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1. INTRODUCTION   

It is an uncredible fact that a so ancient concept such as symmetry has not yet received a 
widely accepted general definition. Rather, several definitions are found in the literature 
and on the web. Most time, different terms and wording are used, although the 
underlying concept seems to be the same. Furthermore, practical definitions are often 
based on strong assumptions, such as the existence of the euclidean structure for 
geometric symmetries. In most cases, symmetry is exemplified rather than defined. It is 
not claimed here that all kind of symmetries are coverable by a single mathematical 
definition: books reviewing symmetry concepts over a broad spectrum of fields, going 
from Weyl (1952) to Darvas (2007), show us that there is much to learn and to explore 
before stating whether or not a unique definition is possible. Our purpose is rather to 
consider some situations involving different symmetry definitions, and show that a 
single common one suffices. Moreover, defining symmetry appears to be a hot topic, as 



  M. PETITJEAN 100

suggested in several recent international conferences (SymCon 2007, ISC 2007, 
Symmetry Festival 2006). 

One of the previous attempts to define symmetry was done in an open access paper by 
Petitjean (2003). Originally, this latter was devoted to define symmetry and chirality 
measures rather than to define symmetry itself. The Wikipedia definition of symmetry, 
which appeared on the web in its most general form in 2005, does not fundamentally 
differ from the 2003 one. By no way it is claimed that that the 2003 definition was 
never published before (somebody has to look), and retrieving the first occurrence of 
the definition is outside the scope of this paper. Here, the deep role of a group structure 
is investigated and its need is demonstrated rather than being a priori imposed. The 
need of a metric space is also pointed out. 

The mathematical terminology we use here is the set theory one, but we reintroduce 
some basic mathematical concepts in order to let the paper be self-contained for the 
broad spectrum of readers of the Journal. For convenience, special set theory symbols 
such as “for all” and “it exists” are avoided. 

2. THE ASSUMPTIONS ABOUT OBJECTS  

Intuitively, an object is symmetric when it is declared to be identical to a transform of 
itself: so, we must be able to declare when an object is identical to one of its transforms. 
Here, it is pointed out that not all kind of transforms should be allowed in a symmetry 
context. E.g., any string of at least three bits is such that the permutation of any two 
identical bits returns the same string. Declaring that we have found a symmetry here 
would lead to conclude that all strings of more than two bits are symmetric, an 
obviously false conclusion. Our main idea is thus to allow only distance-preserving 
transforms (it will be shown further that it solves the problem above). Now we need to 
define objects and tranforms. 

First we define a set E of which the elements may be called points, or symbols (bits, 
digits, letters, etc.), or may have some other name, depending on the practical symmetry 
study we would like to do. 

Then we define objects: 

Definition 1: An object is a function having its input argument in E. 
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E is not the set of objects and we do not care about the values returned by the function, 
which are not assumed to be in E. The objects are functions defined on E on a way 
which does not to need to be specified now, provided that we are able to declare when 
an object is identical to an other object. This kind of identity has sense under the three 
following assumptions: 

(a1) An object is identical to itself. 
(a2) If an object is identical to a second object, then the second one is identical to the 
first one. 
(a3) If an object is identical to a second object, and this latter is identical to a third 
object, then first one is identical to the third one. 

As known, the properties (a1), (a2) and (a3) of the identity relation are respectively 
called reflexivity, symmetry, and transitivity. It will be shown further that the word 
“symmetry”, as it is used in the preceding sentence, indeed corresponds to a situation 
covered by the general definition we are presenting. 

The symbol of the equality “=” is used by the mathematicians when the three properties 
above stand, and these properties have obviously been defined to clarify what the 
equality symbol should mean. So, we retain it here to denote the identity between 
objects. It means that the debate occurring in the symmetry community about 
invariance, similarity, identity, and equality, is not crucial since it is obvious that the 
lack of any of the properties (a1), (a2), or (a3), would lead to an improper situation. So, 
the equality symbol is appropriate. Nevertheless, it is important to mention here the 
extremely interesting remark done by one of the reviewers of the present paper: “I 
prefer the stricter use of identical, where the state of a square rotated by 90 degrees can 
be equivalent to the original state, while only 360-degrees rotation gives an identical 
state.” It means that, despite that both the terms identical and equivalent are based on 
the properties (a1)-(a3), it could be safe to reservate the former to specific situations. 

As known, each set of all identical objects defines a class of equivalence. 

Our main assumption about E is H0: 

H0: E is a metric space. 
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In other words, H0 means that we are able to compute the distance between any two 
elements of E. A distance is a function δ of (E,E) in R satisfying to the following 
properties. 

For all x in E and y in E:  
δ(x,y)≥0 
δ(x,y)=δ(y,x) 
x=y implies δ(x,y)=0 
δ(x,y)=0 implies x=y 

For all x in E, y in E and z in E:  
δ(x,z)≤δ(x,y)+δ(y,z) (triangle inequality) 

As known, the function δ is called a symmetric function, due to the property 
δ(x,y)=δ(y,x). Here again, it will be shown further that the word “symmetry”, as it is 
used in the preceding sentence, indeed corresponds to a situation covered by the general 
definition we are presenting. 

There is a huge of distances defined in various contexts (Deza and Deza 2006). So, as 
proposed in Petitjean’s 2003 paper, a practical way to define the equality between 
objects is to exhibit a distance between objects, this distance being not to be confused 
with the distance defined on E. Thus, identical objects are fully characterized by a null 
distance between them. It is emphasized that supplying a distance is not mandatory to 
characterize identical objects. However, it may help to clarify what is the set of objects. 

3. THE ASSUMPTIONS ABOUT TRANSFORMS   

3.1 BIJECTIVE TRANFORMS   

Having defined the metric space E and the equality over the set of objects (with or 
without using a distance between objects), we consider now the set F of transforms. 
Here comes a major assumption about how symmetry should be modelized: 

Objects defined on E are transformed 
via tranforms over the elements of E.  

Thus we consider the set F of transforms over E. 
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Let x be an element of E and U a transform, i.e. U is an element of F. The image y of x 
is an element of E denoted Ux, and we assume that there is at most one transformed 
element y=Ux of x. Should it happen that there are two images of x through U, we 
would consider that we are dealing with two transforms. This assumption is denoted 
H1: 

H1: Any element has at most one image through a given transform   

The debate about alternate notations of the transformed element, such as U(x) (i.e. U is 
denoted as a function), or xU (i.e. U operates on x on the right of x), is not crucial, and 
the forecoming conclusions would be the same. So, we retain the most compact notation 
Ux. 

We consider that any element of E can be tranformed by any element of F. Otherwise 
there would exist at least one x which could not be transformed by some U in F. In this 
latter situation, we consider that in fact U transforms x into x. Thus any element U of F 
maps E on E. This assumption is denoted H2: 

H2: Any element has at least one image through a given transform   

Assuming that H1 and H2 stand, the equality between transforms is defined below and 
we refer to it as the definition 2: 

Definition 2: U1=U2 if and only if U1x=U2x for all x in E.  

The equality U1=U2 satisfies to the properties (a1), (a2) and (a3) evoked in section 2. 

Looking for a symmetry in an object lead us to compare this object to its image through 
some transform of the set E on which the object is defined. In this context, we would 
not like to privilege the role of the object over the role of its image, so that we would 
like to consider the inverse transform associating each element of E to its image with 
the need to have this inversible transform also satisfying to H1 and H2. Let us denote 
by U−1 the inverse of U. 

In order to have U−1 satisfying to H1, U must satisfy to H3: 

H3: All transforms U of  F are injections of E in E. 
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In other words, for any transform, distinct elements have distinct images, or, 
alternatively, x and y being two elements and U being a transform, Ux=Uy implies x=y. 

In order to have U−1 satisfying to H2, U must satisfy to H4: 

H4: All transforms U of F are surjections of E onto E. 

In other words, for any transform U, any element of E is an image of an element of E 
through U. 

Summarizing the four assumptions H1-H4: all transforms U are bijections from E onto 
E. A bijection of a finite set onto itself is called a permutation. 

3.2 COMPOSITION OF BIJECTIONS   

We consider the set G of all bijections of E onto E. The set F is a subset of G but we do 
not assume that F is G. However, the definition 2 of equality between transorms is valid 
for all elements of G. 

The composition (U1U2) of bijections U1 and U2 is defined below and we refer to it as 
the definition 3: 

Definition 3: For all x in E and all U1 and U2 in F, (U1U2)x=U1(U2x).  

It is easy to check that the composition of bijections defines a group which operates on 
E: see definitions and properties of groups in the appendix. Since there is no ambiguity, 
parenthesis and operator symbols can be omitted in expresssions. E.g., the product in 
the definition 3 is an element of E which can be noted U1U2x. 

The existence of a group structure has been many times pointed out in the context of 
symmetry. However, there is some ambiguity about which group(s) are to be 
considered. The set G of all bijections of E onto E is a group for the composition of 
bijections, but it is not convenient to identify the set F of transforms to it, as mentioned 
at the beginning of section 2. An other example is achirality, for which the transforms 
to be considered could be the indirect isometries, but the composition of two indirect 
isometries is never an indirect isometry, so that no group is defined this way. Clearly, 
we need to define carefully which transforms are allowed, i.e. we need to define F. 
Now comes the assumption H5: 
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H5: for any x in E and y in E and for any U in F, δ(Ux,Uy)=δ(x,y). 

In other words, F is a set of bijections preserving the distance δ defined on E. Since 
there is no reason to discard any distance-preserving bijection, we define F as follows: 

F is the set of all bijections of E onto E preserving δ. 

F satisfies to the three following properties: 

F is not empty because the neutral element IF satisfies to H5 
(IF is the bijection such that IFx=x for all x in E). 

For all U1 in F and U2 in F, U1U2 is in F, 
i.e. F is stable for the composition of distance-preserving bijections. 

For all U in F, U−1 is in F. 
Obviously U−1 is a distance-preserving bijection if and only if U is a distance-
preserving bijection. Thus F is stable for the inversion: the role of the object is not 
privileged over the role of its image. 

The three properties above permits to prove that F is a subgroup of G (see appendix: the 
properties (A6)-(A8) are satisfied). Furthermore, it is a group action on E, i.e. a group 
operating on E: the six properties (A1)-(A4) and (B1), (B2) in the appendix are all 
satisfied. 

3.3 TRANSFORMATIONS OF OBJECTS   

Now we can define what is the transformation of an object, an object being a function 
defined on E (i.e. its input argument is in E). We associate one transformation TU of an 
object Y to one tranformation U in F: 

Definition 4: The transform TU of an object Y is an object TU(Y) such that for 
all x in E, (TU(Y))(x)=Y(U−1x). 

In other words, the object Y is a function on E which is transformed via distance-
preserving bijections (permutations) of the elements of E.  
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Remark: The transforms TU are applicable to all objects and the transformed 
objects are indeed objects.  

For clarity, the index U will be omitted, the tranforms TU1
, TU2

, TU, T−1,U, will be 
respectively noted T1, T2, T, T−1, and the images of Y through these transforms will be 
respectively noted T1Y, T2Y, TY, T−1Y, etc. The transform TIF

, which obviously leaves Y 
invariant, will be noted I. 

Let Θ be the set of transforms of the objects. The composition of distance-preserving 
bijections induces the composition of transforms of objects, which is defined as 
follows: 

Definition 5: T1 and T2 being two elements of Θ, their composition T2T1 is 
such that, for any object Y and for all x in E, ((TU2

TU1
)(Y))(x)=Y((U2U1)−1x). 

Because we have set a one to one correspondence (i.e. a bijection) between the elements 
U of the group F and the elements T of Θ, then Θ is a group for the composition 
defined above, i.e. it satisfies to the axioms (A1)-(A4) in the appendix. Moreover it 
obviously satisfies also to the axioms (B1) and (B2), so that Θ is a group acting 
(operating) on the set of objects. 

Remark: The group Θ operates on the left, i.e. an object Y transformed by TU is 
denoted by TY (index U omitted). Should we have defined (TU(Y))(x)=Y(Ux) 
rather than (TU(Y))(x)=Y(U−1x) in the definition 4, we would have again Θ being 
a group, but operating on the right, i.e. an object Y transformed by TU would be 
denoted by YT (index U omitted). In this latter situation, all further conclusions 
would be the same. This remark is coherent with the fact that we never 
privileged the role of the object over the role of its image, and conversely, of 
course. 

4. DEFINITION OF SYMMETRY   

We summarize here what we need to define symmetry. 

Let E be a metric space, δ its associated distance function, and F the set of all bijections 
of E onto E preserving δ. F has been shown to be a group operating on E. The neutral 
element of F is IF. 
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Let Y be an object defined on E, i.e. Y is a function having its input argument in E. 

Definition 6: An object Y is symmetric if there is a bijection U of F, with U≠IF, 
such that for all element x of E, Y(Ux)=Y(x). 

We do not need anything more to define symmetry. What follows is useful to exhibit 
some immediate properties of symmetric objects. 

A symmetric object Y is such that Y(U−1x)=Y(x), and it is proved iteratively that 
Y(Umx)=Y(x) for any signed integer m. 

When Y is symmetric for both bijections U1 and U2 in F, then 
Y(U1U2x)=Y(U2U1x)=Y(x). 

For any object Y, we consider the subset SYF of F containing all elements U of F such 
that for all element x of E, Y(Ux)=Y(x). This set is not empty because it contains IF. 

SYF is a subgroup of F for the composition of bijections of E onto E preserving the 
distance δ. 

Y is symmetric if and only if SYF contains at least two elements. 

We had defined Θ as being the group of transforms operating on the space of objects, 
such that Θ is the image of the group F via the following bijection: one element T of Θ 
is associated to one elemnt U of F such that (TY)(x)=Y(U−1x), or equivalently, 
(TY)(x)=Y(Ux), both definitions leading to the same set Θ and the same properties. For 
convenience, we keep the notations coherent with the first one (i.e. definition 4). 

Now we can define the set of symmetry operators associated to an object Y: 

Definition 7: Let SY be the subset of Θ containing all elements T of Θ such that 
Y=TY. SY is the set of symmetry operators associated to Y. 

SY is not empty because it contains at least the neutral element I of Θ. So we get an 
alternate definition of a symmetric object, which is obviously equivalent to the 
definition 6: 

Definition 8: An object Y is symmetric if the set SY of its symmetry operators 
contains at least two elements. 
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Some immediate properties follow: 

For all T in SY, any object Y is such that T−1Y=Y, and it is proved iteratively that TmY=Y 
for any signed integer m. 

T1 and T2 being two elements of SY, then T1T2Y=T2T1Y=Y, meaning that T1 and T2 
operate commutatively on Y. Moreover, the symmetry operators themselves commute: 
T1T2=T2T1. 

SY is a subgroup of Θ for the composition of transforms of objects, and this subgroup is 
commutative (or abelian). 

Remark: Neither Θ nor SYF offer this commutativity property. 

5. SYMMETRY EXAMPLES   

5.1 EUCLIDEAN SPACES   

We first consider symmetrical figures defined by a set of points (e.g. the vertices of an 
isoscele triangle), a domain of the space, and so on. The set E is here the d-dimensional 
space, where the elements are points with d coordinates. The distance δ is the usual 
euclidean distance, and the set F of bijections preserving δ is the set of isometries, 
which contains all compositions of translations, rotations, and mirror inversions. The 
objects Y are the indicator functions of the symmetrical figures or domains. 

E.g., an isoscele triangle in the euclidean plane can be modelized by the function taking 
the value 1 at the vertices of the triangle, and taking the value 0 elsewhere. If the sides 
are to be involved, the triangle is modelized by the function taking the value 1 at each 
point of the sides, and taking the value 0 elsewhere. If we would like to modelize the 
whole triangle with its interior, we should consider the function taking the value 1 at 
each point of the triangle (including sides and vertices), and taking the value 0 
elsewhere. If we would like to modelize only the interior of the triangular domain, we 
should consider the function taking the value 1 at each point interior to the triangle 
(excluding sides and vertices), and taking the value 0 elsewhere. In all cases, the 
symmetry would be recognized. 
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In the unidimensional case (E=R), a function Y1 such that Y1(x)=Y1(−x) would be also 
recognized as a symmetric function. Remark: this kind of symmetry is in fact a mirror 
symmetry (the mirror is the point at the origin), and so this function should be called 
achiral. Considering the curve representing the function Y1 in the plane is an other way 
to modelize symmetry. In this situation, E=R2, and we would have to consider the 
indicator function Y2 of the curve, taking the value 1 at each point of the curve, and 
taking the value 0 elsewhere: this curve is an achiral object, but the object Y2 is a 
function with input arguments in R2 rather than in R. 

If we consider now a symmetric real function y of a real variable x such that 
y(x)=−y(−x), its curve in the plane has a direct rotational symmetry, which can be 
recognized via the indicator function Y taking the value 1 at each point of the curve, and 
taking the value 0 elsewhere. This curve is symmetric, in the sense of a direct 
symmetry. However, this kind of symmetry cannot be recognized via y itself, since no 
rotation is possible in R except the identity. Furthermore, the sign inversion of the 
objects has not been defined. 

In the d-dimensional euclidean spaces, the restriction above still applies, due to the fact 
that we did not define the sign inversion of the objects. Functions invariant upon sign 
inversion of one or several components of their argument in Rd or invariant upon some 
permutation of the components of the argument, are such that both ways to recognize 
symmetry operate: either via objects in Rd (i.e. the function themselves), or via objects 
in Rd+1 (i.e. the indicator functions of the curves of the functions). For the functions 
needing a sign inversion, only the second way operates. For d>1, both types of 
functions may be either direct-symmetric, or achiral, or both. 

Translation symmetries are recognized by both ways described above, in any 
dimension. E.g. a periodic function Y in R or in Rd (such as an helix), would be 
recognized as being symmetric. 

It may be encountered the term skew symmetry in various contexts. E.g. the image of a 
symmetric object in the d-dimensional euclidean space through a full rank affine 
transform is sometimes called a skew symmetric object. From our definition of 
symmetry, a skew symmetric object is not symmetric unless the affine transform is an 
isometry, which is normally not the situation of skew symmetric objects. It should be 
pointed out that all non-degenerated triangles are skew symmetric, although the term 
“symmetric” should apply only to isosceles and equilateral triangles. 
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More generally, we do not recommend that the images of symmetric objects through 
simple mathematical transforms are called symmetric, unless they are indeed proved to 
be symmetric. If we would authorize that, there would be no limit on the sophistication 
of the mathematical transforms, and any object would be flagged as being symmetric, 
soon or later. 

5.2 FUNCTIONS AND DISTRIBUTIONS  

Attributing weights on points lead to modelize symmetry situations with distributions, 
i.e. probability distributions. E.g., the vertices of an equilateral triangle having their 
respective weigths equal to 1/2, 1/3, and 1/6, constitute a chiral object unless the 
vertices are in a space having more than two dimensions. E being a set assumed to be 
measurable, a distribution is a function having its input argument in the set of 
measurable subsets of E and returning an output value in the interval 0;1. When E is Rd, 
the distribution function (i.e. the cumulated distribution function) is a function having 
its input argument in E=Rd and which also returns an output value in the interval 0;1. 
The distribution and the distribution function should not be confused: their input 
argument are not in the same set. To achieve the confusion, as a joke, the Dirac delta 
function has been called a function, although it is a distribution. It is known that the 
distribution function always completely describes the distribution. Thus it is possible to 
recognize a symmetric distribution in Rd from its distribution function. E.g., the 
gaussian distribution has a symmetric distribution function which can be recognized 
through the indicator function of its curve. 

As mentioned in the previous section, multivariate distribution functions which are 
invariant upon sign inversion of one or several components of their argument x in Rd or 
invariant upon some permutation of the components of the argument, are such that there 
are both ways to recognize symmetry: either via objects in Rd, i.e. the distribution 
functions themselves, or via objects in Rd+1, i.e. the indicator functions of the curves of 
the distribution functions. For the distribution functions Y such that Y(x)+Y(Ux)=1, U 
being an isometry in Rd, only the second way operates, because we have not defined 
operations in the set of objects. It should be pointed out that asymmetry coefficients 
such as Pearson’s skewness and its multivariate analogs are inadequate to recognize 
symmetry because there are non symmetric distributions having a null centered third-
order moment. 
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When a symmetric distribution function admits a density, the symmetry of the 
distribution can be recognized through its density function, this latter being interpreted 
as a weight function. However some situations cannot be modelized through 
distributions, such as infinite patterns in the euclidean space, which would assume an 
infinite mass. Here, it is better to consider a weight function in Rd, even if it is not 
integrable. If needed, the curve of the weight function in Rd+1 can be considered. E.g., 
the symmetry properties of periodic functions, helices, etc., on which points are 
weighted can be analyzed through the symmetry of their weight function. 

From the definitions 6 or 7, no symmetry exists when E contains only one element x. If 
we consider the set of subsets of E, it contains the void subset and E itself, so we turn 
on to the case of a set containing two elements. 

5.3 EUCLIDEAN SPACES WITH COLOR CONSTRAINTS   

The vertices of an equilateral triangle having different colors, such as red, green, and 
blue, constitute a chiral object (unless the vertices are in a space having more than two 
dimensions). The next example of the use of colors is encountered in chemistry. The 
fluoro-chloro-bromo-methane has five atoms: assuming them to be punctual and putting 
the carbon at the center of a regular tetrahedron with the four other atoms lying at its 
vertices would constitute an achiral model of the molecule if the nature of the atoms is 
ignored. This situation can be modelized through the attribution of colors to the atoms: 
when the four substituents of the carbon have all different colors, the model of the 
molecule is chiral. 

The colors are values taken by a variable “color” in a non euclidean space. So, we have 
to consider a space E which is the cartesian product of two spaces: the euclidean space 
Rd, and the space of colors C, this latter being assumed to be measurable in order to 
define distributions on E = (Rd, C). Then, we assume that the random variables have 
distributions such that to each color c is associated a distribution in Rd, its weight being 
the probability to get the color c. The full theory is outside the scope of this paper 
(Petitjean 2002, 2004), but it is clearly an extension of the concept of mixture of 
distributions (Everitt and Hand 1981). 

For clarity, we restrict us to the case where C contains a finite number of colors c1, c2, 
etc., with respective probabilities Pr(c1), Pr(c2), etc. To each color ci is associated a 
distribution in Rd, with a distribution function Fi. Thus, z being a vector of Rd and c 
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being a color of C, an element x of E is a couple (z,c), and, using conditional 
probabilities, the objects Y are such that { }( ) ( )1 Pr( )

ii ic cY x F z c c== =∑ , where 

{ }1  denotes an indicator function. 

When there is only one color, i.e. this color has a probability equal to 1, then Y(x) is just 
the distribution function associated to this unique color. In this situation, it is equivalent 
to say that there is no color at all and to turn on back to the case of an ordinary 
multivariate distribution. 

Returning to the general case, the distance δ in E between two elements x1 and x2 of E, 
with x1 = (z1, c1) and x2 = (z2, c2), may be built from several ways, depending on the 
structure of C. If we denotes by δe a distance in Rd and by δc a distance in C, 
expressions such as 1 2 1 2 1 2( , ) ( , ) ( , )e cx x z z c cδ δ δ= +  can work. Anyway, the 
isometries in E are the isometries in Rd preserving the distances in C. 

In order to clarify what precedes, we examine the case of the chessboard. The 
distribution in the space of colors C is such that there are two equiprobable colors cb 
(black) and cw (white). To the black color is associated a distribution in the euclidean 
plane, which is a mixture of 32 equiprobable uniform laws over a square: the vertices of 
the reference square having for coordinates (0,0),(1,0),(1,1),(0,1), 16 of the 32 squares 
are images of the reference square through the vectors (2i,2j), the signed integers i and j 
varying in −2,−1,0,+1, and the 16 other squares are its images through the vectors 
(1+2i,1+2j), i and j varying in −2,−1,0,+1. To the white color is associated a distribution 
in the euclidean plane, which is a mixture of 32 equiprobable uniform laws over a 
square: 16 of the 32 squares are images of the previous reference square through the 
vectors (1+2i,2j), i and j varying in −2,−1,0,+1, and the 16 other squares are its images 
through the vectors (2i,1+2j), i and j varying in −2,−1,0,+1. 

If we neglect the colors, the symmetries of the chessboard reduce to those of the square 
(−4,−4),(+4,−4),(+4,+4),(−4,+4). Apart the identity, the euclidean isometries in Rd are: 
the rotations of angles π/2, π, and 3π/2, and the mirror reflections through the abscissas 
axis, the ordinates axis, and through the two diagonals of the square. Having two colors 
in C, the set of bijections in C contains only two permutations: the identity and the 
permutation of the two colors. If we allow for distance in C the strict conservation of 
colors, e.g. δc=1ci≠cj

, where 1 denotes an indicator function, we retrieve the symmetries 
associated to the rotation of angle π, and the mirror reflections through the diagonals. If 
we allow also the exchange of colors in C, we are now able to retrieve, in addition to 
the symmetries associated to the identity in C, the following set of symmetries: those 
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associated to the rotations of angles π/2 and 3π/2, and those associated to mirror 
reflections through the coordinates axis. This latter set of symmetries permits to 
recognize that the colors black and white play a symmetric role in the chessboard. Since 
there is no need to use a weight function to modelize the chessboard, we could have 
worked with the indicator function on the reference unit square rather than with the 
uniform distribution on this square. The conclusions would have been the same. 

More generally, if some figure or pattern has more than two colors, we can investigate 
its symmetry properties at various levels in the space of colors, via adequate subsets of 
permutations of colors. E.g., allowing to permute only two colors, or two pairs of two 
colors, or all k! permutations of a subset of k colors, or some combination of 
permutations of subsets of colors, or allowing all colors to be permuted, or none. 
However, the set of authorized permutations should have a group structure preserving 
some distance in C. The analysis of this group structure helps to understand the 
symmetry structure of the pattern. Also we recall that images of symmetric objects 
through simple mathematical transforms should not be confused with symmetric objects 
unless they are proved to indeed be symmetric. 

The use of colors may cover special situations, such as when some real function in Rd is 
not defined elsewhere: the function is extended and takes values in the space  
E = (Rd, C), one of its values in C being a color associated to the domain where the real 
function in Rd was primarily undefined, and its corresponding value in Rd being zero. 
An other situation arises in chemistry and physics, where we have two distributions of 
charges: the negative charges and the positive charges. Summing them algebrically 
would need to work with a signed distribution, for which many powerful theorems do 
not work. Furthermore, it is impossible to retrieve the magnitude of the charges from 
their summation. Working with two colors (one for each kind of charge), permits to 
analyze the symmetry via a colored mixture of distributions as proposed by Petitjean 
(2004): the charges are not added, and only their effects on some other entity are 
algebrically added when needed, and can be handled via a suitable operator. Infinite 
crystal lattices may be modelized via an appropriate set of colors and an appropriate 
weight function taking in account masses and isotopes when needed. 

5.4 NON EUCLIDEAN SPACES; FINITE SPACES   

In the previous section, we considered functions taking values in the space (Rd, C), 
where C is the space of colors. Here we consider functions in finite spaces E = (En, C) 
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where En is a finite space containing n elements. The space C may be be finite or not, as 
for the euclidean space, or may even be not necessary, but En is assumed to be finite. 
What follows may be extended to countable and denumerable spaces. 

A simple example occurs in literature. A palindromic word such as "RADAR" can be 
modelized with a function which takes its input argument in the set of integers 
E=1,2,3,4,5 and returns a symbol in the set of capital letters A..Z. The distance 

1 2( , )x cδ  between the positions x1 and x2 of the letters is 1 2 2 1( , )x x x xδ = − . It 
means that there are only two bijections preserving δ: the identity, and the permutation 
reversing (1,2,3,4,5) into (5,4,3,2,1). The symmetry of the word “RADAR” arises from 
this latter. Anagrams such as “ARDRA” do not preserve δ. Extending this approach to 
texts, to finite or infinite strings of symbols (letters, bits, digits, etc.), to patterns of 
symbols in the plane or in the space, and so on, is obvious. If we would like to 
distinguish capital and non capital letters, introduce colors, etc, we use an appropriate 
space of colors. 

A particluar situation to be mentioned is matrices and tensors, having their elements in 
any space we like. E.g. a real matrix of size m is viewed as a function having as input 
argument a bicomponent vector with both coordinates in 1,…,m, and returning a real. 
Remark: the term "vector" may be improperly used in this context, but we keep it for 
clarity. The first component of the vector is the line index, and the second component is 
the column index. The distance between two vectors x1 and x2 is the euclidean norm of 
their difference: 1 2 2 1( , )x x x xδ = − . The matrix transposition is a permutation 
preserving δ, so that a matrix equal to its transposed is symmetric. Other cases of 
symmetry in matrices related to the symmetries of a square, such as the symmetry 
through the antidiagonal, do not seem to have received a particular name. The case of 
an antisymmetric matrix needs to define the sign of the matrix, so it is handled via an 
indicator function, as mentioned several times. 

A relation over two sets E0 and E1 may be modelized as an indicator function having its 
input argument in E = (E0, E1), i.e. the first component of the argument is an element of 
E0 and the second component of the argument is an element of E1. The function returns 
1 when the second component of the argument is associated to the first one, and returns 
0 if it is not. It could also return “true” when the second component is associated to the 
first one, and returns “false” if it is not. Now, assuming that E1=E0, we consider the 
trivial distance δ(x,y)=0 when the non ordered tuple of components of x and the non 
ordered tuple of components y are equal, and δ(x,y)=1 when the non ordered tuples of x 
and y are different. In other words, δ is just able to tell us whether or not two elements 
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of E are identical up to some permutation of their components. The relation is 
symmetric when it is insensitive to the permutation of the components of its argument. 
The difference with the usual meaning of symmetry is meaningless: we consider a 
single argument with two components rather than two arguments. Thus, the property 
(a2) in section 2 is indeed a symmetry property. Generalizations to ternary, quaternary, 
etc., relations are obvious. Antisymmetric relations are handled as usual. 

More generally, functions of several arguments are viewed as functions of only one 
argument. Using the trivial distance defined above, we can recognize symmetric 
functions. As a particluar situation, we noticed in section 2 that any distance is 
symmetric. 

5.5 GRAPHS   

Graphs are nodes and edges structures, and should not be confused with the curves of 
real functions of real variables. Graphs are extremely important in many areas. Most 
chemical databanks store molecular formulas as non directed graphs: e.g. the water 
molecule H-O-H may be represented by a graph having three nodes (the atoms) and two 
edges (the bonds). Formally, a binary relation is defined over the set of nodes E0. When 
this binary relation is symmetric (see the end of the previous section), the graph is a non 
directed graph, else it is a directed graph. Moreover, colors may be associated to the 
nodes and to the edges. The colors of the nodes and the colors of the edges may be 
numerical or not. E.g. the water molecule has two nodes with the color “hydrogen” and 
one node with the color “oxygen”, and the two edges have the color “simple bond”. 
When needed, the isotopically labelled molecules are modelized by attributing 
numerical values to the nodes. For general graphs, when the colors are positive real 
values, they are most time called weights and may appear either on nodes or on edges 
on both. When no weights are defined, they can be assumed to take the same value for 
all nodes, or for all edges. Sophisticated situations require to define colors having 
several parts, numerical or not (the “or” is not exclusive). The numbering of the nodes 
and the numbering of the edges are discarded. 

Symmetries in graphs arise from the number of graph automorphisms, i.e. the number 
of isomorphisms between the graph and itself. Usually, the graph is called symmetric 
when there is more than one automorphism. E.g., the graph of the water molecule is 
symmetric because it has two automorphisms, and the graph of the ethanol molecule 
CH3-CH2-OH is symmetric because it has twelve automorphisms. In order to modelize 
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graph symmetries, we define the space of nodes E0 (each node may be colored), and 
then the space of edges E = (E0, E0) (the edges may be directed or not). A graph is a 
function Y having its input argument in E and returning the color of the edge. In the 
simplest case, this color is either 0 or 1 so that Y is just an indicator function of the 
edges. In this model, there are always m2 edges, m being the number of nodes. The 
edges which do not exist receive a special color, e.g. the value 0 of the indicator 
function. For multigraphs, Y would return an integer. The colors of the nodes and the 
colors of the edges may have a complex structure containing several components, 
numerical or not. For clarity, we consider the square matrix A of size m associated to Y, 
such that each line is associated to the first component of the input argument of Y and 
such that each column is associated to the second component of its input argument, the 
elements of the matrix being the colors of the edges. When Y is the indicator function of 
the edges, this matrix is known as the connectivity matrix of the graph. There are (m2)! 
permutations of the elements E because E has m2 elements. As we did in the previous 
section, the line index and the column index are a bicomponent vector with both 
coordinates in 1,…,m. However, the distance δ between two edges xi and xj is no more 
an euclidean distance between the vectors xi and xj. We set ( , ) 0i jx xδ =  when xi=xj 
and ( , ) 1i jx xδ =  elsewhere. There are m! isometries, which are biunivoqually 
associated to the m! ways of numbering the nodes. Let P be a permutation matrix of 
order m, P' is its inverse (i.e. its transposed), and I is the identity permutation. When A 
is invariant upon some simultaneous renumbering of its lines and columns, i.e. there is 
P≠I such that PAP'=A (meaning that PA=AP and that A and P commute), a non trivial 
graph automorphism is detected and Y is a symmetric object. 

The graph structure is a convenient model in many situations. E.g., the word “RADAR” 
may be viewed as a non directed graph containing a chain of five nodes and four edges, 
just as the hydrogen-suppressed structural formula of the dimethoxymethane CH3-O-
CH2-O-CH3. However, much complicated situations arise in chemistry. Rigid 
conformers of chemical compounds need to be modelized both through they structural 
formulas and through their geometry, and most molecules have time-dependant 
conformations. Symmetry in chemistry is an extremely vast field (Hargittai and 
Hargittai 1995), and is outside the scope of this paper. 

6. CONCLUSION   

We have attempted to show that symmetric functions are suitable models for a number 
of real situations where symmetry properties of objects are investigated. Our present 
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definition of symmetry is not proved to be universal, and only few physical situations 
have been examined: experts are welcome to do further investigations. Nevertheless, it 
is expected that most practical uses are covered through the present model. The 
community of symmetrists will decide whether or not the term symmetry should receive 
an official definition, and if any, which one it should be. Some associated topics are (i) 
the classification of symmetries, which should be done on the basis of the symmetry 
group structure of the object, and (ii) the measures of symmetries, i.e. symmetry is 
considered as as a quantity varying continuously. In this latter situation, we need to 
define a distance in the space of objects, with an adequate normalization factor in order 
to be scale-independant. This distance is minimized for the isometries in the space in 
which the function have its input argument, or for some selected class of isometries in 
this space, depending on the structure of the group of isometries. 
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APPENDIX: GROUP, SUBGROUP, GROUP ACTION   

A group is a set G with a binary operation noted here *, satisfying to the axioms (A1)-
(A4):  

(A1) stability (or closure): 
For all U1 and U2 in G, the result of U1*U2 is also in G 

(A2) associativity: 
For all U1, U2 and U3 in G, (U1*U2)*U3=U1*(U2*U3) 
(the result can be noted U1*U2*U3). 

(A3) neutral element (or identity element): 
It exists an element I in G such that for all U in G, I*U=U*I=U. 

(A4) inverse element (sometimes called symmetric element): 
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For each U in G, it exists an element in G noted U−1, such that U*U−1=U−1*U=I, where 
I is a neutral element.  

When the property (A5) stands, the group is commutative (or Abelian):  
(A5) commutativity: U1*U2=U2*U1. 

There is only one neutral element. Proof: I being a neutral element, assume that there is 
an other neutral element I'. Thus for any U in G, U*I'=U, thus U−1*U*I'=U−1*U and 
thus I*I'=I, then I'=I. 

Any element has only one inverse. Proof: assume that some U in G has two inverses 
U−1 and U'−1. Thus, U'−1*U=I, thus U'−1*U*U−1=I*U−1, thus U'−1*I=U−1, then 
U'−1=U−1. The same conclusion comes when starting from U*U'−1=I. 

The inverse of the neutral element is the neutral element itself: 
I−1*I=I*I−1=I, thus I−1=I.  

A subset H of G is called a subgroup for the operation * if it is a group for this 
operation. It is easy to prove that the properties (A6), (A7), and (A8) together constitute 
a necessary and sufficient condition for H to be a subgroup of G: 

(A6) H is not empty. 

(A7) stability (or closure) for the product operation: 
For all U1 and U2 in H, the result of U1*U2 is also in H. 

(A8) stability (or closure) for the inversion: 

For all U in H, U−1 is also in H. 

Remark: for a finite subgroup, (A8) is not necessary. Proof: for all U in H, all 
successive powers of U are in H. When generating these successive powers Ui 
for increasing values of the integer i, and since there is a finite number of 
elements in H, the sequence necessarily repeats. Thus it exists two integers n1 
and n2>n1 such that Un2=Un1. Setting n=n2−n1, we deduce that Un=I and thus 
that U−1=Un−1, which is in H. 
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A group action is a function of (G,E) on E, i.e. an operation (which we note here ⋅) 
between an element of G and an element of E which returns an element of E, satisfying 
to the axioms B1 and B2: 

(B1) For all U1 in G and U2 in G and x in E, (U1*U2)⋅x=U1⋅(U2⋅x) 
This associativity property involves two types of operations, and thus should not be 
confused with the associativity (A2) which involves only one type of operation. 

(B2) For all x in E, I⋅x=x, I being the neutral element of the group. 
In other words, I leaves unchanged the elements of E. It is a neutral element for both 
types of operations defined above. 

It is also said that the group G acts (or operates) on E. When no ambiguity occurs, both 
operation symbols may be ommitted in expressions involving elements of G and 
elements of E. 
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