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Abstract

Paired comparison data considered in this paper originate from the comparison of a large
number N of individuals in couples. The dataset is a collection of results of contests between
two individuals when each of them has faced n opponents, where n ≪ N . Individual are
represented by independent and identically distributed random parameters characterizing their
abilities. The paper studies the maximum likelihood estimator of the parameters distribution.
The analysis relies on the construction of a graphical model encoding conditional dependencies
of the observations which are the outcomes of the first n contests each individual is involved
in. This graphical model allows to prove geometric loss of memory properties and deduce the
asymptotic behavior of the likelihood function. This paper sets the focus on graphical models
obtained from round-robin scheduling of these contests. Following a classical construction in
learning theory, the asymptotic likelihood is used to measure performance of the maximum
likelihood estimator. Risk bounds for this estimator are finally obtained by sub-Gaussian
deviation results for Markov chains applied to the graphical model.

MSC 2010 subject classifications: Primary 62G05; secondary 05C80.

Keywords: Paired comparison data; nonparametric estimation; nonasymptotic risk bounds; la-
tent variables.

1 Introduction

Consider a paired comparison problem involving a large number N of individuals. For all 1 6 i 6 N ,
the i-th individual is characterized by a strength (or ability) represented by an unknown parameter
Vi. These parameters are indirectly observed through discrete valued scores Xi,j describing the
results of contests between individuals i and j. Given the values V = (V1, . . . , VN ), the random
variables Xi,j are assumed to be independent and for each i and j, the conditional distribution of
Xi,j given V depends only on Vi and Vj : there is a known function k such that, for all 1 6 i < j 6 N ,

P (Xi,j = x|V ) = k(x, Vi, Vj) .
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The most classical example is the Bradley-Terry model [2, 32] where x ∈ {0, 1} and k(1, Vi, Vj) =
Vi/(Vi + Vj). In the seminal works [2, 32], the problem was to recover the strengths (V1, . . . , VN )
of a small number of players when the number of observed scores for each pair grows to infinity,
see [7] for a review of these results in the original Bradley-Terry model and some of its extensions.
More recently, [23] considered the problem of estimating each strength based on one score per
pair in a tournament where the number N of players grows to infinity. This framework led to
several developments in computational statistics for the Bradley-Terry model, see [14] and [4] for
various extensions of this original model. The related Chen-Lu model was considered in [5] where the
observations take values in {0, 1} and where the function k is given by k(1, Vi, Vj) = ViVj/(1+ViVj).
Using one observation per pair of nodes, it is proved in [5] that, with probability asymptotically
larger than 1 − 1/N2, there exists a unique maximum likelihood estimator of the nodes strengths
which is such that the supremum norm of the estimation error is upper bounded by

√
logN/N .

Consider the random oriented graph G = ({1, . . . , N}, E), where an edge is drawn from i to j
in E if Xi,j = 1 when i < j and if Xj,i = 0 when i > j. It is known since [32] that a necessary and
sufficient condition for the existence of the maximum likelihood estimator (MLE) of (V1, . . . , VN )
in the Bradley-Terry model is that G is connected, i.e. there is a path between every pair of nodes.
This assumption implies some restrictions on the ratio between the strongest and the weakest
strength [23]. This prevents the use of maximum likelihood estimation in a sparse setting where the
objective is to predict the outcome of future comparisons based on few observations. This problem
was for instance considered in [31] which analyzes the MLE of (V1, . . . , VN ) under the condition of
existence of [32], but in a graph where some edges may be unobserved.

This paper sets the focus on the case where each individual is compared to n others, with
possibly n ≪ N in such a way that the assumption of [32] may not hold. In other words, the MLE
of V1, . . . , VN may not exist in this setting. To the best of our knowledge, this kind of dataset
has not been analyzed previously and it is not clear what quantities can be recovered from these
observations. Our strategy is motivated by the Bradley-Terry model in random environment [24, 6].
In this model, strengths are supposed to be realizations of independent and identically distributed
random variables with common distribution π⋆. The paper [24] illustrated for example that an
elementary parametric model for the strength can be used to make predictions regarding the teams
scores at the end of baseball tournaments. The paper [6] recently proved that the player with
maximal strength ends the tournament with the highest degree in the graph G if the tail of the
nodes weights distribution is sufficiently convex.

The take-home message is that the strengths distribution π⋆ is relevant to predict future outcomes
which motivates the estimation of π⋆. As every player is supposed to meet exactly n opponents,
the observed graph is naturally n regular (every node has the same degree n). It is also assumed
that players meet according to the round-robin scheduling (see Section 2 for a description of this
algorithm), a famous method to build n-regular graphs recursively. The round-robin algorithm
is routinely used for example to manage scheduling in chess, bridge, sport and online gaming
tournaments. The MLE of π⋆ is analyzed based on the observation of the scores of every contest of
the first n rounds of the algorithm.

First, a graphical model encoding conditional dependencies between strengths and scores is
built. This representation allows to approximate the likelihood function using a stationary hidden
Markov model [3]. The asymptotic behavior of the normalized loglikelihood is analyzed using loss
of memory properties of the hidden Markov process, following essentially the approach of [11].
Then, following [28], the limit of the normalized loglikelihood is used to define a risk function, see
Section 4.1 for details on this construction. This risk is then bounded from above for finite values
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of the number N of nodes using concentration inequalities for Markov Chains [10]. The excess risk
scales as Dudley’s entropy of the underlying statistical model normalized by a term of order

√
N

when n is fixed and N → ∞. From a learning perspective, Dudley’s entropy bound is known to be
suboptimal in general, it can be replaced by a majorizing measure bound [25] since it derives from
a sub-Gaussian concentration inequality for the increments of the underlying process, see (28).

More generally, the methodology introduced in this paper leads the way to various research per-
spectives in several fields. For example, identifiability of nonparametric hidden Markov models with
finite state spaces was established recently along with the first convergence properties of estimators
of the unknown distributions, see [8] for a penalized least-squares estimator of the emission densities,
[9, 29, 30] for consistent estimation of the posterior distributions of the states and posterior concen-
tration rates for the parameters or [17] for order estimation. However, very few theoretical results
are available for the nonparametric estimation of general state spaces hidden Markov models. In
computational statistics, Bayesian estimators of the strengths have been studied in Bradley-Terry
models [14] and other extensions, see for example [4]. In [16], the unknown distribution of hidden
variables is analyzed in a Bayesian framework and contraction rates of the posterior distribution are
obtained using the concentration inequality established in this paper. Designing new algorithms to
compute the MLE of the prior would then be of great interest to derive empirical Bayes estimators
[22, 13].

The paper is organized as follows. Section 2 details the model, the maximum likelihood esti-
mator of the strengths distribution and the round-robin algorithm. Section 3 presents preliminary
results. The graphical model encoding conditional dependencies in round-robin graphs with latent
variables is displayed, and the Markov chain associated with this representation is shown to be well
approximated by a geometrically ergodic Markov chain. The main results are gathered in Section 4:
convergence of the likelihood is established when the number N of nodes grows to +∞ and risk
bounds for the MLE are provided. Finally, Appendices A to C are devoted to the proofs of these
results.

2 Setting

Graphs with latent variables

Let N be a positive integer, E a set of couples (i, j) with 1 6 i < j 6 N and G = ({1, . . . , N}, E)
the corresponding oriented graph. Let V1, . . . , VN denote independent and identically distributed
(i.i.d.) random variables taking values in a measurable set V with common unknown distribution
π⋆. For all (i, j) ∈ E, let Xi,j denote a random variable taking values in a finite set X such
that, conditionally on V = (V1, . . . , VN ), the random variables (Xi,j)(i,j)∈E are independent with
conditional distributions given by

P(Xi,j = x|V ) = k(x, Vi, Vj) ,

where k : X × V × V → [0, 1] is a known function. In the following, the sets X ,V and the scores
(Xi,j)(i,j)∈E are available while the vector V is unknown and the objective is to estimate the
distribution π⋆. The following examples of triplets (X ,V , k) have been considered in the literature.

Example 1 (Bradley-Terry model [2]). In this example, V = (0,∞), X = {0, 1} and for all x ∈ X ,

k(x, Vi, Vj) =

(
Vi

Vi + Vj

)x (
Vj

Vi + Vj

)1−x

.
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Example 2 (Extensions of Bradley-Terry model [4]). In the following examples, V = (0,∞).

- Let θ > 0 and X = {0, 1}. In the Bradley-Terry model with home advantage, if i is home, for all
x ∈ X ,

k(x, Vi, Vj) =

(
θVi

θVi + Vj

)x (
Vj

θVi + Vj

)1−x

.

- In the Bradley-Terry model with ties [21], X = {−1, 0, 1} and

k(1, Vi, Vj) =
Vi

Vi + θVj

and k(0, Vi, Vj) =
(θ2 − 1)ViVj

(θVi + Vj) (Vi + θVj)
.

Example 3 (Graphon model). The probability that two nodes i and j are connected in the graphon
model (i.e. (i, j) ∈ E) is the random variable W(Vi, Vj) with W : V × V → [0, 1] and V ⊂ R

+. In
the context of this paper, this boils down to choosing X = {0, 1} and setting by convention Xi,j = 0
if and only if (i, j) /∈ E with

k(x, Vi, Vj) = W(Vi, Vj)
x (1−W(Vi, Vj))

1−x
.

The problem in the graphon model is to estimate the matrix of connection probabilities (W(Vi, Vj))16i,j6N

using the observations of the adjacency matrix, and assuming that the distribution of Vi is given.
In our setting, the aim is different, we try to estimate π⋆, the law of the latent variables, from

a partial observation E of the adjacency matrix and with a known function W.

Example 4 (Chen-Lu model). Consider a random graph where E is such that an edge is drawn
between node i and node j (i.e. (i, j) ∈ E) with probability ViVj/(1+ViVj), with for all 1 6 k 6 N ,
Vk ∈ V = (0,∞). In the context of this paper, this boils down to choosing X = {0, 1} and setting
by convention Xi,j = 0 if and only if (i, j) /∈ E with

k(x, Vi, Vj) =

(
ViVj

1 + ViVj

)x (
1

1 + ViVj

)1−x

.

Maximum likelihood estimator

The aim of this paper is to estimate the distribution π⋆ of the hidden variables V = (V1, . . . , VN )
from the observations XE = (Xi,j)(i,j)∈E . Let A be a σ-field on V and Π be a set of probability
measures on (V ,A). The statistical model is not assumed to be well specified i.e. Π may not contain
π⋆. For all π ∈ Π, the joint distribution of (XE , V ) is given, for any xE ∈ X |E| and all A ∈ A⊗N

by

P
E
π (X

E = xE , V ∈ A) =

∫
1A(v)

∏

(i,j)∈E

k(xE
i,j , vi, vj)π

⊗N (dv) , (1)

where 1A is the indicator function of the set A. Using the convention log 0 = −∞, the log-likelihood
is given, for all π ∈ Π, by

ℓE (π) = log P
E
π (X

E) where P
E
π (X

E) = P
E
π (X

E, V ∈ VN) .

In this paper, π⋆ is estimated by the maximum likelihood estimator π̂E defined as any maximizer
of the log-likelihood:

π̂E ∈ argmax
π∈Π

{ℓE (π)} .
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Round-robin (RR) Scheduling

Assume that N is an even integer. In the case of a round-robin scheduling, at t = 1, 2i− 1 is paired
with 2i, for all i ∈ [N/2], as in Figure 1a. At t = 2, the RR permutation PRR is performed: node
1 is fixed PRR(1) = 1, PRR(2) = 3, each odd integer 2i− 1 < N − 1 satisfies PRR(2i− 1) = 2i+ 1,
PRR(N − 1) = N and each even integer 2i > 2 satisfies PRR(2i) = 2(i − 1). This permutation is
illustrated by the graphical representation given in Figure 1b. Then, the RR pairing is performed
as in Figure 1c. At each time t > 2, a RR permutation is performed as in Figure 1b and followed
by a RR pairing. Let n > 1 denote an integer. The RR graph denoted by En,N

RR studied in detail
in this paper contains all pairs collected in the first n pairings of the RR algorithm. Note that
EN−1,N

RR is the complete graph and that we focus on situations where n ≪ N .

1 3 5 2i−1 N−3 N−1

2 4 6 2i N−2 N

. . . . . .

. . . . . .

(a) Round-robin pairing, step 1.

1 3 5 2i−1 N−3 N−1

2 4 6 2i N−2 N

. . . . . .

. . . . . .

(b) Round-robin permutation.

1 2 3 2i−1 N−5 N−3

4 6 8 2i N N−1

. . . . . .

. . . . . .

(c) Round-robin pairing, step 2.

Figure 1: Round-robin algorithm.

3 Conditional dependencies of round-robin graphs

Let dE0 denote the graph distance in ({1, . . . , N}, E), that is dE0 (i, j) is the minimal length of a path
between nodes i and j. Write {V1, . . . , VN} = ∪N

q=0V
E
q , where V E

0 = {V1} and, for any q > 1, V E
q
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is the set of Vi such that dE0 (1, i) = q. Let qE + 1 denote the maximal distance between 1 and
i ∈ {1, . . . , N}:

qE + 1 = max
16i6N

dE0 (1, i) .

- For all 1 6 q 6 qE + 1, let

XE
q↔q = {Xi,j : (i, j) or (j, i) ∈ E, i ∈ V E

q , j ∈ V E
q } .

The set XE
q↔q gathers all Xi,j such that i and j satisfy dE0 (1, i) = dE0 (1, j) = q.

- For all 0 6 q 6 qE , let

XE
q↔q+1 = {Xi,j : (i, j) or (j, i) ∈ E, i ∈ V E

q , j ∈ V E
q+1} .

The set XE
q↔q+1 gathers all Xi,j such that dE0 (1, i) = q and dE0 (1, j) = q + 1.

Finally, for any 0 6 q 6 qE , let

XE
q = XE

q↔q+1 ∪XE
q+1↔q+1 .

Following [15], the distribution P
E
π , given in (1), can be factorized with respect to an oriented acyclic

graph where graph separations represent conditional independence. The factorization illustrates a
global Markov property such that two sets of random variables U1 and U2 are independent given a
third set Z if U1 and U2 are d-separated by Z in the oriented acyclic graph. The sets U1 and U2

are d-separated by Z if every path from U1 to U2 is blocked by Z:

- the path contains a node in Z, and the edges of the path do not meet head-to-head at this node.

- the path contains a node not in Z, none of its descendants are in Z, and the edges of the path do
meet head-to-head at this node.

Conditional dependencies described by P
E
π can be represented in the graphical model of Figure 2.

V E
0

XE
0

V E
1

XE
1

V E
2

V E
q
E

. . .

XE
q
E

V E
q
E
+1

Figure 2: Graphical model of paired comparisons contests.

For instance, V E
1 is independent of V E

2 (Z = ∅) as every path between them goes through XE
1 ,

which is not in Z, with two edges meeting head-to-head at XE
1 . For all 0 ≤ q ≤ qE any path

between XE
q and other vertices except V E

q and V E
q+1 goes through V E

q or V E
q+1 which means that

XE
q is independent of all other nodes given V E

q and V E
q+1 (Z = {V E

q , V E
q+1} and no head-to-head

edges). In particular, for all 0 6 q 6 qE , and all π ∈ Π,

P
E
π

(
XE

q

∣∣V,XE
0:q−1

)
= P

E
π

(
XE

q

∣∣V E
q , V E

q+1

)
=

∏

(i,j):Xi,j∈XE
q

k (Xi,j , Vi, Vj) .
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Lemma 1. Let N > n > 1 and let ({1, . . . , N}, En,N
RR

) denote the corresponding round-robin graph
defined in Section 2. Assume that 2 6 n < N/4. Then, q

E
n,N

RR

is the quotient of the Euclidean

division of N/2− 1 by n− 1, that is

N/2− 1 = q
E

n,N

RR

(n− 1) + rnN with 0 ≤ rnN < n− 1 .

Moreover, (V
E

n,N

RR

q+1 , X
E

n,N

RR

q )26q6q
E

n,N
RR

−1 is a stationary Markov chain such that for all 2 6 q 6

q
E

n,N

RR

− 1,

|V E
n,N

RR

q | = 2(n− 1) , |XE
n,N

RR

q | = n(n− 1) .

Lemma 1 is proved in Section A. It shows that RR graphs can be approximated by stationary
hidden Markov models. When E = En,N

RR , by Lemma 1, the joint sequence (V E
q+1, X

E
q )26q6q

E
−1 is

a stationary Markov chain which points toward the following decomposition of the likelihood.

logPE
π

(
XE

)
= logPE

π

(
XE

2:q
E
−1

)
+ logPE

π

(
XE

0 , XE
1 , XE

q
E

∣∣∣XE
2:q

E
−1

)
. (2)

It is shown in Section 4 that under a minoration condition on the kernel k, the last term in (2) is
o(qE) when N grows to infinity. This implies that the first term is the leading term in the analysis of
the likelihood’s asymptotic behavior. The uniform minoration condition of k also ensures that the
joint Markov chain (V E

q+1, X
E
q )q>2 is uniformly ergodic and admits the whole space V×X as small

set with stationary distribution on V×X given by (A, x0) 7→
∫
1A(v1)πV (dv1)πV (dv0)k(x0, v0, v1).

The joint stationary Markov chain (V E
q+1, X

E
q )q>2 may then be extended to a stationary process

(Xn,Vn) indexed by Z with the same transition kernel. Hereafter, the distribution of this extended
chain is denoted by Pn

π.

4 Risk bounds for the MLE

Section 4.1 computes the limit likelihood function and shows why this limit defines a natural
risk function to evaluate the MLE. Risk bounds for the MLE are obtained in Section 4.2 using
concentration inequalities for Markov chains.

4.1 Asymptotic analysis of the likelihood

The problem being reduced to the analysis of the graphical model represented in Figure 2, con-
vergence results follow from geometrically decaying mixing rates of the conditional laws of the
strengths V E

k given the observations. These rates are established under the following assumption.
For any probability distribution π, denote by supp(π) the support of π.

H1 There exists ε > 0 such that for all x ∈ X , π ∈ Π∪{π⋆} and v1, v2 ∈ supp(π), k(x, v1, v2) > ε.

Define also the shift operator ϑ on (Xn(n−1))Z by (ϑx)k = xk+1 for all k ∈ Z and all x ∈ (Xn(n−1))Z.
The following result establishes loss of memory properties of the extended hidden Markov chain
(Xn,Vn) as well as the asymptotic behavior of the likelihood. This is the first main result of the
paper.

7



R. Diel et al. Learning the distribution of latent variables in paired comparison models

Theorem 2. Assume H1 holds. Then, for all n′ > n > q and all p′ < p < q in Z,

supπ∈Π

∣∣logPn
π

(
Xn

q

∣∣Xn
q+1:n

)
− logPn

π

(
Xn

q

∣∣Xn
q+1:n′

)∣∣ 6 ε−n2
(
1− εn

2
)n−q−1

,

supπ∈Π

∣∣logPn
π

(
Xn

q

∣∣Xn
p:q−1

)
− logPn

π

(
Xn

q

∣∣Xn
p′:q−1

)∣∣ 6 ε−n2
(
1− εn

2
)q−p

.

As a consequence, there exists a function ℓnπ such that for all q in Z,

supπ∈Π

∣∣logPn
π

(
Xn

q

∣∣Xn
q+1:n

)
− ℓnπ(ϑ

qXn)
∣∣ −→
n→∞

0, Pn
π⋆
-a.s . (3)

Finally, when E = En,N
RR

, for all π ∈ Π, Pn
π⋆
-a.s. and in L1(Pn

π⋆
),

1

qE
logPE

π

(
XE
)

−→
N→∞

Lnπ⋆
(π) = E

n
π⋆

[ℓnπ(X
n)] . (4)

Theorem 2 is proved in Section C.1. It establishes convergence of the likelihood to the limit
Lnπ⋆

(π) when the number of nodes N → ∞ while n remains fixed. The rate of almost sure con-
vergence qE is proportional to N in this case by Lemma 1. Eq (4) is the key to understand the
definition of the risk function used in Section 4.2.

Let Y, Y1, . . . , YN denote i.i.d. observations in Y, let F denote a set of parameters, and let
ℓ : F × Y → R denote a loss function. The empirical risk minimizer is defined in this context by

f̂ERM
N = argmin

f∈F

N∑

i=1

ℓ(f, Yi) .

If E[ℓ(f, Y1)] < ∞ for all f ∈ F , the performance of any f ∈ F is measured by the excess risk [20]

R(f) = E [ℓ(f, Y )]− E [ℓ(f∗, Y )] ,

where Y is a copy of Y1, independent of Y1, . . . , YN and f∗ is the minimizer of E[ℓ(f, Y )] over F .
Note that, when E[ℓ(f, Y1)] < ∞ for all f ∈ F , the normalized empirical criterion satisfies almost
surely,

1

N

N∑

i=1

ℓ(f, Yi) → E[ℓ(f, Y1)] .

Therefore, following for instance [28, 27], the excess risk R(f) in learning theory is the difference
between the asymptotic normalized empirical loss evaluated at f and the minimizer of this quantity.

In this paper, the MLE minimizes over π ∈ Π the loglikelihood − logPE
π

(
XE
)
. Using the

identifications π ∼ f , Π ∼ F and − logPE
π

(
XE

)
∼ ∑N

i=1 ℓ(f, Yi), Theorem 2 suggests to use
−Lnπ⋆

(π) as a surrogate for E [ℓ(f, Y )]. Therefore, define, for all π ∈ Π,

Rn
π⋆
(π) = Lnπ⋆

(π⋆)− Lnπ⋆
(π) . (5)

By Proposition 13, π⋆ is actually a minimizer of −Lnπ⋆
(π) over Π∪{π⋆}. Therefore, Rn

π⋆
is a natural

extension of the excess risk associated with the likelihood function. Notice here that the model
is non identifiable. Clearly, the observed distribution is not changed if the distribution π of V is
replaced by the distribution of ϕ(V ), for any mapping ϕ : V → V such that k(x, ϕ(v1), ϕ(v2)) =

8
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k(x, v1, v2) for any x ∈ X , and v1, v2 in V . For example, in the Bradley-Terry model, for any
λ > 0, k(x, λv1, λv2) = k(x, v1, v2) for any x ∈ X , and v1, v2 in V . It is not easy however to
describe precisely the class of transformations that would leave the observed distribution invariant
in general, specially for a fixed n. This is why, in the following, we focus on bounding the risk
Rn

π⋆
(π̂) of the estimator π̂ rather than trying to bound a distance between π∗ and π̂.

4.2 Non asymptotic deviation bounds for the MLE

The following theorem provides nonasymptotic deviation bounds for the excess risk of the MLE.
This is the main result of this paper. Let ‖ · ‖tv denote the total variation norm : for any signed
measure π on V ,

‖π‖tv = sup

{∫
π(dv)f(v) : f bounded andmeasurable onV , ‖f‖∞ = 1

}
.

Theorem 3. Assume H1 holds and ({1, . . . , N}, E) is the round-robin graph (that is E = En,N
RR

).
For any probability measures π and π′, define

d(π, π′) =

{
‖π − π′‖tv log

(
1

‖π−π′‖tv

)
if ‖π − π′‖tv < e−1 ,

‖π − π′‖tv if ‖π − π′‖tv > e−1 .
(6)

Let N(Π∪{π⋆}, d, ǫ) be the minimal number of balls of d-radius ǫ necessary to cover Π∪{π⋆}. Then,
there exists c > 0 such that, for any t > 0 and any n,N > 1,

P
E
π⋆

(
Rn

π⋆
(π̂E) >

cnε−6n2

√
N

[∫ +∞

0

√
logN(Π ∪ {π⋆}, d, ǫ)dǫ+ t

])
≤ e−t2 .

Theorem 3 is proved in Section C.3. It provides the first non asymptotic risk bounds for any
estimator of π⋆. Besides, to the best of our knowledge, the “sparse” observation setting where each
player only faces a few opponent has never been considered previously, neither in the Bradley-Terry
model nor in any extensions. Theorem 3 demonstrates that the estimation of the distribution π⋆

of the parameters V is fundamentally different from the problem of estimating V that is usually
considered, at least in Bradley-Terry models. While estimating nodes weights is possible under
Zermelo’s strong connectivity condition [32, 23, 31], the estimation of their distribution can be
performed without such condition.

The quasi-metric d defined in (6) used to measure the entropy of Π is not intuitive. However, it

is easy to check that d(π, π′) .α ‖π − π′‖1−α
tv for any α > 0. It follows that, for any class Π with

polynomial entropy for the total variation distance, that is such that N(Π∪ {π⋆}, ‖·‖tv , ǫ) . ǫD for
small ǫ, Dudley’s entropy integral for d satisfies

∫ +∞

0

√
logN(Π ∪ {π⋆}, d, ǫ)dǫ .α

√
D .

Therefore, “slow rates” of convergence are obtained for the MLE. The polynomial growth N(Π ∪
{π⋆}, ‖·‖tv , ǫ) . ǫD is extremely standard, see [26, p271–274] for various examples where this
assumption is satisfied and our result applies. On the other hand, “fast” rates of convergence
remain an open question. In particular, the margin condition [19] required to prove such rates

9
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would hold if the total variation distance between strengths distributions was bounded from above
by the excess risk derived from the asymptotic of the likelihood.

Appendices
The remaining of the paper is devoted to the proof of the main results. Section A proves Lemma 1,
describing precisely the structure of the graphical model given in Figure 2 in the case of a round-
robin scheduling. Then, Section B establishes central tools for the analysis of the likelihood of
stationary processes whose conditional dependences are described by the graphical model in Fig-
ure 2. These results are stated as independent lemmas as they might be of independent interest.
Proofs of the main theorems are finally gathered in Section C.

A Proof of Lemma 1

This section details the sets V E
q and XE

q for 0 ≤ q ≤ qE +1 when E = En,N
RR (cf. Figures 1a-1c). In

the following, notations i are identified with Vi for all 1 ≤ i ≤ N , we also use E = En,N
RR to shorten

notations. Lemma 1 follows directly from Lemmas 4 and 5 below. To prove these lemmas, consider
the following notations.

E = {4x− 1, 4x : x ∈ [⌊N/4⌋]} and O = [N ] \ E .

The notation E (resp O) comes from the fact that E (resp O) contains all indices of the form 4x
(resp. of the form (2(2x+ 1))) which are paired with 1 after an even (resp odd) number n ≤ N/4
of permutations of the round-robin algorithm. For all 1 ≤ q ≤ qE , let

V E
q,e = V E

q ∩ E and V E
q,o = V E

q ∩ O .

Lemma 4. Let n,N ≥ 1 and ({1, . . . , N}, E) be the round-robin graph (E = En,N
RR

). Assume that
2 ≤ n < N/4 and let N/2− 1 = qE(n− 1) + rE where 0 ≤ rE < n− 1. Then,

V E
1 = {V2x : x = 1, . . . , n} , (7)

and, for any 2 ≤ q ≤ qE,

V E
q = {V2x+1 : x ∈ [(q − 2)(n− 1) + 1, (q − 1)(n− 1)]}

∪ {V2x : x ∈ [2 + (q − 1)(n− 1), 1 + q(n− 1)]} . (8)

Furthermore,

V E
q
E
+1 = {V2x+1 : x ∈ [(qE − 1)(n− 1) + 1, qE(n− 1) + rE ]}

∪ {V2x : x ∈ [2 + qE(n− 1), 1 + rE + qE(n− 1)]} . (9)

Therefore, |V E
0 | = 1, |V E

1 | = n and for all 2 ≤ q ≤ qE,
∣∣V E

q

∣∣ = 2(n− 1).

10
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Figure 3: Elements of VE , case n = 3, rE = 0.
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Figure 4: Elements of VE , case n = 3, rE = 1.

Proof. To ease the reading of this proof, one can check its arguments on Figures 3 and 4 illustrating
the case n = 3.
We proceed by induction on q. The definition of V E

1 given by (7) is straightforward. Then, V E
2

contains:

- all Vi paired with some Vj ∈ V E
1 before the first RR permutation besides V1 that does not belong

to V E
2 . These are all {V2x+1 : x = 1, . . . , n− 1} ;

- all Vi paired with V2 and V4 that are not in V E
0 ∪ V E

1 . After n RR permutations, all Vi paired
with V2 are {V1, V4x+2 : x = 1, . . . , n− 1} and those with V4 are {V1, V3, V4x : x = 2, . . . , n− 2}.

Therefore,
V E
2 ⊃ {V2x+1 : x = 1, . . . , n− 1} ∪ {V2x : x = n+ 1, . . . , 2n− 1} .

On the other hand, by induction, for all i /∈ {N−2x+1, x = 1, . . . , 2(n−1)}∪{2x : x = 1, . . . , 2n−1},

if i is odd, it is paired with {Vi+4x+1 : x = 0, . . . n− 1} ,
if i is even, it is paired with {Vi−4x−1 : x = 0, . . . , n− 1} . (10)

11
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This implies that there is no even number i ≥ 4n nor odd number i > 2n− 1 such that Vi ∈ V n,N
2 ,

which yields:

V E
2 = {V2x+1 : x = 1, . . . , n− 1} ∪ {V2x : x = n+ 1, . . . , 2n− 1} .

(8) is obtained by induction using the same arguments and (9) is a direct consequence of the
round-robin algorithm. The last claim follows by noting that for all q ∈ [2, qE ],

|V E
q,e| = |V E

q,o| = n− 1 .

Indeed, one of the following cases holds.

- n− 1 = 2p for some p ∈ N. In this case,

|{j : Vj ∈ V E
q,e, j ∈ 2Z}| = |{i : Vi ∈ V E

q,e, i ∈ 2Z+ 1}| = p .

- n− 1 = 2p+ 1 for some p ∈ N. In this case, either

|{j : Vj ∈ V E
q,e, j ∈ 2Z}| = p, and |{i : Vi ∈ V E

q,e, i ∈ 2Z+ 1}| = p+ 1 ,

or
|{j : Vj ∈ V E

q,e, j ∈ 2Z}| = p+ 1, and |{i : Vi ∈ V E
q,e, i ∈ 2Z+ 1}| = p .

Lemma 5. Let n,N ≥ 1 and ({1, . . . , N}, E) be the round-robin graph (E = En,N
RR

). Then, for all
2 ≤ q ≤ qE − 1,

|XE
q | = n(n− 1) .

Proof. The proof essentially consists in building the graphical model of Figure 5 from the one
displayed in Figure 2.
Edges involving the first node are decomposed as:

XE
0↔1,e = {X1,4x : x = 1, . . . , ⌊n/2⌋} = {X1,i : Vi ∈ V E

1,e} and XE
0↔1,o = {X1,i : Vi ∈ V E

1,o} .

Edges involving nodes in V E
1 that are both different from 1 are described as follows.

- Edges between two nodes in V E
1 denoted by:

XE
1↔1,e = {X4x,4y : (x, y) ∈ [⌊n/2⌋], x < y} = {Xi,j : Vi, Vj ∈ V E

1,e, i < j} ,
XE

1↔1,o = {Xi,j : Vi, Vj ∈ V E
1,o, i < j} .

Note that there is no edge between any Vi ∈ V E
1,e and a node Vj ∈ V E

q,o for any q ≥ 1. In particular,

there is no edge between any Vi ∈ V E
1,e and Vj ∈ V E

1,o. Therefore, XE
1↔1,e ∪XE

1↔1,o describes all

edges between nodes in V E
1 .

- Edges between Vi ∈ V E
1 and Vj ∈ V E

2 are described as follows:

XE
1↔2,e = {X4y−1−4k,4y : y ∈ [⌊n/2⌋], k < y} ∪ {X4x,4y : x ∈ [⌊n/4⌋], y ∈ [⌊n/2⌋+ 1, n− x]}

= {Xi,j : Vi ∈ V E
1,e, Vj ∈ V E

2,e, j ∈ 2Z+ 1, j > i}
∪ {Xi,j : Vi ∈ V E

1,e, Vj ∈ V E
2,e, j ∈ 2Z ∩ [4n− i]} ,

XE
1↔2,o = {Xi,j : Vi ∈ V E

1,o, Vj ∈ V E
2,o, j ∈ 2Z+ 1, j > i}

∪ {Xi,j : Vi ∈ V E
1,o, Vj ∈ V E

2,o, j ∈ 2Z ∩ [4n− i]} .

12
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Figure 5: Graphical model of the round-robin algorithm.

By (10), for any q ∈ [2, qE ], edges between Vi and Vj both in V E
q are:

XE
q↔q,e = {Xi,j : Vi ∈ V E

q,e, i ∈ 2Z+ 1, Vj ∈ V E
q,e, j ∈ 2Z} ,

XE
q↔q,o = {Xi,j : Vi ∈ V E

q,o, i ∈ 2Z+ 1, Vj ∈ V E
q,o, j ∈ 2Z} .

Note that (10) shows also that there is no edge between Vi ∈ V E
q,e and Vj ∈ V E

q,o. For all 2 ≤ q ≤ qE
and all Vi ∈ V E

q and Vj ∈ V E
q+1,

XE
q↔q+1,e ={Xi,j : Vi ∈ V E

q,e, i ∈ (2Z+ 1), Vj ∈ V E
q+1,e, j ∈ 2Z ∩ [i+ 4n− 3]}

∪ {Xi,j : Vi ∈ V E
q,e, i ∈ 2Z, Vj ∈ V E

q+1,e, j ∈ 2Z+ 1 ∩ [i]} ,
XE

q↔q+1,o ={Xi,j : Vi ∈ V E
q,o, i ∈ (2Z+ 1), Vj ∈ V E

q+1,o, j ∈ 2Z ∩ [i+ 4n− 3]}
∪ {Xi,j : Vi ∈ V E

q,o, i ∈ 2Z, Vj ∈ V E
q+1,o, j ∈ (2Z+ 1) ∩ [i]} .

Therefore, for all 2 ≤ q ≤ qE ,

|XE
q↔q,e| = |{i : Vi ∈ V E

q,e, i ∈ 2Z+ 1}||{j : Vj ∈ V E
q,e, j ∈ 2Z}|

=

{
p2 if n− 1 = 2p ,

p(p+ 1) if n− 1 = 2p+ 1 .

The same holds for |XE
q↔q,o| so that |XE

q↔q | = 2p2 if n − 1 = 2p and |XE
q↔q | = 2p(p + 1) if

13



R. Diel et al. Learning the distribution of latent variables in paired comparison models

n− 1 = 2p+ 1. On the other hand,

|XE
q↔q+1,e| =

∑

i:Vi∈V E
q,e, i∈(2Z+1)

|{j : Vj ∈ V E
q+1,ej ∈ 2Z ∩ [i+ 4n− 3]}

+
∑

i:Vi∈V E
q,e, i∈2Z

|{j : Vj ∈ V E
q+1,e, j ∈ 2Z+ 1 ∩ [i]}|

=

{
2
∑p

i=1 i = p(p+ 1) if n− 1 = 2p ,∑p

i=1 i+
∑p+1

i=1 i = (p+ 1)2 if n− 1 = 2p+ 1 .

As the same holds for |XE
q↔q+1,o|, |XE

q↔q+1| = 2p(p+ 1) if n− 1 = 2p and |XE
q↔q+1| = 2(p+ 1)2 if

n− 1 = 2p+ 1. The proof is completed by writing |XE
q | = |XE

q↔q+1|+ |XE
q+1↔q+1|.

B Probabilistic study of the graphical model

This section analyses stochastic processes whose conditional dependences are encoded in the graph-
ical model of Figure 2. To ease applications of these general results to our problem, we focus on a
restricted class of such stochastic processes.

Let n ∈ N \ {0}, πV be a distribution on a measurable space V and X be a discrete space.
Let Ki denote non-negative functions defined on X × V

2 such that all Ki(., v, w) are probability
distributions on X. Let PπV

be the distribution on V
n+1 × X

n defined by:

PπV
(V1:n+1 ∈ A1:n+1, X1:n) =

∫ n+1∏

i=1

1Ai
(vi)

n+1∏

i=1

πV (dvi)

n∏

i=1

Ki(Xi, vi, vi+1) . (11)

The random variables (Vi)i∈{1,...,n+1} are i.i.d. taking values in V with common distribution πV

and (Xi)i∈{1,...n} is a stochastic process taking values in a discrete set X such that (Xi)i∈{1,...,n} are
independent conditionally on V and

PπV
(Xi = x|V1:n+1) = PπV

(Xi = x|Vi, Vi+1) = Ki(x, Vi, Vi+1), ∀i ∈ {1, n}, ∀x ∈ X .

Therefore, PπV
is a generic probability distribution with conditional dependences encoded by the

graphical model of Figure 2. Assume that there exist νi > 0 such that

νi ≤ Ki(x, v, w) ≤ 1, ∀x ∈ X, ∀i ∈ Z, ∀v, w ∈ V . (12)

For some results, the following assumption is required.

∀i ∈ {1, . . . , n}, Ki = K . (13)

Whenever Assumption (13) holds, we shall denote by ν a real number such that

ν ≤ K(x, v, w) ≤ 1, ∀x ∈ X, ∀v, w ∈ V .

Note that by (11), the sequence (Vk+1, Xk)k≥0 is a Markov chain with transition kernel on V × X

such that:

PπV
(Vk+1 ∈ A,Xk|Vk, Xk−1) =

∫
1A(vk+1)πV (dvk+1)Kk(Xk, Vk, vk+1) ≥ νkπV (A) .
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This uniform minoration condition ensures that the joint Markov chain (Vk+1, Xk)k≥0 is geometri-
cally ergodic and admits the whole space V × X as small set. Note also that, as defined by (11),
PπV

is the law of this Markov chain started from stationarity, the stationary distribution on V×X

being (A, x0) 7→
∫
1A(v1)πV (dv1)πV (dv0)k(x0, v0, v1).

Lemma 6 first shows that, conditionally on the observations, V1, . . . , Vn is a backward Markov
chain admitting the all state space as small set.

Lemma 6. For any q ≥ 1, conditionally on Xq:n, (Vn, . . . , V1) is a Markov chain. Its transition

kernels (K
V |X
πV ,k,q)q≤k<n are such that, for all q ≤ k < n, there exists a measure µk,q satisfying for

all measurable set A:

K
V |X
πV ,k,q(Vk+1, A) = PπV

(Vk ∈ A|Vk+1:n, Xq:n) = PπV
(Vk ∈ A|Vk+1, Xq:n) ≥ νkµk,q(A) .

On the other hand, for all 1 ≤ k < q,

K
V |X
πV ,k,q(Vk+1, A) = PπV

(Vk ∈ A|Vk+1:n, Xq:n) = πV (A) .

Proof. The Markov property is immediate. The case 1 ≤ k < q follows from the independence of
Vk and (Vk+1:n, Xq:n). Then, for any q ≤ k < n and all measurable set A,

PπV
(Vk ∈ A|Vk+1:n, Xq:n) = PπV

(Vk ∈ A|Vk+1, Xq:k)

=

∫
1A(vk)πV (dvk)Kk(Xk, vk, Vk+1)PπV

(Xq:k−1|vk)∫
πV (dvk)Kk(Xk, vk, Vk+1)PπV

(Xq:k−1|vk)
,

with the conventions PπV
(Xq:q−1|Vq) = 1. By Assumption 1,

PπV
(Vk ∈ A|Vk+1, Xq:n) ≥ νk

∫
1A(vk)πV (dvk)PπV

(Xq:k−1|vk)∫
πV (dvk)PπV

(Xq:k−1|vk)
.

The proof is then completed by choosing:

µk,q(A) =

∫
1A(vk)πV (dvk)PπV

(Xq:k−1|vk)∫
πV (dvk)PπV

(Xq:k−1|vk)
.

Lemma 7 shows the contraction properties of the Markov kernel of the chain V conditionally on
the observations. It is a direct consequence of the minoration condition given in Lemma 6, see
for instance [18, Sections III.9 to III.11] or [3, Corollary 4.3.9 and Lemma 4.3.13]. Let ‖ · ‖tv be
the total variation norm defined, for any measurable set (Z,Z) and any finite signed measure ξ on
(Z,Z), by

‖ξ‖tv = sup

{∫
f(z)ξ(dz) ; f measurable real function on Z such that ‖f‖∞ = 1

}
.

Lemma 7. For all measures µ1, µ2 and all 1 ≤ q ≤ k < n,

∥∥∥∥
∫

µ1(dx)K
V |X
πV ,k,q(x, ·)−

∫
µ2(dx)K

V |X
πV ,k,q(x, ·)

∥∥∥∥
tv

≤ (1− νk) ‖µ1 − µ2‖tv ≤ (1− νk) .
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In particular, by induction,

∥∥∥∥
∫

{µ1(dvn)− µ2(dvn)}KV |X
πV ,n−1,q(vn, dvn−1) . . .K

V |X
πV ,k,q(vk+1, ·)

∥∥∥∥
tv

≤
n−1∏

i=k

(1− νi) . (14)

Lemma 8 proves a key loss of memory property of the backward chain Xq, with geometric rate of
convergence. Whenever it is necessary, we adopt the convention

∏m
k=ℓ ak = 1 for any (aℓ, . . . , am)

and any ℓ > m.

Lemma 8. For any 1 ≤ q ≤ n− 1,

|logPπV
(Xq|Xq+1:n)| ≤ log

(
ν−1
q

)
. (15)

For all ℓ ≥ 1, 1 ≤ q ≤ n− 1,

|logPπV
(Xq|Xq+1:n)− logPπV

(Xq|Xq+1:n+ℓ)| ≤ ν−1
q

n−1∏

k=q+1

(1− νk) . (16)

Proof. To prove (16), for 1 ≤ q < n, note that by Lemma 6,

PπV
(Xq|Xq+1:n) =

∫
PπV

(dvn|Xq+1:n)




n−1∏

k=q+1

K
V |X
πV ,k,q+1(vk+1, dvk)


πV (dvq)Kq(Xq, vq, vq+1) .

(17)
Likewise,

PπV
(Xq|Xq+1:n+ℓ)

=

∫
PπV

(dvn|Xq+1:n+ℓ)




n−1∏

k=q+1

K
V |X
πV ,k,q+1(vk+1, dvk)


 πV (dvq)Kq(Xq, vq, vq+1) . (18)

Then, by Lemma 6 and (14), combining (17) and (18) yields:

|PπV
(Xq|Xq+1:n+ℓ)− PπV

(Xq|Xq+1:n)|

≤




n−1∏

k=q+1

(1 − νk)


 supvq+1∈V

∣∣∣∣
∫

πV (dvq)Kq(Xq, vq, vq+1)

∣∣∣∣ ≤
n−1∏

k=q+1

(1− νk) .

(16) is then a direct consequence of (17), (18) and the fact that for all x, y > 0, | log x − log y| ≤
|x− y|/x ∧ y. Inequality (15) follows from (17).

Lemma 9 is the crucial result to bound the increments of the log-likelihood.

Lemma 9. For all distributions πV , π
′
V ∈ Π ∪ {π⋆} and any 1 ≤ q ≤ n,

∣∣logPπV
(Xq|Xq+1:n)− logPπ′

V
(Xq|Xq+1:n)

∣∣

≤ 2

n+1−q∑

ℓ=0

(νqνq+ℓ−1νq+ℓ)
−1




q+ℓ−1∏

k=q+1

(1− νk)


 ‖πV − π′

V ‖tv .
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Proof. When q = n,

PπV
(Xn)− Pπ′

V
(Xn) =

∫ {
π′⊗2
V (dvn:n+1)− π⊗2

V (dvn:n+1)
}
Kn(Xn, vn, vn+1) .

Thus |PπV
(Xn)− Pπ′

V
(Xn)| ≤ 2‖πV − π′

V ‖tv. When 1 ≤ q ≤ n− 1,

PπV
(Xq|Xq+1:n)− Pπ′

V
(Xq|Xq+1:n) =

n+1−q∑

ℓ=0

{Pℓ(Xq|Xq+1:n)− Pℓ+1(Xq|Xq+1:n)} ,

where Pℓ is the joint distribution of (Xq:n, Vq:n+1) when (Vq, . . . , Vq+ℓ−1) are i.i.d. π
′
V and (Vq+ℓ, . . . , Vn+1)

are i.i.d. πV . The first term in the telescopic sum is given by:

P0(Xq|Xq+1:n)− P1(Xq|Xq+1:n) =

∫
P0 (dvq+1|Xq+1:n)

∫
π′
V (dvq)Kq(Xq, vq, vq+1)

−
∫

P0 (dvq+1|Xq+1:n)

∫
πV (dvq)Kq(Xq, vq, vq+1) ,

where P0 (Vq+1|Xq+1:n) is the distribution of Vq+1 conditionally on Xq+1:n when (Vq, . . . , Vn+1) are
i.i.d. πV . As Vq is independent of (Vq+1, Xq+1:n), this distribution is the same as the distribution
of Vq+1 conditionally on Xq+1:n when Vq ∼ π′

V and (Vq+1, . . . , Vn+1) are i.i.d. πV .

|P0(Xq|Xq+1:n)− P1(Xq|Xq+1:n)| ≤ ‖πV − π′
V ‖tv .

Then, for all 1 ≤ ℓ ≤ n+ 2− q,

Pℓ (Xq|Xq+1:n) =

∫
Pℓ (dvq+ℓ|Xq+1:n)




q+ℓ−1∏

k=q+1

K
V |X
π′

V
,k,q+1(vk+1, dvk)



∫

π′
V (dvq)Kq(Xq, vq, vq+1) .

Therefore, by (14),

|Pℓ (Xq|Xq+1:n)− Pℓ+1 (Xq|Xq+1:n)|

≤




q+ℓ−1∏

k=q+1

(1− νk)


 ‖Pℓ (Vq+ℓ|Xq+1:n)− Pℓ+1 (Vq+ℓ|Xq+1:n)‖tv ,

where Pℓ (Vq+ℓ|Xq+1:n) is the distribution of Vq+ℓ conditionally on Xq+1:n when (Vq, . . . , Vq+ℓ−1)
are i.i.d. π′

V and (Vq+ℓ, . . . , Vn+1) are i.i.d. πV . It remains to show that

‖Pℓ (Vq+ℓ|Xq+1:n)− Pℓ+1 (Vq+ℓ|Xq+1:n)‖tv ≤ 2(νqνq+ℓ−1νq+ℓ)
−1‖πV − π′

V ‖tv
which amounts to showing that for all f such that ‖f‖∞ ≤ 1,

∣∣∣∣
∫

f(vq+ℓ) {Pℓ (dvq+ℓ|Xq+1:n)− Pℓ+1 (dvq+ℓ|Xq+1:n)}
∣∣∣∣ ≤ 2(νqνq+ℓ−1νq+ℓ)

−1‖πV − π′
V ‖tv .

Write, for all 1 ≤ ℓ ≤ n+ 2− q,

Lℓ(dv,X) =

q+ℓ−1∏

m=q+1

π′
V (dvm)

n+1∏

m=q+ℓ

πV (dvm)

n∏

m=q+1

Km(Xm, vm, vm+1) . (19)

17
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We have ∫
f(vq+ℓ)Pℓ (dvq+ℓ|Xq+1:n) =

∫
f(vq+ℓ)Lℓ(dv,X)∫

Lℓ(dv,X)
.

Therefore,

∫
f(vq+ℓ) {Pℓ (dvq+ℓ|Xq+1:n)− Pℓ+1 (dvq+ℓ|Xq+1:n)}

=

∫
f(vq+ℓ)

(
Lℓ(dv,X)∫
Lℓ(dv,X)

− Lℓ+1(dv,X)∫
Lℓ+1(dv,X)

)
,

=

∫
f(vq+ℓ)

Lℓ(dv,X)− Lℓ+1(dv,X)∫
Lℓ(dv,X)

+

∫
f(vq+ℓ)

Lℓ+1(dv,X)∫
Lℓ+1(dv,X)

∫
[Lℓ+1(dv,X)− Lℓ(dv,X)]∫

Lℓ(dv,X)
.

Thus,

∣∣∣∣
∫

f(vq+ℓ) {Pℓ (dvq+ℓ|Xq+1:n)− Pℓ+1 (dvq+ℓ|Xq+1:n)}
∣∣∣∣ ≤ 2

|
∫
{Lℓ(dv,X)− Lℓ+1(dv,X)}|∫

Lℓ(dv,X)
. (20)

By (19), 1 ≤ ℓ ≤ n+ 1− q,

∣∣∣∣
∫
{Lℓ(dv,X)− Lℓ+1(dv,X)}

∣∣∣∣

=

∣∣∣∣∣∣

∫ q+ℓ−1∏

m=q+1

π′
V (dvm) {πV (dvq+ℓ)− π′

V (dvq+ℓ)}
n+1∏

m=q+ℓ+1

πV (dvm)

n∏

m=q+1

Km(Xm, vm, vm+1)

∣∣∣∣∣∣

As Kq+ℓ−1 and Kq+ℓ are upper bounded by 1,

∣∣∣∣
∫
{Lℓ(dv,X)− Lℓ+1(dv,X)}

∣∣∣∣ ≤
(∫ q+ℓ−1∏

m=q+1

π′
V (dvm)

q+ℓ−2∏

m=q+1

Km(Xm, vm, vm+1)

)

× ‖πV − π′
V ‖tv



∫ n+1∏

m=q+ℓ+1

πV (dvm)

n∏

m=q+ℓ+1

Km(Xm, vm, vm+1)


 .

Similarly, since Kq+ℓ−1 and Kq+ℓ are respectively lower bounded by νq+ℓ−1 and νq+ℓ,

∫
Lℓ(dv,X) ≥

(∫ q+ℓ−1∏

m=q+1

π′
V (dvm)

q+ℓ−2∏

m=q+1

Km(Xm, vm, vm+1)

)

× νq+ℓ−1νq+ℓ



∫ n+1∏

m=q+ℓ+1

πV (dvm)
n∏

m=q+ℓ+1

Km(Xm, vm, vm+1)


 .

18
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Plugging these bounds in (20) yields, for 1 ≤ ℓ ≤ n+ 1− q,
∣∣∣∣
∫

f(vq+ℓ) {Pℓ (dvq+ℓ|Xq+1:n)− Pℓ+1 (dvq+ℓ|Xq+1:n)}
∣∣∣∣ ≤ 2 (νq+ℓ−1νq+ℓ)

−1 ‖πV − π′
V ‖tv .

The proof is completed using the fact that for all x, y > 0, | log x− log y| ≤ |x− y|/x ∧ y.

Lemma 10 is a key ingredient to prove bounded difference properties for log-likelihood based pro-
cesses.

Lemma 10. For all 1 ≤ q ≤ n and all q ≤ q̃ ≤ n, let X̃ q̃
q:n be such that X̃ q̃

q̃ ∈ X and X̃ q̃
k = Xk for

all q ≤ k ≤ n such that k 6= q̃. For any 1 ≤ q ≤ q̃ ≤ n,

∣∣∣logPπV
(Xq|Xq+1:n)− logPπV

(X̃ q̃
q |X̃ q̃

q+1:n)
∣∣∣ ≤ ν−1

q

q̃−1∏

k=q+1

(1− νk) .

Proof. If q = q̃ = n, then

∣∣∣PπV
(Xn)− PπV

(X̃n
n )
∣∣∣ =

∣∣∣∣
∫

πV (dvn)πV (dvn+1)
{
Kn(Xn, vn, vn+1)−Kn(X̃

n
n , vn, vn+1)

}∣∣∣∣ ,

≤ 1− νn ≤ 1 .

Assume now that 1 ≤ q < n. When q̃ = q,

PπV
(Xq|Xq+1:n)− PπV

(X̃q
q |X̃q

q+1:n)

=

∫
PπV

(
dvq+1

∣∣∣X̃q
q+1:n

)
πV (dvq)

{
Kq(Xq, vq, vq+1)−Kq(X̃

q
q , vq, vq+1)

}
,

which ensures that |PπV
(Xq|Xq+1:n) − PπV

(X̃q
q |X̃q

q+1:n)| ≤ 1 − νq ≤ 1. When q̃ ≥ q + 1, as for all

q + 1 ≤ k ≤ q̃ − 1 the Markov transition kernel K
V |X
πV ,k,q+1 depends only on πV , Kk and Xq+1:k,

PπV

(
X̃ q̃

q

∣∣∣X̃ q̃
q+1:n

)
=

∫
PπV

(
dvq̃

∣∣∣X̃ q̃
q+1:n

)



q̃−1∏

k=q+1

K
V |X
πV ,k,q+1(vk+1, dvk)


πV (dvq)Kq(Xq, vq, vq+1) .

By Lemma 7, it follows that

∣∣∣PπV
(Xq|Xq+1:n)− PπV

(
X̃ q̃

q

∣∣∣X̃ q̃
q+1:n

)∣∣∣

≤




q̃−1∏

k=q+1

(1− νk)


 supvq+1∈V

∣∣∣∣
∫

πV (dvq)Kq(Xq, vq, vq+1)

∣∣∣∣ .

The proof is completed using the fact that for all x, y > 0, | log x− log y| ≤ |x− y|/x ∧ y.

Let π∗
V denote a probability distribution on V and let

ZπV
(X1:n) =

1

n

n∑

q=1

[
logPπV

(Xq|Xq+1:n)− Eπ∗

V
[logPπV

(Xq|Xq+1:n)]
]
.

Lemma 11 shows the concentration of ZπV
(X1:n) around its expectation.
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Lemma 11. Assume that Ki = K for all i ∈ Z, let P denote a class of probability distributions on
V. There exists c > 0 such that for all t > 0,

Pπ∗

V

(∣∣supπV ∈P{ZπV
(X1:n)} − Eπ∗

V

[
supπV ∈P{ZπV

(X1:n)}
]∣∣ ≥ cν−2 t√

n

)
≤ 2e−t2 .

Proof. The proof relies on the bounded difference inequality for Markov chains [10, Theorem 0.2].
To apply this result, supπV ∈P{ZπV

(X1:n)} has to be separately bounded. For all 1 ≤ q ≤ n and all

q ≤ q̃ ≤ n, let X̃ q̃
1:n such that X̃ q̃

q̃ ∈ X and X̃ q̃
k = Xk for all 1 ≤ k ≤ n such that k 6= q̃. Then,

|supπV ∈P {ZπV
(X1:n)}−supπV ∈P{ZπV

(X̃ q̃
1:n)}|

≤ supπV ∈P

∣∣∣∣∣
1

n

n∑

q=1

[
logPπV

(Xq|Xq+1:n)− logPπV
(X̃ q̃

q |X̃ q̃
q+1:n)

]∣∣∣∣∣

≤ supπV ∈P

∣∣∣∣∣
1

n

q̃∑

q=1

[
logPπV

(Xq|Xq+1:n)− logPπV
(X̃ q̃

q |X̃ q̃
q+1:n)

]∣∣∣∣∣ .

By Lemma 10, for any distribution πV ∈ P and any 1 ≤ q ≤ n,

∣∣∣∣∣
1

n

n∑

q=1

[
log PπV

(Xq|Xq+1:n)− logPπV
(X̃ q̃

q |X̃ q̃
q+1:n)

]∣∣∣∣∣ ≤
1

n

q̃∑

q=1

ν−1(1− ν)q̃−q−1 .

Hence, there exists c > 0 such that,

|supπV ∈P {ZπV
(X1:n)} − supπV ∈P{ZπV

(X̃ q̃
1:n)}| ≤

c

ν2n
.

The proof is concluded by [10, Theorem 0.2].

Lemma 12 shows the subgaussian concentration inequality of the increments of ZπV
(X1:n).

Lemma 12. Assume that Ki = K for all i ∈ Z, let πV , π
′
V denote two probability distributions on

V. Then, there exists c > 0 such that for all n ≥ 1, t > 0,

Pπ∗

V

(∣∣√n
{
ZπV

(X1:n)− Zπ′

V
(X1:n)

}∣∣ > t
)
≤ exp

[
− t2

(cν−5d(π, π′))
2

]
. (21)

Proof. To prove that the increments ZπV
−Zπ′

V
are separately bounded, consider, for all 1 ≤ q̃ ≤ n,

X̃ q̃
1:n such that X̃ q̃

q̃ ∈ X and X̃ q̃
k = Xk for all 1 ≤ k ≤ n such that k 6= q̃. Then, by Lemma 10,

∣∣∣ZπV
(X1:n)− ZπV

(X̃ q̃
1:n)
∣∣∣ =

∣∣∣∣∣
1

n

n∑

q=1

[
log PπV

(Xq|Xq+1:n)− logPπV
(X̃ q̃

q |X̃ q̃
q+1:n)

]∣∣∣∣∣ ,

≤ 1

n

q̃∑

q=1

∣∣∣logPπV
(Xq|Xq+1:n)− logPπV

(X̃ q̃
q |X̃ q̃

q+1:n)
∣∣∣ .
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On one hand, by Lemma 9,
∣∣logPπV

(Xq|Xq+1:n)− logPπ′

V
(Xq|Xq+1:n)

∣∣ ≤ 2ν−4‖πV − π′
V ‖tv .

On the other hand, by Lemma 10, for any 1 ≤ q ≤ q̃ ≤ n,
∣∣∣log PπV

(Xq|Xq+1:n)− logPπV
(X̃ q̃

q |X̃ q̃
q+1:n)

∣∣∣ ≤ ν−1(1 − ν)q̃−q−1 .

Thus,
∣∣∣
(
ZπV

(X1:n)− Zπ′

V
(X1:n)

)
−
(
ZπV

(X̃ q̃
1:n)− Zπ′

V
(X̃ q̃

1:n)
)∣∣∣

≤ 2ν−4

n

q̃∑

q=1

[
‖πV − π′

V ‖tv ∧ (1 − ν)q̃−q
]
≤ 2ν−5

n
d(π, π′) .

Eq (21) follows by plugging these bounded differences properties in [10, Theorem 0.2].

C Proofs of the main results

When H1 holds and E = En,N
RR , (V E

2:q
E
, XE

2:q
E
−1) satisfies the assumptions of Section B with

πV = π⊗n−1, Ki(X
E
i , V E

i , V E
i+1) =

∏

Xi,j∈XE
i

k(Xi,j , Vi, Vj), νi = ε|X
E
i | .

Moreover, it is proved in Section A that
∣∣XE

q

∣∣ = n(n− 1) for 2 ≤ q ≤ qE − 1, which implies that

νi ≥ εn
2

. (22)

Throughout the proofs, the following conventions are used. For all 0 ≤ k ≤ qE ,

vEk ∈ V |V E
k |, π(dvEk ) =

∏

i:Vi∈V E
k

π(dvi) .

C.1 Proof of Theorem 2

The first inequality is a direct conclusion of Lemma 8. The proof of the second inequality follows
the same lines. Then, the log-likelihood is decomposed as follows

logPE
π

(
XE
)
= logPE

π

(
XE

2:q
E
−1

)
+ logPE

π

(
XE

0 , XE
1 , XE

q
E

∣∣∣XE
2:q

E
−1

)
,

=

qE−1∑

q=2

logPE
π

(
XE

q

∣∣∣XE
q+1:q

E
−1

)
+ logPE

π

(
ZE
∣∣∣XE

2:q
E
−1

)
. (23)

Let us first bound from above the last term in (23).

P
E
π

(
ZE
∣∣∣XE

2:q
E
−1

)
=

∫
P
E
π

(
ZE , dvE0:2, dv

E
q
E
:q

E
+1

∣∣∣XE
2:q

E
−1

)
,

=

∫
P
E
π

(
dvE0:2, dv

E
q
E
:q

E
+1

∣∣∣XE
2:q

E
−1

)




∏

Xi,j∈ZE

k(Xi,j , vi, vj)



 ,
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By Assumption 1

ε3n
2 ≤ P

E
π

(
ZE
∣∣∣XE

2:q
E
−1

)
≤ 1 . (24)

In particular, the last term in (23) is O(1) when N grows to infinity. On the other hand,taking the

limit as ℓ → ∞ in Lemma 8 and recalling that νi > εn
2

, see (22), for any π ∈ Π,

1

qE

qE−1∑

q=2

∣∣∣logPE
π

(
XE

q

∣∣∣XE
q+1:q

E
−1

)
− ℓnπ(ϑ

qXn)
∣∣∣ ≤ 1

qE

qE−1∑

q=2

(1− εn
2

)qE−q−2

εn2
≤ ε−3n2

qE
. (25)

By (15), |ℓnπ(Xn)| ≤ n2 log(ε−1), thus ℓnπ is integrable. Therefore, the ergodic theorem [1, Theo-

rem 24.1] can be applied to
∑qE−1

q=2 ℓnπ(ϑ
qXn)/qE and (4) follows.

C.2 R
π⋆

is the excess risk function

The following result shows that Rn
π⋆

is a non-negative function.

Proposition 13. For all π ∈ Π and all n ≥ 1, Rn
π⋆
(π) ≥ 0.

Proof. Let π ∈ Π and n ≥ 1. By (3),

Lnπ⋆
(π) = Eπ⋆

[
lim

N→∞
logPE

π (X
E
2 |XE

3:q
E
−1)
]
.

By Lebesgue’s bounded convergence theorem

Lnπ⋆
(π) = lim

N→∞
Eπ⋆

[
logPE

π (X
E
2 |XE

3:q
E
−1)
]

= lim
N→∞

Eπ⋆

[
Eπ⋆

[
logPE

π (X
E
2 |XE

3:q
E
−1)
∣∣∣XE

3:q
E
−1

]]
.

Therefore,

Rn
π⋆
(π) = lim

N→∞

{
Eπ⋆

[
Eπ⋆

[
logPE

π⋆
(XE

2 |XE
3:q

E
−1)− logPE

π (X
E
2 |XE

3:q
E
−1)
∣∣∣XE

3:q
E
−1

]]}
,

and the latter is non negative since the term in the expectation is a Kullback-Leibler divergence.

C.3 Proof of Theorem 3

As that for any π ∈ Π ∪ {π⋆}, ℓE (π) = logPE
π (X

E), the excess loss satisfies:

Rn
π⋆
(π̂E) = Lnπ⋆

(π⋆)− Eπ⋆

[
1

qE
ℓE (π⋆)

]
+ Eπ⋆

[
1

qE
ℓE (π⋆)

]
− 1

qE
ℓE (π⋆)

+
1

qE
ℓE (π⋆)−

1

qE
ℓE
(
π̂E
)
+

1

qE
ℓE
(
π̂E
)
− Eπ⋆

[
1

qE
ℓE
(
π̂E
)]

+ Eπ⋆

[
1

qE
ℓE
(
π̂E
)]

− Lnπ⋆
(π̂E) .
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By definition ℓE (π⋆)− ℓE
(
π̂E
)
≤ 0. Thus,

Rn
π⋆
(π̂E) ≤ 2 supπ∈Π∪{π∗}

{∣∣∣∣∣L
π⋆(π)− Eπ⋆

[
ℓE (π)

]

qE

∣∣∣∣∣+
∣∣∣∣
1

qE
Eπ⋆

[
ℓE (π)

]
− ℓE (π)

qE

∣∣∣∣

}
.

For all π ∈ Π, as, for any q ∈ Z, Eπ⋆
[ℓnπ(X

n)] = Eπ⋆
[ℓnπ(ϑ

qXn)],

Lπ⋆(π) =
1

qE
Eπ⋆

[
qE−1∑

q=2

ℓnπ(ϑ
qXn)

]
+

1

qE
Eπ⋆

[2ℓnπ(X
n)] .

Moreover, if ZE = XE
0 ∪XE

1 ∪XE
q
E
,

ℓE (π) = logPE
π (X

E) =

qE−1∑

q=2

log PE
π

(
XE

q

∣∣∣XE
q+1:q

E
−1

)
+ logPE

π

(
ZE
∣∣∣XE

2:q
E
−1

)
.

Therefore,

∣∣∣∣∣L
π⋆(π) − Eπ⋆

[
ℓE (π)

]

qE

∣∣∣∣∣ ≤
1

qE
Eπ⋆

[
qE−1∑

q=2

∣∣∣ℓnπ(ϑqXn)− logPE
π

(
XE

q

∣∣∣XE
q+1:q

E
−1

)∣∣∣
]

+
1

qE
Eπ⋆

[
|2ℓnπ(Xn)|+

∣∣∣logPE
π

(
ZE
∣∣∣XE

2:q
E
−1

)∣∣∣
]
.

Then, by (25), (15) and (24) and the inequality x ≤ ex, there exists c such that:

supπ∈Π∪{π∗}

∣∣∣∣∣L
π⋆(π)− Eπ⋆

[
ℓE (π)

]

qE

∣∣∣∣∣ ≤
cε−3n2

qE
.

This yields:

Rn
π⋆
(π̂E) ≤ cε−3n2

qE
+ 2 supπ∈Π∪{π∗}

∣∣∣∣
1

qE
Eπ⋆

[
ℓE (π)

]
− 1

qE
ℓE (π)

∣∣∣∣ ,

and therefore, by (24),

Rn
π⋆
(π̂E) ≤ cε−3n2

qE
+ 2 supπ∈Π∪{π∗} |ZπV

| , (26)

where

Zπ =
1

qE

qE−1∑

q=2

[
logPE

π (X
E
q |XE

q+1:q
E
)− Eπ⋆

[
logPE

π (X
E
q |XE

q+1:q
E
)
]]

.

Lemma 11 applies by assumption H1 since E = En,N
RR , therefore, there exists c > 0 such that,

Pπ⋆

(∣∣∣supπ∈Π∪{π∗}Zπ − Eπ⋆

[
supπ∈Π∪{π∗}Zπ

]∣∣∣ > cε−2n2 t
√
qE

)
≤ e−t2 , ∀t > 0 . (27)
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Furthermore, by Lemma 12, the increments of Zπ have subgaussian tails.

Pπ⋆

(√
qE |Zπ − Zπ′ | > t

)
≤ exp

(
− t2
(
cε−5n2d(π⊗|V E

2
|, (π′)⊗|V E

2
|)
)2

)
, ∀t > 0 .

Now it is easy to check that
∥∥∥π⊗|V E

2 | − (π′)⊗|V E
2 |
∥∥∥
tv

≤ |V E
2 | ‖π − π′‖

tv
.

Therefore, d(π⊗|V E
2 |, (π′)⊗|V E

2 |) ≤ cn2d(π, π′) ≤ cε−n2

d(π, π′), thus

Pπ⋆

(√
qE |Zπ − Zπ′ | > t

)
≤ exp

(
− t2
(
cε−6n2d(π, π′)

)2

)
, ∀t > 0 . (28)

Then, by Dudley’s entropy bound, see [12] or [25, Proposition 2.1],

Eπ⋆

[
supπ∈Π∪{π⋆}Zπ(X

E)
]
≤ ce−6n2

√
qE

∫ +∞

0

√
logN(Π ∪ {π⋆}, d, ǫ)dǫ . (29)

Plugging (27) and (29) into (26) concludes the proof.
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[11] R. Douc and É. Moulines. Asymptotic properties of the maximum likelihood estimation in
misspecified hidden Markov models. The Annals of Statistics, 40(5):2697–2732, 2012.

[12] R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian
processes. J. Functional Analysis, 1:290–330, 1967.

[13] B. Efron. Large-scale inference, volume 1 of Institute of Mathematical Statistics (IMS) Mono-
graphs. Cambridge University Press, Cambridge, 2010. Empirical Bayes methods for estima-
tion, testing, and prediction.

[14] D.R. Hunter. MM algorithms for generalized Bradley-Terry models. The Annals of Statistics,
32(1):384–406, 2004.

[15] S.L. Lauritzen. Graphical models. Oxford Statistical Science series. Clarendon Press, 1996.
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