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In this paper, we develop a general methodology to prove weak uniqueness for stochastic differential equations with coefficients depending on some path-functionals of the process. As an extension of the technique developed by Bass & Perkins [BP09] in the standard diffusion case, the proposed methodology allows one to deal with processes whose probability laws are singular with respect to the Lebesgue measure. To illustrate our methodology, we prove weak existence and uniqueness in two examples : a diffusion process with coefficients depending on its running symmetric local time and a diffusion process with coefficients depending on its running maximum. In each example, we also prove the existence of the associated transition density and establish some Gaussian upper-estimates.

Introduction

In the present paper, we investigate the weak existence and uniqueness of a one-dimensional stochastic differential equation (SDE in short) with coefficients depending on some path-functional A and dynamics given by (1.1) X t " x `ż t 0 bpX s , A s pXqqds `ż t 0 σpX s , A s pXqqdW s , t P r0, T s where pW t q tě0 stands for a one-dimensional Brownian motion and pA t pXqq tě0 is an R d´1 -valued functional depending on the path X, d ě 2. Some examples include its local and occupation times, its running maximum or minimum, its first hitting time of a level, its running average, etc. From the point of view of applications, systems of the type (1.1) appear in many fields. Let us mention stochastic Hamiltonian systems where A t pXq " ş t 0 F ps, X s qds, see e.g. [START_REF] Soize | The Fokker-Planck equation for stochastic dynamical systems and its explicit steady state solutions[END_REF] for a general overview, [START_REF] Talay | Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme[END_REF] for convergence to equilibrium or [START_REF] Barucci | Some results on partial differential equations and Asian options[END_REF] for an application to the pricing of Asian options. We also mention [START_REF] Forde | A diffusion-type process with a given joint law for the terminal level and supremum at an independent exponential time[END_REF], where the author constructs a weak solution to the SDE (1.1) with b " 0 and A t pXq " max 0ďsďt X s is the running maximum of X and investigates an application in mathematical finance.

In the standard multi-dimensional diffusion framework, the martingale approach initiated by Stroock and Varadhan turns out to be particularly powerful when trying to get uniqueness results. It is now well-known that the martingale problem associated to a multi-dimensional diffusion operator is well posed as soon as the drift is bounded measurable and that the diffusion matrix is continuous (with respect to the space variable) and strictly positive, see e.g. Stroock and Varadhan [START_REF] Stroock | Multidimensional diffusion processes[END_REF]. In the indicated framework, uniqueness is derived from Calderón-Zygmund estimates. Also, when a is Hölder continuous, an analytical approach using Schauder estimates can be applied, see e.g. Friedman [START_REF] Friedman | Partial differential equations of parabolic type[END_REF].

Recently, Bass and Perkins [START_REF] Bass | A new technique for proving uniqueness for martingale problems[END_REF] introduced a new technique for proving uniqueness for the martingale problem and illustrated it in the framework of non-degenerate, non-divergence and time-homogeneous diffusion operators under the assumption that the diffusion matrix is strictly positive and Hölder continuous. It has also been recently extended by Menozzi [Men11] for a class of multi-dimensional degenerate Kolmogorov equations that is the case of a multi-dimensional path functional A " pA 1 t , ¨¨¨, A N t q tě0 given by: A 1 t pXq "

ş t 0 F 1 pX s , A s pXqqds, A 2 t pXq " ş t 0 F 2 pA 1 s , ¨¨¨, A N s qds, ¨¨¨, A N t pXq " ş t 0 F N pA N ´1 s , A N
s qds, under an assumption of weak Hörmander type on the functions pF 1 , ¨¨¨, F N q. The approach in the two mentioned papers consists in using a perturbation method for Markov semigroups, known as the parametrix technique, such as exposed in Friedman [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] in the case of uniformly elliptic diffusion. More precisely, the first step of the strategy is to approximate the original system by a simple process obtained by freezing the drift and the diffusion coefficients in the original dynamics, and use the fact that the transition density of such approximation as well as its derivatives can be explicitly estimated. Then, the key ingredient is the smoothing property of the underlying parametrix kernel, see assumption (H1) (iv) in Section 2.1 for a precise statement. This property reflects the quality of the approximation of the original dynamics. An important remark is that this smoothing property is only achieved when the freezing point, that is the point where the coefficients are evaluated in the approximation process, is chosen to be the terminal point where the transition density is evaluated.

The main purpose of this paper is to develop a technique in order to prove weak uniqueness as well as existence of a transition density for some SDEs with path-functional coefficients where the probability law of the couple pX t , A t pXqq may be singular with respect to the Lebesgue measure on R d . The main new feature added here compared to previous works on this topic is that our technique enables us to deal with a process whose probability law is absolutely continuous with respect to a σ-finite measure.

Our methodology can be summed up as follows: suppose that the transition density of the Markov process pW t , A t pW qq tě0 with initial point x exists with respect to a σ-finite measure νpx, dyq, not necessarily being the Lebesgue measure on R d , and a chain rule (Itô's) formula for f pt, X t , A t pXqq is available, where f belongs to a suitable class of functions D related to the domain of the infinitesimal generator of the Markov process pW t , A t pW qq tě0 . Then as soon as the derivatives of the transition density of pW t , A t pW qq tě0 satisfies some good estimates or equivalently if the parametrix kernel enjoys a smoothing property with respect to νpx, dyq, one has the main tools to prove weak uniqueness for the SDE (1.1).

Since the probability law of the process pX t , A t pXqq tě0 may be singular, it is not clear how to select the approximation process and even if this crucial smoothing property will be achieved in such context. Let us be more precise on one example. If one considers the couple pX t , A t pXqq tě0 , A t pXq " L 0 t pXq being the symmetric local time at point 0 accumulated by X up to time t, it is easy to see that on tT 0 ą tu, T 0 being the first hitting time of 0 by X, one has L 0 t pXq " 0 whereas on tT 0 ď tu, the process may accumulate local time so that the probability law of the couple pX t , L 0 t pXqq consists in two parts, one being singular with an atom in the local time part, the other one (hopefully) being absolutely continuous with respect to the Lebesgue measure on R ˆR`. Hence, we see that for such dynamics the situation is more challenging than in the standard diffusion setting. This new difficulty will be overcome by choosing two independent parametrix kernels, one for each part, and then by proceeding with a non-trivial selection of the freezing point according to the singular measure induced by the approximation process. Even in this singular framework, one is able to prove that the smoothing property of the parametrix kernel still holds which is as previously mentioned the keystone to prove weak uniqueness for the SDE (1.1). As far as we know these feature appears to be new.

It will be apparent in what follows that our approach is not limited to the one-dimensional SDE case and can be easily adapted to multi-dimensional examples such as the one studied in [START_REF] Menozzi | Parametrix techniques and martingale problems for some degenerate Kolmogorov equations[END_REF]. However, we decide to confine our presentation to the one-dimensional framework to foster understanding of the main arguments. As an illustration of our methodology we consider two examples. In the first one, we choose A t pXq " L 0 t pXq, t ě 0, where L 0 t pXq is the symmetric local time at 0 accumulated by X up to time t. The bivariate density of Brownian motion and its running symmetric local time at 0 can be found e.g. in Karatzas & Shreve [START_REF] Karatzas | Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control[END_REF]. In the second example, we consider the running maximum of the process, that is A t pXq " max 0ďsďt X s , t ě 0.

The first part of our main results can be seen as an application of the general methodology developed in Section 2. More precisely, in Theorem 3.3 and Theorem 3.7 we prove that weak uniqueness holds for the SDE (1.1) when the path-functional is the symmetric local time or the running maximum, under the assumption that the drift b is bounded measurable and the diffusion coefficient a " σ 2 is uniformly elliptic, bounded and η-Hölder-continuous, for some η P p0, 1s.

Finally, the strategy developed in this paper can be used not only to prove the existence, but also to retrieve an explicit representation of the transition density (with respect to a σ-finite measure) of pX t , A t pXqq tě0 as an infinite series. Obviously, such results are out of reach by using standard Malliavin calculus techniques, which cannot be employed here under such rather mild smoothness assumptions on the coefficients, or the Fourier transform approach developed in Fournier and Printemps [START_REF] Fournier | Absolute continuity for some one-dimensional processes[END_REF].

However, one has to overcome new technical issues compared to the standard diffusion setting investigated by Friedman [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] or even to the degenerate case considered by Delarue and Menozzi [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF]. Leaving this technical discussion to Section 3.3, we only point out that the main difficulty lies in the non-integrable time singularity induced by the mixing of the singular and non-singular parts of the parametrix kernel. In order to overcome this issue, which to our best knowledge appears to be new, the key idea is to use the symmetry of the density of the killed proxy with respect to the initial and terminal points, in order to retrieve the integrability in time of the underlying parametrix kernel. As the second part of our main results, we prove the existence of the transition density for pX t , A t pXqq tě0 as well as its representation in infinite series for the two examples mentioned before, see Theorem 3.10 and Theorem 3.18 below. Some Gaussian upper-estimates are also established.

Notations:

We introduce here some basic notations and definitions used throughout this paper. For a sequence of linear operators pS i q 1ďiďn , we define ś n i"1 S i " S 1 ¨¨¨S n . We will often use the convention ś H " 1 which appears when we have for example ś ´1 i"0 . Let J be a subset of R d , we denote by C k b pJ q, the collection of bounded continuous functions which are k-times continuously differentiable with bounded derivatives in the interior of J . The derivatives at the boundary BJ are defined as limits from the interior and it is assumed that they exist and are finite. The set B b pJ q is the collection of real-valued bounded measurable maps defined on J . Furthermore we will use the following notation for time and space variables s p " ps 1 , ¨¨¨, s p q, z p " pz 1 , ¨¨¨, z p q, the differentials ds p " ds 1 ¨¨¨ds p , dz p " dz 1 ¨¨¨dz p and for a fixed time t ě 0, we denote by ∆ p ptq " ts p P r0, ts p : s p`1 :" 0 ď s p ď s p´1 ď ¨¨¨ď s 1 ď t ": s 0 u. For a multi-index α " pα 1 , ¨¨¨, α ℓ q of length ℓ, we sometimes write B α f pxq " B xα 1 ¨¨¨B xα ℓ f pxq, for a vector x. We denote by y Þ Ñ gpct, yq the transition density function of the standard Brownian motion with variance c, i.e. gpct, yq " p2πtcq ´1{2 expp´y 2 {p2tcqq, y P R. The associated non-normalized Hermite polynomials are defined respectively as H i pct, yq " B i y gpct, yq, i P N. For a fixed given point z P R d , the Dirac measure is denoted by δ z pdxq. For a, b P R, we use the notation ab if there exists a constant C ą 1 such that C ´1b ď a ď Cb. We denote by |f | 8 the supremum norm of a function f . Throughout the paper, we will often use the space-time inequality @x P R, |x| p e ´qx 2 ď pp{p2qeqq p{2 , valid for any p, q ą 0 and sometimes will omit to refer to it explicitly.

Abstract framework for weak uniqueness

A perturbation formula.

Throughout this section, we assume that there exists a weak solution pX, W q, tF t u to (1.1) and that the process Y t :" pX t , A t pXqq tě0 , starting from the initial point x at time 0, lives on a closed space J Ă R d . The process pX t , A t pXqq tě0 induces a probability measure P x (or simply denoted P) on Ω " Cpr0, 8q, J q which is endowed with the canonical filtration pF t q tě0 . We consider the collection of linear maps pP t q tě0 defined by P t f pxq :" Erf pX t , A t pXqqs for f P B b pJ q. It is important to point out that, at this moment, we do not know whether Y is a (strong) Markov process or not. However, one of our main assumption (see assumption (H1) (ii) below) links the process Y to the solution of a martingale problem in the sense of Stroock & Varadhan [START_REF] Stroock | Multidimensional diffusion processes[END_REF]. As in the standard diffusion case, the strong Markov property will be a consequence of weak uniqueness.

We define the shift operators pθ t yqpsq " ypt `sq, 0 ď s ă 8 for t ě 0 and y P Cpr0, 8q, J q. For any deterministic time t ě 0, we denote by Q t,w the regular conditional probability for P x given F t and let P t,w be the probability measure given by P t,w :" Q t,w ˝θ´1 t . In particular, for every F P BpCpr0, 8q, J qq, one has P x pθ ´1 t F | F t qpwq " Q t,w pθ ´1 t F q " P t,w pF q, for P x -a.e. w P Ω. As a substitute for the Markov property, we will assume that there exists a weak solution starting from x " yptq at time 0 such that the probability measure induced by this solution is exactly P t,w , for every w R N , N being a P x -null event of F t . As in the standard diffusion case, this will be a standard consequence of existence of solutions to the associated martingale problem. This assumption allows to prove that the finite-dimensional distributions are unique once we know that two weak solutions have the same one-dimensional marginal distributions, see e.g. Chapter 5 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] or Chapter VI in [START_REF] Bass | Diffusions and Elliptic Operators[END_REF].

We denote the approximation or the proxy process by X, that is the solution of (1.1) with b " 0 and the diffusion coefficient σ evaluated at some fixed point z P J . Without going into details at this point, the key idea is to consider the process Y as a perturbation of the proxy Ȳ " p Xt , Ap Xt qq tě0 whose law is denoted by pt px, dyq " pz t px, dyq. Accordingly, we define the collection of linear maps p Pt q tě0 by Pt f pxq :" Erf p Xt , A t p Xqqs " ş f pyqp t px, dyq for f P B b pJ q. To indicate that one is working with the approximation or the proxy process with coefficients frozen at z or functions associated with the approximation process frozen at z, we put a bar on top of the function. To indicate that the frozen point is the terminal point y of the proxy density, we will put a hat instead of a bar. To derive a first order expansion of pP t q tě0 and prove weak uniqueness, we make the following assumptions: Assumptions (H1): Given the initial and frozen point x, z P J .

(i) (a) The proxy process Ȳ z is a Markov process with infinitesimal generator Lz . (b) There exists a σ-finite measure νpx, .q such that for all t ą 0, the law of Ȳ z t is absolutely continuous with respect to νpx, .q. More specifically, there exists a νpx, dyq-integrable function pt, x, yq Þ Ñ pz t px, yq satisfying pz t px, dyq " pz t px, yqνpx, dyq and P z t f pxq " ş f pyqp z t px, yqνpx, dyq for all f P B b pJ q.

(ii) There exists a class of functions D Ă Domp Lz q X C b pJ q and a linear operator L acting on D such that: (a) For all g P C 8 b pJ q, P z t g P D. (b) For all functions h such that: s Þ Ñ hps, .q P C 1 pR `, Dq, the process hpt, Y t q ´hp0, xq ´ż t 0 tB 1 hps, Y s q `Lhps, Y s qu ds, t ě 0 is a continuous square integrable martingale under P x . (c) There exists a parametrix kernel θt with respect to the measure ν, that is a measurable map pt, z, x, yq Þ Ñ θz t px, yq such that for all g P C 8 b pJ q pL ´L z q P z t gpxq " ż gpyq θz t px, yqνpx, dyq, t ą 0. (2.1) (iii) For all x, y P J , the maps pt, zq Þ Ñ pz t px, yq and pt, zq Þ Ñ θz t px, yq are continuous on p0, 8q ˆJ .

(iv) For all t ą 0, there exists some Remark 2.1. The set of assumptions (H1) will allow us to prove a perturbation formula of the map P t around Pt , see Theorem 2.2 below. The kernel of S t defined above satisfies the smoothing property (iv) which is, as mentioned in the introduction, the key point to prove uniqueness in law for equation (1.1). This smoothing property was exploited in [START_REF] Bass | A new technique for proving uniqueness for martingale problems[END_REF] and then in [START_REF] Menozzi | Parametrix techniques and martingale problems for some degenerate Kolmogorov equations[END_REF] for some degenerate Kolmogorov equations. The main new feature added here is that we are able to deal with a process that admits a density with respect to a σ-finite measure (with eventually several atoms). In particular, the process can be singular in the sense that it may not admit a transition density with respect to the Lebesgue measure on J . Assumption (H1) (ii) b) provides a chain rule formula for the process Y " pX t , A t pXqq tě0 for a suitable class of functions D included in the domain of L. The operator L is identified by means of this chain rule formula. As we will see in Section 3, this assumption will help us to formulate the martingale problem associated to the process Y . This will be used later on in order to establish the existence of a weak solution to the SDE (1.1). It is important to point out that we don't know if Y is a (strong) Markov process for the moment. In general, as in the standard diffusion case, this will be a consequence of weak uniqueness, or equivalently of the well-posedness of the martingale problem, see [START_REF] Stroock | Multidimensional diffusion processes[END_REF], [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] or [START_REF] Bass | Diffusions and Elliptic Operators[END_REF].

Theorem 2.2. Assume that (H1) holds. Then, for any g P C b pJ q, P T gpxq " PT gpxq `ż T 0 P s S T ´sgpxq ds.

Proof. Let f P C 8 b pJ q. For t P r0, T s and r ą 0, by assumption (H1) (ii) a) and b) applied to pt, xq Þ Ñ hpt, xq " PT ´t`r f pxq P C 1 pr0, T s, Dq, there exists a continuous martingale p Mt q 0ďtăT starting at 0 such that PT ´t`r f pY t q " PT `r f pxq `ż t 0 pB s `Lq PT ´s`r f pY s q ds `M t " ż f pyqp z T `r px, yqνpx, dyq `ż t 0 ż f pyq θz T ´s`r pY s , yqνpY s , dyq ds `M t .

We now proceed to the diagonalisation argument, that is the argument that allows one to select the freezing point z according to the measure νpx, dyq. We consider a sequence of non-negative mollifiers δ z ε , ε ą 0, such that δ z ε ď C ε and pδ z ε q εą0 converges weakly to the Dirac mass at z as ε Ñ 0. For g P C 8 b pJ q, we apply the above decomposition for f " δ z ε g and take expectations. We obtain Consequently, by letting r Ñ 0 and using (H1) (iii) and (v), we obtain again by the dominated convergence theorem lim rÓ0 Er Pr gpY T qs " P T gpxq.

P t PT ´t`r δ z ε gpxq " ż δ z ε pyqgpyqp z T `
For the right-hand side of (2.3). Again by (2.4) we can apply Fubini's theorem and then the dominated convergence theorem while having in mind (H1) (iii). This yields

lim εÓ0 ż PT `r δ z ε gpxqdz " lim εÓ0 ż "ż δ z ε pyqgpyqp z T `r px, yqdz * νpx, dyq (2.7) " ż
gpyqp y T `rpx, yqνpx, dyq " PT `r gpxq.

Letting r Ñ 0, by (H1) (iii) we deduce from the continuity of r Þ Ñ Pr gpxq that lim rÓ0 PT `r gpxq " PT gpxq. The second term on the right-hand side of (2.3) is computed similarly by using (H1) (ii). To pass to the limit as ε Ñ 0, we apply the dominated convergence theorem using (H1) (iv) and (iii S T ´s`r gpY s qdss and to pass to the limit as r Ñ 0, we remark that (H1) (iv) (ζ ą ´1) implies the continuity at 0 of r Þ Ñ Er ş T 0 S T ´s`r gpY s qdss. The result is valid for g P C 8 b pR d q and an approximation argument completes the proof. We are not so far from obtaining a representation of P T g in infinite series. Once weak existence and uniqueness for the SDE (1.1) is established, this representation will be useful in order to derive the existence of a transition density for the process Y . We will also use it to derive some Gaussian upper-bound estimates for the density of the couple pX T , A T pXqq.

)
Corollary 2.1. Assume that (H1) holds and that for any g P C b pJ q and t ą 0, the function x Þ Ñ S t g defined in Section 2.1 belongs to C b pJ q. Then one may iterate the first order formula in Theorem 2.2 to obtain P T gpxq " PT gpxq `ÿ ně1 I n T gpxq (2.9) with

I n T gpxq " ż ∆npT q
ds n Psn S sn´1´sn ¨¨¨S T ´s1 gpxq.

Moreover, the series (2.9) converges absolutely and uniformly for x P J .

Proof. We remark that since for all t ą 0, x Þ Ñ S t gpxq P C b pJ q, we can iterate the first order expansion in Theorem 2.2 to obtain

P T gpxq " PT gpxq `N´1 ÿ n"1 ż ∆npT q ds n Psn S sn´1´sn ¨¨¨S T ´s1 gpxq `RN T gpxq
where the remainder term is given by

R N T gpxq " ż ∆N pT q
ds N P sN S sN´1´sN ¨¨¨S T ´s1 gpxq.

From iterative application of estimate (2.2), the remainder term is bounded by

|R N T gpxq| ď C T |g| 8 ż ∆N pT q ds N N ´1 ź n"0 Cps n ´sn´1 q ζ ď C N T T N p1`ζq Γp1 `ζq N Γp1 `N p1 `ζqq
where ζ Þ Ñ Γpζq is the Gamma function. By Lemma 5.1 and the asymptotics of the Gamma function at infinity, we clearly see that the remainder goes to zero uniformly in x P J as N Ò 8.

Weak Uniqueness.

Throughout this section, we will assume that (H1) holds and prove weak uniqueness for the SDE (1.1). The main argument is an extension of the technique introduced by Bass & Perkins [START_REF] Bass | A new technique for proving uniqueness for martingale problems[END_REF], which allows us to deal with singular probability law in the sense that the law of Y t , t ą 0 may not be absolutely continuous with respect to the Lebesgue measure on R d . Moreover, the new contribution of this section compared to the existing literature on this topic is that we identify the main assumptions (H1) and (H2) needed to establish weak uniqueness, thus allowing for a general treatment.

We consider two weak solutions of the SDE (1.1) starting at time 0 from the same initial point x P J . Denote by P 1 and P 2 the two probability measures induced on the space pCpr0, 8q, J q, BpCpr0, 8q, J qqq. Define f P B b pJ q and λ ą 0

S i λ f pxq :" E i r ż 8 0 e ´λt f pY t qdts " ż 8 0 e ´λt E i rf pY t qs dt, i " 1, 2, S ∆ λ f pxq :" pS 1 λ ´S2 λ qf pxq }S ∆ λ } :" sup }f }8ď1 |S ∆ λ f |.
We notice that by (H1) (ii) b),

(2.10) S i λ pλ ´Lqf pxq " f pxq, @f P D, i " 1, 2. For z P J , the resolvent of the process with frozen coefficients is defined by Rλ f pxq " ż 8 0 e ´λt Pt f pxqdt, @f P B b pJ q and for f P D one has (2.11) Rλ pλ ´Lqf " f.

We make the following assumptions:

Assumption (H2): For all λ ą 0, one has Rλ D Ă D and for f P D, pλ ´Lq Rλ f " Rλ pλ ´Lqf and pL ´Lq Rλ f pxq " ż 8 0 e ´λt pL ´Lq Pt f pxq dt.

Let z P R d and r ą 0. We consider a sequence of non-negative mollifiers δ z ε , ε ą 0, converging to the Dirac mass at z as ε Ñ 0. Let us first observe that if g P C 8 b pJ q then Pr g P D, and by (H2) and (2.11), one has pλ ´Lq Rλ Pr δ z ε gpxq " pλ ´Lq Rλ Pr δ z ε gpxq ´pL ´Lq Rλ Pr δ z ε gpxq " Pr δ z ε gpxq ´pL ´Lq Rλ Pr δ z ε gpxq. (2.12) Note that the second term appearing in the right-hand side of the above equality can be expressed as (2.13) pL ´Lq Rλ Pr δ z ε gpxq " ż 8 0 e ´λt pL ´Lq Pt`r δ z ε gpxq dt.

We are now ready to prove weak uniqueness for (1.1).

Theorem 2.3. Assume (H1) and (H2) are satisfied, then weak uniqueness holds for the SDE (1.1).

Proof. The first part of the proof is similar to that of Theorem 2.2. We integrate both sides of (2.12) with respect to dz, apply S ∆ λ and then pass the limit as ε, r Ñ 0. For i " 1, 2, using estimates (2.4) and (2.5) we can apply Fubini's theorem. This yields

S i λ ż pλ ´Lq Rz λ P z r δ z ε g dz " ż 8 0 e ´λt E i r ż pλ ´Lq Rz λ P z r δ z ε gpY t qdzsdt " ż S i λ pλ ´Lq Rz λ P z r δ z ε gdz.
Then by using the fact that Rλ Pr δ ε g P D and (H2), we deduce

S ∆ λ p ż P z r δ z ε g dzq ´S∆ λ p ż pL ´L z q Rz λ P z r δ z ε g dzq " 0.
Let us consider the first term in the above expression and take the limit as ε Ñ 0 and then let r Ñ 0. For i " 1, 2, under (H1), the limit in ε can be taken using dominated convergence theorem while the limit as r Ñ 0 follows using (H1) (v) (similar to (2.7)),

lim rÓ0 lim εÓ0 ż 8 0 e ´λt E i r ż P z r δ z ε gpY t qdzsdt " lim rÓ0 ż 8 0 e ´λt E i r Pr gpY t qsdt " ż 8 0 e ´λt E i rgpY t qsdt.
This shows that lim r,εÓ0 S ∆ λ p ş P z s δ z ε g dzqpxq " S ∆ λ gpxq. For the second term, we first rewrite it using (2.13). For i " 1, 2, since r ą 0, the Fubini's theorem can be applied due to (2.5). Next, from (H1) (v), the dominated convergence theorem can be applied to pass to the limit in ε,

lim εÓ0 ż 8 0 e ´λu E i r ż ż e ´λt pL ´L z q P z t`r δ z ε gpY u q dtdzsdu " ż 8 0 e ´λu ż 8 0 e ´λt lim εÓ0 E i r ż pL ´L z q P z t`r δ z ε gpY u qdzs dtdu " ż 8 0 e ´λu E i r ż 8 0 e ´λt S t`r gpY u qdtsdu.
where the last equality follows from similar arguments as those employed in (2.8). One can now let r goes to zero by using estimates in (H1) (iv) or (2.2) to obtain

lim rÓ0 ż 8 0 e ´λu E i r ż 8 0 e ´λt S t`r gpY u qdt sdu " ż 8 0 e ´λu E i r ż 8 0 e ´λt S t gpY u qdt sdu.
By putting the two terms together, we obtain

S ∆ λ g " S ∆ λ p ż 8 0 e ´λt S t g dtq.
and one can pick λ such that

| ż 8 0 e ´λt S t gdt| ď |g| 8 ż 8 0 e ´λt t ζ dt " |g| 8 Γpζq λ 1`ζ ă 1 2 |g| 8 ,
From the above computation and the definition of }S ∆ λ }, we find that

|S ∆ λ g| " |S ∆ λ p ż 8 0 e ´λt S t g dtq| ď 1 2 }S ∆ λ }|g| 8 ,
By an approximation argument, the last inequality remains valid for bounded continuous functions g supported in J and, by a monotone class argument, it extends to bounded measurable functions. Taking the supremum over |g| 8 ď 1 yields }S ∆ λ } ď 1 2 }S ∆ λ } and, since }S ∆ λ } ă 8, we conclude that S ∆ λ " 0. Consequently, ş 8 0 e ´λt E 1 rgpY t qsdt " ş 8 0 e ´λt E 2 rgpY t qsdt. By the uniqueness of the Laplace transform together with continuity w.r.t the variable t, E 1 rgpY t qs " E 2 rgpY t qs for all t ě 0 if g is bounded measurable. Now one can use the standard argument based on regular conditional probabilities to show that the finite dimensional distributions of the process pY t q tě0 " pX t , A t pXqq tě0 agree under P 1 and P 2 . This is where we use the assumption on regular conditional probability measure introduced in the first paragraph of Section 2.1. Since this arguments is standard, we omit it. This suffices to prove weak uniqueness, see [START_REF] Stroock | Multidimensional diffusion processes[END_REF], Section 5.4.C in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] or Section VI.2 in [START_REF] Bass | Diffusions and Elliptic Operators[END_REF].

Two examples

A diffusion process and its running symmetric local time.

In this example, we consider the SDE with dynamics (3.1)

X t " x `ż t 0 bpX s , L 0 s pXqqds `ż t 0 σpX s , L 0 s pXqqdW s
where L 0 s pXq is the symmetric local time at 0 accumulated by X at time s. Here J " R ˆR`, A t pXq " L 0 t pXq and d " 2. We introduce the following assumptions:

(R-η) The coefficients b and a " σ 2 are bounded measurable functions defined on RˆR `. The diffusion coefficient a is η-Hölder continuous on R ˆR`. (UE) There exists some constant a ą 0 such that @px, ℓq P R ˆR`, a ď apx, ℓq.

Let D be the class of function f P C 2,1 b pRzt0u ˆR`q X C b pR ˆR`q such that B 1 f p0`, ℓq " lim xÓ0 f px,ℓq´f p0,ℓq x and B 1 f p0´, ℓq " lim xÒ0 f px,ℓq´f p0,ℓq x exist, are finite and satisfy the following transmission condition:

(3.2) @ℓ P R `, B 1 f p0`, ℓq ´B1 f p0´, ℓq 2 `B2 f p0, ℓq " 0.
We define the linear operator L by:

Lf px, ℓq " bpx, ℓqB 1 f px´, ℓq `1 2 apx, ℓqB 2 1 f px´, ℓq, px, ℓq P R ˆR`.
As mentioned in the introduction, we need a chain rule formula for the process pX t , A t pXqq tě0 which allows to identify the set of functions D and the linear operator L. In fact, the set D described above is precisely the set of functions for which we are able to provide a good characterisation of the martingale problem. Indeed, one has to rely on the following chain rule formula or generalisation of the Itô formula whose proof closely follows the arguments of Theorem 2.2 in Elworthy & al. [ETZ07] or Theorem 2.1 in Peskir [START_REF] Peskir | A change-of-variable formula with local time on curves[END_REF]. Note that here that we are working with the symmetric local time at zero whereas the right local time is considered in [START_REF] Elworthy | Generalized Itô formulae and space-time Lebesgue-Stieltjes integrals of local times[END_REF].

Proposition 3.1 (Generalised Itô's formula). Assume that f P C 1,2,1 pR `ˆRz t0uˆR `q X CpR `ˆR ˆR`q satisfies: B 2 f pt, 0`, ℓq " lim xÓ0 pf pt, x, ℓq ´f pt, 0, ℓqq{x and B 2 f pt, 0´, ℓq " lim xÒ0 pf pt, x, ℓq ´f pt, 0, ℓqq{x exist and are finite. Then, one has

f pt, X t , L 0 t pXqq " f p0, x, 0q `ż t 0 B 1 f ps, X s , L 0 s pXqq `Lf ps, .qpX s , L 0 s pXqq ( ds `ż t 0 " B 2 f ps, 0`, L 0 s pXqq ´B2 f ps, 0´, L 0 s pXqq 2 `B3 f ps, 0, L 0 s pXqq * dL 0 s pXq `ż t 0 σpX s , L 0 s pXqqB 2 f ps, X s ´, L 0 s pXqqdW s a.s.

Weak Existence.

Now that we have identified the set D and the linear operator L, the weak existence of a solution to (3.1) follows from a standard compactness argument that we present here for sake of completeness. Actually, it is equivalent to the existence of a solution to the following martingale problem.

We will say that a probability measure P on pCpr0, 8q, R ˆR`q , BpCpr0, 8q, R ˆR`q q endowed with the canonical filtration pF t q tě0 is a solution to the local martingale problem if P py 1 p0q " x, y 2 p0q " 0q " 1, t Þ Ñ y 2 ptq is a nondecreasing process P -a.s. and

(3.3) f pyptqq ´f pyp0qq ´ż t 0
Lf pypsqqds is a continuous local martingale for f P C 2,1 pRzt0u ˆR`, Rq X CpR ˆR`q satisfying the transmission condition (3.2). We will say that P is a solution to the martingale problem if (3.3) is a continuous square integrable martingale for every f P D. Similarly to the standard diffusion case (see e. We now claim that a probability measure that solves the local martingale problem induces a weak solution to the functional SDE (3.1). Indeed, for the choices px, ℓq Þ Ñ x and px, ℓq Þ Ñ x 2 , following similar lines of proof of Proposition 5.4.6 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], one obtains that there exists a (one-dimensional) standard Brownian motion W " tW t , Ft ; 0 ď t ă 8u eventually defined on an extension of the original probability space pCpr0, 8q, R ˆR`q , BpCpr0, 8q, R ˆR`q , P q such that

y 1 ptq " y 1 p0q `ż t 0 bpypsqqds `ż t 0 σpypsqqdW s .
We first consider px, ℓq Þ Ñ |x| ´ℓ P C 2,1 pRz t0u ˆR`q X CpR ˆR`q and note that it satisfies the transmission condition (3.2). Hence, we derive that there exists a local martingale M 1 such that |y 1 ptq| ´|x| ´y2 ptq " ş t 0 bpypsqqsignpy 1 psqqds `M 1 t . Moreover, from the Tanaka formula |y 1 ptq| ´|x| " ş t 0 signpy 1 psqqdy 1 psq `L0 t py 1 q. Hence, there exists a local martingale M 2 such that L 0 t py 1 q ´y2 ptq " M 2 t . However, since y 2 is non-decreasing, this means that M 2 is a continuous local martingale of bounded variation. It follows that M 2 is identically equal to zero and y 2 ptq " L 0 t py 1 q. Finally, we get that ty 1 , W, p Ft q tě0 u is a weak solution to the SDE (3.1). Moreover, as in the standard diffusion case, see e.g. Chapter 6 in [START_REF] Stroock | Multidimensional diffusion processes[END_REF] or Lemma 5.4.19 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], the measure P t,w " Q t,w ˝θ´1 t , where Q t,w is a regular conditional probability for P x given F t , solves the martingale problem for every w R N , N P F t being a P x -null event.

We are now in position to prove the existence of a weak solution to the SDE (3.1). The lines of reasoning here are standard, see e.g. Theorem 5.4.22 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]. We provide them for sake of completeness.

Theorem 3.1. Assume that the coefficients b, σ : R ˆR`Ñ R are bounded and continuous functions. Then, for every x P R, there exists a weak solution to the SDE (3.1).

Proof. Let us consider on some probability space pΩ, F , Pq a Brownian motion W " W t , F W t , 0 ď t ă 8 ( and let tF t u be the augmented filtration satisfying the usual conditions. For integers j ě 0, n ě 1 we consider the dyadic rationals t pnq j " j2 ´n, j " 0, ¨¨¨, 2 n and introduce the functions ψ n ptq " t pnq j , for t P rt pnq j , t pnq j`1 q. For each integer n ě 1, we define the continuous process y pnq " tpy pnq 1 ptq, y pnq 2 ptqq, F t ; 0 ď t ă 8u by setting y pnq p0q " px, 0q and then recursively for t P pt pnq j , t pnq j`1 s: y pnq 1 ptq " y pnq 1 pt pnq j q `bpy pnq pt pnq j qqpt ´tpnq j q `σpy pnq pt pnq j qqpW t ´Wt pnq j q, y pnq 2 ptq " L 0 t py pnq 1 q for j " 0, ¨¨¨, 2 n . Defining the new coefficients for y P Cpr0, 8q, R ˆR`q b pnq pt, yq :" bpy ψnptq q, σ pnq pt, yq :" σpy ψnptq q, t ě 0 we remark that y pnq solves the functional SDE for some positive constant C independent of n, t and s. Thus, the sequence of probability measures P pnq " P ˝py pnq q ´1, n ě 1, is tight. Relabelling the indices if necessary, we may assert that pP pnq q ně1 converges weakly to a probability measure P ˚.

Let h P D. We denote by tB t u the canonical filtration. It remains to prove that for every bounded, continuous function f : Cpr0, 8q, R ˆR`q Ñ R which are B s -measurable, one has (3.4)

E P ˚" " hpyptqq ´hpypsqq ´ż t s Lhpypvqqdv * f pyq ı " 0.
From Proposition 3.1, one has

E P pnq " " hpyptqq ´hpypsqq ´ż t s L pnq v hpy pnq qdv * f pyq ı " 0, with L pnq v hpyq " b pnq pv, yqB 1 hpypvqq `1 2 a pnq pv, yqB 2 1 hpypvqq `B3 hpypvqq1 ty1pvqě0u .
Thus it remains to prove that b pnq and a pnq converges to b and a uniformly on compact subset of Cpr0, 8q, R R`ˆR`q . Let K be a compact subset of Cpr0, 8q, R ˆR`q so that M :" sup 

) ď ε, n ě npεq
and the uniform convergence on K of pb pnq , a pnq q to pb, aq follows. This completes the proof of Theorem 3.1.

Remark 3.2. We proved that weak existence for the SDE (3.1) holds under the assumption that b and σ are continuous and bounded. Using a transformation of the drift via the Girsanov theorem, one easily obtain weak existence under the assumption that b is bounded measurable and a " σ 2 is continuous and uniformly elliptic. We omit technical details and refer the interested reader to Proposition 5.3.6 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] for a similar argument in the standard diffusion setting. Hence, we conclude that under (R-η), for some η P p0, 1s, and (UE), weak existence holds for the SDE (3.1).

Weak uniqueness and representation of the transition density.

We now introduce the proxy process Xt :" x 0 `σpz 1 qW t , t ě 0, obtained from the original process X by removing the drift part and by freezing the diffusion coefficient at z 1 " px 1 , ℓ 1 q P R ˆR`. For f P C b pR ˆR`q , we define Pt f px 0 , ℓ 0 q " Erf p Xt , ℓ 0 `L0 t p Xqqs " Erf px 0 `σW t , ℓ 0 `L0 t p Xqqs, where σ " σpz 1 q, ā " σ2 , and for f P D, the operator Lf px, ℓq "

1 2 ā B 2 1 f px´, ℓq, px, ℓq P R ˆR`.
We now compute the bivariate transition density of the approximation process p Xt , L 0 t p Xqq tě0 from the joint density of pW t , L 0 t pW qq which is readily available from Karatzas & Shreve [START_REF] Karatzas | Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control[END_REF]. We denote by T 0 " inf tt ě 0 : x 0 `σpz 1 qW t " 0u the first hitting time of 0 by the process p Xt q tě0 . Let f P C b pR ˆR`q . We compute each term of the following decomposition: Pt f px 0 , ℓ 0 q :" Erf px 0 `σW t , ℓ 0 q1 tT0ětu s `Erf px 0 `σW t , ℓ 0 `L0 t p Xqq1 tT0ătu s ": I `II In the first term, the Brownian motion does not accumulate local time at zero. The bivariate density of pW t , max 0ďsďt W s q, see e.g. [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], gives

I " ż RˆR`f
px, ℓq tH 0 pāt, x ´x0 q ´H0 pāt, x `x0 qu 1 tx0xě0u dxδ ℓ0 pdℓq.

To compute II we make use of the bivariate density of pW t , L 0 t pW qq tě0 established in [START_REF] Karatzas | Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control[END_REF]. Conditioning with respect to T 0 and using the strong Markov property of W yield

II " ż t 0 PpT 0 P dsqErf px 0 `σW t , ℓ 0 `L0 t p Xqq|T 0 " ss " ż t 0
PpT 0 P dsqErf pσW t´s , ℓ 0 `σL 0 t´s pW qqs "

ż t 0 ds p´H 1 qps, |x 0 | σ q ż RˆR`f pσx, ℓ 0 `σℓqp´H 1 qpt ´s, |x| `ℓqdxdℓ
where we used the exact expression for the density of the passage time T 0 , namely PpT 0 P dsq " p´H 1 qps, |x 0 |{σqds, s ą 0 and x 0 P R. Since the sum of independent passage times is again a passage time, see e.g. page 824 of Karatzas & Shreve [START_REF] Karatzas | Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control[END_REF], one has

(3.5) p´H 1 qpt, |x| `|y|q " ż t 0 ds p´H 1 qpt ´s, |x|qp´H 1 qps, |y|q; x, y ‰ 0, t ą 0.
Combining these observations with Fubini's theorem and a change of variable yield

II " ż RˆR`f px, ℓq 1 ā p´H 1 qpt, |x| `|x 0 | `ℓ ´ℓ0 σ q1 tℓ0ďℓu dxdℓ.
Combining I and II, we see that the couple p Xt , ℓ 0 `L0 t p Xqq admits a density px, ℓq Þ Ñ pt px 0 , ℓ 0 , x, ℓq, that is pt px 0 , ℓ 0 , dx, dℓq " pt px 0 , ℓ 0 , x, ℓqνpx 0 , ℓ 0 , dx, dℓq, t ą 0, with pt px 0 , ℓ 0 , x, ℓq :" ft px 0 , xq1 tℓ"ℓ0u `q t px 0 , ℓ 0 , x, ℓq1 tℓ0ăℓu and ft px 0 , xq :" H 0 pāt, x ´x0 q ´H0 pāt, x `x0 q, qt px 0 , ℓ 0 , x, ℓq :" ´1 ā H 1 pt, p|x| `|x 0 | `ℓ ´ℓ0 q{σq, νpx 0 , ℓ 0 , dx, dℓq :" 1 tℓ0ăℓu dxdℓ `1tx0xě0u dxδ ℓ0 pdℓq.

Moreover, as already mentioned in assumption (H1) in Section 2.1, we let pt px 0 , ℓ 0 , x, ℓq " ft px 0 , xq1 tℓ"ℓ0u qt px 0 , ℓ 0 , x, ℓq1 tℓ0ăℓu with ft px 0 , xq :" H 0 papx, ℓ 0 qt, x ´x0 q ´H0 papx, ℓ 0 qt, x `x0 q, qt px 0 , ℓ 0 , x, ℓq :" ´1 apx, ℓq H 1 pt, p|x| `|x 0 | `ℓ ´ℓ0 q{σpx, ℓqq.

Hence, we see that both measures pt and pt consist of two parts, the first part is absolutely continuous with respect to the σ-finite measure 1 tx0xě0u dxδ ℓ0 pdℓq. Here the approximation process consists in freezing the diffusion coefficient at px, ℓ 0 q. This is a natural idea since in this part the process X does not accumulate local time at zero and ℓ 0 is the both the initial and terminal point of the density. The second part is absolutely continuous with respect to the Lebesgue measure on R ˆR`. Here the approximation process is obtained by freezing the diffusion coefficient at the terminal point of the density as in the standard diffusion case.

The first main result of this section establishes weak uniqueness for the SDE (3.1) by proving that assumptions (H1) and (H2) of Section 2.1 are satisfied. Its proof is given in the Appendix.

Theorem 3.3. For η P p0, 1s, under (R-η) and (UE), weak uniqueness holds for the SDE (3.1).

In the following, we show that, given px 0 , ℓ 0 q P R ˆR`, the transition density of the process pX x0 t , ℓ 0 `L0 t pXqq tě0 is absolutely continuous with respect to the sigma finite measure νpx 0 , ℓ 0 , dx, dℓq. Our strategy consists in establishing a representation in infinite series of P t g from which stems an explicit representation of the density of the couple pX x0 t , ℓ 0 `L0 t pXqq, see Theorem 3.4. Though we will not proceed in that direction, we point out that this representation may be useful in order to study the regularity properties of the density, to obtain integration by parts formulas or to derive an unbiased Monte Carlo simulation method. We refer the interested reader to [START_REF] Frikha | On the first hitting times for one-dimensional elliptic diffusions[END_REF] for some results in that direction related to the first hitting times of one-dimensional elliptic diffusions.

To this end, we need to iterate the first step expansion obtained in Theorem 2.2. We recall that S t gpx 0 , ℓ 0 q :" ż gpx, ℓq

" ´1 2 papx 0 , ℓ 0 q ´apx, ℓqq a 2 px, ℓq H 3 pt, |x| `|x 0 | `ℓ ´ℓ0 σpx, ℓq q `bpx 0 , ℓ 0 qsignpx 0 q a 3 2 px, ℓq H 2 pt, |x| `|x 0 | `ℓ ´ℓ0 σpx, ℓq q * 1 tℓąℓ0u dxdℓ (3.6)
`ż gpx, ℓ 0 q " 1 2 papx 0 , ℓ 0 q ´apx, ℓ 0 qq tH 2 papx, ℓ 0 qt, x ´x0 q ´H2 papx, ℓ 0 qt, x `x0 qu ´bpx 0 , ℓ 0 q tH 1 papx, ℓ 0 qt, x ´x0 q ´H1 papx, ℓ 0 qt, x `x0 quu 1 txx0ě0u dx with signpx 0 q " ´1tx0ď0u `1tx0ą0u . From this expression, we see that px 0 , ℓ 0 q Þ Ñ S t gpx 0 , ℓ 0 q is not continuous at zero, unless bp0, ℓ 0 q " 0, ℓ 0 P R `. Hence, we cannot use directly Corollary 2.1. We proceed as follows. We first consider the drift-less SDE. We then briefly indicate how to proceed in the presence of a bounded measurable drift by means of the Girsanov theorem. From now on, we let b " 0. We will use the notation S t gpx 0 , ℓ 0 q " ş gpx, ℓq θt px 0 , ℓ 0 , x, ℓqνpx 0 , ℓ 0 , dx, dℓq with θt px 0 , ℓ 0 , x, ℓq :"

# ´1 2 papx0,ℓ0q´apx,ℓqq a 2 px,ℓq H 3 pt, |x|`|x0|`ℓ´ℓ0
σpx,ℓq q, ℓ ą ℓ 0 , 1 2 papx 0 , ℓ 0 q ´apx, ℓ 0 qq tH 2 papx, ℓ 0 qt, x ´x0 q ´H2 papx, ℓ 0 qt, x `x0 qu , ℓ " ℓ 0 .

(3.7)

Since the function px 0 , ℓ 0 q Þ Ñ S t gpx 0 , ℓ 0 q is continuous on R ˆR`, applying Corollary 2.1, we get

P T gpx 0 , ℓ 0 q " PT gpx 0 , ℓ 0 q `ÿ ně1 ż ∆npT q
Psn S sn´sn´1 ¨¨¨S T ´s1 gpx 0 , ℓ 0 q ds n (3.8) with the convention s 0 " T .

In order to retrieve the transition density associated to pP t q tě0 , we are aiming to prove an integral representation for the above series. More precisely, our aim is to prove that the right-hand side of (3.8) can be written as ş gpx, ℓqp T px 0 , ℓ 0 , x, ℓqνpx 0 , ℓ 0 , dx, dℓq, with an explicit representation for p T px 0 , ℓ 0 , x, ℓq. We start by an examination of the n-th term of the series expansion.

Before proceeding, we observe that the measure νpx 0 , ℓ 0 , dx, dℓq satisfies a useful convolution type property in the sense that νpx 0 , ℓ 0 , dx 1 , dℓ 1 qνpx 1 , ℓ 1 , dx, dℓq " upx 0 , ℓ 0 , x, ℓ, dx 1 , dℓ 1 qνpx 0 , ℓ 0 , dx, dℓq (3.9) where we set upx 0 , ℓ 0 , x, ℓ, dx 1 , dℓ 1 q :" # 1 tℓ0ăℓ 1 ăℓu dx 1 dℓ 1 `1tx 1 x0ą0u dx 1 δ ℓ0 pdℓ 1 q `1txx 1 ą0u dx 1 δ ℓ pdℓ 1 q, ℓ 0 ă ℓ, 1 tx0x 1 ą0u dx 1 δ ℓ0 pdℓ 1 q, ℓ 0 " ℓ, x 0 x ą 0.

Applying repeatedly (3.9) and using Fubini's theorem, we get ż ∆npT q ds n Psn S sn´1´sn . . . S T ´s1 gpx 0 , ℓ 0 q " ż RˆR`g px, ℓq

# ż ∆npT q ds n ż pRˆR`q n psn px 0 , ℓ 0 , x 1 , ℓ 1 q ˆ« n ź i"1 θsn´i´sn´i`1 px i , ℓ i , x i`1 , ℓ i`1 qupx 0 , ℓ 0 , x i`1 , ℓ i`1 , dx i , dℓ i q ff+ νpx 0 , ℓ 0 , dx, dℓq " ż RˆR`g
px, ℓqp n T px 0 , ℓ 0 , x, ℓqνpx 0 , ℓ 0 , dx, dℓq where we set

p n T px 0 , ℓ 0 , x, ℓq :" $ ' ' & ' ' % ş ∆npT q ds n ş pRˆR`q n psn px 0 , ℓ 0 , x 1 , ℓ 1 q" ś n i"1 θsn´i´sn´i`1 px i , ℓ i , x i`1 , ℓ i`1 qupx 0 , ℓ 0 , x i`1 , ℓ i`1 , dx i , dℓ i q ı n ě 1,
pT px 0 , ℓ 0 , x, ℓq n " 0.

(3.10) From (3.7) and the space-time inequality, it is easy to see that obtain the following estimate

| θt px 0 , ℓ 0 , x, ℓq| ď $ & % C t 3´η 2 H 0 pct, |x| `|x 0 | `ℓ ´ℓ0 q, ℓ ą ℓ 0 , C t 1´η 2 H 0 pct, x ´x0 q, ℓ " ℓ 0 , (3.11)
for some constants C, c ą 1.

We are ready to give a representation for the density of the couple pX x0 t , ℓ 0 `L0 t pX x0 qq. As already mentioned in the introduction, we point out that the proof of the convergence of the asymptotic expansion for the transition density is not standard in the current setting. Indeed, in the classical diffusion setting, the parametrix expansion of the transition density converges since the order of the singularity in time induced by the parametrix kernel θt is of order t ´1`η 2 , which is still integrable near 0. The situation here is much more delicate. At first glance, the order of the time singularity in θt consists in two parts. The first part corresponds to the non-singular part of the law of p Xx0

t , ℓ 0 `L0 t p Xx0 qq. From (3.11), it induces a singularity in time of order t ´3`η 2 which is integrable in time after integrating the kernel H 0 pct, |x| `|x 0 | `ℓ ´ℓ0 q on the domain R ˆpℓ 0 , 8q.

The second part corresponds to the singular case where the law of p Xx0 t , ℓ 0 `L0 t p Xx0 qq, is the one of the proxy process killed when it reaches zero, and is absolutely continuous with respect to the singular measure dxδ ℓ0 pdℓq.

Here the situation is standard and the singularity in time appearing in (3.11) is integrable.

The main difficulty appears when one wants to control the whole convolution appearing in the right-hand side of (3.10). More precisely, it lies in the cross-terms which are of a different nature, for instance when one convolutes the non-singular part in the convolution kernel θT ´s1 and the singular part in the convolution kernel θs1´s2 . Standard arguments such as the one used in [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] or [START_REF] Menozzi | Parametrix techniques and martingale problems for some degenerate Kolmogorov equations[END_REF] do not guarantee the convergence of the integral defining (3.10). To overcome this difficulty and show that the parametrix expansion for the transition density converges, one has to make use of the key estimate obtained in Lemma 5.3 which relies on the symmetry in the initial and terminal point of the density of the killed proxy process, in order to retrieve the integrability in time of the underlying convolution kernel.

As our second main result, we prove that the transition density of pX t , ℓ 0 `L0 t pXqq tě0 exists and satisfies a Gaussian upper bound. Its proof is given in the Appendix.

Theorem 3.4. Assume that (R-η) and (UE) hold for some η P p0, 1s. For px 0 , ℓ 0 q P R ˆR`, define the measure p T px 0 , ℓ 0 , dx, dℓq :" p T px 0 , ℓ 0 , x, ℓqνpx 0 , ℓ 0 , dx, dℓq " p 1 T px 0 , ℓ 0 , x, ℓq 1 tℓ0ăℓu dxdℓ `p2 T px 0 , ℓ 0 , xq 1 txx0ě0u dxδ ℓ0 pdℓq with p T px 0 , ℓ 0 , x, ℓq :" ř ně0 p n T px 0 , ℓ 0 , x, ℓq and p 1 T px 0 , ℓ 0 , x, ℓq :"

ÿ ně0
p n T px 0 , ℓ 0 , x, ℓq, p 2 T px 0 , ℓ 0 , xq :"

ÿ ně0
p n T px 0 , ℓ 0 , x, ℓ 0 q.

Then, both series defining p 1 T px 0 , ℓ 0 , x, ℓq and p 2 T px 0 , ℓ 0 , xq converge absolutely and uniformly for px 0 , ℓ 0 q, px, ℓq P pR ˆR`q 2 . Moreover for h P C b pR ˆR`q the following representation for the semigroup holds,

P T hpx 0 , ℓ 0 q " ż RˆR`h
px, ℓq p T px 0 , ℓ 0 , x, ℓqνpx 0 , ℓ 0 , dx, dℓq.

Therefore, for all px 0 , ℓ 0 q P R ˆR`, the function px, ℓq Þ Ñ p T px 0 , ℓ 0 , x, ℓq is the probability density function of the random vector pX x0 T , ℓ 0 `L0 T pX x0 qq with respect to the σ-finite measure νpx 0 , ℓ 0 , dx, dℓq, where X x0 T is the solution taken at time T of the SDE (3.1) starting from x 0 at time 0, L 0 T pX x0 q being its running symmetric local time at time T .

Finally, there exists some constants C, c ą 1 such that for all px 0 , ℓ 0 q, px, ℓq P R ˆR`, the following Gaussian upper-bounds hold (3.12) p 1 T px 0 , ℓ 0 , x, ℓq ď CT ´1{2 H 0 pcT, |x| `|x 0 | `ℓ ´ℓ0 q and p 2 T px 0 , ℓ 0 , xq ď CH 0 pcT, x ´x0 q.

Remark 3.5. The above Theorem proves the existence of a transition density for the Markov process pX t , ℓ 0 L0

t pXqq tě0 where the dynamics is given by (3.1) without drift. In order to add a drift, one can use the Girsanov Theorem as follows. Let R ˆR`Q px, ℓq Þ Ñ bpx, ℓq be a real-valued bounded measurable function. We consider the unique weak solution tpX, W q, pΩ, F , Pq, pF t q tě0 u of (3.1). Let Ă W t :" W t `şt 0 bpX s , L 0 s pXqqds, with bpx, ℓq :" bpx, ℓq{σpx, ℓq. Then, defining the new probability measure on F T by dQ dP :" exp

# ´ż T 0 bpX s , L 0 s pXqqdW s ´1 2 ż T 0 b2 pX s , L 0 s pXqqds + ,
from Girsanov's Theorem, we know that p r X, Ă W q, pΩ, F , Qq, pF t q tě0 ( , with r X t " x `şt 0 σp r X s , A s p r Xqqd Ă W s is a weak solution to (3.1) with b " 0. We also know from Theorem 3.3 that weak uniqueness holds for this equation and from Theorem 3.4 it admits a transition density with respect to the measure νpx 0 , ℓ 0 , dx, dℓq. Therefore, for any bounded measurable function h : R ˆR`Ñ R, we can write for t ď T , P t hpx 0 , ℓ 0 q :" E P rhpX t , ℓ 0 `L0 t pXqqs " ż RˆR`h px, ℓqE Q " dP dQ ˇˇpXt, ℓ 0 `L0 t pXqq " px, ℓq ı pt px 0 , ℓ 0 , x, ℓqνpx 0 , ℓ 0 , dx, dℓq.

From the above we deduce that the random vector pX t , ℓ 0 `L0 t pXqq, t ą 0, admits a density with respect to the measure νpx 0 , ℓ 0 , dx, dℓq. Then, by an approximation argument that we omit, one may extend Theorem 2.2 to include functions g that are bounded measurable with respect to the space variable x. Hence, one may iterate the first step formula and obtain the semigroup expansion (2.9) where the function S t g is given by (3.6) and θt is defined accordingly. Finally, one has to repeat the arguments employed in the proof of Theorem 3.4. We omit the remaining technical details.

Remark 3.6. We again point out that the representation in infinite series obtained previously are of great interest. For instance, one may be interested in studying regularity properties of pt, x 0 , ℓ 0 , x, ℓq Þ Ñ p 1 t px 0 , ℓ 0 , x, ℓq, p 2 t px 0 , ℓ 0 , x, ℓq, to derive a probabilistic interpretation of P t g and p t px 0 , ℓ 0 , x, ℓq and to obtain some integration by parts formulas or an unbiased Monte Carlo simulation scheme. We refer e.g. to [START_REF] Frikha | On the first hitting times for one-dimensional elliptic diffusions[END_REF], [START_REF] Garroni | Green functions for second order parabolic integro-differential problems[END_REF] and the references therein for some results in that direction concerning to the first hitting times of one-dimensional elliptic diffusions.

A diffusion process with coefficients depending on its running maximum.

We now turn our attention to the following SDE with dynamics (3.13)

X t " x 0 `ż t 0 bpX s , M s qds `ż t 0 σpX s , M s qdW s
where M t " A t pXq :" m 0 _ max 0ďsďt X s , m 0 ě x 0 , is the running maximum of the process X at time t. The state space of the process pX t , M t q tě0 is denoted by the closed set J " px, mq P R 2 : x ď m ( . We define accordingly the collection of linear maps P t f px 0 , m 0 q " Erf pX t , M t qs for f P B b pJ q and introduce the following assumptions:

(R-η) The coefficients b and a " σ 2 are bounded measurable functions defined on J . The diffusion coefficient a is η-Hölder continuous on J . (UE) There exists some constant a ą 0 such that @px, mq P J , a ď apx, mq.

Although the lines of reasoning used in the proof of Theorem 3.7 and Theorem 3.8 are rather similar to those employed in the case of the SDE with its running symmetric local time, we decided to include this example in order to illustrate the generality of our framework. Indeed, unlike the local time and also the examples considered so far in the literature by means of the parametrix technique, see e.g. [START_REF] Menozzi | Parametrix techniques and martingale problems for some degenerate Kolmogorov equations[END_REF], the running maximum is not a continuous additive functional. This difference is reflected in the definition of the collection of linear maps pP t q tě0 , and also in the definition of the approximation process Ȳ and the maps p Pt q tě0 , see below in Section 3.5. This allows to define a Markov semigroup for Ȳ and later on for Y .

The weak existence of a solution to the SDE (3.13) follows from standard results, see e.g. Chapter 6 in [START_REF] Stroock | Multidimensional diffusion processes[END_REF] or Theorem 5.4.22 and Remark 5.4.23 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], see also Forde [START_REF] Forde | A diffusion-type process with a given joint law for the terminal level and supremum at an independent exponential time[END_REF] for another approach under the assumption that a and b are continuous bounded functions. We also refer to the previous Remark 3.2 for the case of bounded measurable drift.

In the same spirit as in the previous section, we can characterise solutions of the SDE (3.13) in terms of the associated (local) martingale problem. We let D be the class of functions f : J Ñ R such that f P C 2,1 b pJ q which satisfies the condition B 2 f pm, mq " 0, m P R. For f P D, we define the operator Lf px, mq " 1 2 apx, mqB 2 1 f px, mq `bpx, mqB 1 f px, mq.

Observing that the process t Þ Ñ M t increases only on the set tt : X t " M t u and by applying Itô's lemma, we get (3.14) f pt, X t , M t q " f p0, x 0 , m 0 q `ż t 0 tpB 1 f ps, .q `Lf ps, .qqpX s , M s qu ds `ż t 0 σpX s , M s qB 2 f ps, X s , M s qdW s for f P C 1 pR `, Dq.

3.5. Weak uniqueness and representation of the transition density.

We now introduce the proxy process Xt :" x 0 `σpz 1 qW t , t ě 0, obtained from the original process X by removing the drift part and by freezing the diffusion coefficient at z 1 " px 1 , m 1 q P J in the dynamics (3.13). As already done for the original process Y , for f P C b pJ q, we define accodingly Pt f px 0 , m 0 q " Erf p Xt , Mt qs " Erf px 0 `σpz 1 qW t , m 0 _ max 0ďsďt px 0 `σpz 1 qW s qqs, and, with σ " σpz 1 q, ā " σ2 , for f P D, the operator Lf px, mq " 1 2 āB 2 1 f px, mq, px, mq P J .

We now compute the law of the couple p Xt , Mt q. We denote by T m0 " inf tt ě 0 : x 0 `σW t " m 0 u the first hitting time of 0 by the process p Xt q tě0 . Let f P C b pJ q. We decompose Pt f px 0 , m 0 q as follows Pt f px 0 , m 0 q :" Erf px 0 `σW t , m 0 q1 tTm 0 ětu s `Erf px 0 `σW t , m 0 _ max 0ďsďt px 0 `σW s qq1 tTm 0 ătu s " I `II.

From the reflection principle of Brownian motion, see e.g. [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], one derives the law of the proxy process killed when it exits p´8, m 0 q, namely

I " Erf px 0 `σW t , m 0 q1 tTm 0 ětu s " ż R 2
f px, mq tH 0 pāt, x ´x0 q ´H0 pāt, 2m 0 ´x ´x0 qu 1 tx_x0ďm0u dxδ m0 pdmq From the bivariate density of pW t , max 0ďsďt W s q, see e.g. Proposition 2.8.1 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], we obtain

II " Erf px 0 `σW t , m 0 _ max 0ďsďt px 0 `σW s qq1 tTm 0 ătu s " Erf px 0 `σW t , max 0ďsďt px 0 `σW s qq1 tmax0ďsďtpx0`σWsqěm0u s " ż R 2
f px, mqp´2H 1 qpāt, 2m ´x ´x0 q1 tx_x0_m0ďmu dxdm.

Combining I and II, we see that the couple p Xt , Mt q admits a density px, mq Þ Ñ pt px 0 , m 0 , x, mq that is pt px 0 , m 0 , dx, dmq " pt px 0 , m 0 , x, mqνpx 0 , m 0 , dx, dmq, t ą 0, with pt px 0 , m 0 , x, mq :" ft px 0 , xq1 tm"m0u `q t px 0 , m 0 , x, mq1 tm0ămu and ft px 0 , xq :" H 0 pāt, x ´x0 q ´H0 pāt, 2m 0 ´x ´x0 q, qt px 0 , m 0 , x, mq :" ´2H 1 pāt, 2m ´x ´x0 q, νpx 0 , m 0 , dx, dmq :" 1 txďmu 1 tm0ămu dxdm `1tx0ďm0u 1 txďm0u dxδ m0 pdmq.

Moreover, as already mentioned in assumption (H1) in Section 2.1, we let pt px 0 , m 0 , x, mq " ft px 0 , xq1 tm"m0u qt px 0 , ℓ 0 , x, ℓq1 tm0ămu with ft px 0 , xq :" H 0 papx, m 0 qt, x ´x0 q ´H0 papx, m 0 qt, 2m 0 ´x ´x0 q, qt px 0 , m 0 , x, mq :" ´2H 1 papx, mqt, 2m ´x ´x0 q.

We also observe that p Pt q tě0 defines a Markov semigroup. The first main result of this section establishes weak uniqueness for the SDE (3.13) by proving that assumptions (H1) and (H2) of Section 2.1 are satisfied. Its proof is given in the Appendix.

Theorem 3.7. For η P p0, 1s, under (R-η) and (UE), weak uniqueness holds for the SDE (3.13).

Next we show that, given px 0 , m 0 q P J , the law of pX x0 T , M T q is absolutely continuous with respect to the measure νpx 0 , m 0 , dx, dmq. Our strategy is similar to the one used in the case of the SDE with its running local time, that is we establish a representation in infinite series of P t g from which stems an explicit representation of the density of the couple pX x0 t , ℓ 0 `L0 t pXqq, see Theorem 3.8 below. We first set S t gpx 0 , m 0 q :" ż gpx, mq " 1 2 papx 0 , m 0 q ´apx, mqqp´2H 3 qpapx, mqt, 2m ´x ´x0 q `bpx 0 , m 0 qp´2H 2 qpapx, mqt, 2m ´x ´x0 q * 1 txďmu 1 tm0ămu dxdm `ż gpx, m 0 q " 1 2 papx 0 , m 0 q ´apx, m 0 qqpH 2 papx, m 0 qt, x ´x0 q ´H2 papx, m 0 qt, 2m 0 ´x ´x0 qq (3.15) `bpx 0 , m 0 qpH 1 papx, m 0 qt, 2m 0 ´x ´x0 q ´H1 papx, m 0 qt, x ´x0 qq * 1 txăm0u dx " ż gpx, mq θt px 0 , m 0 , x, mqνpx 0 , m 0 , dx, dmq with θt px 0 , m 0 , x, mq :"

$ ' & ' %
1 2 papx 0 , m 0 q ´apx, mqqp´2H 3 qpapx, mqt, 2m ´x ´x0 q `bpx 0 , m 0 qp´2H 2 qpapx, mqt, 2m ´x ´x0 q, x ď m, m 0 ă m, 1 2 papx 0 , m 0 q ´apx, m 0 qqpH 2 papx, m 0 qt, x ´x0 q ´H2 papx, m 0 qt, 2m 0 ´x ´x0 qq x ă m 0 , m " m 0 . `bpx 0 , m 0 qpH 1 papx, m 0 qt, 2m 0 ´x ´x0 q ´H1 papx, m 0 qt, x ´x0 qq, We remark that the function px 0 , m 0 q Þ Ñ S t gpx 0 , m 0 q is continuous on J . This is different from the case of the local time, where due to the presence of the sign function, we required that b " 0 in order to ensure that the continuity of px 0 , m 0 q Þ Ñ S t gpx 0 , m 0 q on J .

One may now iterate the first step of the expansion obtained in Theorem 2.2. More precisely, by applying Corollary 2.1 and setting by convention s 0 " T , we get

P T gpx 0 , m 0 q " PT gpx 0 , m 0 q `ÿ ně1 ż ∆npT q
Psn S sn´sn´1 ¨¨¨S T ´s1 gpx 0 , m 0 q ds n . (3.16)

We again observe the following convolution type property of the singular measure, namely νpx 0 , m 0 , dx 1 , dm 1 qνpx 1 , m 1 , dx, dmq " upx 0 , m 0 , x, m, dx 1 , dm 1 qνpx 0 , m 0 , dx, dmq (3.17) where we set upx 0 , m 0 , x, m, dx 1 , dm 1 q :" # 1 tx 1 _x0_m0ăm 1 u 1 tm 1 ămu dx 1 dm 1 `1tx 1 ăm0u dx 1 δ m0 pdm 1 q `1tx 1 ămu dx 1 δ m pdm 1 q m 0 ă m, x ď m, 1 tx 1 ăm0u dx 1 δ m0 pdm 1 q m " m 0 , x ď m 0 .

Then we examine the n-th term of the series expansion, and by using Fubini's theorem and recursively applying (3.17), it can be expressed as

ż ∆npT q ds n Psn S sn´1´sn . . . S T ´s1 gpx 0 , m 0 q " ż R 2 gpx, mq # ż ∆npT q ds n ż pR 2 q n psn px 0 , m 0 , x 1 , m 1 q ˆ« n ź i"1 θsn´i´sn´i`1 px i , m i , x i`1 , m i`1 qupx 0 , m 0 , x i`1 , m i`1 , dx i , dm i q ff+ νpx 0 , m 0 , dx, dmq " ż R 2
gpx, mqp n T px 0 , m 0 , x, mqνpx 0 , m 0 , dx, dmq where we set

p n T px 0 , m 0 , x, mq :" $ ' ' & ' ' % ş ∆npT q ds n ş pR 2 q n psn px 0 , m 0 , x 1 , m 1 q" ś n i"1 θsn´i´sn´i`1 px i , m i , x i`1 , m i`1 qupx 0 , m 0 , x i , m i , dx i`1 , dm i`1 q ı n ě 1,
pT px 0 , m 0 , x, mq n " 0.

(3.18)

We are now ready to give a representation for the density of the couple pX x0 t , M t pX x0 qq. As already mentioned in the case of the SDE with its running local time, the proof of the convergence of the asymptotic expansion for the transition density is not standard in the current setting. To overcome the main difficulty which again comes from the different nature of the two kernels in θt one has to make use of the key estimate obtained in Lemma 5.3. This allows to obtain the convergence of the parametrix expansion for the transition density. Similar Gaussian upper bounds for this density are also established. The proof is given in the Appendix.

Theorem 3.8. Assume that (R-η) and (UE) hold for some η P p0, 1s. For px 0 , m 0 q P J , define the measure p T px 0 , m 0 , dx, dmq :" p T px 0 , m 0 , x, mqνpx 0 , m 0 , dx, dmq " p 1 T px 0 , m 0 , x, mq 1 txďmu 1 tm0ămu dxdm `p2 T px 0 , m 0 , xq1 txďm0u dx δ m0 pdmq with p T px 0 , m 0 , x, mq :" ř ně0 p n T px 0 , m 0 , x, mq and p 1 T px 0 , m 0 , x, mq :"

ÿ ně0
p n T px 0 , m 0 , x, mq, p 2 T px 0 , m 0 , xq :"

ÿ ně0 p n T px 0 , m 0 , x, m 0 q.
Then, both series p 1 T px 0 , m 0 , x, mq and p 2 T px 0 , m 0 , xq converge absolutely and uniformly for px 0 , m 0 q, px, mq P J . Moreover for h P C b pJ q, the following representation for the semigroup holds,

P T hpx 0 , m 0 q " ż RˆR`h px, mq p T px 0 , m 0 , dx, dmq.
Therefore, for all px 0 , m 0 q P J , the function J Q px, mq Þ Ñ p T px 0 , m 0 , x, mq is the probability density function with respect to the measure νpx 0 , m 0 , dx, dmq of the random vector pX x0 T , m 0 _M T pX x0 qq, where X x0 T is the solution taken at time T of the SDE (3.13) starting from x 0 at time 0 and M T pX x0 q is its running maximum at time T starting from m 0 at time 0.

Finally, for some positive C, c ą 1, for all px 0 , m 0 q, px, mq P J , the following Gaussian upper-bounds hold (3.19) p 1 T px 0 , m 0 , x, mq ď CT ´1{2 H 0 pcT, 2m ´x ´x0 q and p 2 T px 0 , ℓ 0 , xq ď CH 0 pcT, x ´x0 q.

Conclusion

In this paper, we obtained weak existence and uniqueness for some SDEs with coefficients depending on some path-dependent functionals pA t pXqq tě0 under mild assumptions on the coefficients, namely bounded measurable drift and uniformly elliptic Hölder-continuous diffusion coefficient. We illustrated our approach on two examples: an SDE with coefficients depending on its running local time and an SDE with coefficients depending on its running maximum. We also established the existence as well as a representation in infinite series of the density for the couple pX t , A t pXqq in both examples. Some Gaussian upper-bounds are also obtained.

Obviously, a wide variety of Brownian functionals can be investigated. Simple extensions include for instance the case A t pXq " pτ L ^t, X τL^t q, where τ L " inf tt ě 0 : X t ě Lu is the first hitting time of the barrier L by X or the bivariate functional A t pW q " pmin 0ďsďt X s , max 0ďsďt X s q. More challenging extensions could include other type of processes. One notably may consider the case of a skew diffusion with path-dependent coefficients involving its local and occupation times, see Appuhamillage & al. [ABT `11] for an expression of the trivariate density pB pαq t , L 0 t pB pαq q, Γ 0 t pB pαq qq, t ě 0, where pB pαq t q tě0 is an α-skew Brownian motion or reflected SDEs. This will be developed in future works.
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Appendix

Proof of Theorem 3.3.

From the Markov property of the Brownian motion W , one can deduce that p Xt , ℓ 0 `L0 t p Xqq tě0 is a Markov process so that Erf p Xs `σpW t`s ´Ws q, ℓ 0 `L0 s p Xq `L0 t`s p Xq ´L0 s p Xqq|F s s " Pt f p Xs , ℓ 0 `L0 s p Xqq. From the expression of pt , direct computations show that if f P C 8 b pR ˆR`q , then one has Pt f P D, t ą 0 and B t Pt f " L Pt f " Pt Lf , for f P D. Indeed, the latter formula holds since L is the infinitesimal generator of p Pt q tě0 acting on D Ă Domp Lq. One can also obtain the same result by using the generalised Itô's formula of Proposition 3.1. Now, in order to obtain θt px 0 , ℓ 0 , x, ℓq, we first remark that @t ą 0, pL ´Lq Pt f px 0 , ℓ 0 q " 1 2 papx 0 , ℓ 0 q ´āqB 2 1 Pt f px 0 , ℓ 0 q `bpx 0 , ℓ 0 qB 1 Pt f px 0 , ℓ 0 q " ż f px, ℓq " 1 2 papz 0 q ´apz 1 qqB 2 x0 pt px 0 ´, ℓ 0 , dx, dℓq `bpz 0 qB x0 pt px 0 ´, ℓ 0 , dx, dℓq * for px 0 , ℓ 0 q P RˆR `, where we used the Lebesgue differentiation theorem for the last equality. Simple computations yield B x0 pt px 0 ´, ℓ 0 , dx, dℓq " B x0 ft px 0 , xq1 tℓ"ℓ0u `Bx0 qt px 0 ´, ℓ 0 , x, ℓq1 tℓ0ăℓu ( νpx 0 , ℓ 0 , dx, dℓq ,

B 2 x0 pt px 0 ´, ℓ 0 , dx, dℓq " B 2 x0 ft px 0 , xq1 tℓ"ℓ0u `B2 x0 qt px 0 ´, ℓ 0 , x, ℓq1 tℓ0ăℓu ( νpx 0 , ℓ 0 , dx, dℓq
with,

B x0 ft px 0 , xq " ´pH 1 pāt, x ´x0 q `H1 pāt, x `x0 qq, B 2 x0 ft px 0 , xq " pH 2 pāt, x ´x0 q ´H2 pāt, x `x0 qq, B x0 qt px 0 ´, ℓ 0 , x, ℓq " ´signpx 0 q ā 3 2 H 2 pt, |x| `|x 0 | `ℓ ´ℓ0 σ q, B 2 x0 qt px 0 ´, ℓ 0 , x, ℓq " ´1 ā2 H 3 pt, |x| `|x 0 | `ℓ ´ℓ0 σ q.
Hence, one has pL ´Lq Pt f px 0 , ℓ 0 q :" ş f px, ℓq θz1 t px 0 , ℓ 0 , x, ℓqνpx 0 , ℓ 0 , dx, dℓq with θz1 t px 0 , ℓ 0 , x, ℓq

:" # ´1 2 papz0q´apz1qq ā2 H 3 pt, |x|`|x0|`ℓ´ℓ0 σ q ´bpz 0 q signpx0q ā 3 2 H 2 pt, |x|`|x0|`ℓ´ℓ0 σ q, ℓ ą ℓ 0 ,
1 2 papz 0 q ´apz 1 qq tH 2 pāt, x ´x0 q ´H2 pāt, x `x0 qu ´bpz 0 q tH 1 pāt, x ´x0 q `H1 pāt, x `x0 qu , ℓ " ℓ 0 . We now prove that (H1) (iv) and (v) are satisfied. Before that, we point out that the inequality px `x0 q 2 " px ´x0 q 2 `4xx 0 ě px ´x0 q 2 is valid on the set txx 0 ě 0u which implies H 0 pct, x `x0 q ď H 0 pct, x ´x0 q. We first prove (H1) (iv). Using the fact that a is uniformly elliptic and bounded together with the space-time inequality we can bound θz1 t px 0 , ℓ 0 , x, ℓq as follows

| θz1 t px 0 , ℓ 0 , x, ℓq| ď $ & % C ´1 t 3 2 `|b|8 t ¯H0 pct, |x 0 | `|x| `ℓ ´ℓ0 q, ℓ ą ℓ 0 , C ´1 t `|b|8 t 1 2 ¯H0 pct, x 0 ´xq, x 0 x ą 0, ℓ " ℓ 0 .
Similar computation shows that θt px 0 , ℓ 0 , x, ℓq can be bounded as follows

| θt px 0 , ℓ 0 , x, ℓq| ď $ & % C ´1 t 3´η 2 `|b|8 t ¯H0 pct, |x 0 | `|x| `ℓ ´ℓ0 q, ℓ ą ℓ 0 C ´1 t 1´η 2 `|b|8 t 1 2 ¯H0 pct, x 0 ´xq, x 0 x ą 0, ℓ " ℓ 0 .
On the set tℓ ą ℓ 0 u, the integral of θt px 0 , ℓ 0 , x, ℓq against νpx 0 , ℓ 0 , dx, dℓq can be estimated through integration by parts with respect to ℓ and using the fact that t ď T , that is

ˆ1 t 3´η 2 `|b| 8 t ˙żR ż 8 ℓ0 H 0 pct, |x 0 | `|x| `ℓ ´ℓ0 qdxdl " C 1 t 3´η 2 ż R ż 8 0 H 0 pct, |x 0 | `|x| `ℓqdℓdx (5.1) " 1 t 3´η 2 ż R ż 8 0 ℓp´H 1 qpct, |x 0 | `|x| `ℓqdℓdx ď C 1 t 3´η 2 ż 8 0 ż 8 0 pℓ `|x 0 |qp´H 1 qpct, |x 0 | `x `ℓqdxdℓ " C 1 t 3´η 2 ż 8 0 pℓ `|x 0 |qH 0 pct, |x 0 | `ℓqdℓ ď C |b| 8 t 1´η 2 .
On the set tx 0 x ą 0u X tℓ " ℓ 0 u, straightforward integration gives ż

R ˆ1 t 1´η 2 `|b| 8 t 1 2 ˙H0 pct, x 0 ´xqdx ď Cp1 `|b| 8 t 1´η 2 q t 1´η 2 . (5.2)
From the above computations, we conclude that (H1) (iv) is satisfied. We now prove (H1) (v) that is,

lim εÑ0 ż R 2 f px, ℓqp ε px 0 , ℓ 0 , dx, dℓq Ñ f px 0 , ℓ 0 q, f P C b pR ˆR`q .
We consider the change of variable ℓ 1 " ℓ ´ℓ0 and x " x 1 , and decompose ş R 2 f px, ℓqp ε px 0 , ℓ 0 , dx, dℓq as follows ż Rˆr0,8q

f px 1 , ℓ 0 `ℓ1 qrp ε px 0 , 0, dx 1 , dℓ 1 q ´p ε px 0 , 0, dx 1 , dℓ 1 qs `żRˆr0,8q f px 1 , ℓ 0 `ℓ1 qp ε px 0 , 0, dx 1 , dℓ 1 q
where the frozen point in pε is given by px 1 , ℓ 1 q " px 0 , 0q. It is clear from the continuity of f that the second term converges to f px 0 , ℓ 0 q as ε Ó 0. To show that the first term vanishes as ε Ó 0, we apply the mean value theorem

| ż Rˆr0,8q f px 1 , ℓ 0 `ℓ1 qrp ε px 0 , 0, dx 1 , dl 1 q ´p ε px 0 , 0, dx 1 , dℓ 1 qs| ď C|f | 8 ż Rˆr0,8q εp|x 0 ´x1 | η `|ℓ 1 | η q |H 3 pcε, |x 0 | `|x| `ℓ1 q| `|H 2 pcε, |x 0 | `|x| `ℓ1 q| ( dx 1 dℓ 1 `C|f | 8 ż R ε|x 0 ´x1 | η r|H 2 pcε, x 0 ´x1 q| `|H 2 pcε, x 0 `x1 q|s1 tx0x 1 ą0u dx 1 ď Cε η 2
where the last inequality follows from the space-time inequality and computations similar to (5.1) and (5.2).

We now prove that (H2) holds. Let g P D. Using the expression of the measure px 0 , ℓ 0 q Þ Ñ pt px 0 , ℓ 0 , dx, dℓq, we obtain that px 0 , ℓ 0 q Þ Ñ Pt gpx 0 , ℓ 0 q P C 2,1 b pRzt0u, R `, Rq and some simple computations (that we omit) shows that

B 1 Pt gp0`, ℓ 0 q ´B1 Pt gp0´, ℓ 0 q 2 " ż gpx, ℓ 0 qp´H 1 qpāt, |x|qdx´ż gpx, ℓq ā 3 2 H 2 pt, |x| `ℓ ´ℓ0 σ q1 tℓěℓ0u dxdℓ " ´B2 Pt gp0, ℓ 0 q.
Moreover, using integration by parts formula, one shows that px 0 , ℓ 0 q Þ Ñ B 1 Pt gpx 0 , ℓ 0 q, B 2 1 Pt gpx 0 , ℓ 0 q, B 2 Pt gpx 0 , ℓ 0 q are bounded by a constant depending of |B 1 g| 8 , |B 2 1 g| 8 , |B 2 g| 8 which is uniform in t. Hence, one has Rλ D Ă D and pL ´Lq Rλ g " ş 8 0 e ´λt pL ´Lq Pt gdt for g P D. The relation pλ ´Lq Rλ g " Rλ pλ ´Lqg follows from the fact that Pt Lg " B t Pt g which in turn is a consequence of the generalised Itô lemma obtained in Proposition 3.1 and the semigroup property satisfied by p Pt q tě0 . We conclude that (H1) and (H2) are satisfied. The proof is now complete.

Proof of Theorem 3.4.

As already mentioned, we prove the result for b " 0. In order to include a drift, we refer to Remark 3.5. We examine the n-th term of the series (3.8) and prove an important smoothing property of the kernel. More precisely, let x " x n`1 , ℓ " ℓ n`1 and s 0 " T , we claim the following key inequality

| ż pRˆR`q n psn px 0 , ℓ 0 , x 1 , ℓ 1 q # n ź i"1 θsn´i´sn´i`1 px i , ℓ i , x i`1 , ℓ i`1 qupx 0 , ℓ 0 , x i`1 , ℓ i`1 , dx i , dℓ i q + | (5.3) ď n ź i"1 Cps i´1 ´si q ´1`η 2 ˆ" 1 T 1 2 H 0 pcT, |x| `|x 0 | `ℓ ´ℓ0 q1 tℓ0ăℓu `" |x| β T β 2 ^|x 0 | β T β 2
^1* H 0 pcT, x ´x0 q1 txx0ě0u 1 tℓ"ℓ0u * for any β P r0, 1s. From the previous bound and Lemma 5.1 we deduce that

|p n T px 0 , ℓ 0 , x, ℓq| ď | ż ∆npT q ds n ż pRˆR`q n psn px 0 , ℓ 0 , x 1 , ℓ 1 q # n ź i"1 θsn´i´sn´i`1 px i , ℓ i , x i`1 , ℓ i`1 qupx 0 , ℓ 0 , x i`1 , ℓ i`1 , dx i , dℓ i q + | ď ż ∆npT q ds n n ź i"1 Cps i´1 ´si q ´1`η 2 ˆ" 1 T 1 2 H 0 pcT, |x| `|x 0 | `ℓ ´ℓ0 q1 tℓ0ăℓu `" |x| β T β 2 ^|x 0 | β T β 2 ^1* H 0 pcT, x ´x0 q1 txx0ě0u 1 tℓ"ℓ0u * " pCT η{2 Γpη{2qq N Γp1 `N η{2q " 1 T 1 2 H 0 pcT, |x| `|x 0 | `ℓ ´ℓ0 q1 tℓ0ăℓu `" |x| β T β 2 ^|x 0 | β T β 2 ^1* H 0 pcT, x ´x0 q1 txx0ě0u 1 tℓ"ℓ0u
* with the convention s 0 " T . Hence, from Fubini's theorem, the semigroup series obtained from Corollary 2.1 admits the following integral representation

P T gpx 0 , ℓ 0 q " ż RˆR`g px, ℓq ˜ÿ ně0
p n T px 0 , ℓ 0 , x, ℓq ¸νpx 0 , ℓ 0 , dx, dℓq where p n T px 0 , ℓ 0 , x, ℓq is given by (3.10). Moreover, from the above inequality, for any px 0 , ℓ 0 q, px, ℓq P R ˆR`, one gets the following Gaussian upper bounds ˇˇÿ ně0 p n T px 0 , ℓ 0 , x, ℓq ˇď

C T " 1 T 1 2 H 0 pcT, |x| `|x 0 | `ℓ ´ℓ0 q1 tℓ0ăℓu `" |x| β T β 2 ^|x 0 | β T β 2 ^1* H 0 pcT, x ´x0 q1 txx0ě0u 1 tℓ"ℓ0u
* where C T :" ř N ě1 pCT η{2 Γpη{2qq N {Γp1 `N η{2q ă 8, for some constants C, c ą 1. The proof will be complete once we prove (5.3). We proceed by induction and show that for j " 1, . . . , n, the following estimate holds

| ż pRˆR`q j psn px 0 , ℓ 0 , x 1 , ℓ 1 q # j ź i"1 θsn´i´sn´i`1 px i , ℓ i , x i`1 , ℓ i`1 qupx 0 , ℓ 0 , x i`1 , ℓ i`1 , dx i , dℓ i q + | ď j ź i"1 Cps n´i ´sn´i`1 q ´1`η 2 $ & % p 1 s 1 2 n´j H 0 pcs n´j , |x j`1 | `|x 0 | `ℓj`1 ´ℓ0 q1 tℓ0ăℓj`1u `$ & % |x j`1 | β s β 2 n´j ^|x 0 | β s β 2 n´j ^1,
.

-H 0 pcs n´j , x j`1 ´x0 q1 txj`1x0ě0u 1 tℓj`1"ℓ0u

, .

-. (5.4)

We start by proving a one step estimate, namely we compute an upper bound for ż RˆR`p sn px 0 , ℓ 0 , x 1 , ℓ 1 q θsn´1´sn px 1 , ℓ 1 , x 2 , ℓ 2 qupx 0 , ℓ 0 , x 2 , ℓ 2 , dx 1 , dℓ 1 q. (5.5) This term can be decomposed as follows A 1 1 tℓ2"ℓ0u 1 tx2x0ě0u `pA 2 `A3 `A4 q1 tℓ0ăℓ2u . More precisely, on the set tℓ 2 " ℓ 0 u X tx 2 x 0 ě 0u, equation (5.5) is equal to ż R psn px 0 , ℓ 0 , x 1 , ℓ 0 q θsn´1´sn px 1 , ℓ 1 , x 2 , ℓ 1 q1 tx0x1ě0u dx 1 :" A 1 .

On the set tℓ 0 ă ℓ 2 u, equation (5.5) is equal to ż RˆR`p sn px 0 , ℓ 0 , x 1 , ℓ 1 q θsn´1´sn px 1 , ℓ 1 , x 2 , ℓ 2 q1 tx1x0ě0u dx 1 δ ℓ0 pdℓ 1 q `żRˆR`p sn px 0 , ℓ 0 , x 1 , ℓ 1 q θsn´1´sn px 1 , ℓ 1 , x 2 , ℓ 2 q1 tx2x1ě0u dx 1 δ ℓ2 pdℓ 1 q `żRˆR`p sn px 0 , ℓ 0 , x 1 , ℓ 1 q θsn´1´sn px 1 , ℓ 1 , x 2 , ℓ 2 q1 tℓ0ďℓ1ďℓ2u dx 1 dℓ 1

:" A 2 `A3 `A4
From the space-time inequality and Lemma 5.3, for all β P r0, 1s, one has

|A 1 | ď C ż R # |x 1 | β s β 2 n ^|x 0 | β s β 2 n ^1+ 1 tx1x0ě0u H 0 pcs n , x 1 ´x0 q # |x 2 | β ps n´1 ´sn q 2´η`β 2 ^|x 1 | β ps n´1 ´sn q 2´η`β 2 ^1 ps n´1 ´sn q 1´η 2 + ˆH0 pcps n´1 ´sn q, x 2 ´x1 qdx 1 ď C ps n´1 ´sn q 1´η 2 $ & % |x 2 | β s β 2 n´1 ^|x 0 | β s β 2 n´1 ^1,
.

-H 0 pcs n´1 , x 2 ´x0 q where we separated the two cases s n P p0, s n´1 {2q and s n P ps n´1 {2, s n´1 q for the last inequality. Indeed, if s n P p0, s n´1 {2q, one has ps n´1 ´sn qs n´1 so that using the inequality

|x 2 | β ps n´1 ´sn q 2´η`β 2 ^|x 1 | β ps n´1 ´sn q 2´η`β 2 ^1 ps n´1 ´sn q 1´η 2 ď C ps n´1 ´sn q 1´η 2 $ & % |x 2 | β s β 2 n´1 ^1,
.

and the semigroup property of the Gaussian kernel, one gets

|A 1 | ď C ps n´1 ´sn q 1´η 2 $ & % |x 2 | β s β 2 n´1 ^1,
.

-H 0 pcs n´1 , x 2 ´x0 q.

To obtain the bound with |x 0 | β {s β 2 n´1 , we notice that |x 1 | β ď Cp|x 1 ´x0 | β `|x 0 | β q and use the following bound

|A 1 | ď C |x 0 | β s β 2 n´1 ż R 1 s β 2 n 1 tx1x0ě0u H 0 pcs n , x 1 ´x0 q |x 1 ´x0 | β ps n´1 ´sn q 1´η 2 H 0 pcps n´1 ´sn q, x 2 ´x1 qdx 1 `C |x 0 | β s β 2 n´1 ż R 1 tx1x0ě0u H 0 pcs n , x 1 ´x0 q 1 ps n´1 ´sn q 1´η 2 H 0 pcps n´1 ´sn q, x 2 ´x1 qdx 1 ď C ps n´1 ´sn q 1´η 2 |x 0 | β s β 2 n´1 H 0 pcs n´1 , x 2 ´x0 q
where we used the space-time inequality for the last inequality. This proves the desired bound for s n P p0, s n´1 {2q and the second case s n P ps n´1 {2, s n´1 q follows from similar arguments. Again from Lemma 5.3, with β " 1, one has

|A 2 | ď C ż R # |x 1 | β |s n | β 2 ^|x 0 | β |s n | β 2 ^1+ H 0 pcs n , x 1 ´x0 q1 tx1x0ě0u 1 ps n´1 ´sn q 3´η 2 H 0 pcps n´1 ´sn q, |x 2 | `|x 1 | `ℓ2 ´ℓ0 qdx 1 ď C # 1 s β 2 1 ps n´1 ´sn q 3´η´β 2 ^1 ps n´1 ´sn q 3´η 2 + H 0 pcs n´1 , |x 2 | `x0 `ℓ2 ´ℓ0 q ď C ps n´1 ´sn q 1´η 2 1 s 1 2 n´1 H 0 pcs n´1 , |x 2 | `x0 `ℓ2 ´ℓ0 q
where we used the inequality

1 s β 2 n psn´1´snq 3´η´β 2 ^1 psn´1´snq 3´η 2 ď 1 psn´1´snq 3´η 2 ď C 1 psn´1´snq 1´η 2 1 s 1 2 n´1
for s n P p0, s n´1 {2q and

1 s β 2 n psn´1´snq 3´η´β 2 ^1 psn´1´snq 3´η 2 ď 1 s β 2 n psn´1´snq 3´η´β 2 ď C psn´1´snq 1´η 2 1 s 1 2 n ď C psn´1´snq 1´η 2 1 s 1 2 n´1
for s n P ps n´1 {2, s n´1 q.

Similarly, from Lemma 5.3 with β " 1, one has

|A 3 | ď ż R C s 1 2 n H 0 pcs n , |x 1 | `|x 0 | `ℓ1 ´ℓ0 q 1 ps n´1 ´sn q 1´η 2 # |x 1 | β ps n´1 ´sn q β 2 ^1+ H 0 pcps n´1 ´sn q, x 2 ´x1 q1 tx2x1ě0u dx 1 ď C ps n´1 ´sn q 1´η 2 1 s 1 2 n´1 H 0 pcs n´1 , |x 2 | `|x 0 | `ℓ2 ´ℓ0 q
where we separated the computations into the two cases s n P p0, s n´1 {2q and s n P ps n´1 {2, s n´1 q and followed similar arguments to the previously cases. Finally, from Lemma 5.2, one has

|A 4 | ď C ż Rˆpℓ0,ℓ2q 1 s 1 2 n H 0 pcs n , |x 1 | `|x 0 | `ℓ1 ´ℓ0 q 1 ps n´1 ´sn q 3´η 2 H 0 pcps n´1 ´sn q, |x 2 | `|x 1 | `ℓ2 ´ℓ1 qdx 1 dℓ 1 ď C ps n´1 ´sn q 1´η 2 1 s 1 2 n´1 H 0 pcs n´1 , |x 2 | `|x 0 | `ℓ2 ´ℓ0 q.
Combining all the previous computations, one gets

| ż RˆR`p sn px 0 , ℓ 0 , x 1 , ℓ 1 q θsn´1´sn px 1 , ℓ 1 , x 2 , ℓ 2 qupx 0 , ℓ 0 , x 2 , ℓ 2 , dx 1 , dℓ 1 q| ď C ps n´1 ´sn q 1´η 2 1 s 1 2 n´1 H 0 pcs n´1 , |x 2 | `|x 0 | `ℓ2 ´ℓ0 q 1 tℓ0ăℓ2u `C ps n´1 ´sn q 1´η 2 $ & % |x 2 | β s β 2 n´1 ^|x 0 | β s β 2 n´1 ^1,
.

-H 0 pcs n´1 , x 2 ´x0 q 1 tx2x0ě0u 1 tℓ2"ℓ0u (5.6) for any β P r0, 1s and for some positive constant C depending only on the coefficient σ. Now, we assume that the bound given in (5.4) is valid at step j and we prove that a similar bound holds at step j `1, namely

| ż pRˆR`q j`1 psn px 0 , ℓ 0 , x 1 , ℓ 1 q # j`1 ź i"1 θsn´i´sn´i`1 px i , ℓ i , x i`1 , ℓ i`1 qupx 0 , ℓ 0 , x i`1 , ℓ i`1 , dx i , dℓ i q + | ď j`1 ź i"1 Cps n´i ´sn´i`1 q ´1`η 2 $ & % 1 s 1 2 n´pj`1q H 0 pcs n´pj`1q , |x j`2 | `|x 0 | `ℓj`2 ´ℓ0 q1 tℓ0ăℓj`2u `$ & % |x j`2 | β s β 2 n´pj`1q ^|x 0 | β s β 2 n´pj`1q ^1,
.

-H 0 pcs n´pj`1q , x j`2 ´x0 q1 txj`2x0ě0u 1 tℓj`2"ℓ0u

, .

-. (5.7) From (5.4), the left-hand side of (5.7) is bounded by

j ź i"1 Cps n´i ´sn´i`1 q ´1`η 2 ż RˆR`$ & % 1 s 1 2 n´j H 0 pcs n´j , |x j`1 | `|x 0 | `ℓj`1 ´ℓ0 q1 tℓ0ăℓj`1u `$ & % |x j`1 | β s β 2 n´j ^|x 0 | β s β 2 n´j ^1,
.

-ˆH0 pcs n´j , x j`1 ´x0 q1 txj`1x0ě0u 1 tℓj`1"ℓ0u + ˆθ s n´pj`1q ´sn´j px j`1 , ℓ j`1 , x j`2 , ℓ j`2 qupx 0 , ℓ 0 , x j`2 , ℓ j`2 , dx j`1 , dℓ j`1 q which is in turn equal to ś j`1 i"1 Cps n´i ´sn´i`1 q ´1`η 2 A 1 1 txjx0ě0u 1 tℓj`2"ℓ0u `pA 2 `A3 `A4 q1 tℓ0ăℓj`2u

( with

A 1 :" ż R $ & % |x j`1 | β s β 2 n´j ^|x 0 | β s β 2 n´j ^1, . - H 0 pcs n´j , x j`1 ´x0 q1 txj`1x0ě0u 1 ps n´pj`1q ´sn´j q 1´η 2 ˆ# |x j`2 | β ps n´pj`1q ´sn´j q β 2 ^|x j`1 | β ps n´pj`1q ´sn´j q β 2 ^1+ H 0 pcps n´pj`1q ´sn´j q, x j`2 ´xj`1 q1 txj`2xj`1ě0u dx j`1 ď C ps n´pj`1q ´sn´j q 1´η 2 $ & % |x j`2 | β s β 2 n´pj`1q ^|x 0 | β s β 2 n´pj`1q ^1,
.

-H 0 pcs n´pj`1q , x j`2 ´x0 q1 txj`2x0ě0u

where the last inequality follows from considering the two cases s n´j P p0, s n´pj`1q {2q and s n´j P ps n´pj`1q {2, s n´pj`1q q and following similar arguments to the one used in the first step.

Again from Lemma 5.3, for any β P r0, 1s, one has

A 2 :" ż R $ & % |x j`1 | β s β 2 n´j ^|x 0 | β s β 2 n´j ^1,
.

-H 0 pcs n´j , x j`1 ´x0 q1 txj`1x0ě0u 1 ps n´pj`1q ´sn´j q 3´η 2 ˆH0 pcps n´pj`1q ´sn´j q, |x j`2 | `|x j`1 | `ℓj`2 ´ℓ0 qdx j`1

ď $ & % 1 s β 2 n´j ps n´pj`1q ´sn´j q 3´η´β 2 ^1 ps n´pj`1q ´sn´j q 3´η 2
, .

-

H 0 pcs n´pj`1q , |x j`2 | `|x 0 | `ℓj`2 ´ℓ0 q ď C ps n´pj`1q ´sn´j q 1´η 2 1 s 1 2 n´pj`1q H 0 pcs n´pj`1q , |x j`2 | `|x 0 | `ℓj`2 ´ℓ0 q
where we again separated the computations into the two cases s n´j P p0, s n´pj`1q {2q and s n´j P ps n´pj`1q {2, s n´pj`1q q. Similarly, from Lemma 5.3 with β " 1, one has

A 3 :" C ż R 1 s 1 2 n´j H 0 pcs n´j , |x j`1 | `|x 0 | `ℓj`1 ´ℓ0 q 1 ps n´pj`1q ´sn´j q 1´η 2 # |x j | β ps n´pj`1q ´sn´j q β 2

^1+

ˆH0 pcps n´pj`1q ´sn´j q, x j`2 ´xj`1 q1 txj`1xj`2ě0u dx j`1

ď C ps n´pj`1q ´sn´j q 1´η 2 1 s 1 2 n´pj`1q
H 0 pcs n´pj`1q , |x j`2 | `|x 0 | `ℓj`2 ´ℓ0 q where we followed similar arguments as done for the first step. Finally, from Lemma 5.2, one has

A 4 :" C ż Rˆpℓ0,ℓj q 1 s 1 2 j`1 H 0 pcs n´j , |x j`1 | `|x 0 | `ℓj`1 ´ℓ0 q 1 ps n´pj`1q ´sn´j q 3´η 2 ˆH0 pcps n´pj`1q ´sn´j q, |x j`2 | `|x j`1 | `ℓj`2 ´ℓj`1 qdx j`1 dℓ j`1 ď C ps n´pj`1q ´sn´j q 1´η 2 1 s 1 2 n´pj`1q H 0 pcs n´pj`1q , |x j`2 | `|x 0 | `ℓj`2 ´ℓ0 q.
Hence (5.7) is valid and therefore by induction, the estimate (5.4) holds for j " 1, . . . , n. Now, the Gaussian bound (5.3) follows from (5.4) by taking j " n and applying the change of variable k " n ´i.

Proof of Theorem 3.7.

From the expression of Pt f , we remark that px 0 , m 0 q Þ Ñ Pt f px 0 , m 0 q P C 2,1 b pJ q if f P C 8 b pJ q and satisfies the condition B 2 Pt f pm 0 , m 0 q " lim x0Òm0 B 2 Pt f px 0 , m 0 q " 0, m 0 P R. Moreover, simple computations (that we omit here) yield B t Pt f px 0 , m 0 q " L Pt f px 0 , m 0 q, t ą 0, px 0 , m 0 q P J . Then, for px 0 , m 0 q P J , we write

pL ´Lq Pt f px 0 , m 0 q " 1 2 papx 0 , m 0 q ´apx 1 , m 1 qqB 2 1 Pt f px 0 , m 0 q `bpx 0 , m 0 qB 1 Pt f px 0 , m 0 q " ż R 2 f px, mq θpx1,m1q t px 0 , m 0 , x, mqνpx 0 , m 0 , dx, dmq
where νpx 0 , m 0 , dx, dmq " 1 txďmu 1 tm0ămu dxdm `1txďm0u dxδ m0 pdmq and θpx1,m1q t px 0 , m 0 , x, mq

:" $ ' & ' % 1 
2 papx 0 , m 0 q ´apx 1 , m 1 qqp´2H 3 qpāt, 2m ´x ´x0 q `bpx 0 , m 0 qp´2H 2 qpāt, 2m ´x ´x0 q, x ď m, m 0 ă m, 1 2 papx 0 , m 0 q ´apx 1 , m 1 qqpH 2 pāt, x ´x0 q ´H2 pāt, 2m 0 ´x ´x0 qq x ă m 0 , m " m 0 `bpx 0 , m 0 qpH 1 pāt, 2m 0 ´x ´x0 q ´H1 pāt, x ´x0 qq.

Hence, we see that (H1) (i), (ii), (iii) hold. We now verify (H1) (iv) for ζ " ´1. We proceed as in subsection 5.1. From (UE), there exists positive constants C, c ą 0 such that for any t ą 0 and px 0 , m 0 q P J , one has |p t px 0 , m 0 , x, mq| ď C p´H 1 qpct, 2m ´x ´x0 q1 txďmu 1 tmăm0u `H0 pct, x ´x0 q1 tm"m0u ( and the right-hand side of the above inequality is νpx 0 , m 0 , dx, dmq integrable. In the same spirit, from (UE), (HR) and the space-time inequality, we bound θpx1,m1q t px 0 , m 0 , x, mq as follows

| θpx1,m1q t px 0 , m 0 , x, mq| ď $ & % C ´1 t 3 2 `|b|8 t ¯H0 pct, 2m ´x ´x0 q, x ď m, m 0 ă m, C ´1 t `|b|8 t 1 2 ¯H0 pct, x ´x0 q, x ă m 0 , m " m 0 .
Integrating with respect to νpx 0 , m 0 , dx, dmq yields ż

R 2 | θpx1,m1q t px 0 , m 0 , x, mq|νpx 0 , m 0 , dx, dmq ď C ˆ1 t 3 2 `|b| 8 t ˙ż 8 m0 ż m ´8 H 0 pct, 2m ´x ´x0 qdxdm `C ˆ1 t `|b| 8 t 1 2 ˙ż m0 ´8 H 0 pct, x ´x0 qdx ď C ˆ1 t 3 2 `|b| 8 t ˙ż 8 m0 pm ´m0 qH 0 pct, m ´m0 qdm `Cp1 `|b| 8 t 1 2 q t ď Cp1 `|b| 8 t 1 2 q t .
Similarly, when we let the freezing point be the end point of the transition density, that is px 1 , m 1 q " px, mq, noting that m ´m0 ď 2m ´x ´x0 , for m 0 ď m, x 0 ď x, from (HR), (UE) and the space-time inequality we get where in the second last inequality, we have applied integration by parts with respect to x and taken C t " Cp1 |b| 8 t 1´η 2 q. Hence, we conclude that (H1) (iv) is satisfied with ζ " ´1 and ζ " ´1 `η{2. Assumption (H1) (v), (H1) (vi), (H2) are obtained following the same arguments as in the case of the diffusion process and its running local time, therefore details are omitted.

| θpx,mq t px 0 , m 0 , x, mq| ď $ & % C ´1 t 3´η 2 `|b|8 t ¯H0 pct, 2m ´x ´x0 q, x ď m, m 0 ă m, C ´1 t 1´η 2 `|b|8 t 1 2 ¯H0 pct, x ´x0 q, x ă m 0 , m " m 0 .

Proof of Theorem 3.8.

In the model of the SDE with its running local time, we examine the n-th term of the series (3.16) and we take the convention x " x n`1 , m " m n`1 and s 0 " T . We prove the following key inequality

| ż pR 2 q n psn px 0 , m 0 , x 1 , m 1 q # n ź i"1 θsn´i´sn´i`1 px i , m i , x i`1 , m i`1 qupx 0 , m 0 , x i`1 , m i`1 , dx i , dm i q + | ď n ź k"1 Cps k´1 ´sk q ´1`η 2 " 1 T 1 2 H 0 pcT, 2m ´x ´x0 q1 txămu 1 tℓ0ămu `" |m ´x| β T β 2 ^|m ´x0 | β T β 2
^1* H 0 pcT, x ´x0 q1 txăm0u 1 tm"m0u * (5.8) for any β P r0, 1s. From the previous bound, we deduce that

| ż ∆npT q ds n ż pR 2 q n psn px 0 , m 0 , x 1 , m 1 q ˆ# n ź i"1 θsn´i´sn´i`1 px i , m i , x i`1 , m i`1 qupx 0 , m 0 , x i`1 , m i`1 , dx i , dm i q + | ď ż ∆npT q ds n n ź k"1 Cps k´1 ´sk q ´1`η 2 " 1 T 1 2 H 0 pcT, 2m ´x ´x0 q1 txămu 1 tm0ămu `" |m ´x| β T β 2 ^|m ´x0 | β T β 2 ^1* H 0 pcT, x ´x0 q1 txăm0u 1 tm"m0u * " CpN, T q " 1 T 1 2 H 0 pcT, 2m ´x ´x0 q1 txămu 1 tm0ămu `" |m ´x| β T β 2 ^|m ´x0 | β T β 2
^1* H 0 pcT, x ´x0 q1 txăm0u 1 tm"m0u * where, from Lemma 5.1, CpN, T q :" pCT η{2 Γpη{2qq N Γp1`N η{2q . Hence, from Fubini's theorem, the semigroup series obtained from Corollary 2.1 admits the following integral representation

P T gpx 0 , m 0 q " ż R 2 gpx, mq ˜ÿ ně0
p n T px 0 , m 0 , x, mq ¸νpx 0 , m 0 , dx, dmq where p n T px 0 , m 0 , x, mq is given by (3.18). Moreover, from the above inequality, for any px 0 , m 0 q, px, mq P J 2 , one gets the following Gaussian upper bounds

|p T px 0 , m 0 , x, mq| :" | ÿ ně0 p n T px 0 , m 0 , x, mq| ď C T " 1 ? T H 0 pcT, 2m ´x ´x0 q1 txďmu 1 tm0ămu `H0 pcT, x ´x0 q1 txăm0u 1 tm"m0u * (5.9)
where C T :" ř N ě1 pCT η{2 Γpη{2qq N {Γp1 `N η{2q ă 8, for some constants C, c ą 1. Hence it remains to prove (5.8). Since its proof is similar to the proof of (5.3) in the case of local time, we briefly present the guidelines and omit technical details. First we note that from Lemma 5.3 and the space-time inequality, the following estimates hold

|p t px 0 , m 0 , x, mq| ď $ ' & ' % C t 1 2 H 0 pct, 2m ´x ´x0 q, x ď m, m 0 ă m, C " |m´x0| β t β 2 ^|m´x| β t β 2
^1* H 0 pct, x ´x0 q, x ă m 0 , m " m 0 .

and similarly

| θt px 0 , m 0 , x, mq| ď $ ' & ' % C t 3´η 2 H 0 pct, 2m ´x ´x0 q, x ď m, m 0 ă m, C t 1´η 2 " |m´x0| β t β 2 ^|m´x| β t β 2 ^1* H 0 pct, x ´x0 q, x ă m 0 , m " m 0
where β P r0, 1s can be freely chosen. We proceed in a similar fashion to the case of the local time and first compute an upper bound for ż R 2 ps px 0 , m 0 , x 1 , m 1 q θt´s px 1 , m 1 , x, mqupx 0 , m 0 , x, m, dx 1 , dm 1 q. (5.10)

In the current case of the maximum there are also four terms to consider. On the set tm 0 ă m, x ď mu, we note that equation (5.10) is equal to ż R 2 ps px 0 , m 0 , x 1 , m 1 q θt´s px 1 , m 1 , x, mq1 tx 1 _x0_m0ăm 1 u 1 tx_x 1 _m 1 ămu 1 tm 1 ămu dx 1 dm 1 `żR 2 ps px 0 , m 0 , x 1 , m 1 q1 tm0"m 1 u θt´s px 1 , m 1 , x, mq1 tx_x 1 _m 1 ămu 1 tx 1 ăm0u δ m0 pdm 1 qdx 1 `żR 2 ps px 0 , m 0 , x 1 , m 1 q1 tx 1 _x0_m0ăm 1 u θt´s px 1 , m 1 , x, mq1 tm 1 "mu 1 tx 1 ămu δ m pdm 1 qdx 1 ": pA 1 `A2 `A3 qpx 0 , m 0 , x, mq and, on the set tm " m 0 u, (5.10) is equal to ż R 2 ps px 0 , m 0 , x 1 , m 1 q θt´s px 1 , m 1 , x, mq1 tx 1 ăm0u 1 txăm 1 u 1 tm"m 1 u δ m0 pdm 1 qdx 1 " 1 txăm0u 1 tm0"mu ż R ps px 0 , m 0 , x 1 , m 0 q θt´s px 1 , m 0 , x, mqdx 1 ": A 4 px, m 0 , x, mq.

From Lemma 5.2, one directly gets

|A 1 | ď 1 pt ´sq 1´η 2 C ? t H 0 pct, 2m ´x ´x0 q1 tx_x0_m0ămu .
For the term A 2 , we notice that m 0 " m 1 ă m and for β " 1, we obtain the following bound

|A 2 | ď C pt ´sq 3´η 2 ż R " |m 0 ´x1 | β s β 2 ^|m 0 ´x0 | s β 2 ^1* H 0 pcs, x 1 ´x0 qH 0 pcpt ´sq, 2m ´x ´x1 q1 tx_x 1 _m0ămu 1 tx 1 ăm0u dx 1 ď C pt ´sq 1´η 2 `1 2 " |m 1 ´x1 `m ´x| β s β 2 1 tsPp t 2 ,tsu `1tsPp0, t 2 qu * ˆżR H 0 pcs, x 1 ´x0 qH 0 pcpt ´sq, 2m ´x ´x1 q1 tx_x 1 _m0ămu 1 tx 1 ăm0u dx 1 ď C pt ´sq 1´η 2 1 t 1 2 H 0 pct, 2m ´x ´x0 q1 tx_x0_m0ămu
where the last inequality follows from the fact that m 1 ´x1 `m ´x ď 2m ´x ´x1 and the space-time inequality in the case s P p t 2 , tq and Gaussian convolution together with pt ´sqt otherwise. For the term A 3 , we note that m 0 ă m and |m ´x| ď |m ´x `m0 ´x0 | ď |2m ´x ´x0 |. Hence, one has H 0 pct, 2m ´x ´x0 q1 tx_x0_m0ămu .

|A 3 | ď C pt ´sq 1´η 2 ż R 1 s 1 2 H 0 pcs,
On the set s P p0, t 2 q, take β " 1 and by the space-time inequality, one gets ^1* H 0 pct, x ´x0 q1 txăm0u 1 tm0"mu .

|A 3 | ď C
Therefore summarising the above, the following Gaussian upper bound holds

| ż R 2
ps px 0 , m 0 , x 1 , m 1 q θt´s px 1 , m 1 , x, mqupx 0 , m 0 , x, m, dx ^1* H 0 pct, x ´x0 q, x ă m 0 , m " m 0 .

for any β P r0, 1s. By an induction argument which is similar to the case of local time, one gets |p n T px 0 , m 0 , x, mq| ď # C n p ş ∆npT q ds n ś n k"1 ps k´1 ´sk q ´1`η 2 q ˆ1 ? T H 0 pcT, 2m ´x ´x0 q, x ď m, m 0 ă m, C n p ş ∆npT q ds n ś n k"1 ps k´1 ´sk q ´1`η 2 q ˆH0 pcT, x ´x0 q, x ă m 0 , m " m 0 .

We omit technical details. Hence from Lemma 5.1 and the asymptotic property of the Gamma function, the Gaussian upper bound (5.9) for the transition density is valid. This concludes the proof. where px, yq Þ Ñ Bpx, yq " ş 1 0 t x´1 p1 ´tq y´1 dt stands for the standard Beta function. Using this equality repeatedly, we obtain the statement.

Lemma 5.2. Let c 1 ą 0. For any px, x 0 q P R 2 , 0 ď ℓ 0 ď ℓ 2 and 0 ă s ă t, one has ż for some positive constants C, c independent of t, x 0 , ℓ 0 and ℓ. Similarly, for any px 0 , m 0 q P J , m ě m 0 and 0 ă s ă t, one has ż pm0,mqˆp´8,m 1 q 1 pt ´sq 1 2 H 0 pc 1 pt ´sq, 2m ´x ´x1 q 1 s 1 2

H 0 pc 1 s, 2m 1 ´x1 ´x0 qdx 1 dm 1 ď C t 1 2 H 0 pct, 2m ´x ´x0 q for some positive constants C, c independent of t, x 0 , m 0 and m.

Proof. We will only prove the first bound. The second one follows from similar arguments. For simplicity, we write Hence, the claim follows in the diagonal regime |x| `|x 0 | `ℓ ´ℓ0 ď t 1 2 . We now consider the off-diagonal regime |x| `|x 0 | `ℓ ´ℓ0 ą t 1 2 . We write R ˆpℓ 0 , ℓq " D 1 Y D 2 where D 1 :" px 1 , ℓ 1 q P R ˆpℓ 0 , ℓq : where we used the space-time inequality for the last inequality. Hence, one gets ż and proves the claim.

C 2 :" ż Rˆpℓ0,
Lemma 5.3. Let a ą 0. Define ft px 0 , xq :" H 0 pat, x´x 0 q´H 0 pat, x`x 0 q. For any β P r0, 1s, there exists C, c ą 1, such that for any px 0 , xq P R 2 such that xx 0 ě 0 and r " 0, 2, the following estimates hold:

|B r x0 ft px 0 , xq| ď C t r 2 " |x| β t β 2 ^|x 0 | β t β 2
^1* H 0 pct, x ´x0 q.

Let pt px 0 , xq :" H 0 pat, x ´x0 q ´H0 pat, 2m 0 ´x ´x0 q, for r " 0, 1, 2, one has ^1* H 0 pct, x ´x0 q, x 0 , x ď m 0 .

Proof. From the expression of ft px 0 , xq, the following estimates for ft px 0 , xq and its derivatives hold

|B r x0 ft px 0 , xq| ď C t r 2
pH 0 pct, x ´x0 q `H0 pct, x `x0 qq, r " 0, 2.

Furthermore, for px 0 , xq P R 2 such that xx 0 ě 0, one has H 0 pct, x `x0 q ď H 0 pct, x ´x0 q, since in the exponent px ´x0 q 2 `4x 0 px ´x0 q `4x 2 0 ě px ´x0 q 2 . Hence, we deduce that |B r x0 ft px 0 , xq| ď Ct ´r 2 gpct, x ´x0 q. To derive the bounds with the |x| β or |x 0 | β terms, we first consider the case where |x| 2 ď t, to estimate ft px 0 , xq " H 0 papy, ℓqt, x ´x0 q ´H0 papy, ℓqt, x `x0 q one applies the mean value theorem to gpapy, ℓqt, x ´x0 q with respect to the points x and ´x to obtain for some θ P r0, 1s, | ft px 0 , xq| " |2xB x H 0 papy, ℓqt, x 0 ´θx `p1 ´θqxq| ď C |x| β t β 2 H 0 pct, x ´x0 q where in the second line we have used the space-time inequality and the fact that |x| 1´β ď t 1´β 2 . For the case that |x| 2 ě t, one directly gets

| ft px 0 , xq| ď C |x| β t β 2
H 0 pct, x ´x0 q.

The proof for the second derivatives of f z t px 0 , xq as well as the estimates with the |x 0 | β term and the estimates for B r x0 pt px 0 , xq follow similar arguments and details are omitted.

  g. Proposition 5.4.11 in [KS91], since the coefficients b and σ are bounded, existence of a solution to the local martingale problem is equivalent to the existence of solution to the (non-local) martingale problem.

  y pnq 1 ptq " x `ż t 0 b pnq ps, y pnq qds `ż t 0 σ pnq ps, y pnq qdW s y pnq 2 ptq " L 0 t py pnq 1 q which clearly satisfies sup ně1 Er|y pnq ptq ´ypnq psq| 2p s ď Cpt ´sq p , 0 ď s ď t ď T

5. 5 .

 5 Some useful technical results. Lemma 5.1. Let b ą ´1 and a P r0, 1q. Then for any t 0 ą 0, ż ∆npt0q dt n t b n n´1 ź j"0 pt j ´tj`1 q ´a " t b`np1´aq 0 Γ n p1 ´aqΓp1 `bq Γp1 `b `np1 ´aqq Proof. Using the change of variables s " ut, one has ż t 0 s b pt ´sq ´ads " t b`1´a ż 1 0 u b p1 ´uq ´adu " t b`1´a Bp1 `b, 1 ´aq

H 0 2 H 0 2 H 0

 02020 pc 1 pt ´sq, |x| `|x 1 | `ℓ ´ℓ1 q 1 s 1 pc 1 s, |x 1 | `|x 0 | `ℓ1 ´ℓ0 qdx 1 dℓ 1 ď C t 1 pct, |x| `|x 0 | `ℓ ´ℓ0 q

pt ´sq 1 2 H 0 H 0

 200 |x 1 | `|x 0 | `ℓ1 ´ℓ0 ď |x| ´|x 1 | `ℓ ´ℓ1 ( , D 2 :" px 1 , ℓ 1 q P R ˆpℓ 0 , ℓq : |x 1 | `|x 0 | `ℓ1 ´ℓ0 ą |x| ´|x 1 | `ℓ ´ℓ1 ( .On the set D 1 , we remark |x| ´|x 1 | `ℓ ´ℓ1 -|x| `|x 0 | `ℓ ´ℓ0 , so that 1 pcpt ´sq, |x| `|x 1 | `ℓ ´ℓ1 q ď C t p|x| `|x 0 | `ℓ ´ℓ0 q 2 pct, |x| `|x 0 | `ℓ ´ℓ0 q

H 0 2 H 0 2 H 0 s 1 2 H 0 H 0 H 0 2 H 2 H

 02020200022 pcpt ´sq, |x| `|x 1 | `ℓ ´ℓ1 q 1 s 1 pcs, |x 1 | `|x 0 | `ℓ1 ´ℓ0 qdx 1 dℓ 1 ď C t 1 pct, |x| `|x 0 | `ℓ ´ℓ0 q.On the set D 2 , one has |x| ´|x 1 | `ℓ ´ℓ1 -|x| `|x 0 | `ℓ ´ℓ0 , so that1 pcs, |x 1 | `|x 0 | `ℓ1 ´ℓ0 q ď C t p|x| `|x 0 | `ℓ ´ℓ0 q 2 pct, |x| `|x 0 | `ℓ ´ℓ0 q which in turn yields ż pcpt ´sq, |x| `|x 1 | `ℓ ´ℓ1 q 1 s 1 0 pcs, |x 1 | `|x 0 | `ℓ1 ´ℓ0 qdx 1 dℓ 1 ď C t 1 0 pct, |x| `|x 0 | `ℓ ´ℓ0 q

|B r x0 pt px 0 , xq| ď C t r 2 " |m 0 ´x0 | β t β 2 ^|m 0 ´x| β t β 2
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  νpx, dyq-integrable functions p t px, yq, θ t px, yq, a constant ζ " ζpzq P R and a positive constant C, eventually depending on t but in a non-decreasing way, such that |p z

		ż		ż	
	Pt f pxq :"	ż	f pyqp t px, yqνpx, dyq "	ż	f pyqp y t px, yqνpx, dyq,
	S t gpxq :"		gpyq θt px, yqνpx, dyq "		gpyq θy t px, yqνpx, dyq.

t px, yq| ď p t px, yq, | θz t px, yq| ď θ t px, yq, and

ż |θ t px, yq|νpx, dyq ď Ct ζ .

For the case z " y, we assume that the parametrix kernel enjoys the following smoothing property: there exists ζ ą ´1 and a positive constant C, eventually depending on t in a non-decreasing way, such that (2.2) @t ą 0, @x P J ,

ż | θy t px, yq|νpx, dyq ď Ct ζ .

(v) For any g P C b pJ q, one has lim tÓ0 ż gpyqp y t px, yqνpx, dyq " gpxq.

For notational simplicity, we define for t ą 0, pt px, yq :" py t px, yq,

  ^1+H 0 pcpt ´sq, x ´x1 q1 tx 1 _x0_m0ămu 1 tx 1 ămu dx 1 .

	2m ´x1 ´x0 q 2 , tq, by the Gaussian convolution, we obtain # |m ´x| β pt ´sq β 2 ^|m ´x1 | β β 2 pt ´sq On the set s P p t |A 3 | ď C s 1 2 1 pt ´sq 1´η 2 C H 0 pct, 2m ´x ´x0 q1 tx_x0_m0ămu ď pt ´sq 1´η 2	1 1 t 2

  2m ´x1 ´x0 qH 0 pcpt ´sq, x ´x1 q1 tx 1 _x0_m0ămu 1 tx 1 ămu dx 1 2m ´x1 ´x0 qH 0 pcpt ´sq, x ´x1 q1 tx 1 _x0_m0ămu 1 tx 1 ămu dx 1 . H 0 pct, 2m ´x ´x0 q1 tx_x0_m0ămu .For the term A 4 , we note that m 0 " m so that from Lemma 5.3 one gets^1+H 0 pcpt ´sq, x ´x1 q1 tx 1 ăm0u 1 txăm 1 u 1 tm0"mu δ m0 pdm 1 qdx 1 ˆH0 pcs, x 1 ´x0 qH 0 pcpt ´sq, x ´x1 q1 tx 1 ăm0u 1 txăm 1 u 1 tm0"mu δ m0 pdm 1 qdx 1

	ď C ď C	1 s 1 2 1 s 1 2 pt ´sq 1´η 2 1 pt ´sq 1´η 2 1 pt ´sq 1´η 2 1 1 1 t 2	ż |2m ´x ´x0 | |m ´x| 1 2 pt ´sq ? t	ż
	|A 4 | ď ď	C pt ´sq 1´η 2 ˆ# |m ´x| β ż R 2 pt ´sq β 2 ^|m ´x1 | β " |m 0 ´x0 | β s β 2 β 2 pt ´sq C pt ´sq 1´η 2 ż R 2 ## |m ´x0 | β s β 2 `# |m ´x| β pt ´sq β 2 ^p |m ´x0 | β `|x 0 ^|m 0 ^p |m ´x| β `|x ´x1 | β ´x1 | β s β 2 ^1* H 0 pcs, x 1 ´x0 q s β 2 ˆp |m ´x| β pt ´sq β 2 ´x1 | β pt ´sq β 2 s β 2 ^1qq ^1+ 1 tsPp0, t ^1qq ^1+ 2 qu ˆp |m ´x0 | β +	1 tsPp t 2 ,tqu
		ď	C pt ´sq 1´η 2	" |m ´x0 | β t β 2	^|m ´x| β β t 2

R H 0 pcs, R H 0 pcs,

  1 , dm 1 q| H 0 pct, 2m ´x ´x0 q,x ď m, m 0 ă m,

	ď	$ ' & ' %	C pt´sq 1´η 2 C pt´sq 1´η 2	1 t 1 2 "	|m´x| β t β 2	β ^|m´x0| β t 2

  H 0 pcs, |x 1 | `|x 0 | `ℓ1 ´ℓ0 qdx 1 dℓ 1 .Let us assume that |x| `|x 0 | `ℓ ´ℓ0 ď t 1 2 . We use the fact that the diagonal estimate is global. For s P r t 2 , ts, one has st so that 1H 0 pcs, |x 1 | `|x 0 | `ℓ1 ´ℓ0 q ď Ct ´1 ď CH 0 pct, |x| `|x 0 | `ℓ ´ℓ0 q

		ℓq	1 pt ´sq	1 2	H 0 pcpt ´sq, |x| `|x 1 | `ℓ ´ℓ1 q	1 1 s 2
	s	1 2				
	which in turn implies: |C 2 | ď C ? t H 0 pct, |x|`|x 0 |`ℓ ´ℓ0 q Similarly, for s P r0, t 2 s, one has	ż	Rˆpℓ0,ℓq |C 2 | ď pt ´sq 1 C ? t	1 2 H 0 pct, |x| `|x 0 | `ℓ ´ℓ0 q. H 0 pcpt´sq, |x|`|x 1 |`ℓ ´ℓ1 qdx 1 dℓ 1 ď	C ? t	H 0 pct, |x|`|x 0 |`ℓ ´ℓ0 q.