are given in $\mathrm{kJ} \mathrm{mol}^{-1}$ per

Table 4. Potential energies (per molecule) calculated from the crystal structures of the high temperature solid forms of odd numbered fatty acids solved in this work and in that of Bond. ${ }^{[6]}$

	Total energy $\left[\mathrm{kJ} \mathrm{mol}^{1}\right]$	Intermolecuar interactions Electrostatic $\left[\mathrm{kJ} \mathrm{mol}^{1}\right]$	van der Waals $\left[\mathrm{kJ} \mathrm{mol}^{1}\right]$
reference [6]			
$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$	$278(4)$	158	52
$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{OOH}$	$316(4)$	159	64
$\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OOH}$	$354(4)$	159	75
$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$	$394(4)$	158	90
$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$	$436(4)$	158	105
this work			
$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$	$392(2)$	165	73
$\mathrm{C}_{15} \mathrm{H}_{59} \mathrm{OOH}$	$432(2)$	165	88
$\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$	$472(2)$	158	113
$\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$	$511(4)$	160	122
$\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OOH}$	$551(3)$	161	132
$\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$	$596(2)$	158	154

molecule, so that they can be compared for all of the struc tures.

The electrostatic potential energy is practically constant for all of the structures (around $160 \mathrm{~kJ} \mathrm{~mol}^{-1}$), whether de termined from the powder or single crystal data. This is con sistent with the similar packing of the carboxyl groups within the dimers established for the six structures investi gated. However, the values obtained for the $\mathrm{C}^{\prime \prime}$ structures do differ a little between our work and that of Bond. This may be related to the discrepancy between the $\mathrm{O} \cdots \mathrm{O}$ distan ces mentioned in the previous section $(2.54$ and $2.55 \AA$ for our structures, as compared to $2.63 \AA$ for Bond's structures). The potential energy of the hydrogen bonds is higher than the van der Waals potential energy for each structure. This confirms the predominant role of the hydrogen bonds in the cohesion of these crystal structures. However, the van der Waals forces increase with increasing chain length, and in the case of $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$ the potential energies of the two in teractions are almost equal. The evolution of the total energy of the structures of the high temperature phases with increasing chain length produces a straight line from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$ (Figure 9), irrespective of the solid phase considered. This linear trend confirms the simi larity of the molecular arrangements in the C^{\prime} and $\mathrm{C}^{\prime \prime}$ phases. It also implies that the energy barrier between the two solid forms must be very low.

Figure 9. Evolution of the total energy of the high temperature structures of the odd numbered fatty acids with chain length from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$. ๑: the structures determined by us; \circ : the structures solved by Bond. ${ }^{[6]}$

A third contribution, which has already been invoked sev eral times in this paper, also exerts an influence on the pack ing arrangement of the molecules, namely that of thermal motion. Indeed, the high temperature phases are only stable in a narrow temperature range below the melting points, this range narrowing with increasing chain length, as the temperatures of transition to C^{\prime} or $\mathrm{C}^{\prime \prime}$ and of melting in crease. Thus, the effect of thermal motion has to be studied if we want to thoroughly understand the packing arrange ment of the molecules in these particular solid forms.

When considering the equivalent temperature factors, $U_{\text {eq }}$, of the non hydrogen atoms of the odd numbered fatty acids
from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ determined from the single crystal data, ${ }^{[6]}$ it appears that thermal agitation exerts a greater effect on the last few carbon atoms of the chains, that is, on those close to the terminal methyl group for each compound. These temperature factors are represented in Figure 10 for the non hydrogen atoms of these five acids.

Figure 10. Evolution along the hydrocarbon chains of the equivalent tem perature factors (U_{eq}) determined by Bond for the non hydrogen atoms of the odd numbered fatty acids from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH} .1$ and 2 correspond to the two oxygen atoms; 3 to $n+2$ (where n is the total number of carbon atoms) denote the carbon atoms from the carboxyl group to the methyl group. The temperature factors have been linked for each molecule.

The atoms are labelled from 1 to $n+2$ (in which n is the total number of carbon atoms), 1 and 2 denoting the two oxygen atoms and the integers from 3 to $n+2$ denoting the carbon atoms of the hydrocarbon chains from the carboxyl group to the methyl group. It can be seen from this repre sentation that, for the five acids, the temperature factors are much higher for the atoms near the methyl group than for the others. It can be assumed that the strong hydrogen bonds counteract the thermal agitation and limit the motion of the atoms near the carboxyl group. Thus, for a given mol ecule, the further the atoms are from the carboxyl group, the weaker the effect of the hydrogen bonds and the more prone they will be to the effect of thermal agitation. This trend is clearly apparent in Figure 10.
As the structures of the fatty acids from $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$ were solved by assuming the molecules to be rigid bodies, a global isotropic temperature factor was deter mined for each structure, which accounts for the mean ther mal agitation within the structure. Our aim was to investi gate the evolution of the thermal agitation for the high tem perature solid forms of the odd numbered fatty acids from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$. For $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}, \mathrm{C}_{9} \mathrm{H}_{17} \mathrm{OOH}$, and $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OOH}$, we summed the values of the equivalent temperature factors of the non hydrogen atoms and divided the result by the number of atoms considered. Thereby, we obtained mean temperature factors that could be compared with the global isotropic factors determined for the six longer fatty acids. All of these temperature factors are gath ered in Table 5. In addition, the temperature at which the

Table 5. Mean temperature (T) factors determined for the high tempera ture phases of the odd numbered fatty acids from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$.

	$T_{\text {meas }}[\mathrm{K}]$	$T_{\text {melting }}[\mathrm{K}]$	Ref.	Mean T factor $\left[\AA^{2}\right]$
$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$	230.0	$265.83(1)$	$[12]$	$0.099(1)$
$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{OOH}$	270.0	$285.53(1)$	$[12]$	$0.151(2)$
$\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OOH}$	300.0	$301.63(1)$	$[12]$	$0.171(3)$
$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$	313.0	$314.6(5)$	this work	$0.217(6)$
$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$	324.0	$325.5(4)$	this work	$0.191(5)$
$\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$	333.0	$333.5(5)$	this work	$0.174(6)$
$\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}$	340.0	$340.4(3)$	this work	$0.099(5)$
$\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OOH}$	346.4	$346.7(5)$	this work	$0.063(4)$
$\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$	351.7	$352.0(5)$	this work	$0.073(4)$

measurement was undertaken as well as the melting point are also indicated in each case.

It is noteworthy that the values obtained for the mean temperature factors are not very accurate because they can be affected by systematic errors in the measured intensities. Moreover, the X ray diffraction measurements were per formed close to the melting points (within about 1 K) for all of the acids except $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ and $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{OOH}$ (around 35 and 15 K below their melting points, respectively), which in troduces further uncertainty in the values. However, we are more interested here in the evolution of these values across the series than in the values themselves. Considering that the measurements were made under approximately the same conditions for all of the fatty acids, it can be assumed that all of the temperature factors can be compared. Their evolution in relation to the chain length is plotted in Figure 11. It appears that they increase up to $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and then decrease once more.

The particular evolution obtained may be explained in terms of the competitive effects of van der Waals forces and thermal agitation, both of which increase with increasing chain length, whereas the hydrogen bonds remain approxi mately constant for all of the structures. The ascending part of the curve may be related to a predominance of the effect

Figure 11. Evolution of the mean temperature factors determined for the high temperature phases of the odd numbered fatty acids with chain length from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$. The values have been calculated from the data of Bond for the fatty acids from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OOH}$, and come from our own results for the longer acids.
of thermal agitation, whereas for the descending part the van der Waals forces should prevail. In this representation, it is also apparent that the displacements due to tempera ture are, on average, more significant for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$. As can be seen in Figure 10, the greatest dis placements are certainly located near the methyl group. Moreover, according to van de Streek et al., ${ }^{[28]}$ who studied the influence of thermal motion on the crystal structures of n alkanes, they should be mostly oriented perpendicular to the chain axis, approximately in the (a, b) plane in our case. Keeping in mind that the C^{\prime} and $\mathrm{C}^{\prime \prime}$ arrangements are mutu ally related by a translation of a layer in the (a, b) plane and also that the energy barrier between the two solid forms is certainly very low, notably in the cases of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$, the competitive effects of van der Waals forces and thermal motion are more conducive to adoption of the $\mathrm{C}^{\prime \prime}$ form. A similar conclusion was reached by van de Streek and co workers concerning the relative stabilities of the tri clinic and monoclinic polymorphs of even numbered n alka nes with increasing chain length. For the other acids, we sur mise that the effect of thermal agitation is not strong enough since, on the one hand, for the shorter acids the transition temperatures are not very high (and consequently nor is the thermal motion), while, on the other hand, the van der Waals forces become stronger for the longer acids. This may explain why, as far as we are aware, the $\mathrm{C}^{\prime \prime}$ form is only adopted by $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$.

Conclusion

The crystal structures of the high temperature solid forms of the odd numbered fatty acids from $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ to $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$ have been determined from X ray powder dif fraction patterns. $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ have been found to adopt the $\mathrm{C}^{\prime \prime}$ form at high temperatures, as also shown by Bond. ${ }^{[6]}$ However, we have proved that the C^{\prime} form is adopted by the longer fatty acids, as is also the case for the shorter fatty acids from $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{OOH}$ to $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OOH}$ according to Bond. ${ }^{[6]}$ Thus, $\mathrm{C}^{\prime \prime}$ is only observed for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$. The $\mathrm{C}^{\prime \prime}$ and C^{\prime} forms are both monoclinic, but the former has the space group $A 2 / a$ with $Z=8$, whereas the latter has the space group $P 2_{1} / a$ with $Z=$ 4. Both of their structures consist of bilayers of molecules held together by hydrogen bonds between their carboxyl groups. The packing arrangement in the two types of struc tures is very similar. The major differences lie at the methyl group interface. It has been shown that the packing arrange ments of the molecules in these high temperature solid forms of odd numbered fatty acids are determined by the balance of the competitive effects due, on the one hand, to hydrogen bonds and van der Waals interactions, which serve to hold the structure together, and, on the other hand, ther mal motion, which tends to push the molecules apart.

Lastly, this article proves the validity of the technique that we have used to solve crystal structures from X ray powder diffraction data, as the results obtained for the $\mathrm{C}^{\prime \prime}$
forms of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}$ and $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$ compare well with those obtained from single crystals. However, some im provements have to be made regarding the assessment of the hydrogen bonds, considering in particular the low preci sion of the $\mathrm{O} \cdots \mathrm{O}$ distances.

Experimental Section

Materials: Highly pure samples of $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{OOH}, \quad \mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OOH}$, $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}, \mathrm{C}_{19} \mathrm{H}_{37} \mathrm{OOH}, \mathrm{C}_{21} \mathrm{H}_{41} \mathrm{OOH}$, and $\mathrm{C}_{23} \mathrm{H}_{45} \mathrm{OOH}$ were supplied by Fluka. The purities of all these compounds are estimated by the sup plier to exceed 99%.
Thermal analysis: Transition temperatures as well as enthalpy changes were determined by using a Perkin Elmer DSC 7 instrument equipped with a cooling accessory, which allowed the temperature to be increased from 110 to 950 K . A heating rate of 2 K min ${ }^{1}$ was typically used. Meas urements at lower heating rates $\left(0.5,0.2 \mathrm{~K} \mathrm{~min}^{1}\right)$ were also performed in order to better resolve transitions occurring at close temperatures. Sam ples (about 4 mg) were placed in aluminium pans and weighed before and after each experiment in order to determine the mass loss. At least six measurements were performed on each compound to enable the cal culation of accurate values of the various thermodynamic quantities. The uncertainties in the temperatures and enthalpies were determined by using Student's method ${ }^{[29]}$ with a 95% threshold of reliability. To this value was added the systematic error arising from the calibration of the apparatus, which was set at $\pm 0.2 \mathrm{~K}$ for the temperatures and $\pm 1 \%$ for the enthalpies.
X-ray powder diffraction: An Inel CPS 120 X ray powder diffractometer was used to obtain high quality powder diffraction patterns of the high temperature solid forms. $\mathrm{Cu}_{\mathrm{K} \alpha}$ radiation was selected for the incident beam. The diffractometer was equipped with an Oxford Cryosystems N_{2} cryostream to facilitate the performance of isothermal experiments at dif ferent selected temperatures. The Inel CPS 120 diffractometer operates with Debye Scherrer transmission geometry and the diffracted beams are collected on a 120° curved counter by gas ionisation (argon $+\mathrm{C}_{2} \mathrm{H}_{6}$). The sample is introduced in a 0.5 mm diameter Lindemann glass capilla ry. The latter is rotated about its axis during the experiment in order to minimise preferential orientations of the crystallites. The acquisition time was set at six hours in order to obtain reflections with exploitable intensi ties. The relative heights of the strongest reflections at the start of each measurement were compared with those obtained for the X ray powder diffraction pattern of the B^{\prime} form of $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$, which was calculated from the structure published by Goto and Asada ${ }^{[23]}$ based on a study car ried out on single crystals. Then, we chose the samples for which the agreement was best, assuming that the intensities in the calculated X ray powder diffraction pattern of the B^{\prime} form of $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{OOH}$ were free from any preferential orientation effect. As recommended, ${ }^{[30]}$ external calibra tion to convert the measured 4096 channels to 2θ degrees was applied by means of cubic spline fittings using cubic $\mathrm{Na}_{2} \mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{~F}_{4}$. The latter was combined with a low angle calibration using silver behenate, ${ }^{[31]}$ a material that exhibits several reflections in the 2θ range of 1.520°.
Determination of cell parameters and space groups: The peak positions were determined after pseudo Voigt fitting using DIFFRACTINEL soft ware. Potential solutions of cell parameters and space groups were ob tained using X CELL software ${ }^{[32]}$ available in the module POWDER IN DEXING of MATERIAL STUDIO. The cell parameters and space group that best corresponded to the experimental X ray diffraction pat tern of the solid form under investigation were finally determined using a Pawley profile fitting procedure. ${ }^{[21]}$ The latter provided the refinement of the cell parameters, the peak profile parameters (function of profile, FWHM, asymmetry), the background, and the zero shift.
Determination of the crystal structures: The molecule to be studied was drawn in a 3D worksheet and was minimised in energy by means of ge ometry optimisation using the COMPASS force field ${ }^{[33]}$ to obtain the rel evant distances, angles, and dihedral angles for its various bonds. This
molecule was then set as a rigid body, but with the dihedral angle of the carboxyl group allowed to adjust freely, as this determines the good es tablishment of the hydrogen bonds. The rigid body was introduced in the cell whose dimensions had been previously found, together with its ho mologues related to the space group. The whole system was moved in the cell according to the seven degrees of freedom (three translations, three rotations, and the dihedral angle of the carboxyl group) by using a Monte Carlo type simulation ${ }^{[18]}$ over several cycles to obtain the best re production of the experimental X ray powder diffraction pattern by the calculated one. The final structure was then obtained after repeated alter nating application of Rietveld refinement ${ }^{[34]}$ and geometry optimisation by energy minimisation in order to reach the best agreement between X ray powder diffraction and molecular interactions. The Rietveld proce dure includes refinement of the translations, rotations, and dihedral angle of the molecule, the isotropic temperature factors, and the preferred ori entations, also with the parameters previously refined in the Pawley pro cedure. The total energy determined for the structures corresponds to a survey of the intra and intermolecular interactions involved. Its entire expression is given in an article by Sun. ${ }^{[33]}$
CCDC 612518 to CCDC 612523 contain the supplementary crystallo graphic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.
[1] C. W. Bunn, Trans. Faraday Soc. 1939, 35, 482491.
[2] E. von Sydow, Ark. Kemi 1955, 9, 231254.
[3] S. Abrahamsson, B. Dahlen, H. Löfgren, I. Pascher, Prog. Chem. Fats Other Lipids 1978, 16, 125143.
[4] L. Hernqvist, in Crystallization and Polymorphism of Fats and Fatty Acids (Eds.: N. Garti, K. Sato), Marcel Dekker, New York, 1988, pp. 97137.
[5] J. Yano, K. Sato, Food Res. Int. 1999, 32, 249259.
[6] A. D. Bond, New J. Chem. 2004, 28, 104114.
[7] F. Francis, S. H. Piper, T. Malkin, Proc. R. Soc London, Ser. A 1930, 128, 214252.
[8] M. Kobayashi, F. Kaneko, J. Dispersion Sci. Technol. 1989, 10, 319 350.
[9] M. Gotoh, J. Jpn. Oil Chem. Soc. 1987, 36, 12, 909919.
[10] E. Moreno, R. Cordobilla, T. Calvet, M. A. Cuevas Diarte, G. Gba bode, P. Negrier, D. Mondieig, H. A. J. Oonk, unpublished results.
[11] E. von Sydow, Acta Crystallogr. 1955, 8, 810813.
[12] F. Rajabalee, V. Metivaud, H. A. J. Oonk, D. Mondieig, P. Waldner, Phys. Chem. Chem. Phys. 2000, 2, 13451350.
[13] H. A. J. Oonk, D. Mondieig, Y. Haget, M. A. Cuevas Diarte, J. Chem. Phys. 1998, 108(2), 715722.
[14] L. Ventolà, T. Calvet, M. A. Cuevas Diarte, D. Mondieig, H. A. J. Oonk, Phys. Chem. Chem. Phys. 2002, 4, 19531956.
[15] L. Ventolà, T. Calvet, M. A. Cuevas Diarte, X. Solans, D. Mondieig, P. Negrier, J. C. van Miltenburg, Phys. Chem. Chem. Phys. 2003, 5, 947952.
[16] E. Stenhagen, E. von Sydow, Ark. Kemi 1953, 6, 309316.
[17] R. C. F. Schaake, J. C. van Miltenburg, C. G. de Kruif, J. Chem. Ther modyn. 1982, 14, 763769.
[18] G. E. Engel, S. Wilke, O. König, K. D. M. Harris, F. J. J. Leusen, J. Appl. Crystallogr. 1999, 32, 11691179.
[19] MS Modeling (Material Studio) version 3.0: http://www.accelry s.com $/ \mathrm{mstudio} / \mathrm{ms}$ modeling.
[20] F. Kaneko, J. Yano, H. Tsujiuchi, K. Tashiro, M. Suzuki, J. Phys. Chem. B 1998, 102(2), 61846187.
[21] G. S. Pawley, J. Appl. Crystallogr. 1981, 14, 357361.
[22] http://fazil.rajabalee.free.fr/delphi an.htm
[23] M. Goto, E. Asada, Bull. Chem. Soc. Jpn. 1984, 57, 11451146.
[24] G. Gbabode, P. Negrier, D. Mondieig, J. M. Leger, T. Calvet, M. A. Cuevas Diarte, Anal. Sci. 2006, 22, x269 x270.
[25] F. Kaneko, M. Sakashita, M. Kobayashi, Y. Kitagawa, Y. Matsuura, M. Suzuki, Acta Crystallogr. Sect. C 1994, C50, 245247.
[26] F. Kaneko, M. Sakashita, M. Kobayashi, Y. Kitagawa, Y. Matsuura, M. Suzuki, Acta Crystallogr. Sect. C 1994, C50, 247250.
[27] S. Hayashi, J. Umemura, J. Chem. Phys. 1975, 63, 5, 17321740.
[28] J. van de Streek, P. Verwer, P. Bennema, E. Vlieg, Acta Crystallogr. Sect. B 2002, B58, 677683.
[29] Y. V. Linnink, La Méthode des Moindres Carrés (translated into French by O. Arkhipoff), Dunod, Paris, 1963.
[30] M. Evain, P. Deniard, A. Jouanneaux, R. Brec, J. Appl. Crystallogr. 1993, 26, 563569.
[31] T. C. Huang, H. Toraya, T. N. Blanton, Y. Wu, J. Appl. Crystallogr. 1993, 26, 180184.
[32] M. A. Neumann, J. Appl. Crystallogr. 2003, 36, 356365.
[33] H. Sun, J. Phys. Chem. B 1998, 102, 73387364.
[34] H. M. Rietveld, J. Appl. Crystallogr. 1969, 2, 6571.

[^0]: [a] Dr. G. Gbabode, Dr. P. Negrier, Dr. D. Mondieig CPMOH, Université Bordeaux I Alliages Moléculaires et Stockage d'Énergie
 351, cours de la Libération, 33405 Talence Cedex (France)
 Fax: (+33)540006686
 E mail: gabin g@yahoo.fr
 [b] E. Moreno Calvo, Prof. T. Calvet, Prof. M. À. Cuevas Diarte Departament Cristallografia, Mineralogia i Dipòsits Minerals Facultat de Geologia, Universitat de Barcelona Martí y Franqués, s/n, 08028 Barcelona (Spain)

