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Learning latent structure of large random graphs

Roland Diel∗ Sylvain Le Corff† Matthieu Lerasle†

Abstract

In this paper, we estimate the distribution of hidden nodes weights in large random graphs
from the observation of very few edges weights. In this very sparse setting, the first non-
asymptotic risk bounds for maximum likelihood estimators (MLE) are established. The proof
relies on the construction of a graphical model encoding conditional dependencies that is ex-
tremely efficient to study n-regular graphs obtained using a round-robin scheduling. This
graphical model allows to prove geometric loss of memory properties and deduce the asymp-
totic behavior of the likelihood function. Following a classical construction in learning theory,
the asymptotic likelihood is used to define a measure of performance for the MLE. Risk bounds
for the MLE are finally obtained by subgaussian deviation results derived from concentration
inequalities for Markov chains applied to our graphical model.

1 Introduction

Inference in large random graphs is an important topic of interest due to its applications to many
fields such as data science, sociology or neurobiology for instance. This paper focuses on large
random graphs whose heterogeneity is described by latent data models. The nodes are associated
with latent random weights, independent and with unknown distribution. The only available infor-
mation is given by random weights associated with few edges in the graph which are independent
conditionally on the nodes weights. The objective is to estimate the unknown distribution of the
nodes weights from these observations. This latent data structure is appealing as it may be used to
describe graphs in a wide range of applications. In sports tournaments, nodes represent contestants
in a championship and each node weight is the “intrinsic value” of the corresponding player. An
edge is drawn between players when they face each others, the result of a contest is the observed
edge weight. The problem is to recover from a few games the distribution of the intrinsic values
of the players to make early prediction on the issue of the championship for example. In social
networks, nodes are members and their weights represent the “popularity” of each member. An
edge is drawn between members if a “suggestion of friendship” has been made to one of them. The
observed edge weight is 0 if these people are not connected and 1 otherwise. The problem here is
to estimate the popularity density in a large population where only a few suggestions of friendship
can be made compared to the global size of the network. In neurobiology, random graphs may be
used to model neural functional connectivity inside the brain. In this case, nodes are neurons and
their weights represent their efficiency to diffuse neural information. An edge between neurons is
drawn if the activity of these neurons is observed simultaneously. The weight of this edge is a score
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representing the influence that these neurons exercise on each other. The problem is therefore to
estimate the functional connectivity density inside the brain from these scores.

The problem studied in this paper has a long history, going back at least to [31] who considered
the problem of paired comparison to evaluate performances of medicines. In [31] and later in [2], the
problem was to recover the weights of a finite number of nodes when the number of measurements on
every pair grows to infinity. Further extensions of the so-called Bradley-Terry model have then been
studied, see for example [7] for a review. More recently, [22] considered the problem of estimating
nodes weights in Bradley-Terry models based on one measurement per pair of nodes when the
number N of nodes grows to infinity. This framework led to several developments in computational
statistics for the Bradley-Terry model, see [14] and [4] for various extensions of this original model.
A related problem was considered in [5] where an edge is inserted between each pair of nodes with
a probability depending on the nodes weights. Each node has therefore a random degree and the
observed degrees are used to infer nodes weights. When the graph is fully observed, [5] proved that
with a probability of order 1 − 1/N2, there exists a unique maximum likelihood estimator of the
nodes weights which is such that the supremum norm of the estimation error is upper bounded by√
logN/N .
This paper strongly departs from these settings where the all graph is observed, even from [30]

where some edges are missing. We consider a very sparse alternative where only very few edges
per nodes are observed. A reason why such a sparse setting has never been considered is probably
due to [31] who proved that the estimation of the weights is actually impossible in the Bradley-
Terry model in this situation. To overcome this issue, we consider the problem of estimating the
distribution of the weights and not the weights themselves. There are several motivations to adopt
this new approach. The Bradley-Terry model in “random environment” was applied with success to
predict the issue of a championship by estimating the probability distribution of the teams weights
(strengths) which were assumed to be uniformly distributed, see for example [23] and references
therein. Moreover, [6] recently showed that the node with maximal weight can be recovered if the tail
of the nodes weights distribution is sufficiently convex. More generally, the idea to use a Bayesian
estimator when a frequentist approach is not available is rather standard. The performances of this
estimator highly depend on the prior distribution of the parameters and providing a reasonable
prior may have a great impact. The study of bayesian estimators with an estimated prior is known
as empirical bayes theory [21] and is currently a subject of intense research, see for example [13] for
a recent overview. The problem presented in this paper can be understood as finding a statistically
efficient estimator of the prior to design an empirical bayes estimator for the nodes weights. The
use of latent variables is also at the heart of mixed effect models widely spread in biostatistics, see
[15].

This paper shows the first non-asymptotic risk bounds for non-parametric maximum likelihood
estimators (MLE) of the distribution of nodes weights. Asymptotic properties of MLE rely heavily
on a loss of memory property of the observed random graph. This can be analyzed using a graphical
model describing the conditional dependencies between nodes and edges. This graphical model
provides a natural parallel with hidden Markov models [3] which is used to study the asymptotic
behavior of the likelihood, following [11] in particular. The limit likelihood defines a natural notion
of risk to measure performances of MLE. These performances are obtained for finite values of the
number N of nodes using concentration inequalities for Markov Chains [10]. The excess risk scales
as the entropy of the underlying statistical model (in the sense of Dudley) normalized by a term of
order

√
N when n is fixed and N → ∞. From a learning perspective, Dudley’s entropy bound is

known to be sub-optimal in general, it can be replaced by a majorizing measure bound [24] if needed
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since the bound proposed in this paper is derived from a subgaussian concentration inequality for
the underlying process, see Eq. (27).

More generally, we believe that the methodology introduced to prove our results leads the way
to exciting research perspectives in various fields. For example, identifiability of non-parametric
hidden Markov models with finite state spaces was established very recently along with the first
convergence properties of estimators of the unknown distributions, see [8] for a penalized least-
squares estimator of the emission densities, [9, 28, 29] for consistent estimation of the posterior
distributions of the states and posterior concentration rates for the parameters or [16] for order
estimation. However, very few theoretical results are available for the non-parametric estimation of
general state spaces hidden Markov models. The arguments leading to our risk bound may probably
be extended to this framework. In computational statistics, bayesian estimators of nodes weights
have been studied in Bradley-Terry models and other extensions [4]. Designing new algorithms to
compute MLE of the prior would therefore be of great interest to derive empirical bayes estimators
of these weights.

The paper is organized as follows. Section 2 details the model and the maximum likelihood
estimator of the unknown weights distribution. Section 3 presents preliminary results underlying
our analysis. A graphical model encoding conditional dependencies in the original graph is built.
The round-robin algorithm, a widely spread method in sports tournaments that builds sparse graphs
for which our graphical model is stationary, is also presented. Our main results are finally given in
Section 4. Convergence of the likelihood is established when the number N of nodes grows to +∞
and risk bounds for the MLE are provided. Section 5 to 7 are devoted to the proofs of these results.
Section 5 proves the fundamental properties of the graphical model associated with round-robin
graphs. Section 6 proves the probabilistic tools required to establish the main results. These tools
might be of independent interest, they are presented as independent results and hold for stationary
processes with conditional dependencies encoded in the graphical model. Proofs of the main results
are finally gathered in Section 7.

2 Setting

2.1 Random graphs with latent variables

Let n, N denote two positive integers and let ({1, . . . , N}, En,N) be a connected n-regular graph.
Let V1, . . . , VN denote independent and identically distributed (i.i.d.) random variables taking
values in a measurable set V with common (unknown) distribution π⋆. For all {i, j} ∈ En,N , the
observation Xi,j takes values in a discrete set X and conditionally on V = (V1, . . . , VN ), the random
variables (Xi,j)(i,j)∈En,N are independent and such that the conditional distribution of Xi,j is given
by k : X × V × V → [0, 1]:

P(Xi,j = x|V ) = k(x, Vi, Vj) .

This framework encompasses the following models.

Example 1 (Bradley-Terry model [2]). In this example, V = R
∗
+, X = {0, 1} and for all x ∈ X ,

k(x, Vi, Vj) =

(
Vi

Vi + Vj

)x (
Vj

Vi + Vj

)1−x

.

Example 2 (Extensions of Bradley-Terry model). In [4], the authors proposed several algorithms
to perform Bayesian inference for generalized Bradley-Terry models which fit our framework.
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- The Bradley-Terry model with home advantage introduces an additional parameter θ > 0 to
measure the home-field advantage. In this case, V = R

∗
+, X = {0, 1} and, if the player i is home,

for all x ∈ X ,

k(x, Vi, Vj) =

(
θVi

θVi + Vj

)x (
Vj

θVi + Vj

)1−x

.

- The Bradley-Terry model with ties [20] introduces an additional parameter θ > 1, V = R
∗
+,

X = {−1, 0, 1} and

k(1, Vi, Vj) =
Vi

Vi + θVj

and k(0, Vi, Vj) =
(θ2 − 1)ViVj

(θVi + Vj) (Vi + θVj)
.

Example 3 (Random graphs with a given degree sequence). [5] considers random graphs such that,
for all 1 ≤ i < j ≤ N , an edge is inserted between players i and j with probability ViVj/(1 + ViVj)
where (V1, . . . , VN ) are parameters to be estimated using the degrees of the vertices in the observed
graph. Such random graphs fit our framework with V = R

∗
+, X = {0, 1} (Xi,j = 0 in our framework

representing {i, j} /∈ E in theirs) and for all 1 ≤ i < j ≤ N , x ∈ X ,

k(x, Vi, Vj) =

(
ViVj

1 + ViVj

)x (
1

1 + ViVj

)1−x

.

2.2 Maximum likelihood estimator

The weights Xn,N = (Xi,j)(i,j)∈En,N are observed and the objective is to infer the distribution π⋆

of the hidden variables V = (V1, . . . , VN ) from these observations. Let Π be a set of probability
measures on V . For all π ∈ Π ∪ {π⋆}, the joint distribution of (Xn,N , V ) is given by

P
n,N
π (xn,N , A) =

∫
1A(v)

∏

(i,j)∈En,N

k(xn,N
i,j , vi, vj)π

⊗N (dv) . (1)

Using the convention log 0 = −∞, the log-likelihood is given, for all π ∈ Π ∪ {π⋆}, by

ℓn,N (π) = log P
n,N
π (Xn,N) , where P

n,N
π (Xn,N ) = P

n,N
π (Xn,N ,V) .

In this paper, π⋆ is estimated by the standard maximum likelihood estimator π̂n,N defined as any
maximizer of the log-likelihood:

π̂n,N ∈ argmax
π∈Π

{ℓn,N (π)} .

3 Round-robin graphical model

Section 3.1 details a graphical model encoding the conditional dependences between the random
variables (Xn,N , V ). This graphical model is studied in the particular case of round-robin graphs
in Section 3.2.
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3.1 Graphical model

Let dn,N0 denote the graph distance in ({1, . . . , N}, En,N), that is dn,N0 (i, j) is the minimal length

of a path between nodes i and j. Write {V1, . . . , VN} = ∪N
q=0V

n,N
q , where V n,N

0 = {V1} and, for

any q ≥ 1, V n,N
q is the set of Vi such that dn,N0 (1, i) = q. Let qnN + 1 denote the maximal distance

between 1 and i ∈ {1, . . . , N}:
qnN + 1 = max

1≤i≤N
dn,N0 (1, i) .

- For all 1 ≤ q ≤ qnN + 1, let

Xn,N
q↔q = {Xi,j : {i, j} ∈ En,N , i ∈ V n,N

q , j ∈ V n,N
q } .

The set Xn,N
q↔q gathers all Xi,j such that i and j satisfy dn,N0 (V1, Vi) = dn,N0 (V1, Vj) = q.

- For all 0 ≤ q ≤ qnN , let

Xn,N
q↔q+1 = {Xi,j : {i, j} ∈ En,N , i ∈ V n,N

q , j ∈ V n,N
q+1 } .

Likewise, the set Xn,N
q↔q+1 gathers all Xi,j such that dn,N0 (V1, Vi) = q and dn,N0 (V1, Vj) = q + 1.

Finally, for any 0 ≤ q ≤ qnN , let

Xn,N
q = Xn,N

q↔q+1 ∪Xn,N
q+1↔q+1 .

By (1) the joint distribution of (V n,N
q )0≤q≤qn

N
+1 and (Xn,N

q )0≤q≤qn
N

may be factorized using the
conditional independence between some subsets of these variables. For all 0 ≤ q ≤ qnN , and all
π ∈ Π,

P
n,N
π

(
Xn,N

q

∣∣∣V,Xn,N
0:q−1

)
= P

n,N
π

(
Xn,N

q

∣∣∣V n,N
q , V n,N

q+1

)
=

∏

{i,j}:Xi,j∈X
n,N
q

k (Xi,j , Vi, Vj) .

These conditional dependences are represented in the graphical model of Figure 1, where graph
separations represent conditional independences. For all 0 ≤ q ≤ qnN any path between Xn,N

q

and other vertices except V n,N
q and V n,N

q+1 goes through V n,N
q or V n,N

q+1 which means that Xn,N
q is

independent of all other nodes given V n,N
q and V n,N

q+1 .

V n,N
0

Xn,N
0

V n,N
1

Xn,N
1

V n,N
2

V n,N
qn
N

. . .

Xn,N
qn
N

V n,N
qn
N
+1

Figure 1: Graphical model of a paired comparisons based contest.
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3.2 Round-Robin Scheduling

There is a large variety of n-regular graphs (even up to permutations of the indices), the results of
this paper are obtained for the graph built using the round-robin scheduling. At time t = 1, this
algorithm pairs nodes according to Figure 2a, that is 2i− 1 is paired with 2i, for all i ∈ [N/2]. At
time t = 2, a node is fixed and all others are rotated clockwise as described in Figure 2b. Node 1
does not move, 2 takes the place of 3, each odd integer 2i − 1 < N − 1 takes the place of 2i + 1,
N − 1 takes the place of N and each even integer 2i > 2 takes the place of 2(i − 1). Then, each
node is paired with the new node it faces as in Figure 2c. At each time t > 2, each node moves once
according to the round-robin step detailed in Figure 2b and is paired with the new node it faces.
The round-robin graph denoted by En,N

RR studied in detail in this paper contains all pairs collected
in the first n rotations of the round-robin algorithm.

V1 V3 V5 V2i−1 VN−3 VN−1

V2 V4 V6 V2i VN−2 VN

. . . . . .

. . . . . .

(a) Round-robin, t = 1.

V1 V3 V5 V2i−1 VN−3 VN−1

V2 V4 V6 V2i VN−2 VN

. . . . . .

. . . . . .

(b) Round-robin moves.

V1 V2 V3 V2i−1 VN−5 VN−3

V4 V6 V8 V2i VN VN−1

. . . . . .

. . . . . .

(c) Round-robin, t = 2.

Figure 2: First two days using the round-robin algorithm.

Lemma 1 gathers results on the graphical model of Figure 1 when En,N = En,N
RR that are central

in our analysis.

Lemma 1. Let n,N ≥ 1 and ({1, . . . , N}, En,N
RR

) be the round-robin graph. Assume that 2 ≤ n <

6
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N/4. Then, qnN is the quotient of the Euclidean division of N/2 − 1 by n − 1, that is N/2 − 1 =
qnN (n − 1) + rnN where 0 ≤ rnN < n − 1. Moreover, (V n,N

q , Xn,N
q )2≤q≤qn

N
−1 is a stationary Markov

chain such that for all 2 ≤ q ≤ qnN − 1,

∣∣V n,N
q

∣∣ = 2(n− 1) ,
∣∣Xn,N

q

∣∣ = n(n− 1) .

Lemma 1 is proved in Section 5.

4 Main results

Section 4.1 computes the limit likelihood function and define a natural risk function to evaluate
the performances of the MLE. Risk bounds for the MLE are obtained in Section 4.2 using non-
asymptotic concentration inequalities for Markov chains.

4.1 Convergence of the likelihood

The problem being reduced to the analysis of the graphical model of Figure 1, convergence results
follow from the geometrically decaying mixing rates of the conditional law of (V n,N

k )0≤k≤qn
N
+1 given

Xn,N
q:qn

N
−1 for any 0 ≤ q < qnN . These rates derive from the following assumption.

H1 There exists ε > 0 such that for all x ∈ X , π ∈ Π∪{π⋆} and v1, v2 ∈ supp(π), k(x, v1, v2) ≥ ε.

When En,N = En,N
RR , by Lemma 1, the joint sequence (Xn,N

q , V n,N
q )2≤q≤qn

N
−1 is a stationary Markov

chain which may be extended to a stationary process indexed by Z with the same transition kernel.
This extension is denoted by (Xn,Vn).

Define also the shift operator ϑ on (Xn(n−1))Z by (ϑx)k = xk+1 for all k ∈ Z and all x ∈
(Xn(n−1))Z.

Theorem 2. Assume H1 holds and ({1, . . . , N}, En,N
RR

) is the round-robin graph. There exists a
function ℓnπ such that for all q ≥ 2,

supπ∈Π

∣∣∣log Pn,N
π (Xn,N

q |Xn,N
q+1:qn

N
−1)− ℓnπ(ϑ

qXn)
∣∣∣ −→
N→∞

0, Pπ⋆
-a.s . (2)

Moreover, for all π ∈ Π, Pπ⋆
-a.s. and in L1(Pπ⋆

),

1

qnN
logPn,N

π

(
Xn,N

)
−→
N→∞

Lnπ⋆
(π) = Eπ⋆

[ℓnπ(X
n)] . (3)

Theorem 2 establishes convergence to the limit likelihood Lnπ⋆
(π) when the number of nodes N

goes to ∞ while n remains fixed. The rate of almost sure convergence qnN is proportional to N by
Lemma 1. Eq (3) is the key to understand the definition of the risk function used in the next section.
We proceed as in Vapnick’s learning theory [27, 26] described now to establish a parallel with our
framework. Let Y, Y1, . . . , YN denote i.i.d. observations in Y, let F denote a set of parameters, and
let ℓ : F ×Y → R denote a loss function. The empirical risk minimizer is defined in this context by

f̂ERM
N = argmin

f∈F

N∑

i=1

ℓ(f, Yi) .

7
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If E[ℓ(f, Y1)] < ∞ for all f ∈ F , the risk of any f ∈ F is measured by the excess risk [19]

R(f) = E [ℓ(f, Y )]− E [ℓ(f∗, Y )] ,

where Y is a copy of Y1, independent of Y1, . . . , YN and f∗ is the minimizer of E[ℓ(f, Y )] over F .
Note that when E[ℓ(f, Y1)] < ∞, for all f ∈ F the normalized empirical criterion satisfies almost
surely,

1

N

N∑

i=1

ℓ(f, Yi) → E[ℓ(f, Y1)] .

Therefore the excess risk R(f) is the difference between normalized asymptotic empirical criteria
in f and its minimizer. In this paper, the MLE minimizes − logPn,N

π

(
Xn,N

)
, which, properly

normalized converges to −Lnπ⋆
(π). This suggests to define the risk function

Rn
π⋆
(π) = Lnπ⋆

(π⋆)− Lnπ⋆
(π), ∀π ∈ Π . (4)

By Proposition 13, π⋆ is actually a minimizer of −Lnπ⋆
(π) over Π ∪ {π⋆}. Therefore, Rn

π⋆
is the

excess risk associated with the likelihood function.

4.2 Risk bounds for the MLE

The following theorem provides non-asymptotic deviation bounds for the excess risk of the MLE.
This is the main result of this paper.

Theorem 3. Assume H1 holds and ({1, . . . , N}, En,N
RR

) is the round-robin graph. For any probability
measures π and π′, let

d(π, π′) =

{
‖π − π′‖tv log

(
1

‖π−π′‖tv

)
if ‖π − π′‖tv ≤ e−1 ,

‖π − π′‖tv if ‖π − π′‖tv ≥ e−1 .
(5)

Assume that Π is a compact set for the topology induced by d and let N(Π∪{π⋆}, d, ǫ) be the minimal
number of balls of d-radius ǫ necessary to cover Π ∪ {π⋆}. Then, there exists c > 0 such that, for
any t > 0,

P
n,N
π⋆

(
Rn

π⋆
(π̂n,N ) >

cnε−6n2

√
N

[∫ +∞

0

√
logN(Π ∪ {π⋆}, d, ǫ)dǫ+ t

])
≤ e−t2 .

Theorem 3 is proved in Section 7.3. It provides the first non-asymptotic risk bounds for any
estimator in a very sparse setting where the number of edges n observed for each node can be very
small compared to the number of nodes N . It proves that the problem studied in this paper is
fundamentally different from the problem of nodes weights estimation that is usually considered, at
least in Bradley-Terry models. While estimating nodes weights is only possible when n is as large
as N [31, 22, 30], some information on their distribution may be recovered when n ≪ N . This
difference is extremely relevant in sports tournaments for example, it means that one can start to
make prediction on the final issue of a championship only after a few weeks, while predictions on
the issue of each game can only be made when half the year has passed.

The distance d defined in (5) used to measure the entropy of Π is not intuitive. However, it is

easy to check that d(π, π′) ≤ Cα ‖π − π′‖1−α

tv for any α > 0. It follows that, for any class Π with

8
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polynomial entropy for the total variation distance, that is such that N(Π∪ {π⋆}, ‖·‖tv , ǫ) . ǫD for
small ǫ, Dudley’s entropy integral for distance d satisfies

∫ +∞

0

√
logN(Π ∪ {π⋆}, d, ǫ)dǫ .α

√
D .

Therefore, “slow rates” of convergence are obtained for the MLE. The polynomial growth N(Π ∪
{π⋆}, ‖·‖tv , ǫ) . ǫD is extremely standard, see [25, p271–274] for various examples where this
assumption is satisfied and our result applies. On the other hand, “fast” rates of convergence
remain an open question. In particular, the margin condition [18] required to prove such rates
would hold if the total variation distance between distributions of the nodes weights was bounded
from above by the excess risk derived from the asymptotic of the likelihood.

The remaining of the paper is devoted to the proof of the main results. Section 5 proves
Lemma 1, describing precisely the structure of the graphical model given in Figure 1 in the case of
a round-robin scheduling. Then, Section 6 establishes central tools in the analysis of the likelihood of
stationary processes whose conditional dependences are encoded in the graphical model of Figure 1.
These results, that might be of independent interest, are therefore stated as independent lemmas.
These tools are finally used in Section 7 to prove the main theorems.

5 Round-robin scheduling

This section details the sets V n,N
q and Xn,N

q for 0 ≤ q ≤ qnN +1 when En,N = En,N
RR (cf. Figures 2a-

2c). In the following, notations for nodes and their weights are identified, i.e. i is identified with
Vi for all 1 ≤ i ≤ N . Lemma 1 follows directly from Lemma 4 and Lemma 5 below. To prove these
lemmas, consider the following notations.

E = {4x− 1, 4x : x ∈ [⌊N/4⌋]} and O = [N ] \ E .

The notation E (resp O) comes from the fact that E (resp O) contains all i paired with 1 after an
even (resp odd) number n ≤ N/4 of rotations of the round-robin scheduling. For all 1 ≤ q ≤ qnN ,
let

V n,N
q,e = V n,N

q ∩ E and V n,N
q,o = V n,N

q ∩ O .

Lemma 4. Let n,N ≥ 1 and ({1, . . . , N}, En,N
RR

) be the round-robin graph. Assume that 2 ≤ n <
N/4 and let N/2− 1 = qnN (n− 1) + rnN where 0 ≤ rnN < n− 1. Then,

V n,N
1 = {V2x : x = 1, . . . , n} , (6)

and, for any 2 ≤ q ≤ qnN ,

V n,N
q = {V2x+1 : x ∈ [(q − 2)(n− 1) + 1, (q − 1)(n− 1)]}

∪ {V2x : x ∈ [2 + (q − 1)(n− 1), 1 + q(n− 1)]} . (7)

Furthermore,

V n,N
qn
N
+1 = {V2x+1 : x ∈ [(qnN − 1)(n− 1) + 1, qnN(n− 1) + rnN ]}

∪ {V2x : x ∈ [2 + qnN (n− 1), 1 + rnN + qnN (n− 1)]} . (8)

Therefore, |V n,N
0 | = 1, |V n,N

1 | = n and for all 2 ≤ q ≤ qnN ,
∣∣V n,N

q

∣∣ = 2(n− 1).

9
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Figure 3: Elements of V3,N , case r3N = 0.
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Figure 4: Elements of V3,N , case r3N = 1.

Proof. To ease the reading of this proof, one can check its arguments on Figures 3 and 4.
We proceed by induction on q. The definition of V n,N

1 given by (6) is straightforward. Then, V n,N
2

contains:

- all Vi paired with some Vj ∈ V n,N
1 on the first rotation of the algorithm besides V1 that does not

belong to V n,N
2 . These are all {V2x+1 : x = 1, . . . , n− 1} ;

- All Vi paired with V2 and V4 that are not in V n,N
0 ∪ V n,N

1 . After n rotations of the round-
robin algorithms, all Vi paired with V2 are {V1, V4x+2 : x = 1, . . . , n − 1} and those with V4 are
{V1, V3, V4x : x = 2, . . . , n− 2}.

Therefore,
V n,N
2 ⊃ {V2x+1 : x = 1, . . . , n− 1} ∪ {V2x : x = n+ 1, . . . , 2n− 1} .

On the other hand, by induction, for all i /∈ {N−2x+1, x = 1, . . . , 2(n−1)}∪{2x : x = 1, . . . , 2n−1},

if i is odd, it is paired with {Vi+4x+1 : x = 0, . . . n− 1} ,
if i is even, it is paired with {Vi−4x−1 : x = 0, . . . , n− 1} . (9)

10
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This implies that there is no even number i ≥ 4n nor odd number i > 2n− 1 such that Vi ∈ V n,N
2 ,

which yields:

V n,N
2 = {V2x+1 : x = 1, . . . , n− 1} ∪ {V2x : x = n+ 1, . . . , 2n− 1} .

(7) is obtained by induction using the same arguments and (8) is a direct consequence of the
round-robin algorithm. The last claim follows by noting that for all q ∈ [2, qnN ],

|V n,N
q,e | = |V n,N

q,o | = n− 1 .

Indeed, one of the following cases holds.

- n− 1 = 2p for some p ∈ N. In this case,

|{j : Vj ∈ V n,N
q,e , j ∈ 2Z}| = |{i : Vi ∈ V n,N

q,e , i ∈ 2Z+ 1}| = p .

- n− 1 = 2p+ 1 for some p ∈ N. In this case, either

|{j : Vj ∈ V n,N
q,e , j ∈ 2Z}| = p, and |{i : Vi ∈ V n,N

q,e , i ∈ 2Z+ 1}| = p+ 1 ,

or
|{j : Vj ∈ V n,N

q,e , j ∈ 2Z}| = p+ 1, and |{i : Vi ∈ V n,N
q,e , i ∈ 2Z+ 1}| = p .

Lemma 5. Let n,N ≥ 1 and ({1, . . . , N}, En,N
RR

) be the round-robin graph. Then, for all 2 ≤ q ≤
qnN − 1,

|Xn,N
q | = n(n− 1) .

Proof. The proof essentially consists in building the graphical model of Figure 5 from the one
displayed in Figure 1.
Edges involving the first node are decomposed as:

Xn,N
0↔1,e = {X1,4x : x = 1, . . . , ⌊n/2⌋} = {X1,i : Vi ∈ V n,N

1,e } and Xn,N
0↔1,o = {X1,i : Vi ∈ V n,N

1,o } .

Edges involving nodes in V n,N
1 that are both different from 1 are described as follows.

- Edges between two nodes in V n,N
1 denoted by:

Xn,N
1↔1,e = {X4x,4y : (x, y) ∈ [⌊n/2⌋], x < y} = {Xi,j : Vi, Vj ∈ V n,N

1,e , i < j} ,
Xn,N

1↔1,o = {Xi,j : Vi, Vj ∈ V n,N
1,o , i < j} .

Note that there is no edge between any Vi ∈ V n,N
1,e and a node Vj ∈ V n,N

q,o for any q ≥ 1. In

particular, there is no edge between any Vi ∈ V n,N
1,e and Vj ∈ V n,N

1,o . Therefore, Xn,N
1↔1,e ∪Xn,N

1↔1,o

describes all edges between nodes in V n,N
1 .

11
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V n,N
2,e

V n,N
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Figure 5: Graphical model of the round-robin algorithm.

- Edges between Vi ∈ V n,N
1 and Vj ∈ V n,N

2 are described as follows:

Xn,N
1↔2,e = {X4y−1−4k,4y : y ∈ [⌊n/2⌋], k < y} ∪ {X4x,4y : x ∈ [⌊n/4⌋], y ∈ [⌊n/2⌋+ 1, n− x]}

= {Xi,j : Vi ∈ V n,N
1,e , Vj ∈ V n,N

2,e , j ∈ 2Z+ 1, j > i}
∪ {Xi,j : Vi ∈ V n,N

1,e , Vj ∈ V n,N
2,e , j ∈ 2Z ∩ [4n− i]} ,

Xn,N
1↔2,o = {Xi,j : Vi ∈ V n,N

1,o , Vj ∈ V n,N
2,o , j ∈ 2Z+ 1, j > i}

∪ {Xi,j : Vi ∈ V n,N
1,o , Vj ∈ V n,N

2,o , j ∈ 2Z ∩ [4n− i]} .

By (9), for any q ∈ [2, qnN ], edges between Vi and Vj both in V n,N
q are:

Xn,N
q↔q,e = {Xi,j : Vi ∈ V n,N

q,e , i ∈ 2Z+ 1, Vj ∈ V n,N
q,e , j ∈ 2Z} ,

Xn,N
q↔q,o = {Xi,j : Vi ∈ V n,N

q,o , i ∈ 2Z+ 1, Vj ∈ V n,N
q,o , j ∈ 2Z} .

Note that (9) shows also that there is no edge between Vi ∈ V n,N
q,e and Vj ∈ V n,N

q,o . For all 2 ≤ q ≤ qnN

12
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and all Vi ∈ V n,N
q and Vj ∈ V n,N

q+1 ,

Xn,N
q↔q+1,e ={Xi,j : Vi ∈ V n,N

q,e , i ∈ (2Z+ 1), Vj ∈ V n,N
q+1,e, j ∈ 2Z ∩ [i + 4n− 3]}

∪ {Xi,j : Vi ∈ V n,N
q,e , i ∈ 2Z, Vj ∈ V n,N

q+1,e, j ∈ 2Z+ 1 ∩ [i]} ,
Xn,N

q↔q+1,o ={Xi,j : Vi ∈ V n,N
q,o , i ∈ (2Z+ 1), Vj ∈ V n,N

q+1,o, j ∈ 2Z ∩ [i+ 4n− 3]}
∪ {Xi,j : Vi ∈ V n,N

q,o , i ∈ 2Z, Vj ∈ V n,N
q+1,o, j ∈ (2Z+ 1) ∩ [i]} .

Therefore, for all 2 ≤ q ≤ qnN ,

|Xn,N
q↔q,e| = |{i : Vi ∈ V n,N

q,e , i ∈ 2Z+ 1}||{j : Vj ∈ V n,N
q,e , j ∈ 2Z}|

=

{
p2 if n− 1 = 2p ,

p(p+ 1) if n− 1 = 2p+ 1 .

The same holds for |Xn,N
q↔q,o| so that |Xn,N

q↔q | = 2p2 if n − 1 = 2p and |Xn,N
q↔q | = 2p(p + 1) if

n− 1 = 2p+ 1. On the other hand,

|Xn,N
q↔q+1,e| =

∑

i:Vi∈V
n,N
q,e , i∈(2Z+1)

|{j : Vj ∈ V n,N
q+1,ej ∈ 2Z ∩ [i + 4n− 3]}

+
∑

i:Vi∈V
n,N
q,e , i∈2Z

|{j : Vj ∈ V n,N
q+1,e, j ∈ 2Z+ 1 ∩ [i]}|

=

{
2
∑p

i=1 i = p(p+ 1) if n− 1 = 2p ,∑p

i=1 i+
∑p+1

i=1 i = (p+ 1)2 if n− 1 = 2p+ 1 .

As the same holds for |Xn,N
q↔q+1,o|, |Xn,N

q↔q+1| = 2p(p+ 1) if n− 1 = 2p and |Xn,N
q↔q+1| = 2(p+ 1)2 if

n− 1 = 2p+ 1. The proof is completed by writing |Xn,N
q | = |Xn,N

q↔q+1|+ |Xn,N
q+1↔q+1|.

6 Probabilistic study of the graphical model

This section analyses stochastic processes whose conditional dependences are encoded in the graph-
ical model of Figure 1. To ease applications of these general results to our problem, we focus on a
restricted class of such stochastic processes.

Let n ∈ N \ {0}, πV be a distribution on a measurable space V and X be a discrete space.
Let Ki denote non-negative functions defined on X × V

2 such that all Ki(., v, w) are probability
distributions on X. Let PπV

be the distribution on V
n+1 × X

n defined by:

PπV
(V1:n+1 ∈ A1:n+1, X1:n = x1:n) =

∫ n+1∏

i=1

1Ai
(vi)

n+1∏

i=1

πV (dvi)

n∏

i=1

Ki(xi, vi, vi+1) . (10)

The random variables (Vi)i∈{1,...,n+1} are i.i.d. taking values in V with common distribution πV

and (Xi)i∈{1,...n} is a stochastic process taking values in a discrete set X such that (Xi)i∈{1,...,n} are
independent conditionally on V and

PπV
(Xi = x|V1:n+1) = PπV

(Xi = x|Vi, Vi+1) = Ki(x, Vi, Vi+1), ∀i ∈ {1, n}, ∀x ∈ X .

13
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Therefore, PπV
is a generic probability distribution with conditional dependences encoded by the

graphical model of Figure 1. In this section, the following assumption is always granted.

H2 There exist νi > 0 such that

νi ≤ Ki(x, v, w) ≤ 1, ∀x ∈ X, ∀i ∈ Z, ∀v, w ∈ V . (11)

For some results, the following assumption is required.

∀i ∈ {1, . . . , n}, Ki = K . (12)

Whenever Assumption (12) holds, we shall denote by ν a real number such that

ν ≤ K(x, v, w) ≤ 1, ∀x ∈ X, ∀v, w ∈ V .

Note that by (10), the sequence (Vk+1, Xk)k≥0 is a Markov chain with transition kernel on V × X

such that:

PπV
(Vk+1 ∈ A,Xk|Vk, Xk−1) =

∫
1A(vk+1)πV (dvk+1)Kk(Xk, Vk, vk+1) ≥ νkπV (A) .

This uniform minorization condition ensures that the joint Markov chain (Vk+1, Xk)k≥0 is geomet-
rically ergodic and admits the whole space V× X as petite set. Note also that, as defined by (10),
PπV

is the law of this Markov chain started from stationarity, the stationary distribution on V×X

being (A, x0) 7→
∫
1A(v1)πV (dv1)πV (dv0)k(x0, v0, v1).

Lemma 6 first shows that, conditionally on the observations, V1, . . . , Vn is a backward Markov
chain admitting the all state space as petite set.

Lemma 6. For any q ≥ 1, conditionally on Xq:n, (Vn, . . . , V1) is a Markov chain. Its transition

kernels (K
V |X
πV ,k,q)q≤k<n are such that, for all q ≤ k < n, there exists a measure µk,q satisfying for

all measurable set A:

K
V |X
πV ,k,q(Vk+1, A) = PπV

(Vk ∈ A|Vk+1:n, Xq:n) = PπV
(Vk ∈ A|Vk+1, Xq:n) ≥ νkµk,q(A) .

On the other hand, for all 1 ≤ k < q,

K
V |X
πV ,k,q(Vk+1, A) = PπV

(Vk ∈ A|Vk+1:n, Xq:n) = πV (A) .

Proof. The Markov property is immediate. The case 1 ≤ k < q follows from the independence of
Vk and (Vk+1:n, Xq:n). Then, for any q ≤ k < n and all measurable set A,

PπV
(Vk ∈ A|Vk+1:n, Xq:n) = PπV

(Vk ∈ A|Vk+1, Xq:k)

=

∫
1A(vk)πV (dvk)Kk(Xk, vk, vk+1)PπV

(Xq:k−1|vk)∫
πV (dvk)Kk(Xk, vk, vk+1)PπV

(Xq:k−1|vk)
,

with the conventions PπV
(Xq:q−1|Vq) = 1. By Assumption H-2,

PπV
(Vk ∈ A|Vk+1, Xq:n) ≥ νk

∫
1A(vk)πV (dvk)PπV

(Xq:k−1|vk)∫
πV (dvk)PπV

(Xq:k−1|vk)
.

The proof is then completed by choosing:

µk,q(A) =

∫
1A(vk)πV (dvk)PπV

(Xq:k−1|vk)∫
πV (dvk)PπV

(Xq:k−1|vk)
.

14
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Lemma 7 shows the contraction properties of the Markov kernel of the chain V conditionally on
the observations. It is a direct consequence of the minoration condition given in Lemma 6, see
for instance [17, Sections III.9 to III.11] or [3, Corollary 4.3.9 and Lemma 4.3.13]. Let ‖ · ‖tv be
the total variation norm defined, for any measurable set (Z,Z) and any finite signed measure ξ on
(Z,Z), by

‖ξ‖tv = sup

{∫
f(z)ξ(dz) ; f measurable real function on Z such that ‖f‖∞ = 1

}
.

Lemma 7. For all probability measures µ1, µ2 and all 1 ≤ q ≤ k < n,
∥∥∥∥
∫

µ1(dv)K
V |X
πV ,k,q(v, ·)−

∫
µ2(dv)K

V |X
πV ,k,q(v, ·)

∥∥∥∥
tv

≤ (1− νk) ‖µ1 − µ2‖tv ≤ (1− νk) .

In particular, by induction,

∥∥∥∥
∫

{µ1(dvn)− µ2(dvn)}KV |X
πV ,n−1,q(vn, dvn−1) . . .K

V |X
πV ,k,q(vk+1, ·)

∥∥∥∥
tv

≤
n−1∏

i=k

(1− νi) . (13)

Lemma 8 proves a key loss of memory property of the backward chain Xq, with geometric rate of
convergence. Whenever it is necessary, we adopt the convention

∏m
k=ℓ = 1 for any ℓ > m.

Lemma 8. For any 1 ≤ q ≤ n− 1,

|logPπV
(Xq|Xq+1:n)| ≤ log

(
ν−1
q

)
. (14)

For all ℓ ≥ 1, 1 ≤ q ≤ n− 1,

|logPπV
(Xq|Xq+1:n)− logPπV

(Xq|Xq+1:n+ℓ)| ≤ ν−1
q

n−1∏

k=q+1

(1− νk) . (15)

Proof. To prove (15), for 1 ≤ q < n, note that by Lemma 6,

PπV
(Xq|Xq+1:n) =

∫
PπV

(dvn|Xq+1:n)




n−1∏

k=q+1

K
V |X
πV ,k,q+1(vk+1, dvk)


πV (dvq)Kq(Xq, vq, vq+1) .

(16)
Inequality (14) follows from (16). Likewise,

PπV
(Xq|Xq+1:n+ℓ)

=

∫
PπV

(dvn|Xq+1:n+ℓ)




n−1∏

k=q+1

K
V |X
πV ,k,q+1(vk+1, dvk)


 πV (dvq)Kq(Xq, vq, vq+1) . (17)

Then, by Lemma 7, combining (16) and (17) yields:

|PπV
(Xq|Xq+1:n+ℓ)− PπV

(Xq|Xq+1:n)|

≤




n−1∏

k=q+1

(1 − νk)


 supvq+1∈V

∣∣∣∣
∫

πV (dvq)Kq(Xq, vq, vq+1)

∣∣∣∣ ≤
n−1∏

k=q+1

(1− νk) .

15
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(15) is then a direct consequence of (16), (17) and the fact that for all x, y > 0, | log x − log y| ≤
|x− y|/x ∧ y.

Lemma 9 is the crucial result to bound the increments of the log-likelihood.

Lemma 9. For all distributions πV , π
′
V ∈ Π ∪ {π⋆} and any 1 ≤ q ≤ n,

∣∣logPπV
(Xq|Xq+1:n)− logPπ′

V
(Xq|Xq+1:n)

∣∣

≤ 2

n+1−q∑

ℓ=0

(νqνq+ℓ−1νq+ℓ)
−1




q+ℓ−1∏

k=q+1

(1− νk)


 ‖πV − π′

V ‖tv .

Proof. When q = n,

PπV
(Xn)− Pπ′

V
(Xn) =

∫ {
π′⊗2
V (dvn:n+1)− π⊗2

V (dvn:n+1)
}
Kn(Xn, vn, vn+1) .

Thus |PπV
(Xn)− Pπ′

V
(Xn)| ≤ 2‖πV − π′

V ‖tv. When 1 ≤ q ≤ n− 1,

PπV
(Xq|Xq+1:n)− Pπ′

V
(Xq|Xq+1:n) =

n+1−q∑

ℓ=0

{Pℓ(Xq|Xq+1:n)− Pℓ+1(Xq|Xq+1:n)} ,

where Pℓ is the joint distribution of (Xq:n, Vq:n+1) when (Vq, . . . , Vq+ℓ−1) are i.i.d. π
′
V and (Vq+ℓ, . . . , Vn+1)

are i.i.d. πV . The first term in the telescopic sum is given by:

P0(Xq|Xq+1:n)− P1(Xq|Xq+1:n) =

∫
P0 (dvq+1|Xq+1:n)

∫
πV (dvq)Kq(Xq, vq, vq+1)

−
∫

P0 (dvq+1|Xq+1:n)

∫
π′
V (dvq)Kq(Xq, vq, vq+1) ,

where P0 (Vq+1|Xq+1:n) is the distribution of Vq+1 conditionally on Xq+1:n when (Vq, . . . , Vn+1) are
i.i.d. πV . As Vq is independent of (Vq+1, Xq+1:n), this distribution is the same as the distribution
of Vq+1 conditionally on Xq+1:n when Vq ∼ π′

V and (Vq+1, . . . , Vn+1) are i.i.d. πV .

|P0(Xq|Xq+1:n)− P1(Xq|Xq+1:n)| ≤ ‖πV − π′
V ‖tv .

Then, for all 1 ≤ ℓ ≤ n+ 2− q,

Pℓ (Xq|Xq+1:n) =

∫
Pℓ (dvq+ℓ|Xq+1:n)




q+ℓ−1∏

k=q+1

K
V |X
π′

V
,k,q+1(vk+1, dvk)



∫

π′
V (dvq)Kq(Xq, vq, vq+1) .

Therefore, by (13),

|Pℓ (Xq|Xq+1:n)− Pℓ+1 (Xq|Xq+1:n)|

≤




q+ℓ−1∏

k=q+1

(1− νk)


 ‖Pℓ (Vq+ℓ|Xq+1:n)− Pℓ+1 (Vq+ℓ|Xq+1:n)‖tv ,

16
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where Pℓ (Vq+ℓ|Xq+1:n) is the distribution of Vq+ℓ conditionally on Xq+1:n when (Vq, . . . , Vq+ℓ−1)
are i.i.d. π′

V and (Vq+ℓ, . . . , Vn+1) are i.i.d. πV . It remains to show that

‖Pℓ (Vq+ℓ|Xq+1:n)− Pℓ+1 (Vq+ℓ|Xq+1:n)‖tv ≤ 2(νqνq+ℓ−1νq+ℓ)
−1‖πV − π′

V ‖tv
which amounts to showing that for all f such that ‖f‖∞ ≤ 1,

∣∣∣∣
∫

f(vq+ℓ) {Pℓ (dvq+ℓ|Xq+1:n)− Pℓ+1 (dvq+ℓ|Xq+1:n)}
∣∣∣∣ ≤ 2(νqνq+ℓ−1νq+ℓ)

−1‖πV − π′
V ‖tv .

Write, for all 1 ≤ ℓ ≤ n+ 2− q,

Lℓ(dv,X) =

q+ℓ−1∏

m=q+1

π′
V (dvm)

n+1∏

m=q+ℓ

πV (dvm)

n∏

m=q+1

Km(Xm, vm, vm+1) . (18)

We have ∫
f(vq+ℓ)Pℓ (dvq+ℓ|Xq+1:n) =

∫
f(vq+ℓ)Lℓ(dv,X)∫

Lℓ(dv,X)
.

Therefore,
∫

f(vq+ℓ) {Pℓ (dvq+ℓ|Xq+1:n)− Pℓ+1 (dvq+ℓ|Xq+1:n)}

=

∫
f(vq+ℓ)

(
Lℓ(dv,X)∫
Lℓ(dv,X)

− Lℓ+1(dv,X)∫
Lℓ+1(dv,X)

)
,

=

∫
f(vq+ℓ)

Lℓ(dv,X)− Lℓ+1(dv,X)∫
Lℓ(dv,X)

+

∫
f(vq+ℓ)

Lℓ+1(dv,X)∫
Lℓ+1(dv,X)

∫
[Lℓ+1(dv,X)− Lℓ(dv,X)]∫

Lℓ(dv,X)
.

Thus,
∣∣∣∣
∫

f(vq+ℓ) {Pℓ (dvq+ℓ|Xq+1:n)− Pℓ+1 (dvq+ℓ|Xq+1:n)}
∣∣∣∣ ≤ 2

‖Lℓ(·, X)− Lℓ+1(·, X)‖tv∫
Lℓ(dv,X)

. (19)

By (18), for any f such that ‖f‖∞ ≤ 1, for any 1 ≤ ℓ ≤ n+ 1− q,

∣∣∣∣
∫

f(v)(Lℓ(dv,X)− Lℓ+1(dv,X))

∣∣∣∣

=

∣∣∣∣∣∣

∫
f(v)

q+ℓ−1∏

m=q+1

π′
V (dvm) {πV (dvq+ℓ)− π′

V (dvq+ℓ)}
n+1∏

m=q+ℓ+1

πV (dvm)

n∏

m=q+1

Km(Xm, vm, vm+1)

∣∣∣∣∣∣
.

As Kq+ℓ−1 and Kq+ℓ are upper bounded by 1,

∣∣∣∣
∫

f(v)Lℓ(dv,X)− Lℓ+1(dv,X)

∣∣∣∣ ≤
(∫ q+ℓ−1∏

m=q+1

π′
V (dvm)

q+ℓ−2∏

m=q+1

Km(Xm, vm, vm+1)

)

× ‖πV − π′
V ‖tv



∫ n+1∏

m=q+ℓ+1

πV (dvm)
n∏

m=q+ℓ+1

Km(Xm, vm, vm+1)


 .
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Similarly, since Kq+ℓ−1 and Kq+ℓ are respectively lower bounded by νq+ℓ−1 and νq+ℓ,

∫
Lℓ(dv,X) ≥

(∫ q+ℓ−1∏

m=q+1

π′
V (dvm)

q+ℓ−2∏

m=q+1

Km(Xm, vm, vm+1)

)

× νq+ℓ−1νq+ℓ



∫ n+1∏

m=q+ℓ+1

πV (dvm)
n∏

m=q+ℓ+1

Km(Xm, vm, vm+1)


 .

Plugging these bounds in (19) yields, for 1 ≤ ℓ ≤ n+ 1− q,
∣∣∣∣
∫

f(vq+ℓ) {Pℓ (dvq+ℓ|Xq+1:n)− Pℓ+1 (dvq+ℓ|Xq+1:n)}
∣∣∣∣ ≤ 2 (νq+ℓ−1νq+ℓ)

−1 ‖πV − π′
V ‖tv .

The proof is completed using the fact that for all x, y > 0, | log x− log y| ≤ |x− y|/x ∧ y.

Lemma 10 is a key ingredient to prove bounded difference properties for log-likelihood based pro-
cesses.

Lemma 10. For all 1 ≤ q ≤ n and all q ≤ q̃ ≤ n, let X̃ q̃
q:n be such that X̃ q̃

q̃ ∈ X and X̃ q̃
k = Xk for

all q ≤ k ≤ n such that k 6= q̃. For any 1 ≤ q ≤ q̃ ≤ n,

∣∣∣logPπV
(Xq|Xq+1:n)− logPπV

(X̃ q̃
q |X̃ q̃

q+1:n)
∣∣∣ ≤ ν−1

q

q̃−1∏

k=q+1

(1− νk) .

Proof. If q = q̃ = n, then
∣∣∣PπV

(Xn)− PπV
(X̃n

n )
∣∣∣ =

∣∣∣∣
∫

πV (dvn)πV (dvn+1)
{
Kn(Xn, vn, vn+1)−Kn(X̃

n
n , vn, vn+1)

}∣∣∣∣ ,

≤ 1− νn ≤ 1 .

Assume now that 1 ≤ q < n. When q̃ = q,

PπV
(Xq|Xq+1:n)− PπV

(X̃q
q |X̃q

q+1:n)

=

∫
PπV

(
dvq+1

∣∣∣X̃q
q+1:n

)
πV (dvq)

{
Kq(Xq, vq, vq+1)−Kq(X̃

q
q , vq, vq+1)

}
,

which ensures that |PπV
(Xq|Xq+1:n) − PπV

(X̃q
q |X̃q

q+1:n)| ≤ 1 − νq ≤ 1. When q̃ ≥ q + 1, as for all

q + 1 ≤ k ≤ q̃ − 1 the Markov transition kernel K
V |X
πV ,k,q+1 depends only on πV , Kk and Xq+1:k,

PπV

(
X̃ q̃

q

∣∣∣X̃ q̃
q+1:n

)
=

∫
PπV

(
dvq̃

∣∣∣X̃ q̃
q+1:n

)



q̃−1∏

k=q+1

K
V |X
πV ,k,q+1(vk+1, dvk)


πV (dvq)Kq(Xq, vq, vq+1) .

By Lemma 7, it follows that
∣∣∣PπV

(Xq|Xq+1:n)− PπV

(
X̃ q̃

q

∣∣∣X̃ q̃
q+1:n

)∣∣∣

≤




q̃−1∏

k=q+1

(1− νk)


 supvq+1∈V

∣∣∣∣
∫

πV (dvq)Kq(Xq, vq, vq+1)

∣∣∣∣ .

The proof is completed using the fact that for all x, y > 0, | log x− log y| ≤ |x− y|/x ∧ y.
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Let π∗
V denote a probability distribution on V and let

ZπV
(X1:n) =

1

n

n∑

q=1

[
logPπV

(Xq|Xq+1:n)− Eπ∗

V
[logPπV

(Xq|Xq+1:n)]
]
.

Lemma 11 shows the concentration of ZπV
(X1:n) around its expectation.

Lemma 11. Assume that Ki = K for all i ∈ Z, let P denote a class of probability distributions on
V. There exists c > 0 such that for all t > 0,

Pπ∗

V

(∣∣supπV ∈P{ZπV
(X1:n)} − Eπ∗

V

[
supπV ∈P{ZπV

(X1:n)}
]∣∣ ≥ cν−2 t√

n

)
≤ 2e−t2 .

Proof. The proof relies on the bounded difference inequality for Markov chains [10, Theorem 0.2].
To apply this result, supπV ∈P{ZπV

(X1:n)} has to be separately bounded. For all 1 ≤ q ≤ n and all

q ≤ q̃ ≤ n, let X̃ q̃
1:n such that X̃ q̃

q̃ ∈ X and X̃ q̃
k = Xk for all 1 ≤ k ≤ n such that k 6= q̃. Then,

|supπV ∈P {ZπV
(X1:n)}−supπV ∈P{ZπV

(X̃ q̃
1:n)}|

≤ supπV ∈P

∣∣∣∣∣
1

n

n∑

q=1

[
logPπV

(Xq|Xq+1:n)− logPπV
(X̃ q̃

q |X̃ q̃
q+1:n)

]∣∣∣∣∣

≤ supπV ∈P

∣∣∣∣∣
1

n

q̃∑

q=1

[
logPπV

(Xq|Xq+1:n)− logPπV
(X̃ q̃

q |X̃ q̃
q+1:n)

]∣∣∣∣∣ .

By Lemma 10, for any distribution πV ∈ P and any 1 ≤ q ≤ n,

∣∣∣∣∣
1

n

n∑

q=1

[
log PπV

(Xq|Xq+1:n)− logPπV
(X̃ q̃

q |X̃ q̃
q+1:n)

]∣∣∣∣∣ ≤
1

n

q̃∑

q=1

ν−1(1− ν)q̃−q−1 .

Hence, there exists c > 0 such that,

|supπV ∈P {ZπV
(X1:n)} − supπV ∈P{ZπV

(X̃ q̃
1:n)}| ≤

c

ν2n
.

The proof is concluded by [10, Theorem 0.2].

Lemma 12 shows the subgaussian concentration inequality of the increments of ZπV
(X1:n).

Lemma 12. Assume that Ki = K for all i ∈ Z, let πV , π
′
V denote two probability distributions on

V. Let d denote the distance defined in (5). Then, there exists c > 0 such that for all n ≥ 1, t > 0,

Pπ∗

V

(∣∣√n
{
ZπV

(X1:n)− Zπ′

V
(X1:n)

}∣∣ > t
)
≤ exp

[
− t2

(cν−5d(π, π′))
2

]
. (20)

Proof. To prove that the increments ZπV
−Zπ′

V
are separately bounded, consider, for all 1 ≤ q̃ ≤ n,

X̃ q̃
1:n such that X̃ q̃

q̃ ∈ X and X̃ q̃
k = Xk for all 1 ≤ k ≤ n such that k 6= q̃. On one hand, by Lemma 9,

∣∣logPπV
(Xq|Xq+1:n)− logPπ′

V
(Xq|Xq+1:n)

∣∣ ≤ 2ν−4‖πV − π′
V ‖tv .
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On the other hand, by Lemma 10, for any 1 ≤ q ≤ q̃ ≤ n,

∣∣∣log PπV
(Xq|Xq+1:n)− logPπV

(X̃ q̃
q |X̃ q̃

q+1:n)
∣∣∣ ≤ ν−1(1 − ν)q̃−q−1 .

Since logPπV
(Xq|Xq+1:n) = logPπV

(X̃ q̃
q |X̃ q̃

q+1:n) for q > q̃,

∣∣∣
(
ZπV

(X1:n)− Zπ′

V
(X1:n)

)
−
(
ZπV

(X̃ q̃
1:n)− Zπ′

V
(X̃ q̃

1:n)
)∣∣∣

≤ 2ν−4

n

q̃∑

q=1

[
‖πV − π′

V ‖tv ∧ (1 − ν)q̃−q
]
≤ 2ν−5

n
d(π, π′) .

Eq (20) follows by plugging these bounded differences properties in [10, Theorem 0.2].

7 Proofs of the main results

When H1 holds and En,N = En,N
RR , (V n,N

2:qn
N
, Xn,N

2:qn
N
−1) satisfies the assumptions of Section 6 with

πV = π⊗n−1, Ki(X
n,N
i , V n,N

i , V n,N
i+1 ) =

∏

Xi,j∈X
n,N
i

k(Xi,j , Vi, Vj), νi = ε|X
n,N
i

| .

Moreover, it is proved in Section 5 that
∣∣Xn,N

q

∣∣ = n(n− 1) for 2 ≤ q ≤ qnN − 1, which implies that

νi ≥ εn
2

.

Throughout the proofs, the following conventions are used. For all 0 ≤ k ≤ qnN ,

vn,Nk ∈ V |V n,N

k
|, π(dvn,Nk ) =

∏

i:Vi∈V
n,N

k

π(dvi) .

7.1 Proof of Theorem 2

Let ℓ denote an even number larger than 2 and let Zn,N = Xn,N
0 ∪Xn,N

1 ∪Xn,N
qn
N

. By Lemma 8,

supπ∈Π

∣∣∣logPn,N
π

(
Xn,N

q

∣∣∣Xn,N
q+1:qn

N
−1

)
− logPn,N+ℓ

π

(
X(n,N+ℓ)

q

∣∣∣Xn,N+ℓ
q+1:qn

N+ℓ
−1

)∣∣∣

≤ ε−n2
(
1− εn

2
)qnN−q−2

. (21)

This proves the first conclusion. The log-likelihood is decomposed as follows

log Pn,N
π

(
Xn,N

)
= logPn,N

π

(
Xn,N

2:qn
N
−1

)
+ logPn,N

π

(
Xn,N

0 , Xn,N
1 , Xn,N

qn
N

∣∣∣Xn,N
2:qn

N
−1

)
,

=

q
n
N−1∑

q=2

logPn,N
π

(
Xn,N

q

∣∣∣Xn,N
q+1:qn

N
−1

)
+ logPn,N

π

(
Zn,N

∣∣∣Xn,N
2:qn

N
−1

)
. (22)
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Let us first bound from above the last term in (22).

P
n,N
π

(
Zn,N

∣∣∣Xn,N
2:qn

N
−1

)
=

∫
P
n,N
π

(
Zn,N , dvn,N0:2 , dvn,N

qn
N
:qn

N
+1

∣∣∣Xn,N
2:qn

N
−1

)
,

=

∫
P
n,N
π

(
dvn,N0:2 , dvn,N

qn
N
:qn

N
+1

∣∣∣Xn,N
2:qn

N
−1

)




∏

Xi,j∈Zn,N

k(Xi,j , vi, vj)



 ,

By Assumption 1,

ε3n
2 ≤ P

n,N
π

(
Zn,N

∣∣∣Xn,N
2:qn

N
−1

)
≤ 1 . (23)

In particular, the last term in (22) is o(qnN ) when N grows to infinity. Taking the limit as ℓ → ∞
in (21) yields, for any n and N ,

supπ∈Π

1

qnN

∣∣∣∣∣∣

q
n
N−1∑

q=2

{
logPn,N

π

(
Xn,N

q

∣∣∣Xn,N
q+1:qn

N
−1

)
− ℓnπ(ϑ

qXn)
}
∣∣∣∣∣∣
≤ 3ε−3n2

qnN
. (24)

By (14), |ℓnπ(Xn)| ≤ n2 log(ε−1), thus ℓnπ is integrable. Therefore, the ergodic theorem [1, Theo-

rem 24.1] can be applied to
∑q

n
N−1

q=2 ℓnπ(ϑ
qXn)/qnN and (3) follows.

7.2 R
π⋆

is the excess risk function

The following result shows that Rn
π⋆

is a non-negative function.

Proposition 13. For all π ∈ Π and all n ≥ 1, Rn
π⋆
(π) ≥ 0.

Proof. Let π ∈ Π and n ≥ 1. By (2),

Lnπ⋆
(π) = Eπ⋆

[
lim

N→∞
logPn,N

π (Xn,N
2 |Xn,N

3:qn
N
−1)
]
.

By Lebesgue’s bounded convergence theorem

Lnπ⋆
(π) = lim

N→∞
Eπ⋆

[
logPn,N

π (Xn,N
2 |Xn,N

3:qn
N
−1)
]

= lim
N→∞

Eπ⋆

[
Eπ⋆

[
logPn,N

π (Xn,N
2 |Xn,N

3:qn
N
−1)
∣∣∣Xn,N

3:qn
N
−1

]]
.

Therefore,

Rn
π⋆
(π) = lim

N→∞

{
Eπ⋆

[
Eπ⋆

[
logPn,N

π⋆
(Xn,N

2 |Xn,N
3:qn

N
−1)− logPn,N

π (Xn,N
2 |Xn,N

3:qn
N
−1)
∣∣∣Xn,N

3:qn
N
−1

]]}
,

and the latter is non negative since the term in the expectation is a Kullback-Leibler divergence.
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7.3 Proof of Theorem 3

As that for any π ∈ Π ∪ {π⋆}, ℓn,N (π) = logPn,N
π (Xn,N ), the excess loss satisfies:

Rn
π⋆
(π̂n,N ) = Lnπ⋆

(π⋆)− Eπ⋆

[
1

qnN
ℓn,N (π⋆)

]
+ Eπ⋆

[
1

qnN
ℓn,N (π⋆)

]
− 1

qnN
ℓn,N (π⋆)

+
1

qnN
ℓn,N (π⋆)−

1

qnN
ℓn,N

(
π̂n,N

)
+

1

qnN
ℓn,N

(
π̂n,N

)
− Eπ⋆

[
1

qnN
ℓn,N

(
π̂n,N

)]

+ Eπ⋆

[
1

qnN
ℓn,N

(
π̂n,N

)]
− Lnπ⋆

(π̂n,N ) .

By definition ℓn,N (π⋆)− ℓn,N
(
π̂n,N

)
≤ 0. Thus,

Rn
π⋆
(π̂n,N ) ≤ 2 supπ∈Π∪{π∗}

{∣∣∣∣∣L
π⋆(π)− Eπ⋆

[
ℓn,N (π)

]

qnN

∣∣∣∣∣+
∣∣∣∣
1

qnN
Eπ⋆

[
ℓn,N (π)

]
− ℓn,N (π)

qnN

∣∣∣∣

}
.

Let Zn,N = Xn,N
0 ∪Xn,N

1 ∪Xn,N
qn
N

. For all π ∈ Π,

∣∣∣∣∣L
π⋆(π) − Eπ⋆

[
ℓn,N (π)

]

qnN

∣∣∣∣∣ ≤
1

qnN
Eπ⋆



q
n
N−1∑

q=2

∣∣∣ℓnπ(ϑqXn)− logPn,N
π

(
Xn,N

q

∣∣∣Xn,N
q+1:qn

N
−1

)∣∣∣




+
1

qnN
Eπ⋆

[∣∣∣2ℓnπ(Xn)− logPn,N
π

(
Zn,N

∣∣∣Xn,N
2:qn

N
−1

)∣∣∣
]
.

Then, by Lemma 8 and (24), for the round-robin scheduling, there exists c such that:

supπ∈Π∪{π∗}

∣∣∣∣∣L
π⋆(π) − Eπ⋆

[
ℓn,N (π)

]

qnN

∣∣∣∣∣ ≤
cε−3n2

qnN
.

This yields:

Rn,N
π⋆

(π̂n,N ) ≤ cε−3n2

qnN
+

2

qnN
supπ∈Π∪{π∗}

∣∣∣∣Eπ⋆

[
ℓn,N (π)

]
− 1

qnN
ℓn,N (π)

∣∣∣∣ ,

and therefore, by (23),

Rn,N
π⋆

(π̂n,N ) ≤ cε−3n2

qnN
+ 2 supπ∈Π∪{π∗} |ZπV

| , (25)

where

Zπ =
1

qnN

q
n
N−1∑

q=2

[
logPn,N

π (Xn,N
q |Xn,N

q+1:n)− Eπ⋆

[
logPn,N

π (Xn,N
q |Xn,N

q+1:n)
]]

.

Lemma 11 applies by assumption H1 since En,N = En,N
RR , therefore, there exists c > 0 such that,

for all t > 0,

Pπ⋆

(∣∣∣supπ∈Π∪{π∗}Zπ − Eπ⋆

[
supπ∈Π∪{π∗}Zπ

]∣∣∣ > cε−2n2 t√
qnN

)
≤ e−t2 , . (26)
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Furthermore, by Lemma 12, the increments of Zπ have subgaussian tails. Since by Lemma 1,
|V n,N

2 | = 2(n− 1), for all t > 0,

Pπ⋆

(√
qnN |Zπ − Zπ′ | > t

)
≤ exp

(
− t2
(
cε−5n2d(π⊗2(n−1), (π′)⊗2(n−1))

)2

)
.

Now it is easy to check that

∥∥∥π⊗2(n−1) − (π′)⊗2(n−1)
∥∥∥
tv

≤ 2(n− 1) ‖π − π′‖
tv
.

Therefore, d(π⊗2(n−1), (π′)⊗|V n,N
2

|) ≤ cn2d(π, π′) ≤ cε−n2

d(π, π′), thus for all t > 0,

Pπ⋆

(√
qnN |Zπ − Zπ′ | > t

)
≤ exp

(
− t2
(
cε−6n2d(π, π′)

)2

)
. (27)

Then, by Dudley’s entropy bound, see [12] or [24, Proposition 2.1],

Eπ⋆

[
supπ∈Π∪{π⋆}Zπ(X

n,N)
]
≤ ce−6n2

√
qnN

∫ +∞

0

√
logN(Π ∪ {π⋆}, d, ǫ)dǫ . (28)

Plugging (26) and (28) into (25) concludes the proof.

References

[1] P. Billingsley. Probability and Measure. Wiley, 1995.

[2] R. Bradley and M. Terry. Rank analysis of incomplete block designs: I. the method of pair
comparisons. Biometrika, 39(3/4):324–345, 1952.

[3] O. Cappe, E. Moulines, and T. Ryden. Inference in hidden Markov models. Springer, 2005.

[4] D. Caron and A. Doucet. Efficient Bayesian inference for generalized Bradley-Terry models.
Journal of Computational and Graphical Statistics, 21(1):174–196, 2012.

[5] S. Chatterjee, P. Diaconis, and A. Sly. Random graphs with a given degree sequence. The
Annals of Applied Probability, 21(4):1400–1435, 2011.

[6] R. Chetrite, R. Diel, and M. Lerasle. The number of potential winners in bradley-terry models
in random environment. To appear in The Annals of Applied Probability, 2017.

[7] H. A. David. The method of paired comparisons, volume 41 of Griffin’s Statistical Monographs
& Courses. Charles Griffin & Co., Ltd., London; The Clarendon Press, Oxford University
Press, New York, second edition, 1988.

[8] Y. De Castro, E. Gassiat, and C. Lacour. Minimax adaptative estimation of nonparametric
hidden Markov models. Journal of Machine Learning Research, 17:1–43, 2016.

23



Diel et al. Learning latent structure of large random graphs

[9] Y. De Castro, E. Gassiat, and S. Le Corff. Consistent estimation of the filtering and marginal
smoothing distributions in nonparametric hidden Markov models. To appear in IEEE Trans-
actions on Information Theory, 2017.

[10] J. Dedecker and S. Gouezel. Subgaussian concentration inequalities for geometrically ergodic
Markov chains. Electronic Communications in Probability, 20:1–12, 2015.
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