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FRACTAL SCATTERING INDICATORS FOR URBAN SOUND DIFFUSION 

PHILIPPE WOLOSZYN 
Cerma UMR CNRS 1563, Ecole d'Architecture de Nantes, BP 81931 

F-44319 Nantes Cedex 3, France 
E-mail :philippe. woloszyn@cerma.archi.fr 

 
Irregular surfaces like urban frontages produce an anomalous back-scattered region, creating an 
acoustic interference field in their neighborhood. Thus, in order to be able to detect that scattered 
energy‘s minima and maxima through taking the frontage morphological characterization into 
account, we propose a new measurement method of the building geometry, with using mathematical 
morphology techniques. Results of this geometrical approach provide two types of indicators, global 
and local. The global one, the structure factor of the urban frontage, is related to the multiscale 
characterization of the whole building geometry through the computation of the spatial Fourier 
transform of the scatterers. The complementary local indicator evaluates the vertex multiscale 
densitometrical distribution at each incidence angle, provided through a fractal evaluation technique, 
the Minkowski sausage. This densitometry computation reveals the characteristic directions of 
scattering, which has to be calculated through the scattering pressure function along the lateral active 
diffraction zone. 
Keywords: Acoustic Diffusion, Scattering, Minkowski Sausage. 

1 Introduction: Problematic and purpose 

The exterior frontage of a typical urban building does not reflect noise in a purely 
specular manner. Because the dimensions of the irregularities (decorative elements, 
windows, balconies,...) are comparable to the sound wavelengths, the major type of early 
reflexions on the buildings is scattering, inducing a global diffusion behaviour of sound in 
an urban street. Consequently, irregular surfaces like urban frontages produces an 
anomalous back-scattered region, with the creation of an acoustic interference field in its 
neighborhood. Thus, in order to be able to detect that scattered energy‘s minima and 
maxima, we have to take into account both incidence angle and multiscale 
characterization for diffusive evaluation of urban surfaces through mathematical 
morphology techniques. 

2 Diffusion through oblique incident wave 

2.1 A first approximation: the Rayleigh criterion 

Historically, the first attempt at determining the scattering amplitudes was made in 1893 
by Lord Rayleigh, who assumed a unique solution for the wave equation for the whole 
boudary of a Λ-corrugated surface [1]. Concerning the inferior diffusion limit frequence, 
Rayleigh’s work proposes a phase grating calculation between two acoustic rays related 
in [2], which takes into account the source incidence angle. Taking the walk difference ∆d 
between two rays with wavelength λ and incidence angle α regarding a surface with 
depth Λ into account provides the following phase grating calculation between the two 
rays: 
∆α = ∆d (2π / λ) = cos α (4 π Λ / λ)     (1) 

Fractal Scattering Indicators for Urban Sound Diffusion.doc submitted to World 
Scientific : 10/07/2003 : 18:36 1/10 

mailto:woloszyn@cerma.archi.fr
https://www.researchgate.net/publication/234417243_The_Scattering_of_Electromagnetic_Waves_From_Rough_Surfaces?el=1_x_8&enrichId=rgreq-70bb9e8b49ee49b1705cb82f2060679a-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE5Mjk4NztBUzoyMjM4MzcyNDY0OTY3NjhAMTQzMDM3ODM2NjE2MQ==
https://www.researchgate.net/profile/Philippe_Woloszyn?el=1_x_100&enrichId=rgreq-70bb9e8b49ee49b1705cb82f2060679a-XXX&enrichSource=Y292ZXJQYWdlOzI2OTE5Mjk4NztBUzoyMjM4MzcyNDY0OTY3NjhAMTQzMDM3ODM2NjE2MQ==


with the walk difference : ∆d = 2  Λ cos α. For a weak walk difference ∆d, rays are 
coherent and the acoustic wave is specularly reflected. Increasing of ∆d will interfere 
rays, till to phase opposition (∆d = π), so that no energy is displayed in the specular 
direction : sound energy is diffused. Rayleigh criterion defines the limit between specular 
and diffuse behaviour of an incident source, corresponding to the frontage depth 
irregularities as : Λ < l / 8 cos α. 
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Fig. 1. Rayleigh criterion: Quantification of the dimensional limit between specularity and diffusion, as a 
function of frequency and incidence angle. 

The specular reflexion zone is defined under the minimal values of the frontages depths 
irregularities, taking the frequency and the angle of the incident wave into account. 

2.2 Diffraction densitometry of an indented plane 

Following those non-specularity conditions, the propagation directions specified by the 
unit vectors v(d) = (φd, 0, γd) for a given regular plane division, repeating n times a spatial 
unit of width Λ are defined as the characteristic directions of scattering associated with 
the localization length Λ: 

α
λ

α sin
2

sin −
Λ

=
n
p

d
,        (2) 

where αd is the grazing diffraction angle made by vectors v(d) = (φd, 0, γd) in the direction 
0x, with φd = cos αd and γd = sin αd, , and p the diffraction order. For Λ = 0, equality 
between incident and reflected angle remaining true (specular conditions). 
We can note here that, ignoring the specular component sinα, the first term of the 
previous equation can be compared to Bragg's Law, leading to the following expression: 

,
2

sin
d

pλα =         (3) 

where the integer p is the order of diffraction, d= nΛ, the distance between two reflexion 
planes, λ, the wavelength of the incident beam and α its incidence angle. 
This law, also used in the field of cristallographic diffractometry, enounces the conditions 
for constructive interference rays, which are producing strong diffraction. Through this 
equation, Sir W.H. Bragg and his son developed a simple semi-quantitative model to 
express the diffraction from 3-D crystals, explaining why the cleavage faces of crystals 
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appear to reflect X-rays beams at certain angles of incidence. Considering those crystal 
structures as families of parallel planes (hx, ky, lz) running in different directions, each 
plane acts like a slightly reflective mirror, reflecting a tiny fraction of the incident beam. 
When in phase, those reflections lead to constructive interference rays, conditionned with 
Bragg's Law's equation. For p=1, all planes inside the cosine scatter in phase, providing 
maximal diffraction. For p=1-Λ, the diffraction cancels. 
In the same way, Bragg's law and Rayleigh criterion defines the conditions of interfeering 
behaviour, for acoustic waves reflected on micrometer or meter-scaled parallel planes. 
Consequently, the pure diffracted energy part of an urban indented surface can be 
expressed through Bragg's Law, considering the path difference between two frontage 
surfaces, as between two crystal planes for the constructive interference conditions: 
pλ=2nΛ sinα, where nΛ is the frontage indentation depth. 
Moreover, the two-dimensional polar response of a given indented surface can be 
expressed through the diffraction orders (p, q), taking the angles of incidence and 
diffraction into account: 

λ
αα sinsin22 +

Λ=+ dnqp       (4) 

The characteristic directions are those along which the waves emanating from the 
individual frontage indentation depth Λ are exactly in phase. This constructive 
interference condition is both conditioned with the adimensional modulus λ/Λ , which 
quantifies the energy of non-evanescent scattering losses, represented by the area of 
scattering intensity pattern lobes, and with the previous Bragg's equation pλ=2nΛ sinα. 
Indeed, this modulus is conditioning the solutions of equation (4), as λ/Λ  = 0 traduces 
specular reflection (as the diffraction order p is null through the limit of the diffusion), 
and as this modulus value conditions its number of real solutions, corresponding to the 
diffraction directions (lobes of the surface's radiated energy). 

3 Diffraction and structure factor of a multiscale rough boundary surface 

For all other directions, the reflected waves will destructively interfere, resulting in 
complete cancellation for a self-similar periodic structure. For non- or pre-fractal 
structures as urban frontages, the scattered field will show mainlobes in the characteristic 
directions, and sidelobes elsewhere for a done sound frequency). 

3.1 Phase of diffraction 

Those interference conditions can be also expressed with defining the phases of the 
incident wave vector k0 and the diffracted vector k, which both have an amplitude equal 
to the reciprocical of the wavelength. In order to calculate the phase of the diffracted 
wave, taking the path lengths difference ∆d = 2  nΛ cosα into account, we will consider 
the difference between the path of the sonic particle (phonon) along the incident beam k0r 
and its path along the diffracted beam kr. With expressing this path length difference 
∆d = 2 nΛ cosα = k0r - kr, the overall diffraction phase will be expressed as -2π (k0r - 
kr) = 2π (k - k0) r (figure 2). 
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Fig. 2. Phase geometry 

Considering rcosα, the component of r in the direction of the diffraction vector s, all 
points with the same value of sr are lying on a plane perpendicular to vector s, allowing 
the same diffraction phase (figure 3). 

 
Fig. 3. Diffraction geometry 

Consequently, as the length of the diffraction vector s is equal to 1/Λ (inverse of the 
indentation depth), sr is equal to the distance between two Bragg planes (or indentation 
surfaces), and diffraction from any point r will have a phase of 2πsr. 
Moreover, we can define the phonon density resolution through the mean resolution 
distance, according to the period nΛ of the Fourier serie of the phonon density map. The 
following equation leads us to the calculus of the reflective resolution of the structure, 
involving the path difference ∆d as: 

²
²

²
²

²
²1

c
l

b
k

a
h

d
++=

∆ αcos2
1

Λ
=       (5) 

where (h, k, l) , the Miller indices, specify the direction and the period of the 
tridimensional cosine wave cos(2π / [hx/ a + ky/ b + lz/ c]). 

3.2 Structure factor indications: spatial scattering function 

When measuring several phonons located at different points, the diffraction at each point 
will be the sum of the waves scattered by each phonon. So, the expression of this sum 
with Euler's equation gives us, for the jth phonon with coordinates (xj, yj, zj): 

).2exp()( ∑=
j

jiF rss π        (6) 

This wave is represented here by its structure factor, which is the Fourier transform of the 
scatterers of equal strength on all points of the diffraction plane. Continous expression of 
this previous equation involves the phonon's density ρ(r) as: 

∫=
space

driF )2exp()()( rsrs πρ       (7) 
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As shown through this expression of the structure factor, the diffraction pattern is defined 
as the Fourier transform of the phonon density. 
Taking into account the tridimensional distribution of phonons into the diffusive structure 
involving Miller indices (h, k, l), as the plane perpendicular to vector s can be written as: 
srj = hxj + kyj + lzj, we can afford the previous spatial expression of the structure factor in 
the three dimensions of space with integrating the tridimensional cosine wave as: 

∫∫∫ ++=
mePhononVolu

hkl dxdydzlzkyhxizyxF ))(2exp(),,( πρ     (8) 

The acoustic field is then expressed through the phonon's density ρ(x, y, z), which is 
useful to calculation of the mean square diffracted sound pressure Pd by the whole 
volume for a given distance of the structure [3]: 

dVP
r

P
V

d
d

2
2

0

2 coscos
∫∫∫=

π
αα

ρ   `    (9) 

where represents the distance from the receiver to the structure, and P the incident 
wave pressure. One can remark that the function of the cosine of the angle between the 
direction of observation and the normal to the surface in the observation point reminds us 
the Lamberts law [4], which is assumed to represent the physical behaviour of sound or 
light after reflection on an ideally diffusing surface. As mentionned previously, the 
angular repartition of the sound energy is computed with the Miller indices, involved 
through the individual phase contributions 

0r

)(2 jjj lzkyhxi ++π , which represents the 
spatial scattering function of the reference volume V (equation (8)). 

3.3 Dynamic scattering function 

This leads us to consider the structure factor as a function of time, called dynamic 
structure factor, or dynamic scattering function, with introducing time t through a random 
walk in random environment [5]: 

dtttF ∫
∞

=
0

),(),cos(2),( rs ρωω       (10) 

The dynamical density distribution ρ(r,t) can be obtained with the probability for a sonic 
particle to walk to location r during the time t P(r,t), that remains equation (5), with the 
following relationship [6]: 

∫ ∫
∞

−=
0

),()exp()exp(),( tPtidtidri rsrs ωωρ     (11) 

with P(r,t), describing the sonic particle's probability for a fractional Brownian walk in a 
non-integer (fractal) D-dimensional space [7], [8]: 

∞→→ N
t

r
t

tP D ,
4

²exp
)4(

1),( 2/ δπδ
r      (12) 

where δ is the diffusion coefficient of the D-dimensional structure. 

3.4 Angular distribution function 

This function can be evaluated using a Laplace transform [9]. After integrating over the 
angles, we obtain, for the pd

th diffraction order: 
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where and D is the fractal dimension of the diffusive structure, dw the parametering of the 
random walk of the phonon [10], and g is the angular distribution function along a 
characteristic direction of scattering: 

))()((
²

1)( 0 rrr ρmG
m

g −=       (14) 

 
Fig. 4. Typical angular distribution function. The first shell represents the main density function at a distance r 
of the structure. 

)()(0 rmomG =  is the second moment of density taken in the points 0 and r, called 
density-density correlation function. Square of the average density )(∑=

i
irρ

∞→r

m  

constitutes the limit of the density-density correlation function  when : 0G
2

0 )( mG →r and . This function defines the scattering intensity of the structure 
for a defined angle as: 

1)( →rg

drGI
j

iqr
q ∫ −= )(0 r        (15) 

3.5 Parceval theorem and diffusion volume 

Parceval's theorem formulates that the energy in the frequency domain is the same as the 
energy in the spatial domain [11]. Consequently, the mean square value on one side of the 
Fourier transform equation (8) is proportional to the mean square value on the other side. 
So do Perceval’s theorem allows to express the phonons density distribution as a 
transform of the spatial distribution of the surface scatterers. This property allows us to 
express the angular distribution function as a discreet quadratic summation of elementary 
structure factors as following: 

²1)²,,( ∑∫ =
hkl

hkl
V xyz

F
V

dVzyxρ ,      (16) 
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where the diffusion volume Vxyz is a ratio between the square root of the discreet 
quadratic summation of the structure factors and the angular distribution function. 
This diffusion volume Vxyz is experimentally obtained by a mathematical morphological 
measure using a Minkowski operator, which provides a ribbon surface constituting a 
neighborhood area, under the condition of continuity [12]. 
Considering the Minkowski analysis of a tridimensional structure, scrutated with a 
structuring element of variable radius Λ, the phonons density-density distribution can be 
expressed through the roughness autocorrelation of the diffusive structure with involving 
the diffusion volume Vxyz, and the structure factor Fhkl , which defines both the global and 
local behavior of the structure as: 

ααρ sinsin ),,( max

max

0

2

0 +∝= ∑∑ Λ
Λ

dxyz
xyz

hkl V
V

F
zyx     (17) 

4 Application : a Frontage scattering characterization 

4.1 The urban frontage model 

The spatial configuration we measure here is a numerical 3-D model of a neoclassical 
frontages of an urban street of Nantes, France, the rue d’Orléans, belonging to a 19th 
urban morphology type, with windows, doors, and freestone casting off. One of the main 
characteristics of this type of architecture is the relative exuberance of its frontage 
structure, following neo-classical composition. This frontage is considered as a 
tridimensional object situated in an ortho-normed space, rotating around the Z-axis (Fig. 
5): 

 

 
Fig. 5. Orthographical rotative analyze of a frontage in the rue d’Orléans, Nantes. 

4.2 The Minkowski measurement technique 

In order to characterize the scattering behavior of the volume of the frontage, we apply a 
fractal Minkowski operator, called Minkowski sausage, to evaluate the vertex multiscale 
densitometry distribution at each incidence angle. This operator consists into replacing 
each point of the vertexes of the urban geometry with a sphere with variable radius Λ, as 
seen figure 6: 
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Fig. 6. Tridimensional dilation of the urban scene vertexes (perspective views). 

This transformation of the urban geometry corresponds to the dilation operation in the 
morpho-mathematical context [12]. The union of all spheres is called the 3-D Minkowski 
sausage. The variation of their diameter gives us successive approached perimeter/surface 
ratios at each vision angle, which regression evaluates the fractal dimension of the 
structure, in a specified validity domain. 

4.3 Frontage fractal measurement 

The spatial multiscale evolution of the perimeter-surface ratio P/S defines the profile’s 
Shape spectrum of the frontage [13]. This spectrum defines the multiscale relationship 
between the radius evolution of the spherical structuring element and the “mass” of the 
structure, for each the angular measure. As readable in the following figure, the specular 
domain is illustrated with a strong decrease of the P/S ratio, which corresponds to the 
limit  Λmax for the radius of the structuring element . For this domain, the Euclidean 
dimension d and the fractal dimension D of the mean structure reach the same value. This 
break in the frontage indentations shape spectrum behavior occurs for Λmax= 100 cm, for 
every value of incidence angle α (figure 7): 
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Fig. 7. Shape spectrums of the urban frontage with a spherical recovering element, at different incident angles. 

4.4 Results of the analysis : Frontage’s structure factors and vertex densitomentry 

The Fourier transform of the surface roughness informs the frontage’s complexity, 
leading both to the angular distribution function and the spatial scattering function of the 
indented surface calculations. 
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As an indicator of the indentations frequency, the Fourier transform discriminates clearly 
the structure of a surface, revealing the spatial occurences of the roughness peaks (figure 
8.1). 
The angular distribution function is defined through the structure factor computation of 
the surface, and indicates the frontage scattering behaviour for a particular direction of the 
incident beam (figure 8.2). 
Moreover, the spatial scattering function offers a tridimensional interpretation of the 
angular distribution function, allowing the distribution of the surface’s scatterers along 
every incidence angle of the acoustic source (figure 8.3). 

 
Fig. 8. Fourier transform (1), angular distribution function (2) and spatial scattering function (3) of the frontage 
indented surface 

Those indicators allows the computation of the vertex densitomentry for every incidence 
angle of the surface, with an increment of 5 degrees for localisation lengths Λ from 0.05 
to 10 m, which corresponding acoutical frequency domain is 25 Hz to 8 kHz. Those 
densitometries correspond to the characteristic directions of scattering, through the 
density distribution ρ(x, y, z) calculation for each incidence angle. 
This angular evaluation of the vertexes distribution shows azimutal densitometries due to 
interreflexions of the corners and the freestone casting along three windows depth, 
corresponding to the lateral active diffraction zone. 

 
Fig. 9. Angular vertex densitomentry of the urban frontage applied to the urban scene. Measures for roughness 
values r of, respectively, 1 to 10 m, 0.2 to 0.5 m and  0.05 to 0.2 m . 

Global polar responses for growing localisation lengths shows globally a decreasing 
diffusivity, revealing a bilobe distribution structure of the biggest scatterers, a cardioid for 
middle-sized ones and very characteristic peaks for high frequency roughness. 
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5 Conclusion 

Through the determination of the structure factor, the Minkowski sausage technique 
provides a quantification of the scatter distribution function of the indented surface of a 
specified urban neo-classical frontage at each incidence angle. In order to perform an 
experimental validation of this model, experimental results will be compared to those 
indicators at each incidence angle, through an in situ and a 1/10th scale model MLS 
multisensor measurement. 
With discerning the angular vertex densitomentry of main types of architectures, we will 
be able to compute their specific angular spatial scattering function for every frequency, 
directly from the Minkowski analysis of the numerical 3-D model of their geometry. 
Through those morphological treatment of architectural shapes, this research work will 
confirm the definition of the diffusion process as a geometrical-dependant phenomenon, 
influenced by the built structure on urban acoustics. 
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