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Abstract—The paper relates to multi-resource sharing between
flows with heterogeneous requirements as arises in networks
with wireless links or software routers implementing network
function virtualization. Bottleneck max fairness (BMF) is a
sharing objective in this context with good performance. The
paper shows that BMF results when local fairness is imposed
at each resource while flow rates are controlled by an end-to-
end window. We analytically prove convergence to BMF under
a fluid model when flows share a network limited to 2 resources
while numerical results confirm BMF convergence for larger
networks. Simulation results illustrate the impact of packetized
transmission.

I. INTRODUCTION

Elastic flows in the Internet share multiple resources under

the joint impact of end-to-end congestion control protocols and

router queue management mechanisms. In the wired Internet

the resources in question are links and all flows have the

same requirement for each bit/s of rate. Requirements are not

homogeneous for a wireless link, however, where the amount

of spectrum consumed for each bit/s depends on the flow’s

radio conditions. Heterogeneous requirements occur also when

flows share compute resources in a software router. Some

flows require simple forwarding while others require complex

processing, for encryption, say, or other virtualized functions,

and consume more CPU.

Resource sharing by flows with homogeneous requirements

has been widely studied over many years. Of particular in-

terest for the present work is the observation made some 30

years ago that network-wide max-min fairness is realized by

implementing fair queuing in router queues and performing

window-based flow control [8], [10]. This claim was proved by

Hahne for a synchronous time-slotted network model with flow

rates controlled by hop-by-hop windows [7]. To our knowledge

there is no published proof that max-min fair sharing occurs

with end-to-end window control, as used in TCP/IP.

Our main objective here is to derive the equivalent result

in the case of heterogeneous resource requirements. This is

needed for today’s network, where most flows use at least
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one wireless link, and tomorrow’s, where compute resources

are potential bottlenecks in dynamically provisioned software

routers. Explicitly, we show that imposing local fairness at

each resource, coupled with end-to-end flow control results in

a desirable generalization of max-min fairness called bottle-

neck max fairness (BMF) [2].

Proving this result is hard due to the complex dynamics

of per-flow resource queue backlogs. For homogeneous re-

quirements, the proof that backlogs eventually converge and

rates stabilize at their max-min fair shares was the culmination

of several years doctoral thesis work by Hahne. Chrysos and

Katevenis have since derived a somewhat simpler proof, thanks

to their use of a fluid model, but this is still highly non-trivial

and again confined to hop-by-hop window control [3].

We apply the same fluid model as Chrysos and Katevenis

to prove convergence to BMF for flows with heterogeneous

requirements in a network limited to two bottleneck resources.

It is considerably harder to account for heterogeneous require-

ments because the water filling characterization of max-min

fairness used in [7] and [3] does not generalize to BMF. In

addition, we have used water filling with insights gained from

the analysis of BMF to derive an original proof of convergence

for a general network with homogeneous requirements under

end-to-end window control.

The fluid model enables the mathematical analysis but, in

practice, the theoretical objectives of multi-resource sharing

can only be achieved approximately. It is therefore important

to examine the behavior of a more realistic packet-based

model to understand how this deviates from the ideal. We

simulate a network where resources implement start time fair

queuing [6] and investigate the impact on convergence times

of window size, the number of competing flows and their

particular requirements.

In the next section, we argue the need to perform fair

resource scheduling for heterogeneous requirements and dis-

cuss properties of the resulting BMF allocation. Section III

introduces the dynamical system describing the evolution of

backlogs in the fluid model limit. The main convergence

results for this dynamical system are given in Section IV.

Section V presents simulation results that illustrate deviations

from the fluid model ideal when accounting for finite sized

packets.



II. MULTI-RESOURCE SHARING

We discuss why scheduling is required for fair multi-

resource sharing before recalling the desirable properties of

BMF. The main symbols used are listed in Table I.

R number of resources
n number of flows
Cj capacity of resource j
Aij requirement of one unit of flow i at resource j
aij = Aij/Cj normalized requirement
p(i, j) resource visited by flow i prior to visiting resource j
φij rate at which flow i leaves resource j
ϕi rate allocated to flow i
fj fair share at resource j
Qij backlog of flow i at resource j
bij backlog indicator, 1 if Qij > 0, 0 otherwise
Wi end-to-end window of flow i in bits

W (p) end-to-end window in packets

TABLE I
SUMMARY OF NOTATION.

A. Need for scheduling

Consider a network with R resources shared by n flows.

Resource j has capacity of Cj units per second where units

are resource dependent. Flow i requires Aij units of resource

j to process each bit. The rate in bit/s, ϕi, allocated to flow i
must satisfy the capacity constraints

n∑
i=1

Aijϕi ≤ Cj (1)

for 1 ≤ j ≤ R. Aijϕi is the amount of resource j used per

second by flow i.
The following are examples of envisaged resource types,

• wired link: Cj is measured in bit/s; Aij = 1 if flow i
uses link j and Aij = 0 otherwise;

• LTE wireless link: Cj is measured in time slot/s; Aij is

the fractional number of slots needed to transmit each bit

of flow i accounting for the flow’s radio conditions; the

requirement can be more than 20 times smaller for a user

close to the antenna than for a user at the cell edge;

• software router CPU: Cj is measured in cycle/s and Aij

is the number of cycles needed to process one bit of

flow i; this number varies widely depending on the type

and number of functions to be processed (e.g., simple

forwarding, encryption, transcoding).

Scheduling is generally absent in the wired Internet and

bandwidth sharing is realized by means of congestion control

protocols like TCP that react to drop signals received from

FIFO buffers. Sharing is generally fair enough if users imple-

ment the same protocol [15] though it has often been noted

that fair queuing implemented in router queues would provide

more robust control, e.g., [11], [1].

For a wireless link, where requirements are highly variable,

it is generally considered preferable to aim for equal resource

shares, Aijϕi, rather than equal bit rates. This is broadly what

the proportional fair scheduler achieves [16], as implemented

in 3G and 4G cellular networks. That the IEEE 802.11b sched-

uler tends to realize max-min fair bit rates was recognized as

a performance anomaly [9].

In NFV, the dynamic provision of compute capacity implies

CPU may become a temporary bottleneck and the way it is

shared is therefore an issue. Simple FIFO queuing coupled

with end-to-end congestion control would lead to approxi-

mately equal flow bit rates, as in a wired Internet. However,

if requirements differ significantly, max-min fair rates would

produce the same “performance anomaly” as in 802.11b. In

an early paper considering dual, CPU and bandwidth, resource

sharing [13], Shin and co-authors proposed an ECN marking

scheme intended to realize proportional fairness through TCP

congestion control. We would argue that the use of a sched-

uler to equalize CPU usage among flows constitutes a more

satisfactory resource sharing solution.

In this paper we adopt the position that flows using a single

resource considered in isolation should receive max-min fair

resource shares. Let φi0 be the incoming bit rate of flow i at

resource j. The scheduler allocates a fair share Aijϕi = fjCj

to any flow i such that ϕi < φi0, and allocates Aijϕi = Aijφi0

to the others, where fair share fj is determined by the capacity

constraint (1). Rates ϕi defined thus are weighted max-min

fair with weights 1/Aij . It is well-known that this allocation

can be realized approximately using packet schedulers such as

DRR [14] or SFQ [6].

B. Bottleneck max fairness

Ghodsi and co-authors introduced the problem of multi-

resource sharing in compute clusters [5] and extended their

analysis to networks [4]. They advocate so-called dominant

resource fairness (DRF). In networking applications, DRF

requires schedulers at each resource to implement weighted

max-min fairness with the same flow weight wi applied at

each resource determined from the dominant relative resource

requirement, wi = 1/maxj{Aij/Cj}. This choice is moti-

vated by a requirement that the allocation be strategyproof :

flows should not be able to gain a greater bit rate by falsely

stating their requirements.

The plausibility of designing and implementing such a

gaming strategy in a context of dynamic demand in a net-

work setting is highly debatable, however. We have previ-

ously advocated an alternative allocation that sacrifices strict

strategyproofness in order to achieve a better efficiency–

performance tradeoff [2]. This allocation is called bottleneck

max fairness (BMF).

Like max-min fairness, BMF is defined for a fluid model

where packet size is infinitesimally small and resource ca-

pacity is perfectly divisible among flows. The allocation is

such that resource sharing is Pareto efficient (i.e., all capacity

is used if possible) and every flow receives the maximum

allocation at some resource that is fully used. This may be

recognized as one of the definitions of max-min fair resource

sharing, e.g., [12]. The significant difference here derives from

the heterogeneous requirements Aij in capacity constraints (1).

It was shown in [2] that the BMF allocation always exists

and has all the desirable sharing properties identified by

Ghodsi et al. [4] except strategyproofness. On the other hand,

it has an alternative property called single-bottleneck fairness:



if the network has a unique bottleneck j, the allocation is

such that Aijϕi = 1/n for all flows i. That this property

is not shared by DRF largely explains its inferior throughput

performance.

A significant advantage of BMF in networking applications

is that the allocation can be realized simply by implementing

weighted fair queuing independently at each resource with

weights for flow i at resource j equal to 1/Aij . The main

objective of this paper is to justify this statement.

C. Scheduling and window-based flow control

We suppose flow i maintains a fixed volume Wi of unac-

knowledged data and every resource j realizes weighted max-

min fair sharing with weights 1/Aij . Assume the network

attains a steady state with constant flow rates ϕi, constant

queue backlogs and constant round trip times. We have the

following proposition [2].

Proposition 1: Suppose flows implement a large enough

fixed window and resources realize weighted fair queuing. If

the network attains a steady state, the realized flow rates are

bottleneck max fair.

Proof. The proof is immediate as the window can be made

large enough that every flow has at least one bottleneck

resource (i.e., it has a backlog and the resource is therefore

fully used) while the scheduler ensures its share of that

resource is maximal. These, with Pareto efficiency, are the

conditions that define BMF. �
This proposition also applies to max-min fairness as a

special case of BMF and its equivalent was stated by Hahne

[7]. All the difficulty in proving the controls yield BMF is in

proving the system does in fact converge to a steady state.

III. A DYNAMICAL SYSTEM

We present the dynamical system governing the evolution

of the resource queue backlogs and flow rates under a fluid

model with zero propagation times. We assume resources are

consumed successively in the order defined by a flow-specific

route: p(i, j) designates the resource visited by flow i prior to

its visit to resource j1. In this and the next section, to simplify

the formulas, we use normalized requirements aij = Aij/Cj .

A. Persistent binary system states

Let φij(t) denote the rate at which flow i is served by

resource j at time t. For brevity, we generally omit the explicit

dependence on time in this and other variables. Flow rates φij

depend on the backlogs at each queue Qij or, more succinctly,

on the backlog status indicators bij ,

bij =

{
1, if Qij > 0,
0, if Qij = 0.

1The formulation could be extended to allow simultaneous consumption of
sets of resources. Assuming packets are processed in parallel at these resources
one at a time, the corresponding fluid model would instantly realize the same
flow rate at each resource in question.

In periods where the bij(t) are constant, rates φij are also

constant and satisfy the following equations

aijφij =

{
fj , if bij = 1,
aijφip(i,j), if bij = 0,

where

fj =
1−∑n

k=1 akjφkj�{bkj = 0}∑n
k=1 �{bkj = 1} .

These equations can be rewritten:

aijφij = aijφip(i,j)(1−bij)+
bij(1−

∑n
k=1 akjφkj(1− bkj))∑n

k=1 bkj
.

(2)

They express the result of per-resource weighted max-min fair

schedulers, as described at the end of Section II-A.

To avoid unhelpful complications, we suppose the aij are

such that linear equations (2) are independent and therefore

yield a unique set of φ’s for each binary state vector b. For

many such vectors, the computed φ’s will not in fact be

feasible (e.g., they might be negative). Vectors that do yield

a set of feasible rates constitute the space of valid persistent
binary states.

B. Evolution between persistent states

The system evolves between persistent states as follows. All

backlogs for which φij > φip(i,j) are decreasing in time. Let

the queue of flow i∗ at resource j∗ be the one to empty first.

At this instant the system enters a new state b′ where b′i∗j∗ = 0
and b′ij = bij for the other queues.

If b′ is a persistent state (i.e., there is a feasible solution

to the new instance of equations (2)), the system will enter

a new phase with a new set of rates φ′ which persist until

a new queue empties. If b′ is not persistent, some of the

non-backlogged queues will immediately become backlogged

because the flow’s incoming rate exceeds its weighted fair

share. In case b′ is not persistent, the rates φ′ satisfy the

following equations:

aijφ
′
ij =

{
fj , if aijφ

′
ip(i,j) ≥ fj or b

′
ij = 1,

aijφ
′
ip(i,j), otherwise,

(3)

where the fair share satisfies

fj =
1−∑k akjφ

′
kj�

{
b′kj = 0 and akjφ

′
kp(k,j) < fj

}
∑

k �

{
b′kj = 1 or akjφ′

kp(k,j) ≥ fj

} .

The new persistent state is b′′ where b′′ij = 1 if b′ij = 0 and

φ′
ip(i,j) > φ′

ij , and b′′ij = b′ij otherwise. Notice that b′′ is

indeed a persistent state since the φ′ satisfy (2) with b replaced

by b′′.

C. Convergence

The network evolves between persistent states until it enters

one in which the service rates at all resources are the same

for each flow. If this occurs, the rates in question are BMF by

Proposition 1.



The equations defining the dynamical system can be rapidly

solved numerically allowing us to explore convergence over

a wide range of parameter values (e.g., 1 million random

choices). Convergence indeed always occurs in all our ex-

periments. The graph defined by valid transitions between

persistent states is acyclic. There are cases where the BMF

allocation is not unique [2]. In such cases, numerical exper-

iments show the system converges to one or another of the

possible allocations, depending on the assumed initial backlogs

Qij(0).
Unfortunately, it proves very difficult to analytically prove

convergence in general. The next section proves convergence

for some significant special cases.

IV. PROOF OF CONVERGENCE

We first prove convergence to BMF for networks of 2 re-

sources consumed successively before discussing the difficulty

of extending this result to more resources2. We then prove

convergence for R ≥ 2 resources in the special case where

BMF reduces to max-min fairness.

A. BMF for 2 resources

We consider a system with 2 resources and n flows. The

capacity of all resources is normalized to 1. To avoid some

tedious qualifications, we suppose here that aij > 0 and the

ratios ai1/ai2 are distinct.

Inspecting the results of numerous simulations, we observed

that the evolution of backlogs is such that one queue in

particular is never empty in any persistent state. The resource

in question is j∗ = argmax{∑i aij/aip(i,j)} and the flow is

i∗ = argmax{aij∗/aip(i,j∗)}. For convenience and without

loss of generality we therefore renumber the resources such

that
n∑

i=1

ai1
ai2

>

n∑
i=1

ai2
ai1

, (4)

and the flows such that
a11
a12

>
a21
a22

> · · · > an1
an2

. (5)

The queue that never empties is then that of flow 1 at resource

1. The following three lemmas allow us to affirm convergence

in Theorem 1. Lemmas 1 and 3 are proved in the appendix

while the proof of Lemma 2 is symmetrical to that of Lemma

1 and is therefore omitted.

Lemma 1: Flow 1 always stabilizes to a backlog only at

resource 1. Given flows 1 to r − 1 are backlogged only at

resource 1, for 1 < r ≤ n, a sufficient condition that flow r
also stabilizes to a backlog only at 1 is

ar1
ar2

>
n− r + 1−∑n

i=r
ai1

ai2

r − 1−∑r−1
i=1

ai2

ai1

. (6)

Lemma 2: A sufficient condition for flow n to stabilize to a

backlog only at resource 2 is
∑n

i=1 ai2/ai1 > n. Given flows

2If the resources are consumed simultaneously, the fluid model is instanta-
neously stable since there is only one common queue which holds the entire
window.

n−s+1 to n, for s ≥ 1, are backlogged only at resource 2, a

sufficient condition that flow n−s also stabilizes to a backlog

only at 2 is

a(n−s)2

a(n−s)1
>

n− s−∑n−s
i=1

ai2

ai1

s−∑n
i=n−s+1

ai1

ai2

. (7)

Lemma 3: Given the first r − 1 flows for r ≥ 1 have

converged to a backlog only at resource 1 and the last s flows

for s ≥ 0 have converged to a backlog only at resource 2,

either flow r will converge to a resource 1 backlog, or flow

n− s will converge to a resource 2 backlog.

Lemma 3 shows that the system will eventually converge to

a state where the first k flows stabilize with a backlog only at

resource 1 while the remainder stabilize with a backlog only at

resource 2 for some k, 1 ≤ k ≤ n. The order of convergence

depends on initial backlogs and the various flow window sizes.

The lemma implies that convergence will occur at least as fast

as if first flow 1 stabilizes, then either flow 2 or flow n, and so

on, proceeding from either the lowest or the highest numbered

remaining flow. In this order, the last flow to stabilize is either

flow k or flow k + 1. The value of k characterizes the BMF

allocation and is specified in the following theorem.

Theorem 1: When each resource locally realizes weighted

max-min fair sharing with respective weights 1/aij , flow rates

converge to the BMF allocation. When resources and flows are

labelled such that (4) and (5) hold, flows 1 to k are backlogged

only at resource 1 and the remainder only at resource 2, where

k ≥ 1 is the index such that∑n
i=k(1− ai1

ai2
)∑k−1

i=1 (1− ai2

ai1
)
<

ak1
ak2

and

∑n
i=k+1(1− ai1

ai2
)∑k

i=1(1− ai2

ai1
)

>
a(k+1)1

a(k+1)2
.

(8)

The BMF allocations are ϕi = f1/ai1, for 1 ≤ i ≤ k, and

ϕi = f2/ai2, for k < i ≤ n, where f1 and f2 are the fair

shares

f1 =
n− k −∑n

i=k+1
ai1

ai2

k(n− k)−∑n
i=k+1

ai1

ai2

∑n
i=1

ai2

ai1

, (9)

f2 =
k −∑k

i=1
ai2

ai1

k(n− k)−∑n
i=k+1

ai1

ai2

∑n
i=1k

ai2

ai1

. (10)

Proof. We know from Lemmas 1, 2 and 3 that the backlogs

of all flows eventually stabilize and Proposition 1 shows the

resulting allocation is BMF.

Condition (6) may be written ar1/ar2 > N(r)/D(r) where

N(r) and D(r) are the numerator and denominator of the

right hand side, respectively. It may readily be verified that

ak1/ak2 > N(k)/D(k) ⇒ ar1/ar2 > N(r)/D(r) for r < k.

This condition therefore ensures by Lemma 1 that the first k
flows stabilize with a backlog only at resource 1.

If now a(k+1)1/a(k+1)2 < N(k+1)/D(k+1), which is the

second inequality in (8), we can similarly show that ar1/ar2 <
N(r + 1)/D(r + 1) for k + 1 ≤ r < n. Condition (7) is thus

satisfied for flows k + 1 to n completing the proof that (8)

characterizes the stabilized backlogs.



Finally, fair shares (9) and (10) follow from the equations

f1 =
1−∑n

i=k+1
ai1

ai2
f2

k
,

f2 =
1−∑k

i=1
ai2

ai1
f1

n− k
.

�
B. More than 2 resources

While all our simulations of the dynamical fluid system con-

firm convergence, at the time of writing, we have not been able

to prove this analytically. We observe in the numerical results

that, in every case, the backlog of one flow at one resource is

always decreasing or empty. Unfortunately, this queue is not

identified by a simple generalization of the characterization

discovered for 2-resource networks. It depends on the routing

but the same BMF allocation results from all possible routings.

The next section provides an original proof of convergence for

a network of any size in the special case of max-min fairness.

C. Max-min fairness

The resources considered here are wired network links.

Consider a network of R links of capacities Cj , for 1 ≤ j ≤ R,

shared with max-min fairness by n flows. Flow i has require-

ment Aij = 1 when it uses link j and Aij = 0 otherwise.

Flow i maintains a window of Wi unacknowledged data. The

proof of convergence of the corresponding dynamical system

derives from the well-known water filling definition of max-

min fairness, as used previously by Hahne [7] and Chrysos

and Katevenis [3] for hop-by-hop window control.

Let J1 be the set of order 1 bottlenecks defined by

J1 = argmin
1≤j≤R

Cj∑
i Aij

.

J1 contains the links that are simultaneously saturated first in

the water filling procedure. Let I1 be the set of flows i such

that Aij = 1 for j ∈ J1, i.e., the flows that use at least one

of the order 1 bottlenecks. Now define recursively bottleneck

sets of order x and corresponding flow sets Ix by

Jx = argmin
j /∈{∪y<xJy}

Cj −
∑

i∈Ix−1
ϕiAij∑

i/∈Ix−1
Aij

,

where ϕi is the weighted max-min fair rate for flow i and

i ∈ Ix ⇐⇒ Aij = 1 for j ∈ Jx or i ∈ Ix−1.

Links Jx are saturated in step x of the water filling procedure.

The weighted max-min rates are given recursively by

ϕi = min
1≤j≤R

Cj∑
k Akj

, (11)

for i ∈ I1, and

ϕi = min
j /∈{∪y<xJy}

(Cj −
∑

k∈Ix−1
ϕkAkj)∑

k/∈Ix−1
Akj

, (12)

for i ∈ Ix \ Ix−1 and x > 1.

Theorem 2: When flows have homogeneous requirements

and are controlled by an end-to-end window, rates converge

from any initial state to the max-min fair rates.
Proof. The proof is by induction. We first prove that buffers

at links j ∈ J1 for flows i ∈ I1 are drained at rate ϕi and

their backlog is either increasing or stable.
If the backlog of flow i ∈ I1 at some link j ∈ J1 is less

than Wi, flow i must be backlogged at some other link. Denote

by l the first backlogged link in the path of i preceding j. The

rate φil of flow i leaving link l satisfies

φil ≥ Cl∑
k Akl

.

Rate φil is the rate into j ∈ J1 and, by the definition of J1,

φil ≥ ϕi. This is true for all flows using j whose backlog at

that link is less than Wi (including those that have no backlog

because link j follows some other link in J1 in the flow i
path).

Let φij be the service rate of flow i at link j ∈ J1. Note that

ϕi is the max-min fair rate realized locally by flows using j
when all flows are backlogged at j. For any flow i backlogged

at j, φij cannot be less than ϕi. On the other hand, any

non-backlogged flow must be served at its input rate and we

have just shown that this is at least equal to ϕi. Clearly, the

only allocations that satisfy these conditions and the capacity

constraint,
∑

i φijAij ≤ Cj , are the ϕi given by (11).
Increasing queues (i.e., where φil > ϕi) must stabilize

before some time t1 after which no link outside J1 has a

backlog for flows I1. When J1 contains more than 1 link, the

stable backlogs of flow i can be any partition of the window

Wi.
Now suppose flows Ix−1 have converged to their fair rates

and that after some epoch tx−1 their windows are entirely

contained in the buffer of some link in {∪y<xJy}. We need

to prove flows Ix \ Ix−1 will then similarly converge after

some epoch tx ≥ tx−1.
Consider i ∈ Ix \Ix−1. If the queue at some link j ∈ Jx is

less than Wi, flow i must be backlogged at some other link.

Denote by l the first link in the path of i preceding j to have

a flow i backlog. The rate φil of flow i leaving link l satisfies

φil ≥
Cl −

∑
i∈Ix−1

ϕiAil∑
i/∈Ix−1

Ail

≥
Cj −

∑
i∈Ix−1

ϕiAij∑
i/∈Ix−1

Aij
.

As for x = 1, this implies the output rate is at least that given

by (12) for these flows. As any other flow in Jx with a full

backlog cannot receive a lower rate, we conclude they must

all receive the same rate given by (12).
The backlog is either increasing or stable. If all queues are

already stable, the induction hypothesis is satisfied and tx =
tx−1. If not, all increasing queues will have stabilized at some

later epoch tx after which no link other than Jx has a backlog

for flows Ix \ Ix−1. �
Note that the special case of BMF where requirements Aij

are either equal to some flow dependent value Ai or 0 is



equivalent to max-min fairness for the resource shares ϕiAi.

Theorem 2 therefore has the corollary that this special case

indeed converges to the BMF allocations. The theorem can

be easily extended for weighted max-min fair allocations, as

considered in [3], though these allocation are not BMF.

V. PACKET SYSTEM BEHAVIOR

Simulation is used to evaluate the convergence behavior of

packetized flows. Results show that flows indeed converge to

the fluid BMF rates as long as the window in packets is large

enough.

A. Packet model

We simulate a network of 2 unit capacity resources where all

flows use both resource. Packets are of constant size L bits and

are distinguished by flow requirements aij > 0. Propagation

times are zero. The source of each flow maintains W (p)

unacknowledged packets in the backlog of either resource

(Wi = W (p)L in the fluid model notation). As packet size

and window are fixed, it is as if packets circulate from one

resource to the other and, in results below, we measure time in

round trip times (RTTs), the variable time between successive

service completions of the “same” packet.

Each resource implements start time fair queuing (SFQ) [6].

The start time tag Sk
ij of the kth packet of flow i to arrive at

resource j is computed recursively on its arrival epoch uk
ij by,

Sk
ij = max(Vj(u

k
ij), S

k−1
ij + aijL), (13)

where Vj(t) is the start time of the last packet to have begun

service at j. Packets are served in increasing order of start

time tags. In terms of the algorithm described in [6], it is as

if packets have length aijL.

SFQ only approximates weighted max-min fairness and

resource sharing realized by the packetized flows differs from

the fluid ideal. In particular, the BMF rates may not be attained

if the window is too small. The following proposition gives a

lower bound on the required window size.

Proposition 2: A sufficient condition for the flows to attain

the BMF allocation in the considered 2 resource network is

that the end-to-end window in packets satisfies,

W (p) ≥ akj
aij

+ 1, (14)

for all flows i, k and all resources j.

Proof. Th. 1 of [6] shows that the difference in the amount

of service received by two continuously backlogged flows in

a given interval is bounded. Reinterpreting the parameters of

the bound in terms of the present network, we have, for two

flows i and k, backlogged throughout interval (t1, t2),

| aijNi(t1, t2)− akjNk(t1, t2) |≤ aijL+ akjL,

where Ni(t1, t2) and Nk(t1, t2) are the number of flow i
and k packets served in the interval. In order that the flows

be backlogged, it is necessary that W (p) be large enough to

absorb the fluctuations. The requirement for flow i is for at

least aijL+ akjL bits in the backlog to effectively satisfy the
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Fig. 1. Example of Backlog evolution.

momentary excess service rate. This translates to a window

W (p) ≥ akj

aij
+1 since each packet has an effective “length” of

aijL bits. Repeating this reasoning for each possible couple

of backlogged flows and each resource yields (14). �
B. Tending to the fluid limit

The fluid model occurs in the limit where the packet size

tends to zero while the window in volume of data remains

fixed. The backlog and throughput results derived for the fluid

model in fact predict the performance of the packetized system

for quite large packets.

Fig.1 shows the evolution of the share of W (p) in the

resource 1 backlog as a function of the number of RTTs

experienced by flow 2. The figure relates to a particular

instance where 2 flows share the 2 resources with respective

requirements a11 = .4, a12 = .3, a21 = .09, a22 = .11. The

window of each flow is initially evenly split between both

resources.

The red lines, for W (p) = 100, almost coincide with the

results of the fluid model (black lines). For larger packets, with

W (p) = 10, the backlogs follow the fluid trends but naturally

exhibit greater variability.

In Fig.2 we show the impact of W (p) on the evolution of

flow rates at resource 2. The rate received by flow i at resource

j in the packet model is defined as

φ̂ij(t) =
1

W (p)

Pij(t)∑
k=Pij(t)−W (p)+1

1

Tkj
, (15)

where Pij(t) is the number of packets of flow i served before

time t at resource j and Tkj is the RTT of packet k at resource

j. Variable φ̂ij(t) is an average of the flow i rate leaving

resource j over the last W (p) packets.

Convergence to BMF rates occurs if W (p) is larger than the

bound of Proposition 2. In the present example, the rate of

flow 2 for W (p) = 3 converges to a value less than the BMF

allocation. On the other hand, for W (p) = 10 and greater,

convergence to the fluid limit rates occurs within the first few

RTTs for resource 1 (not shown). Convergence takes 50 RTTs

however for rates at resource 2.

C. Speed of convergence

The time to converge to the BMF rates depends on the

requirement parameters. We have explored this dependence
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by simulating the 2 resource network with many different

random requirements. Flows of the same “class” have the

same requirements drawn uniformly at random between 0

and 1. There is a variable number of flows per class. We

set W (p) = 20 for this experiment. The initial assignment

of the W (p) packets of each flow at each resource is also set

at random.

Figure 3 plots the cumulative distribution function of the

time to convergence for 5000 realizations. The rates are

deemed to converge when all measured rates, φ̂ij , are simul-

taneously within 5% of the calculated BMF rates. Time to

convergence for each flow is measured in its own RTTs and

the overall convergence time is the maximum of these counts.

The figure shows that convergence time can be quite long

and increases statistically with the number of flows. Slow

convergence occurs when a flow backlog drains from one

resource to the other at a very slow rate since the fair share

at each is momentarily very similar. The occurrence of such

an event is more likely as the number of flows with different

requirements is greater. This explains why the convergence

time in this experiment is statistically longer for the cases

with more classes. Note, however, that even when convergence

to precise BMF rates may be relatively long, it is very rare

(< 1% of cases) that the rate attained by any flow after 20

RTTs differs by more than 20% from its BMF rate.

We have also investigated the impact on convergence time

of the packet window size W (p). The convergence time in

RTTs has roughly the same CDF if W (p) is somewhat greater

than the bound in Proposition 2. This CDF coincides with that

of the fluid model evaluated using the same random choice of

requirements and initial backlogs.

VI. CONCLUSION

This paper considers multi-resource sharing between flows

with heterogeneous resource requirements arising notably in

networks with wireless links or software routers implementing

virtualized network functions. Bottleneck max fairness is a

sharing objective in this context that yields a satisfactory

efficiency fairness tradeoff. Our aim in this paper has been to

show BMF can be realized by locally imposing fair sharing at

each resource and performing end-to-end window-based flow

control.
Results of a large number of simulations of both fluid

and packet-based models demonstrate that flow rates indeed

converge in finite time to the BMF allocation from whatever

initial backlog state. This empirical evidence is probably

sufficient justification for engineering purposes but remains

unsatisfactory from an analytical perspective.
Our main contribution has been to build a rather intricate

proof of convergence for a fluid model of a 2 resource network.

The system is significantly more complex than a network

with homogeneous requirements and extension of the proof to

more than 2 resources remains a challenging open problem.

Insights gained in the present analysis did, however, lead to

an original proof of convergence to max-min fairness for a

general network with homogeneous requirements.
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APPENDIX

The following is used in the proofs of Lemmas 1 – 3.

Lemma 4: Inequality (4) implies
∑n

i=1
ai1

ai2
> n.

Proof. Since the harmonic mean of a set of numbers is always

smaller than the arithmetic mean,

1

n

n∑
i=1

ai1
ai2

> n

(
n∑

i=1

ai2
ai1

)−1

> n

(
n∑

i=1

ai1
ai2

)−1

.

Thus, (
n∑

i=1

ai1
ai2

)2

> n2

and the lemma follows since the aij are all positive. �

Lemma 1 – a sufficient condition

Proof. When r = 1, the denominator in (6) is zero and the

condition reads
∑n

i=1 ai1/ai2 > n since the right hand side

must be negative. With this interpretation we prove that (6) is

a sufficient condition for flow r to be backlogged for r ≥ 1.

Since
∑n

i=1 ai1/ai2 > n by Lemma 4, sufficiency is enough

to prove the first statement.

We only need to consider evolutions from valid (i.e., per-

sistent) system states with each flow backlogged at at least

one resource. If all flows are initially backlogged only at

resource 1 and this is a persistent state, convergence has

already occurred. If all flows were initially backlogged only

at resource 2 we would have φi2ai2 = 1/n and φi1 = φi2.

This yields a combined consumption of resource 1,
∑

ai1φi1,

that is greater than 1 (by Lemma 4) proving that this state is

in fact impossible, i.e., not persistent.

When both resources have at least one backlogged flow, the

fair shares f1 and f2 are well-defined and characterize the

system state. If flow i is backlogged at 1 but not at 2, we

must have ai1φi1 = f1, ai2φi2 < f2 and φi1 = φi2 yielding

ai1/ai2 > f1/f2. If flow i is backlogged at both resources with

the queue at 1 increasing, we have ai1φi1 = f1, ai2φi2 = f2
and φi1 < φi2 again yielding ai1/ai2 > f1/f2. Similarly, for

flows that are not backlogged at 1 or have a decreasing queue,

we must have ai1/ai2 < f1/f2.

The value of the ratio f1/f2 partitions flows into two

categories. The first denoted C1 consists of flows such that

ai1/ai2 > f1/f2. These flows are backlogged only at 1 or

have an increasing resource 1 queue. The second category C2
comprises the remainder and these are backlogged only at 2

or have a decreasing queue at 1. The statement of the lemma

is true if flow r belongs to category C1 in every valid state.

To establish the sufficient condition, first suppose flow r is

not in category C1 for some valid state since ar1/ar2 < f1/f2.

No flow other than flows 1 to r − 1 can then be in C1 since

we would require ai1/ai2 > f1/f2 and ai1/ai2 < ar1/ar2.

Let B2 ⊆ C2 be the set of flows backlogged only at 2 and b2
its cardinality. The fair shares f1 and f2 then satisfy

f1 =
1−∑i∈B2

ai1

ai2
f2

n− b2
,

f2 =
1−∑r−1

i=1
ai2

ai1
f1

n− r + 1
.

Solving we find,

f1
f2

=
n− r + 1−∑i∈B2

ai1

ai2

n− b2 −
∑r−1

i=1
ai2

ai1

.

The right hand side is maximized when B2 consists of flows x1

to n for a particular value of x1. These are the flows with the

smallest values of ai1/ai2. To see this suppose the maximizing

B2 instead includes flow k but not j with aj1/aj2 < ak1/ak2;

replacing k by j would increase f1/f2 contradicting the initial

assumption. Thus,

f1
f2

≤ n− r + 1−∑n
i=x1

ai1

ai2

x1 − 1−∑r−1
i=1

ai2

ai1

.

Note that x1 ≥ r and, for the positivity of f1 and f2, we

also require,

n− r + 1 >

n∑
i=x1

ai1
ai2

, (16)

x1 − 1 >
r−1∑
i=1

ai2/ai1. (17)

It is true that f1 and f2 would also be positive if the inequality

in both (16) and (17) were inverted. We show that this is

impossible for x1 ≥ r. Write

n− r + 1−
n∑

i=x1

ai1
ai2

= x1 − r +

n∑
i=x1

(1− ai1
ai2

).

For this expression to be negative it is clearly necessary that

the smallest term in the sum be negative, i.e., ax11/ax12 > 1.

Similarly, writing

x1 − 1−
r−1∑
i=1

ai2
ai1

= x1 − r +

r−1∑
i=1

(1− ai2
ai1

)

we deduce that the expression can only be negative if the

smallest term in the sum is negative, i.e., if a(r−1)2/a(r−1)1 >
1. Given the ordering of the flows following (5), this condition

is incompatible with the previous one completing the proof

that (16) and (17) are indeed necessary conditions on the value

of x1.

Let

F (x) =
n− r + 1−∑n

i=x
ai1

ai2

x− 1−∑r−1
i=1

ai2

ai1

,

so that x1 maximizes F (x) over states satisfying the above

inequalities. We now show that x1 = r is actually the only



possibility by successively considering all possible values of

x1.

i) 1 < x1 − 1−∑r−1
i=1 ai2/ai1 and x1 > r.

If x1 maximizes F (x) we have F (x1) > F (x1 − 1) or

n− r + 1−∑n
i=x1

ai1

ai2

x1 − 1−∑r−1
i=1

ai2

ai1

>
n− r + 1−∑n

i=x1−1
ai1

ai2

x1 − 2−∑r−1
i=1

ai2

ai1

(18)

where the denominators are both positive in the assumed

range. Cross-multiplying and simplifying, we find,

F (x1) <
a(x1−1)1

a(x1−1)2
.

If, as assumed, ar1/ar2 < f1/f2 for some valid state, then

certainly ar1/ar2 < F (x1) < a(x1−1)1/a(x1−1)2 implying

r > x1 − 1. As r and x1 are integers, this inequality is

incompatible with the assumption x1 > r. We conclude from

this contradiction that x1 cannot in fact be in the considered

range.

ii) 0 < x1 − 1−∑r−1
i=1

ai2

ai1
< 1 and x1 > r.

We again have (18) but the denominator on the left is positive

while the one on the right is negative. Cross-multiplying

therefore inverts the inequality and we deduce,

F (x1) >
a(x1−1)1

a(x1−1)2
. (19)

Let Nf (x) = n − r + 1 −∑n
i=x

ai1

ai2
and Df (x) = x − 1 −∑r−1

i=1
ai2

ai1
so that F (x) = Nf (x)/Df (x). We can write

F (x1) =
Nf (x1 − 1) +

a(x1−1)1

a(x1−1)2

Df (x1 − 1) + 1
>

a(x1−1)1

a(x1−1)2
.

As Df (x1 − 1) + 1 is positive in the considered range, the

inequality yields

Nf (x1 − 1) > Df (x1 − 1)
a(x1−1)1

a(x1−1)2
.

On the other hand, Df (x1−1) is negative so that the inequality

is inverted on division giving,

F (x1 − 1) =
Nf (x1 − 1)

Df (x1 − 1)
<

a(x1−1)1

a(x1−1)2
. (20)

We can also write,

F (x1 − 1) =
Nf (x1)− a(x1−1)1

a(x1−1)2

Df (x1)− 1
.

From (19) and Df (x1) > 0, we have Nf (x1) >
Df (x1)a(x1−1)1/a(x1−1)2 and, therefore,

F (x1 − 1) >
Df (x1)

a(x1−1)1

a(x1−1)2
− a(x1−1)1

a(x1−1)2

Df (x1)− 1
=

a(x1−1)1

a(x1−1)2
.

This contradicts (20) proving, therefore, that x1 cannot be in

the considered range.

iii) x1 = r.

First consider r = 1. In the state where all flows are

backlogged only at resource 2, we would have f2 = 1/n and a

combined flow into resource 1 of
∑n

1=1
ai1

ai2
/n. However, the

latter expression is greater than 1 by Lemma 4 proving that

this state is impossible. Flow 1 must therefore belong to C1.

For r > 1, in order for the initial assumption to be satisfied

we require ar1/ar2 < f1/f2 for some state. This is clearly

not satisfied if ar1/ar2 > F (x1) = F (r). In other words, a

sufficient condition for flow r ∈ C1 is indeed (6). �

Lemma 3 - convergence to BMF

Proof. We know from Lemma 1 that the backlog of flow 1

always converges and from Lemma 2 that the backlog of flow

n converges independently of r if
∑n

1 ai2/ai1 > n. It remains

to consider states with r > 1 and s > 0 where the sufficient

conditions for convergence are (6) and (7), respectively.

Let N(r) denote the numerator and D(r) the denominator

of the right hand side of (6):

N(r) = n− r + 1−
n∑

i=r

ai1
ai2

=

n∑
i=r

(
1− ai1

ai2

)
,

D(r) = r − 1−
r−1∑
i=1

ai2
ai1

=

r−1∑
i=1

(
1− ai2

ai1

)
.

It is easily verified that N(r) and D(r) cannot both be negative

for the same value of r. Moreover, the values of r where N(r)
may be negative are the smallest possible (it is easy to see that

N(r + 1) < 0 ⇒ N(r) < 0 for 1 ≤ r < n) and the values of

r where D(r) may be negative are the largest possible (since

D(r − 1) < 0 ⇒ D(r) < 0 for 1 < r ≤ n).

The sufficient condition (7) that flow n − s stabilizes to a

resource 2 backlog may be expressed

a(n−s)2

a(n−s)1
>

D(n− s+ 1)

N(n− s+ 1)
.

If the right hand side is negative, the condition is trivially

satisfied. If positive both numerator and denominator are

positive and we can invert the inequality to read

a(n−s)1

a(n−s)2
<

N(n− s+ 1)

D(n− s+ 1)
.

If ar1/ar2 < N(r)/D(r) condition (6) is not satisfied. The

proof is complete if we prove that (ar1/ar2 < N(r)/D(r)) ⇒
(a(n−s)1/a(n−s)2 < N(n− s+ 1)/D(n− s+ 1)), i.e., (7) is

satisfied.

If ar1/ar2 < N(r)/D(r) then N(r) and D(r) must both

be positive and N(r) > D(r)ar1/ar2. We deduce,

N(r + 1)

D(r + 1)
=

N(r)− 1 + ar1/ar2
D(r) + 1− ar2/ar1

>
D(r)ar1/ar2 − 1 + ar1/ar2

D(r) + 1− ar2/ar1

=
ar1
ar2

.

Now, ar1/ar2 > a(r+1)1/a(r+1)2 so N(r + 1)/D(r + 1) >
a(r+1)1/a(r+1)2. Applying the same argument repeatedly we

finally deduce a(n−s)1/a(n−s)2 < N(n−s+1)/D(n−s+1).
�


