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A convergence result for a vibro-impact problem
with a general inertia operator

Raoul Dzonou ·Manuel D.P. Monteiro Marques ·
Laetitia Paoli

Abstract We consider a mechanical system with a
finite number of degrees of freedom and non-trivial
inertia matrix, submitted to a single perfect unilat-
eral constraint. We assume that the local impact law
consists in the transmission of the tangential com-
ponent of the velocity and the reflexion of the nor-
mal component which is multiplied by the restitu-
tion coefficient e ∈ [0,1]. Then, starting from the
measure-differential formulation of the problem given
by J.J. Moreau, we propose a velocity-based time-
stepping method, reminiscent of the catching-up algo-
rithm for sweeping processes and we prove that the
numerical solutions converge to a solution of the prob-
lem.
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1 Formulation of the problem

We consider a mechanical system with a finite number
d of degrees of freedom. The configurations of the sys-
tem are represented by q = (q1, . . . , qd) ∈ E := R

d ,
where q ∈ E := R

d denotes the representative point of
the system in generalized coordinates. A motion is de-
noted by q : I → E := R

d , where I = [0, τ ], τ > 0 is
a time interval. We assume that the system is subjected
to an unilateral constraint: the trajectory must stay in a
domain L geometrically expressed by

q(t) ∈ L = {q ∈ E; g(q) ≤ 0} ∀t ∈ I,

where g is a function of class C
1, 1

2
loc (E,R) such that

�g does not vanish in a neighbourhood of
{
q ∈ E; g(q) = 0

}
.

The system satisfied by the problem when impact is
added, is

M(q)q̈ = R + f (., q,p), p = M(q)q̇. (1)

Here R describes the reaction of the constraint. For
each q , M(q) denotes the inertia operator which is a
symmetric and positive definite (s.d.p) d × d matrix.
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Let us denote by 〈. , .〉q and 〈. , .〉∗q the inner products
given by

〈u,v〉q = t uM(q)v

and

〈u,v〉∗q = t uM−1(q)v.

The corresponding norms are

|u|q =√
t uM(q)u (kinetic local norm)

and

|u|∗q =
√

t uM−1(q)u (momentum local norm)

for all (u, v, q) ∈ E3. Since discontinuous velocities
may occur when g(q(t)) = 0, an appropriate func-
tional framework is to look for a motion q such that
q̇ has right and left limits q̇(t + 0) and q̇(t − 0). Then
it is clear that

∇g
(
q(t)

) · q̇(t + 0) ≤ 0,

∇g
(
q(t)

) · q̇(t − 0) ≥ 0.

For all q ∈ E, we define the set of right admissible
velocities V (q):

V (q) =
{

{u ∈ E;∇g(q) · u ≤ 0} if g(q) ≥ 0,

E otherwise,

where v · w denotes the Euclidian inner product of the
vectors v and w in E. We define the exterior normal
cone to L at point q by

NL(q) =
{

{λ∇g(q);λ ≥ 0} if g(q) ≥ 0,

{0E} otherwise.

We assume that the unilateral constraint is friction-
less, hence the reaction belongs to the opposite of the
normal cone to L at q; see [9]. We can introduce the
Stieltjes measure q̈ = dq̇ and we obtain the following
measure differential inclusion (MDI):

f (t, q,p)dt − M(q)q̈ = −dr ∈ NL(q), (2)

where dt is the Lebesgue’s measure and dr is the mea-
sure which describes the reaction of the constraints.

When the velocity is discontinuous, i.e., if q̇(t +
0) �= q̇(t − 0), then by integrating (2) in a neighbour-
hood of {t}, we obtain

M(q)
(
q̇(t + 0) − q̇(t − 0)

)= −dr
({t}) ∈ NL

(
q(t)

)
.

It follows that
⎧
⎪⎨

⎪⎩

q̇(t + 0) ∈ V
(
q(t)

)
,

q̇(t + 0) − q̇(t − 0) ∈ N∗
L

(
q(t)

)

= M−1
(
q(t)

)
NL

(
q(t)

)
.

These relations do not define uniquely q̇(t +0) and we
have to complement the description of the dynamics
with a constitutive impact law. We suppose that the lo-
cal impact law consists in the transmission of the tan-
gential component of the velocity and the reflexion of
the normal component which is multiplied by a resti-
tution coefficient e ∈ [0,1], i.e.,

q̇(t + 0) = projq(t)

(
q̇(t − 0),V

(
q(t)

))

− eprojq(t)

(
q̇(t − 0),N∗

L

(
q(t)

))

= q̇(t − 0) − (1 + e)

× projq(t)

(
q̇(t − 0),N∗

L

(
q(t)

))
, (3)

where projq(u,N∗
L(q)) (resp. projq(u,V (q))) denotes

the projection operator on N∗
L(q) (resp. on V (q)) rela-

tively to the kinetic metric at q . We should observe that
this impact law leads to non-increasing kinetic energy
at impacts.

In [9] J.J. Moreau introduced a synthetic velocity-
based formulation of the problem, given by the follow-
ing measure differential inclusion:

f (t, q,p) − M(q)q̈ ∈ NV (q)

(
q̇+ + eq̇−

1 + e

)
(4)

with

NV (q)(q̇) =
⎧
⎨

⎩

{
y ∈ E; 〈y, x − q̇〉 ≤ 0 ∀x ∈ V (q)

}

if q̇ ∈ V (q),

∅ otherwise.

More precisely

Definitio 1 A function q : I → E is a solution of
(2)–(3) with initial conditions (q0, u0) ∈ L×V (q0) iff:

• q(t) ∈ L ∀t ∈ I

• q̇ ∈ bvem(I ;E) i.e q̇ ∈ BV (I ;E) and

q̇(t) = q̇(t + 0) + eq̇(t − 0)

1 + e
∀t ∈ Int(I )

• (q, q̇) satisfy the initial data in the following sense:

q(0) = q0, (5)

q̇(0 + 0) = u0 (6)
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• (q, q̇) satisfy (4) in the following sense: for any
positive measure dμ over I with respect to which
the Lebesgue measure dt and the Stieltjes mea-
sure dq̇ possess densities, respectively t ′μ = dt

dμ
∈

L1(I, dμ;R) and q̇ ′
μ = dq̇

dμ
∈ L1(I, dμ;E) we have

f (t, q,p)t ′μ(t) − M(q)q̇ ′
μ(t) ∈ NV (q)

(
q̇(t)

)

dμ a.e on I . (7)

Notice that (7) does not depend on the ‘base’ mea-
sure dμ and that, at an instant of contact t such that
q̇(t + 0) �= q̇(t − 0), (7) is equivalent to (3) (see [9]).

Let us give the assumptions under which we shall
investigate the existence of a solution.

H-1: f : [0, T ] × E × E → E is a continuous func-
tion, which is locally Lipschitz continuous with
respect to its second and third arguments.

We will denote by

Cf,W = sup
{∣∣f

(
t, q,M(q)v

)∣∣, (t, q, v) ∈ W
}

and Lf,W the associated Lipschitz constant on
any compact set W ⊂ [0, T ] × E × E.

H-2: g : E → R is a C
1,1/2
loc function, with nonzero

gradient in the neighbourhood of its zero level
set

S := {
q ∈ E;g(q) = 0

}
.

H-3: M is a mapping of class C1 from E to the set of
symmetric positive definite (s.d.p) d ∗ d matri-
ces F .

It follows that mappings q �→ (M(q))1/2 and
q �→ (M(q))−1 are locally Lipschitz continuous
from E to the set of s.d.p d ∗ d matrices F ⊂
Md (see [11] for instance). Therefore, for any
compact V of E, there exist αV > 0 and βV > 0
such that

αV |u|2 ≤ |u|2q ≤ βV |u|2 ∀u ∈ E, ∀q ∈ V, (8)

an inequality which will be useful in the sequel.

First we show that there exists an interval [0, τ ∗] ⊂
[0, T ], τ ∗ > 0 on which the Cauchy problem admits a
solution (local existence). Moreover, energy estimates
allow us to prove the existence of a ‘global’ solution,
i.e., a solution defined on a time interval depending
only on the data. Let us outline the main steps of the
paper.

In Sect. 2 we introduce the numerical scheme (im-
plicit and explicit versions) and we prove some local
uniform estimates for the discrete velocities by using
a fixed point argument. Next in Sect. 3, we establish
that the total variation of the approximate velocities is
uniformly bounded and by using Helly and Ascoli the-
orems, we extract converging subsequences. Finally,
we study the properties of the limit, more precisely we
check that the differential inclusion and the impact law
are satisfied, which concludes the proof of the local ex-
istence result.

Then, in Sect. 4, we reason as in [13] to show that
the convergence result can be extended to a fixed in-
terval [0, τ ] depending only on the data, which leads
to the existence of a ‘global’ solution.

Our results follow in the same spirit and they di-
rectly extend [5], where a constant and trivial mass
matrix is considered, and [2] which tackle only the
purely inelastic case e = 0, while in [6] and [7]
both simplifying assumptions were made. Other ap-
proaches may be found in [14], in [1], in [10], in [12]
and in [13]. The present results were announced and
outlined in [3].

2 Numerical scheme

We shall define the numerical scheme on [0, τ̃ ] with
τ̃ ∈ (0, T ] satisfying some requirements (see (10) be-
low at the end of the proof of Lemma 1). More
precisely, let n be any positive integer, h = T

n
and

tn,i = ih, 0 ≤ i ≤ n. We define two finite sequences
(qn,i)0≤i≤n and (un,i)0≤i≤n of E by

qn,0 = q0

un,0 = −eu0 + (1 + e)projq0

(
u0,V (q0)

)= u0

and for all 0 ≤ i ≤ n − 1

qn,i+1 = qn,i + hun,i

un,i+1 = −eun,i + (1 + e)projqn,i+1

(
un,i + h

1 + e

× M−1(qn,i+1)fn,i+1,Vn,i+1

)
, (9)

where fn,i+1 is an approximate value of f (t, q,p),
Vn,i+1 = V (qn,i+1) and the projection onto Vn,i+1 is
taken with respect to the kinetic metric at qn,i+1.
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The approximate value of the force can be updated
explicitly i.e.,

fn,i+1 = f
(
tn,i+1, qn,i+1,M(qn,i+1)un,i

)
,

0 ≤ i ≤ n − 1.

But, in order to avoid instabilities that could appear
with an explicit algorithm, we may choose to define
an implicit updating given by

fn,i+1 = f
(
tn,i+1, qn,i+1,M(qn,i+1)un,i+1

)
,

0 ≤ i ≤ n − 1.

When no constraint is active at tn,i+1 then V (qn,i+1) =
E and (9) becomes

un,i+1 = un,i + hM−1(qn,i+1)fn,i+1

which is an Euler’s discretization of the ordinary dif-
ferential equation

M(q)q̈ = f (t, q,p).

We should notice that (9) can be rewritten as

fn,i+1 − M(qn,i+1)

(
un,i+1 − un,i

h

)

∈ NVn,i+1

(
un,i+1 + eun,i

1 + e

)

which is a quite natural discretization of the measure
differential inclusion (4).

In the implicit approach, the construction of the se-
quence (un,i)0≤i≤n requires at each time step the com-
putation of a fixed point which existence will be jus-
tified below. Since this fixed point argument will give
some uniform estimates for the discrete velocities, we
apply it also to the explicit approach although it is not
necessary to define (un,i)0≤i≤n in this case.

Let τ̃ ∈ (0, T ] and ñ be the integer part of τ̃
h

; we
consider first the mapping G defined by

G :
{

(E × E)ñ+1 −→ Eñ

{(q̃n,i , ũn,i )}0≤i≤ñ �−→ {fn,i}1≤i≤ñ

with

fn,i+1 = f
(
tn,i+1, q̃n,i+1,M(q̃n,i+1)ũn,j (i)

)

for all i ∈ {0, . . . , ñ − 1}

and j (i) = i if we consider an explicit version of the
scheme, j (i) = i + 1 if we use an implicit version.

Let

qn,1 = q0 + hu0

and denote by (V 0
i )0≤i≤ñ the sets defined by

⎧
⎪⎨

⎪⎩

V 0
0 = V (q0) i = 0,

V 0
1 = V (qn,1) i = 1,

V 0
i = V 0

1 if 2 ≤ i ≤ ñ.

We consider the mapping F 0 given by

F 0 :
{

Eñ −→ (E × E)ñ+1

{fn,i}1≤i≤ñ �−→ {(q̃n,i , ũn,i )}0≤i≤ñ

with
{

q̃n,0 = q0,

ũn,0 = u0,

and for all i ∈ {0, . . . , ñ − 1}
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̃n,i+1 = q̃n,i + hũn,i ,

ũn,i+1 = −eũn,i + (1 + e)projq̃n,i+1

(
ũn,i + h

1 + e

× M−1(q̃n,i+1)fn,i+1,V
0
i+1

)
.

Then F 0 ∈ C0(Eñ, (E ×E)ñ+1) and G ∈ C0((E ×
E)ñ+1,Eñ). It follows that the mapping F 0 ◦ G ∈
C0((E × E)ñ+1, (E × E)ñ+1) and it leaves globally
invariant the compact convex set defined in the follow-
ing lemma:

Lemma 1 Let R > |u0|q0 , and let α0, β0 be the real
numbers defined by (8) on V = B̄(q0,R). If we denote

C =
(

B̄ (q0,R) × B̄

(
0,

R√
α0

))ñ+1

then F 0 ◦ G(C) ⊂ C, if τ̃ is small enough.

Proof Let us define

W = [0, T ] × B̄(q0,R) × B̄

(
0,

R√
α0

)
,

and recall that

Cf,W = sup
{∣∣f

(
t, q,M(q)v

)∣∣; (t, q, v) ∈ W
}
.
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Let {(q̃n,i , ũn,i )}0≤i≤ñ ∈ C. Then we have (tn,i+1,
q̃n,i+1, ũn,j (i)) ∈ W , for all i ∈ {0, . . . , ñ − 1}, and it
follows that

|fn,i+1| ≤ Cf,W ∀0 ≤ i ≤ ñ − 1.

It remains to prove that F 0({fn,i}1≤i≤ñ) = ({(q̃n,i ,
ũn,i )}0≤i≤ñ) ∈ C that is

q̃n,i ∈ B̄(q0,R) and |ũn,i | ≤ R√
α0

∀0 ≤ i ≤ ñ.

We establish this result by induction on i ∈ {0, . . . , ñ}.
If i = 0 we have

(q̃n,0, ũn,0) = (q0, u0) ∈ B̄(q0,R) × B̄

(
0,

R√
α0

)
.

Assume that (q̃n,i , ũn,i ) ∈ B̄(q0,R) × B̄(0, R√
α0

) for

all i ∈ {0, . . . , j} with j ∈ {0, . . . , ñ − 1}. Then we
have

|q̃n,j+1 − q0| = h

∣∣
∣∣∣∣

j∑

i=0

ũn,i

∣∣
∣∣∣∣
≤ τ̃R√

α0
.

Let us assume from now on that

τ̃R√
α0

≤ R.

In order to simplify the notation, let

x̃n,i = ũn,i + h

1 + e
M−1(q̃n,i+1)fn,i+1 0 ≤ i ≤ ñ−1

and denote by LV,1 (resp. LV,2) the Lipschitz constant
associated to the mapping M (resp. M1/2) on the com-
pact set V .
Let us also denote Pn,i (resp. Nn,i) the projection op-
erator with respect to the kinetic metric at q̃n,i onto
V 0

i (resp. onto the conjugate convex cone to V 0
i with

respect to the kinetic metric at q̃n,i ). We first prove that

∣∣Pn,i+1(x̃n,i ) − eNn,i+1(x̃n,i )
∣∣
q̃n,i+1

≤ |x̃n,i |q̃n,i+1 .

Indeed, using e ∈ [0,1]:
∣∣Pn,i+1(x̃n,i ) − eNn,i+1(x̃n,i )

∣∣2
q̃n,i+1

= ∣∣Pn,i+1(x̃n,i )
∣∣2
q̃n,i+1

− 2e〈Pn,i+1(x̃n,i ),Nn,i+1(x̃n,i )〉q̃n,i+1

+ e2
∣
∣Nn,i+1(x̃n,i )

∣
∣2
q̃n,i+1

= ∣
∣Pn,i+1(x̃n,i )

∣
∣2
q̃n,i+1

+ e2
∣
∣Nn,i+1(x̃n,i )

∣
∣2
q̃n,i+1

≤ ∣
∣Pn,i+1(x̃n,i ) + Nn,i+1(x̃n,i )

∣
∣2
q̃n,i+1

= ∣
∣x̃n,i

∣
∣2
q̃n,i+1

.

Moreover

ũn,i+1 = −eũn,i + (1 + e)Pn,i+1(x̃n,i )

= Pn,i+1(x̃n,i ) − eNn,i+1(x̃n,i )

+ eh

1 + e
M−1(q̃n,i+1)fn,i+1

and we deduce that

|ũn,i+1|q̃n,i+1 ≤ |ũn,i |q̃n,i+1 + h
∣∣M−1/2(q̃n,i+1)fn,i+1

∣∣.

Thus

|ũn,i+1|q̃n,i+1 ≤ |ũn,i |q̃n,i
+ ∥∥(M(q̃n,i+1)

)1/2

− (
M(q̃n,i)

)1/2∥∥|ũn,i |
+ h

∥∥(M(q̃n,i+1)
)−1/2∥∥|fn,i+1|.

By definition of α0 and LV,2 we obtain

|ũn,i+1|q̃n,i+1 ≤ |ũn,i |q̃n,i
+ hLV,2|ũn,i |2 + h

Cf,W√
α0

∀0 ≤ i ≤ j.

Let {vn,i}0≤i≤n be defined by
⎧
⎨

⎩

vn,0 = |u0|q0 ,
vn,i+1 − vn,i

h
= LV,2

α0
v2
n,i + Cf,W√

α0
∀0 ≤ i ≤ n − 1,

and

v(t) = vn,i + 1

h
(t − tn,i )(vn,i+1 − vn,i)

if t ∈ [tn,i , tn,i+1], 0 ≤ i ≤ n − 1.

Then {vn,i}0≤i≤n is given by an Euler scheme associ-
ated to the following Cauchy problem:
⎧
⎪⎨

⎪⎩

dθ

dt
= k1θ

2 + k2,

θ(0) = |u0|q0 with k1 = LV,2

α0
, k2 = Cf,W√

α0
.

Consequently, by comparison,

|ũn,i |q̃n,i
≤ vn,i = v(ih) ≤ θ(ih) ∀0 ≤ i ≤ j + 1,
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with

θ(t) =
√

k2

k1
tan
(√

k2k1t + C
)
,

C = Arctan

(√
k1

k2
|u0|q0

)
.

It follows that

|ũn,i | ≤ 1√
α0

|ũn,i |q̃n,i
≤ θ(ih)√

α0
∀0 ≤ i ≤ j + 1.

So, if we choose τ̃ ∈ (0, T ] such that

τ̃ ≤ √
α0 and θ(τ̃ ) ≤ R (10)

we obtain F 0 ◦ G(C) ⊂ C. �

Using Brouwer’s fixed point theorem, we infer that
there exists {q̃0

i , ũ0
i }0≤i≤ñ ∈ C such that

F 0 ◦ G
({

q̃0
i , ũ0

i

}
0≤i≤ñ

)= {
q̃0
i , ũ0

i

}
0≤i≤ñ

.

By definition of F 0 and G we have
{

q̃0
n,0 = q0 = qn,0,

ũ0
n,0 = u0 = un,0,

and

q̃0
n,1 = q̃0

n,0 + hũ0
n,0 = qn,0 + hun,0 = qn,1,

ũ0
n,1 = −eũ0

n,0 + (1 + e)projq̃0
n,1

(
ũ0

n,0 + h

1 + e

× M−1(q̃0
n,1)f

0
n,1,V

0
1

)
,

f 0
n,1 = f

(
tn,1, q̃

0
n,1,M

(
q̃0
n,1

)
ũ0

n,j (0)

)
.

We deduce that

ũ0
n,1 = −eun,0 + (1 + e)

× projq̃0
n,1

(
un,0 + h

1 + e
M−1(q̃0

n,1

)

× f
(
tn,1, q̃

0
n,1,M

(
q̃0
n,1

)
ũ0

n,j (0)

)
,V

(
q̃0
n,1

))
.

So (q̃0
n,1, ũ

0
n,1) satisfies (9) for i = 0 and we get

q̃0
n,1 = qn,1, ũ0

n,1 = un,1

with (qn,1, un,1) ∈ B̄(q0,R)×B̄(0, R√
α0

). (As seen be-
low, although we are applying Brouwer’s fixed point
theorem, the updated velocity is still uniquely de-
fined.)

Now we consider the position qn,2, indeed:

q̃0
n,2 = q̃0

n,1 + hũ0
n,1 = qn,1 + hun,1 = qn,2.

We define the sets
{

V 1
i = V (qn,i) 0 ≤ i ≤ 2,

V 1
i = V 1

2 3 ≤ i ≤ ñ.

As in the case k = 0 we define the mapping F 1 by

F 1 :
{

Eñ −→ (E × E)ñ+1

{fn,i}1≤i≤ñ �−→ {(q̃n,i , ũn,i )}0≤i≤ñ

with
{

q̃n,0 = q0,

ũn,0 = u0,

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̃n,i+1 = q̃n,i + hũn,i ,

ũn,i+1 = −eũn,i + (1 + e)projq̃n,i+1

(
ũn,i + h

1 + e

× M−1(q̃n,i+1)fn,i+1,V
1
i+1

)
.

With the same arguments as previously, we show that
Fk ◦ G(C) ⊂ C for k = 1, with the same value of τ̃ as
in the previous case k = 0, and thus F 1 ◦ G admits a
fixed point on C which we denote {q̃1

i , ũ1
i }0≤i≤ñ. We

have

q̃1
n,0 = q0 = qn,0, ũ1

n,0 = u0 = un,0,

and

q̃1
n,1 = q0 + hu0 = qn,1.

Moreover ũ1
n,1 ∈ B̄(0, R√

α0
) and it satisfies

ũ1
n,1 = −eun,0 + (1 + e)projqn,1

(
un,0 + h

1 + e

× M−1(qn,1)f
1
n,1,V (qn,1)

)
.

So
∣
∣ũ1

n,1 − un,1
∣
∣
qn,1

≤ h
∣
∣f
(
t1, qn,1,M(qn,1)ũ

1
n,j (0)

)

− f
(
t1, qn,1,M(qn,1)un,j (0)

)∣∣
qn,1

.
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In the explicit case, ũ1
n,j (0) = ũ1

n,0 = u0 so ũ1
n,1 = un,1.

Otherwise, since un,1 ∈ B̄(0, R√
α0

) we apply the Lip-
schitz property of f on W and we get

∣∣ũ1
n,1 − un,1

∣∣
qn,1

≤ hLf,W

√
β0
∥∥M(qn,1)

∥∥∣∣ũ1
n,1 − un,1

∣∣

≤ hLf,W

√
β0

α0
β0
∣∣ũ1

n,1 − un,1
∣∣
qn,1

.

Let us assume from now on that

0 < h ≤ h∗ <

√
α0

Lf,W (β0)3/2
. (11)

Then ũ1
n,1 = un,1 and thus

q̃1
n,2 = q̃1

n,1 + hũ1
n,1 = qn,1 + hun,1 = qn,2,

ũ1
n,2 = −eũ1

n,1 + (1 + e)

× projq̃1
n,2

(
ũ1

n,1 + h

1 + e
M−1(q̃1

n,2

)
f 1

n,2,V
1
2

)
,

f 1
n,2 = f

(
tn,2, q̃

1
n,2,M

(
q̃1
n,2

)
ũ1

n,j (1)

)
.

We deduce that

ũ1
n,2 = −eun,1 + (1 + e)

× projq̃1
n,2

(
un,1 + h

1 + e
M−1(q̃1

n,2

)

× f
(
tn,2, q̃

1
n,2,M

(
q̃1
n,2

)
ũ1

n,j (1)

)
,V

(
q̃1
n,2

))
.

Hence (q̃1
n,i , ũ

1
n,i) satisfies (9) for i = 1,2 and we get

q̃1
n,i = qn,i , ũ1

n,i = un,i , i = 1,2

with (qn,i , un,i) ∈ B̄(q0,R) × B̄(0, R√
α0

) for i = 1,2.
So we define all the approximate positions and ve-

locities {qn,i , un,i}0≤i≤ñ by iterating this fixed point
procedure. More precisely, for k ∈ {2, . . . , ñ − 1} we
define recursively the sets

{
V k

i = V (qn,i) 0 ≤ i ≤ k + 1,

V k
i = V k

k+1 k + 2 ≤ i ≤ ñ

and the mapping Fk by

Fk :
{

Eñ −→ (E × E)ñ+1,

{fn,i}1≤i≤ñ �−→ {(q̃n,i , ũn,i )}0≤i≤ñ

with
{

q̃n,0 = q0,

ũn,0 = u0,

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q̃n,i+1 = q̃n,i + hũn,i ,

ũn,i+1 = −eũn,i + (1 + e)projq̃n,i+1

(
ũn,i + h

1 + e

× M−1(q̃n,i+1)fn,i+1,V
k
i+1

)
.

By using finite induction, we see that, for all h ∈
(0, h∗], the system (9) possesses a solution which is
a fixed point of F ñ−1 ◦ G in C.

In order to obtain an estimate of the discrete ac-
celerations, we will apply the following lemma due to
J.J. Moreau [8]:

Lemma 2 (J.J. Moreau) Let C be a closed convex set
of a Hilbert space H , C containing a ball B(a, r).
Then

∀x ∈ H : ∣∣x − proj(x,C)
∣∣

≤ 1

2r

(|x − a|2 − ∣∣proj(x,C) − a
∣∣2).

We choose C = V (qn,j ) and we also use the fol-
lowing result.

Lemma 3 For all R̃ > 0, there exist ρ > 0, δ > 0
and α > 0 such that, for all q ∈ B̄(q0, R̃), there exists
aq ∈ E such that

|aq | ≤ α, B̄(aq, ρ) ⊂ V (q̃) ∀q̃ ∈ B̄(q, δ).

Proof The lower semi-continuity of the mapping q �→
V (q) implies that for all q ∈ E there exist aq ∈ E,
rq > 0 and δq > 0 such that

B̄(aq, rq) ⊂ V (q̃) ∀q̃ ∈ B̄(q, δq)

and the result follows by a standard compactness ar-
gument (the bound on the aq is easy to obtain, as the
sets V (q) are cones). �

We take τ ∗ ∈ (0, T ] satisfying (10) and such that
R√
α0

τ ∗ ≤ δ0, i.e.,

τ ∗ ≤ √
α0, θ(τ ∗) ≤ R and

R√
α0

τ ∗ ≤ δ0, (12)
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where δ0 is a constant obtained from the previous
lemma for R̃ = R.

We define the sequence of approximate solutions
on [0, τ ∗] by considering piecewise constant velocities
and then integrating over the time-interval:

un(t) = un,i if t ∈ [tn,i , tn,i+1[∩ [0, τ ∗]
and

qn(t) = q0 +
∫ t

0
un(s)ds ∀t ∈ [0, τ ∗]

for all n ≥ n∗ = �T/h∗� + 1 (i.e. for all h ∈ (0, h∗]).

3 Local convergence result

3.1 Convergence result

We already know that the sequences (un)n≥n∗ and
(qn)n≥n∗ are uniformly bounded on [0, τ ∗]. More-
over the sequence (qn)n≥n∗ is equicontinuous on
[0, τ ∗], more precisely the functions (qn)n≥n∗ are

R√
α0

-Lipschitz continuous on [0, τ ∗]. From Ascoli-
Arzela’s theorem, it follows that, possibly by extract-
ing a subsequence still denoted (qn)n≥n∗ , there exists
q ∈ C0([0, τ ∗];E) such that

qn → q strongly in C0
([0, τ ∗];E).

Moreover q is R√
α0

-Lipschitz continuous on [0, τ ∗].
Next we prove that the limit function q satisfies the

constraints i.e., g(q(t)) ≤ 0 for all t ∈ [0, τ ∗]. Indeed,
it is a direct consequence of the following lemma.

Lemma 4 Let n ≥ n∗ = �T/h∗� + 1. We have

g
(
qn(t)

)≤ hK
R√
α0

+ eh2

1 + e
j
Cf,W

α0
K

+ tn,j ϕ

(
h

R√
α0

)
R√
α0

∀t ∈ [0, tn,j ] ∩ [0, τ ∗],
where K = sup{|∇g(q)|; q ∈ B̄(q0,R)} and ϕ is the
continuity modulus of ∇g on V = B̄(q0,R).

Proof We will prove this result by induction on j . For
j = 0 we have tn,j = 0 and g(qn(t)) = g(q0) ≤ 0. As-
sume now that (13) holds for some j ∈ {0, . . . , ñ}. For

all t ∈ [tn,j , tn,j+1] ∩ [0, τ̃ ∗] we have

g
(
qn(t)

) = g(qn,j ) +
∫ t

tn,j

∇g
(
qn(s)

) · un(s) ds

≤ g(qn,j ) +
∫ t

tn,j

∇g(qn,j ) · un,j ds

+
∫ t

tn,j

∣
∣∇g

(
qn(s)

)− ∇g(qn,j )
∣
∣|un,j |ds.

We consider two cases.
• If g(qn,j ) > 0, then the constraint is active at tn,j

and j ≥ 1. We rewrite the last inequality as

g
(
qn(t)

)

≤ g(qn,j ) +
∫ t

tn,j

∇g(qn,j ) · un,j + eun,j−1

1 + e
ds

+ e

1 + e

∫ t

tn,j

∇g(qn,j ) · (un,j − un,j−1)

+
∫ t

tn,j

∣∣∇g
(
qn(s)

)− ∇g(qn,j )
∣∣|un,j |ds.

By definition of the scheme we have

1

1 + e
(un,j + eun,j−1)

= projqn,j

(
un,j−1 + h

1 + e
M−1

n,j fn,j ,V (qn,j )

)
,

where Mn,j = M(qn,j ). It follows that

g
(
qn(t)

)

≤ g(qn,j ) + e

1 + e

∫ t

tn,j

∇g(qn,j ) · (un,j − un,j−1)

+
∫ t

tn,j

∣∣∇g
(
qn(s)

)− ∇g(qn,j )
∣∣|un,j |ds

≤ g(qn,j )

− e

∫ t

tn,j

∇g(qn,j ) ·
(

un,j−1 + h

1 + e
M−1

n,j fn,j

− projqn,j

(
un,j−1 + h

1 + e
M−1

n,j fn,j

))

+ e

∫ t

tn,j

∇g(qn,j ) · h

1 + e
M−1

n,j fn,j

+
∫ t

tn,j

∣
∣∇g

(
qn(s)

)− ∇g(qn,j )
∣
∣|un,j |ds
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≤ g(qn,j ) + eh

1 + e

∫ t

tn,j

∣∣t∇g(qn,j )M
−1
n,j fn,j

∣∣ds

+
∫ t

tn,j

∣∣∇g
(
qn(s)

)− ∇g(qn,j )
∣∣|un,j |ds

since −M−1
n,j∇g(qn,j ) ∈ V (qn,j ).

Then, recalling that (qn,j , un,j ) ∈ B̄(q0, R) ×
B̄(0, R√

α0
), we get

g
(
qn(t)

) ≤ g(qn,j ) + eh2

1 + e
K
∣∣M−1

n,j fn,j

∣∣

+ hϕ

(
h

R√
α0

)
R√
α0

and the induction hypothesis yields

g
(
qn(t)

) ≤ hK
R√
α0

+ (j + 1)
eh2

1 + e

Cf,W

α0
K

+ tn,j+1ϕ

(
h

R√
α0

)
R√
α0

.

• If g(qn,j ) ≤ 0 then

g
(
qn(t)

) ≤
∫ t

tn,j

∇g(qn,j ) · un,j ds

+
∫ t

tn,j

∣∣∇g(qn(s)) − ∇g(qn,j )
∣∣|un,j |ds

≤ hK
R√
α0

+ hϕ

(
h

R√
α0

)
R√
α0

≤ hK
R√
α0

+ eh2(j + 1)

1 + e

Cf,W

α0
K

+ tn,j+1ϕ

(
h

R√
α0

)
R√
α0

.

�

Now we observe that, since ∇g does not vanish in
a neighbourhood of S := {q ∈ E; g(q) = 0}, there ex-
ists r > 0 such that, if q ∈ B̄(q0,R) with |g(q)| ≤ r ,
then ∇g(q) �= 0.

From the previous lemma we infer that there exists
n0 ≥ n∗ such that, for all n ≥ n0, we have g(qn(t)) ≤ r

for all t ∈ [0, τ ∗]. We define

S̃ := {
q ∈ B̄(q0,R); ∣∣g(q)

∣∣≤ r
}
,

and let

0 < m0 = inf
q∈S̃

∥∥∇g(q)
∥∥≤ m0 = sup

q∈S̃

∥∥∇g(q)
∥∥. (14)

Next we focus on the total variation of the approx-
imate velocities (un)n≥n0 . We start with the follow-
ing remark: for all q ∈ E, for all x ∈ N∗

L(q), we have
−x ∈ V (q). Indeed, we have

N∗
L(q) = M−1(q)NL(q).

Hence, if g(q) ≥ 0, for x ∈ N∗
L(q) there exists λ ≥ 0

such that x = λM−1(q)∇g(q) and −x ∈ V (q) since

−x · ∇g(q) = −λt∇g(q)M−1(q)∇g(q)

= −λ
(∣∣∇g(q)

∣∣∗
q

)2 ≤ 0.

If g(q) < 0, the previous result remains true since
V (q) = E et N∗

L(q) = {0E}.
For the sake of simplicity, we will omit from now

on the index n and we denote by Pj (resp. Nj ) the
projection onto V (qj ) (resp. onto N∗

L(qj )) with re-
spect to the kinetic metric at qj , for all j ∈ {0, . . . , ñ}
and for all n ≥ n0. Similarly, let Mj = M(qj ) and
| · |j = | · |qj

for all j ∈ {0, . . . , ñ} and for all n ≥ n0.
Next we prove:

Lemma 5 There exists a constant C0,1 > 0 such that

|uj+1 − uj |2j+1 ≤ hC0,1

∀j ∈ {0, . . . , ñ − 1}, ∀n ≥ n0. (15)

Proof Let n ≥ n0. By the definition of the scheme, we
have

uj+1 = −euj + (1 + e)Pj+1(xj )

with

xj = uj + h

1 + e
M−1

j+1fj+1 ∀j ∈ {0, . . . , ñ − 1}.

So

uj+1 − uj = −(1 + e)xj + (1 + e)Pj+1(xj )

+ hM−1
j+1fj+1

= −(1 + e)Nj+1(xj ) + hM−1
j+1fj+1.
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If g(qj+1) < 0 then N∗
L(qj+1) = {0E} and Nj+1(xj ) =

0. Thus,

|uj+1 − uj |j+1 = h
∣∣M−1

j+1fj+1
∣∣
j+1 ≤ h√

α0
Cf,W .

Otherwise, if g(qj+1) ≥ 0, we have qj+1 ∈ S̃ and
Nj+1(x) = (x,∇g(qj+1)

+H(qj+1) with

H :
{

S̃ → E

q �−→ 1
tG(q)M−1(q)G(q)

G(q),

where G(q) = ∇g(q) for all q ∈ E.
Moreover, since we assume that n ≥ n0, we have

g(qj ) ≤ r and

∣∣g(qj+1) − g(qj )
∣∣≤ sup

y∈V

∥∥∇g(y)
∥∥ R√

α0
h.

Without loss of generality, we may assume that

sup
y∈V

∥
∥∇g(y)

∥
∥ R√

α0
h ≤ r ∀n ≥ n0.

Thus qj ∈ S̃. Let us introduce the following notation:

Ñj (x) = (
x · ∇g(qj )

)+
H(qj ) ∀x ∈ E.

We rewrite uj+1 − uj as

uj+1 − uj = −(1 + e)
(
Nj+1(xj ) − Nj+1(uj )

)

− (1 + e)
(
Nj+1(uj ) − Ñj (uj )

)+ λj

with

λj = −(1 + e)Ñj (uj ) + hM−1
j+1fj+1.

Hence

|uj+1 − uj |j+1 ≤ Aj+1 + Bj+1 + Cj+1

with

Aj+1 = (1 + e)
∣∣Nj+1(xj ) − Nj+1(uj )

∣∣
j+1

Bj+1 = (1 + e)
∣∣Nj+1(uj ) − Ñj (uj )

∣∣
j+1

Cj+1 = (1 + e)
∣∣Ñj (uj )

∣∣
j+1 + h

∣∣M−1
j+1fj+1

∣∣
j+1.

The contraction property of the projection operator
yields

Aj+1 ≤ (1 + e)

∣∣∣∣
h

1 + e
M−1

j+1fj+1

∣∣∣∣
j+1

≤ h√
α0

Cf,W .

Next, in order to estimate Bj+1, we prove the fol-
lowing lemma.

Lemma 6 There exists C1 > 0, independent of n and
j , such that

∣∣Nj+1(uj ) − Ñj (uj )
∣∣≤ C1h

1/2. (16)

Proof Since g ∈ C
1,1/2
loc (E,R), there exists L′

0 > 0
such that

∣∣∇g
(
q ′)− ∇g(q)

∣∣≤ L′
0

∣∣q ′ − q
∣∣1/2 ∀(q, q ′) ∈ S̃2.

Moreover, since M−1/2 is locally Lipschitz continuous
and S̃ is compact, we deduce that H ∈ C0,1/2(S̃;R),
i.e., there exists L′′

0 > 0 such that

∣∣H(q ′) − H(q)
∣∣≤ L′′

0

∣∣q ′ − q
∣∣1/2 ∀(q, q ′) ∈ S̃2.

We denote by LV,3 the Lipschitz constant associated
to q �−→ M−1(q) on the compact set V = B̄(q0,R)

and let Gj+k := ∇g(qj+k) and

aj+k := Gj+k

tGj+kM
−1
j+kGj+k

with k = 0,1. We have

Nj+1(uj ) − Ñj (uj )

= (uj · Gj+1)
+M−1

j+1aj+1 − (uj · Gj)
+M−1

j aj

= (
(uj · Gj+1)

+ − (uj · Gj)
+)M−1

j+1aj+1

+ (uj · Gj)
+((M−1

j+1 − M−1
j

)
aj+1

+ M−1
j (aj+1 − aj )

)
.

It follows that

∣∣Nj+1(uj ) − Ñj (uj )
∣∣

≤ ∣∣(uj · Gj+1)
+ − (uj · Gj)

+∣∣∣∣M−1
j+1aj+1

∣∣

+ ∣∣(uj · Gj)
∣∣(∥∥M−1

j+1 − M−1
j

∥∥|aj+1|
+ ∥∥M−1

j

∥∥|aj+1 − aj |
)

≤ |uj | |Gj+1 − Gj |
∥∥M−1

j+1

∥∥ |aj+1|
+ |uj ||Gj |

(∥∥M−1
j+1 − M−1

j

∥∥|aj+1|
+ ∥∥M−1

j

∥∥ |aj+1 − aj |
)
.
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Then we recall that uj ∈ B̄(0, R√
α0

) and

|u|2
β0

≤ |u|∗2
q ≤ |u|2

α0
∀q ∈ B̄(q0,R), ∀u ∈ E.

Thus

|aj+1| = |Gj+1|
(|Gj+1|∗j )2

≤ β0
1

|Gj+1| ≤ β0

m0
,

and we conclude the proof by taking

C1 = R√
α0

(
L′

0

√
R√
α0

β0

α0m0
+ LV,3

√
T

Rm0β0√
α0m0

+ L′′
0

α0
m0

√
R√
α0

)
.

�

We infer that

Bj+1 ≤ (1 + e)
√

β0C1h
1/2.

Finally, we obtain the following estimate for the
terms Cj+1 above:

Cj+1 ≤ hCf,W

(
1√
α0

+
√

β0

α0

)
. (17)

Indeed, |M−1
j+1fj+1|j+1 ≤ Cf,W√

α0
and Ñj (uj ) = 0 if

j = 0. Moreover, if j ≥ 1, then, by the definition of
the scheme, we have

uj = −euj−1 + (1 + e)Pj (xj−1)

= Pj (xj−1) − eNj (xj−1) + eh

1 + e
M−1(qj )fj .

Thus

uj − eh

1 + e
M−1(qj )fj

= Pj (xj−1) − eNj (xj−1) ∈ V (qj )

and we have

∣∣Ñj (uj )
∣∣ =

∣∣∣∣Ñj

(
uj − eh

1 + e
M−1(qj )fj

+ eh

1 + e
M−1(qj )fj

)∣∣∣∣

=
((

uj − eh

1 + e
M−1(qj )fj

+ eh

1 + e
M−1(qj )fj

)
· ∇g(qj )

)+

× |M−1(qj )∇g(qj )|
t∇g(qj )M−1(qj )∇g(qj )

≤
(((

uj − eh

1 + e
M−1

j fj

)
· ∇g(qj )

)+

+
(

eh

1 + e
M−1

j fj · ∇g(qj )

)+)

× |M−1(qj )∇g(qj )|j√
α0

t∇g(qj )M
−1
j ∇g(qj )

.

Since uj − eh
1+e

M−1(qj )fj ∈ V (qj ) we get

((
uj − eh

1 + e
M−1(qj )fj

)
· ∇g(qj )

)+
= 0.

Hence

∣∣Ñj (uj )
∣∣ ≤ eh

1 + e

(
M−1

j fj · ∇g(qj )
)+

× 1√
α0|M−1(qj )∇g(qj )|j

≤ eh

1 + e

∣∣(M−1
j fj ,M

−1
j ∇gj

)
j

∣∣

× 1√
α0|M−1(qj )∇g(qj )|j

≤ eh

1 + e

|M−1(qj )fj |j√
α0

≤ eh

1 + e

Cf,W

α0

which immediately yields (17).
From the previous estimates, we have in both cases

(g(qj+1) < 0 or g(qj+1) ≥ 0):

|uj+1 − uj |2j+1 ≤ h

(
2
T 1/2Cf,W√

α0
+ (1 + e)

√
β0C1

+ T 1/2
√

β0

α0
Cf,W

)2

.

�

With these preliminary results, we can now prove:
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Proposition 1 There exists A > 0 such that

�τ∗/h�−1∑

j=0

|uj+1 − uj | ≤ A ∀n ≥ n0.

Proof First we observe that

�τ∗/h�−1∑

j=0

|uj+1 − uj | ≤ 1√
α0

�τ∗/h�−1∑

j=0

|uj+1 − uj |j+1

∀n ≥ n0. (18)

By construction, we have

uj+1 − Pj+1(xj ) = e

1 + e
(uj+1 − uj )

with

xj = uj + h

1 + e
M−1

j+1fj+1

and

∣
∣uj+1 − Pj+1(xj )

∣
∣
j+1 = e

∣
∣Pj+1(xj ) − uj

∣
∣
j+1

≤ e
∣∣xj − Pj+1(xj )

∣∣
j+1

+ eh

1 + e

∣∣M−1
j+1fj+1

∣∣
j+1

for all j ∈ {0, . . . , ñ − 1}, for all n ≥ 1. By Lemma 3,
we know that there exist ρ > 0 and a = aq0 ∈ E such
that

B̄(a, ρ) ⊂ V (q) ∀q ∈ B̄(q0, δ0)

thus

B̄q(a,ρ′) ⊂ V (q) ∀q ∈ B̄(q0, δ0)

with ρ′ = ρ
√

α
Ṽ

, Ṽ = B̄(q0,R + δ0). Recalling (12),
we can apply Moreau’s lemma at each time step and
we obtain

∣∣xj − Pj+1(xj )
∣∣
j+1

≤ 1

2ρ′
(|xj − a|2j+1 − ∣∣Pj+1(xj ) − a

∣∣2
j+1

)
.

We develop the squares in the right-hand side of the
inequality; we have

|xj − a|2j+1

=
∣
∣∣∣uj + h

1 + e
M−1

j+1fj+1 − a

∣
∣∣∣

2

j+1

= |uj − a|2j+1 + 2

〈
uj − a,

h

1 + e
M−1

j+1fj+1

〉

j+1

+ h2

(1 + e)2

∣∣M−1
j+1fj+1

∣∣2
j+1.

In order to estimate |Pj+1(xj ) − a|2j+1, we rewrite it
as follows:

|a − uj+1|2j+1

= ∣∣a − Pj+1(xj ) − (
uj+1 − Pj+1(xj )

)∣∣2
j+1

= ∣∣Pj+1(xj ) − a
∣∣2
j+1 − 2e

1 + e

× 〈
a − Pj+1(xj ), uj+1 − uj

〉
j+1

+ e2

(1 + e)2
|uj+1 − uj |2j+1.

Hence

∣∣Pj+1(xj ) − a
∣∣2
j+1

= |uj+1 − a|2j+1

+ 2e

1 + e

〈
a − Pj+1(xj ), uj+1 − uj

〉
j+1

− e2

(1 + e)2
|uj+1 − uj |2j+1.

From the previous results we deduce that

|uj+1 − uj |j+1

≤ (1 + e)
∣∣xj − Pj+1(xj )

∣∣
j+1

+ h
∣∣M−1

j+1fj+1
∣∣
j+1

≤ 1 + e

2ρ′ [Aj+1 + Bj+1 + Cj+1 + Dj+1]

+ h√
α0

Cf,W (19)

with

Aj+1 = |uj − a|2j+1 − |uj+1 − a|2j+1,

Bj+1 = e2

(1 + e)2
|uj+1 − uj |2j+1,

12



Cj+1 = 2e

1 + e

〈
a − Pj+1(xj ), uj − uj+1

〉
j+1,

Dj+1 = 2

〈
uj − a,

h

1 + e
M−1

j+1fj+1

〉

j+1

+ h2

(1 + e)2

∣∣M−1
j+1fj+1

∣∣2
j+1.

But

�τ∗/h�−1∑

j=0

Aj+1

≤ |u0 − a|2q0
+ L1,V τ ∗ R√

α0

(
R√
α0

+ |a|
)2

. (20)

Indeed, for all j ∈ {0, . . . ,≤ ñ − 1}:
Aj+1 = |uj − a|2j+1 − |uj+1 − a|2j+1

= |uj − a|2j − |uj+1 − a|2j+1

+ t (uj − a)(Mj+1 − Mj)(uj − a)

≤ |uj − a|2j − |uj+1 − a|2j+1

+ hLV,1
R√
α0

(
R√
α0

+ |a|
)2

.

By Lemma 5, we have

Bj+1 = e2

(1 + e)2
|uj+1 − uj |2j+1 ≤ e2

(1 + e)2
C0,1h,

∀j ∈ {0, . . . , ñ − 1},
thus

�τ∗/h�−1∑

j=0

Bj+1 ≤ e2

(1 + e)2
C0,1τ

∗. (21)

Next we obtain an estimate of Cj+1 for all j ∈
{0, . . . , ñ − 1}: we have

Cj+1 = 2e

1 + e

〈
a− 1

1 + e
(uj+1 +euj ), uj −uj+1

〉

j+1
.

Since a ∈ V (qj+1) and

uj+1 + euj

1 + e
= Pj+1(xj ),

we have
〈
xj − uj+1 + euj

1 + e
, a − 1

1 + e
(uj+1 + euj )

〉

j+1
≤ 0,

and since

xj − uj+1 + euj

1 + e
= uj − uj+1

1 + e
+ h

1 + e
M−1

j+1fj+1

we obtain
〈

1

1 + e
(uj − uj+1), a − 1

1 + e
(uj+1 + euj )

〉

j+1

≤
〈

h

1 + e
M−1

j+1fj+1,

1

1 + e

(
uj+1 − a + e(uj − a)

)〉

j+1
.

It follows that
〈

1

1 + e
(uj − uj+1), a − 1

1 + e
(uj+1 + euj )

〉

j+1

≤ h
Cf,W

(1 + e)

(
R√
α0

+ |a|
)

and thus

�τ∗/h�−1∑

j=1

Cj+1 ≤ 2eτ ∗Cf,W

(1 + e)

(
R√
α0

+ |a|
)

. (22)

Finally, for all j ∈ {0, . . . , ñ − 1}:

Dj+1 = 2h

1 + e
fj+1.(uj − a)

+
(

h

1 + e

)2

|M−1
j+1fj+1|2j+1,

thus

|Dj+1| ≤ 2h

1 + e
Cf,W

(
R√
α0

+ |a|
)

+ h2C2
f,W

(1 + e)2α0

and

�τ∗/h�−1∑

j=0

|Dj+1|

≤ 2τ ∗

1 + e
Cf,W

(
R√
α0

+ |a|
)

+ hτ ∗C2
f,W

(1 + e)2α0
. (23)

By combining (18)–(19) and (20)–(23) we may con-
clude. �

We infer that the sequence (un)n≥n0 is uniformly
bounded and bounded in variation on [0, τ ∗]. By

13



Helly’s theorem, possibly by extracting a subse-
quence still denoted (qn,un)n≥n0 , there exists v ∈
BV (0, τ ∗;E) such that

un(t) −→ v(t) ∀t ∈ I∗ = [0, τ ∗].
Since we want to obtain bvem velocities (see Defini-
tion 1), we define

u(t) = 1

1 + e

(
v+(t) + ev−(t)

)
, ∀t ∈ [0, τ ∗].

Of course we make the usual conventions for the val-
ues of v at τ ∗ and 0, i.e., v−(0) := v(0) and v+(τ ∗) :=
v(τ ∗). Let us observe that v(0) = limn→+∞ un(0) =
u0 and that u±(t) = v±(t) for all t ∈ (0, τ ∗). So u ∈
bvem(I ∗;E). Moreover, since (qn)n≥n0 strongly con-
verges to q in C0

([0, τ ∗];E) and

qn(t) = q0 +
∫ t

0
un(s) ds

∀t ∈ I ∗ = [0, τ ∗], ∀n ≥ n0

we obtain in the limit

q(t) = q0 +
∫ t

0
u(s) ds ∀t ∈ I ∗

and so q admits a derivative (in the classical sense) al-
most everywhere in [0, τ ∗] and q̇(t) = u(t) for almost
every t ∈ [0, τ ∗].

3.2 Variational inequality

In the line of [2], we now prove the following propo-
sition:

Proposition 2 (Variational inequality) Let 0 ≤ s ≤
t ≤ τ ∗ and assume that z ∈ V (y) for all y in a neigh-
bourhood ω of q([s, t]). Then

∫ t

s

[
f (ξ, q,p) · (z − v) +

(
dM

dq
v

)
v ·
(

z − 1

2
v

)]
dξ

≤ (
M
(
q(t)

)
v(t) − M

(
q(s)

)
v(s)

) · z

− 1

2

(∣∣v(t)
∣∣2
q(t)

− ∣∣v(s)
∣∣2
q(s)

)
. (24)

Proof From the uniform convergence of the sequence
(qn)n≥n∗ to q we infer that there exists an integer n1

such that qn([s, t]) ⊂ ω for all n ≥ n1. For all n ≥ n1

we denote by (tn,i )
k
i=j the discretization nodes that

belong to (s, t] i.e. tn,j−1 ≤ s < tn,j ≤ · · · ≤ tn,k ≤
t < tn,k+1. Since qn([s, t]) ⊂ ω, we deduce that z ∈
V (qn,i+1) for all j − 1 ≤ i ≤ k − 1. We recall that

1

1 + e
(un,i+1 + eun,i)

= Pn,i+1

(
un,i + h

1 + e
M−1

n,i+1fn,i+1

)
.

By definition of the projection operator we have
〈
hM−1

n,i+1fn,i+1 − un,i+1 + un,i , (1 + e)z

− (un,i+1 + eun,i)
〉
n,i+1 ≤ 0.

Thus
〈
hM−1

n,i+1fn,i+1, (1 + e)z
〉
n,i+1

− 〈
hM−1

n,i+1fn,i+1, un,i+1 + eun,i

〉
n,i+1

≤ (1 + e)
〈
un,i+1 − un,i , z

〉
n,i+1

− 〈un,i+1 − un,i , un,i+1 + eun,i〉n,i+1.

We develop each member of the right-hand side:

〈un,i+1 − un,i , z〉n,i+1

= (Mn,i+1un,i+1 − Mn,i+1un,i) · z
= (Mn,i+1un,i+1 − Mn,iun,i) · z

− (Mn,i+1 − Mn,i)un,i · z
− 〈un,i+1 − un,i , un,i+1〉n,i+1

= −〈un,i+1, un,i+1〉n,i+1 + 〈un,i+1, un,i〉n,i+1

= −|un,i+1|2n,i+1 − 1

2

[|un,i+1 − un,i |2n,i+1

− |un,i |2n,i+1 − |un,i+1|2n,i+1

]

= −1

2
|un,i+1|2n,i+1 − 1

2
|un,i+1 − un,i |2n,i+1

+ 1

2
|un,i |2n,i+1

= −1

2
|un,i+1|2n,i+1 − 1

2
|un,i+1 − un,i |2n,i+1

+ 1

2
|un,i |2n,i + 1

2
(Mn,i+1 − Mn,i)un,i · un,i .

Similarly

−〈un,i+1 − un,i , eun,i〉n,i+1

= −e〈un,i+1, un,i〉n,i+1 + e|un,i |2n,i+1
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= e

2

[|un,i+1 − un,i |2n,i+1 − |un,i+1|2n,i+1

− |un,i |2n,i+1

]+ e|un,i |2n,i+1

= e

2

[|un,i+1 − un,i |2n,i+1 − |un,i+1|2n,i+1

+ |un,i |2n,i+1

]

= e

2

[|un,i+1 − un,i |2n,i+1 − |un,i+1|2n,i+1 + |un,i |2n,i

+ (Mn,i+1 − Mn,i)un,i · un,i

]
.

It follows that

−〈un,i+1 − un,i , un,i+1 + eun,i〉n,i+1

= −(1 + e)

2

[|un,i+1|2n,i+1 − |un,i |2n,i

]+ Ai

with

Ai = 1 + e

2
(Mn,i+1 − Mn,i)un,i · un,i

+ e − 1

2
|un,i+1 − un,i |2n,i+1.

As e ∈ [0,1] we have

(1 + e)〈un,i+1 − un,i , z〉n,i+1

− 〈un,i+1 − un,i , un,i+1 + eun,i〉n,i+1

≤ (1 + e)

[
(Mn,i+1un,i+1 − Mn,iun,i) · z

− 1

2

(|un,i+1|2n,i+1 − |un,i |2n,i

)]

− (1 + e)(Mn,i+1 − Mn,i)un,i ·
(

z − un,i

2

)
.

Next we obtain

hfn,i+1 ·
(

z − un,i+1 + eun,i

1 + e

)

+ (Mn,i+1 − Mn,i)un,i ·
(

z − un,i

2

)

≤ (Mn,i+1un,i+1 − Mn,iun,i) · z

− 1

2

(|un,i+1|2n,i+1 − |un,i |2n,i

)

which yields

k−1∑

i=j−1

hfn,i+1 ·
(

z − un,i+1 + eun,i

1 + e

)

+
k−1∑

i=j−1

(Mn,i+1 − Mn,i)un,i ·
(

z − un,i

2

)

≤ (Mn,kun,k − Mn,j−1un,j−1) · z

− 1

2

(|un,k|2n,k − |un,j−1|2n,j−1

)
. (25)

Then we prove that

Lemma 7 We have the following convergence:

k−1∑

i=j−1

hfn,i+1 ·
(

z − 1

1 + e
(un,i+1 + eun,i)

)

→
h→0

∫ t

s

f
(
ξ, q(ξ),p(ξ)

) · (z − v(ξ)
)
dξ.

Proof For all n ≥ n0 let us define the function fh by

fh :
{

[0, τ ∗] → E = R
d

t �→ fn,i+1 if t ∈ [tn,i , tn,i+1) ∩ [0, τ ∗]
and let

A =
⋃

n∈N∗

{
tn,i := ih; h = T

n
, i ∈ N

}
.

The set A is countable hence it is a negligible set for
Lebesgue’s measure and the function fh is a measur-
able step function. We will prove that

fh →
h→0

f
(
ξ, q(ξ),M

(
q(ξ)

)
v(ξ)

) ∀ξ ∈ [0, τ ∗] \ A.

Let ξ ∈ [0, τ ∗] \ A and h = T
n

with n ≥ n0. There
exists i ∈ N such that ξ ∈ (tn,i , tn,i+1) and

fh(ξ) = fn,i+1 = f
(
tn,i+1, qn,i+1,M(qn,i+1)un,j (i)

)
.

First we consider the explicit case, we recall that

un,j (i) = un,i = un(ξ).

We have
∣∣fh(ξ) − f

(
ξ, q(ξ),M

(
q(ξ)

)
un(ξ)

)∣∣

= ∣∣f
(
tn,i+1, qn,i+1,M(qn,i+1)un(ξ)

)

− f
(
ξ, q(ξ),M

(
q(ξ)

)
un(ξ)

)∣∣

≤ ∣∣f
(
tn,i+1, qn,i+1,M(qn,i+1)un(ξ)

)

− f
(
ξ, qn,i+1,M(qn,i+1)un(ξ)

)∣∣
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+ ∣∣f
(
ξ, qn,i+1,M(qn,i+1)un(ξ)

)

− f
(
ξ, q(ξ),M

(
q(ξ)

)
un(ξ)

)∣∣

≤ ωf (h) + Lf,2
∣∣qn,i+1 − q(ξ)

∣∣

+ Lf,3
∥∥M(q(ξ)) − M(qn,i+1)

∥∥∣∣un(ξ)
∣∣,

where ωf denotes the continuity modulus of f on
W = [0, T ]×B̄(q0,R)×B̄(0, R√

α0
) and Lf,2 and Lf,3

are the Lipschitz constants of f with respect to its sec-
ond and third arguments on W . But

∣
∣q(ξ) − qn,i+1

∣
∣

= ∣∣q(ξ) − qn(tn,i+1)
∣∣

≤ ∣∣q(ξ) − qn(ξ)
∣∣+ ∣∣qn(ξ) − qn(tn,i+1)

∣∣

≤ ‖q − qn‖C0([0,τ∗];Rd ) + R√
α0

h.

Since (qn,un)n≥n0 converges uniformly×pointwise to
(q, v) on [0, τ ∗] and M is continuous, we obtain

fh(ξ) → f
(
ξ, q(ξ),M

(
q(ξ)

)
v(ξ)

) ∀ξ ∈ [0, τ ∗]\A.

In the implicit case

un,j (i) = un,i+1 = un(ξ + h).

We infer from Lemma 5 that

∣∣un(ζ + h) − v(ζ )
∣∣

≤ ∣∣un(ζ + h) − un(ζ )
∣∣+ ∣∣un(ζ ) − v(ζ )

∣∣

≤
(

C0,1

α0
h

)1/2

+ ∣∣un(ζ ) − v(ζ )
∣∣

for all ζ ∈ [0, τ∗ −h] and for all n ≥ n0. It follows that
un(ζ + h) → v(ζ ) for all ζ ∈ [0, τ ∗) and with similar
computations as in the explicit case, we prove that

fh(ξ) → f
(
ξ, q(ξ),M

(
q(ξ)

)
v(ξ)

) ∀ξ ∈ [0, τ ∗)\A.

Since v(ξ) = u(ξ) for all ξ ∈ [0, τ ∗] \ F where F

is a negligible set with respect to Lebesgue’s measure
(F is included in the set of discontinuity points of v,
which is countable) we get finally in both cases

fh(ξ) → f
(
ξ, q(ξ),M(q(ξ))u(ξ)

)

∀ξ ∈ [0, τ ∗) \ (A ∪ F).

Then, observing that

k−1∑

i=j−1

hfn,i+1 ·
(

z − 1

1 + e
(un,i+1 + eun,i)

)

=
∫ tn,k

tn,j−1

fh(ξ) ·
(

z − 1

1 + e

(
un(ξ + h)

+ eun(ξ)
))

dξ

we may conclude by means of Lebesgue’s theorem. �

Next, recalling that the function un is constant on
the subintervals [tn,i , tn,i+1), i ∈ {0, . . . , ñ − 1}, we
have
∫ tn,i+1

tn,i

d

dt

[
M
(
qn(t)

)
un(t).

(
z − 1

2
un(t)

)]
dt

= (Mn,i+1 − Mn,i)un,i ·
(

z − 1

2
un,i

)
,

and

k−1∑

i=j−1

(Mn,i+1 − Mn,i)un,i ·
(

z − 1

2
un,i

)

=
∫ tn,k

tn,j−1

(
dM

dq

(
qn(ξ)

)
un(ξ)

)
un(ξ)

·
(

z − 1

2
un(ξ)

)
dξ.

Using Lebesgue’s theorem once more, we obtain
∫ tn,k

tn,j−1

(
dM

dq

(
qn(ξ)

)
un(ξ)

)
un(ξ) ·

(
z − un(ξ)

2

)
dξ

→
∫ t

s

(
dM

dq

(
q(ξ)

)
v(ξ)

)
v(ξ) ·

(
z − v(ξ)

2

)
dξ.

Finally it remains to study the convergence of the
right-hand side of (25). We have

(Mn,kun,k − Mn,j−1un,j−1) · z

− 1

2

(|un,k|2n,k − |un,j−1|2n,j−1

)

= (
M(qn,k)un(t) − M(qn,j−1)un(s)

) · z

− 1

2

(t
un(t)M(qn,k)un(t)

− t un(s)M(qn,j−1)un(s)
)
.
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But
∣
∣qn,k − q(t)

∣
∣ = ∣

∣qn(tn,k) − q(t)
∣
∣

≤ ‖q − qn‖C0([0,τ∗];Rd ) + R√
α0

h

and similarly
∣∣qn,j−1 − q(s)

∣∣ = ∣∣qn(tn,j−1) − q(s)
∣∣

≤ ‖q − qn‖C0([0,τ∗];Rd ) + R√
α0

h.

Since the mapping M is continuous and (un)n≥n0 con-
verges pointwise to v on [0, τ ∗] we get
(
M(qn,k)un(t) − M(qn,j−1)un(s)

) · z
→

n→∞
(
M
(
q(t)

)
u(t) − M

(
q(s)

)
u(s)

) · z,

and

1

2

(t
un(t)M(qn,k)un(t) − t un(s)M(qn,j−1)un(s)

)

→
n→∞

1

2

(∣∣v(t)
∣∣2
q(t)

− ∣∣v(s)
∣∣2
q(s)

)

which concludes the proof. �

3.3 Absolutely continuous motion

Let μ be the measure defined by dμ = |du| + dt and
u′

μ(resp. t ′μ) be the density of the measure du (resp. dt)

with respect to the non-negative measure dμ. By Jef-
fery’s theorem [4] we know that there exists a dμ-
negligible set N such that, for all t ∈ [0, τ ∗] \ N :

t ′μ(t) = lim
ε→0+

dt ([t, t + ε])
dμ([t, t + ε]) ,

= lim
ε→0+

ε

dμ([t, t + ε]) ,

u′
μ(t) = lim

ε→0+
du([t, t + ε])
dμ([t, t + ε]) .

Let N ′ = {t ∈ I ∗; v(t + 0) = v(t − 0) �= v(t)}; it is a
negligible set with respect to the measure dμ. Now we
can prove that

Proposition 3 Let t ∈ [0, τ ∗) \ N ∪ N ′ and assume
that u is continuous at t . Then

f
(
t, q(t),p(t)

)
t ′μ(t) − M

(
q(t)

)
u′

μ(t)

∈ NV (q(t))

(
u(t)

)
.

Proof Let z be in the interior of V (q(t)). The lower
semicontinuity of the map q �→ V (q) and the continu-
ity of the map t �→ q(t) on L ∪ S̃ imply that z ∈ V (y)

for any y in a neighbourhood of q([t, t + ε]) for suf-
ficiently small ε. Thanks to the variational inequality
on the interval Jε = [t, t + ε] we get
∫ t+ε

t

[
f (ξ, q,p) · (z − v)

+
(

dM

dq
v

)
v ·
(

z − 1

2
v

)]
dξ

≤ (
M
(
q(t + ε)

)
v(t + ε) − M

(
q(t)

)
v(t)

) · z

−
(

1

2

∣∣v(t + ε)
∣∣2
q(t+ε)

− 1

2

∣∣v(t)
∣∣2
q(t)

)
. (26)

Since u is continuous at t we have u(t + 0) = u(t −
0) = u(t), thus u(t + 0) = v(t + 0) = u(t − 0) =
v(t −0) = u(t) = v(t) since t �∈ N ′. We choose (εi)i∈N

such that εi ↓ 0+ and u(t + εi) = v(t + εi) = u(t +
εi + 0) for all i ∈ N and we multiply (26) by 1

dμ(Jεi
)
=

εi

dμ(Jεi
)

1
εi

. When εi tends to zero the left-hand side
converges to

t ′μ(t)

[
f
(
t, q(t),p(t)

) · (z − u(t)
)

+
(

dM

dq

(
q(t)

)
u(t)

)
u(t) ·

(
z − 1

2
u(t)

)]
.

Next we consider the right-hand side, where the first
term becomes

1

dμ(Jεi
)

[
M
(
q(t + εi)

)
u(t + εi) − M

(
q(t)

)
u(t)

] · z

= M(q(t))du(Jεi
) · z

dμ(Jεi
)

+ 1

dμ(Jεi
)

[∫ t+εi

t

dM

dq

(
q(s)

)
u(s) ds

]

× u(t + εi) · z
→εi→0 M

(
q(t)

)
u′

μ(t) · z

+ t ′μ(t)

(
dM

dq

(
q(t)

)
u(t)

)
u(t) · z.

Now we rewrite the second term of the right-hand side
as
∣∣u(t + εi)

∣∣2
q(t+εi )

− ∣∣u(t)
∣∣2
q(t)

= M
(
q(t + εi)

)
u(t + εi) · u(t + εi)

17



− M
(
q(t)

)
u(t).u(t)

= M
(
q(t + εi)

)
u(t + εi) · du(Jεi

)

+ M
(
q(t)

)
du(Jεi

).u(t)

+
(∫ t+εi

t

dM

dq

(
q(s)

)
u(s) ds

)
u(t + εi) · u(t).

(27)

We divide by 2dμ(Jεi
) and, in the limit, we obtain

M
(
q(t)

)
u′

μ(t) · u(t)

+ t ′μ(t)

(
dM

dq

(
q(t)

)
u(t)

)
u(t) · u(t)

2
.

It follows that

[
f
(
t, q(t),p(t)

)
t ′μ(t)

− M
(
q(t)

)
u′

μ(t)
] · (z − u(t)

)≤ 0

∀z ∈ Int
(
V
(
q(t)

))

and we may conclude by density of the interior in the
cone V (q(t). �

3.4 Impacts characterization

We are now interested in discontinuities of the veloc-
ity. First, we observe that, as in the inelastic case (see
[2]), this can only happen when the left velocity is not
admissible, since:

Lemma 8 If t0 ∈ (0, τ ∗) is such that v−(t0) ∈
V (q(t0)), then v−(t0) = v+(t0).

Proof Let z ∈ Int(V (q(t0))); then z also belongs to
V (y), for all y in a neighbourhood of q([t0 − ε, t0 +
ε]), if ε is small enough. We apply the variational in-
equality on [t0 − ε, t0 + ε], and when ε tends to zero
we get

M
(
q(t0)

)(
v+(t0) − v−(t0)

) · z

− 1

2

(∣∣v+(t0)
∣∣2
q(t0)

− ∣∣v−(t0)
∣∣2
q(t0)

)≥ 0.

By density, the same inequality holds for all z ∈
V (q(t0)). By choosing z = v−(t0) we obtain

∣∣v+(t0) − v−(t0)
∣∣2
q(t0)

≤ 0

which leads to v+(t0) = v−(t0). �

When t = 0 we have

v−(0) = v(0) = lim
n→+∞un(0) = u0 ∈ V

(
q(0)

)

= V (q0).

Thus, with the same arguments we obtain v+(0) =
v−(0) = u0 and thus the initial conditions are satis-
fied.

Let us consider now t0 ∈ (0, τ ∗) such that v−(t0) �∈
V
(
q(t0)

)
. We infer immediately that q(t0) ∈ ∂L. For

the sake of simplicity, let us denote from now on
v+ = v+(t0), v− = v−(t0) and M0 = M(q(t0)). Since
u±(t0) = v±(t0), we have to prove that

v+ = −ev− + (1 + e)projq(t0)

(
v−,V

(
q(t0)

))
. (28)

In the next lemma we establish that, if n is large
enough, the approximate positions saturate the con-
straint at least once in a given neighbourhood of t0.

Lemma 9 There exists η0 > 0 such that, for all η ∈
(0, η0], there exists nη ≥ n0 such that, for all n ≥ nη,
there exists i0 ∈ {i, . . . , k} such that V (qn,i0) �= E,

where tn,i , . . . , tn,k are the discretization nodes that
belong to (t0 − η, t0 + η].

Proof Let ε = |v+−v−|
6 > 0. By definition of v+ and

v− there exists η0 > 0 such that [t0 − η0, t0 + η0] ⊂
[0, τ ∗] and
∣
∣v(t0 + η) − v(t0 + 0)

∣
∣< ε,

∣∣v(t0 − η) − v(t0 − 0)
∣∣< ε,

∀η ∈ (0, η0].
Without loss of generality, we may assume that

η0 <
α0ε

3Cf,W

.

Let η ∈ (0, η0]. Since (un)n≥n0 converges pointwise
to v on [0, τ ∗], there exists nη ≥ n0 such that for all
n ≥ nη

∣∣un(t0 + η) − v(t0 + η)
∣∣< ε,

∣
∣un(t0 − η) − v(t0 − η)

∣
∣< ε.

Without loss of generality, we may assume that h =
T
n

≤ η for all n ≥ nη. It follows that

2ε = |v+ − v−|
3

<
∣∣un(t0 + η) − un(t0 − η)

∣∣

∀n ≥ nη, ∀η ∈ (0, η0].
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If we assume that V (qj ) = E for all j ∈ {i, . . . , k},
then

∣∣un(t0 + η) − un(t0 − η)
∣∣

= |un,k − un,i−1|

≤
k∑

j=i

|un,j − un,j−1| =
k∑

j=i

∣∣hM−1
n,j fn,j

∣∣

≤ 3ηCf,W

α0
< ε

and we reach a contradiction. �

From now on, let us consider η ∈ (0, η0] and
n ≥ nη. In view of the previous result, we may de-
fine i0 as the first “discrete impact” on (t0 − η, t0 + η]
i.e.,

ti0 = min
{
tj ∈ (t0 − η, t0 + η] ;V (qn,j ) �= E

}
.

First we estimate the distance between v− and the
last discrete velocity before the “discrete impact” at
time ti0 :

Lemma 10 We have
∣∣∣∣un,i0−1 + h

1 + e
M−1

n,i0
fn,i0 − v−

∣∣∣∣

≤ 4

α0
ηCf,W + ∣∣un(t0 − η) − v−∣∣. (29)

Proof Indeed
∣∣∣∣un,i0−1 + h

1 + e
M−1

n,i0
fn,i0 − v−

∣∣∣∣

≤ h

α0
Cf,W + ∣∣un,i0−1 − un(t0 − η)

∣∣

+ ∣
∣un(t0 − η) − v−∣∣.

But

∣∣un(t0 − η) − un,i0−1
∣∣

= |un,i−1 − un,i0−1| ≤
i0−1∑

j=i

|un,j − un,j−1|

=
i0−1∑

j=i

h|M−1
n,j fn,j | ≤ 3η

α0
Cf,W

since V (qn,j ) = E for all j ∈ {i, . . . , i0 − 1}. �

Then, the continuity properties of the projection op-
erator, the uniform Lipschitz continuity of (qn)n≥1 and
the uniform convergence of (qn)n≥n0 to q on [0, τ ∗]
yield

Lemma 11 Let ε > 0. Then, there exists ηε ∈ (0, η0]
such that, for all η ∈ (0, ηε], there exists nη,ε ≥ nη

such that

|ũ − un,i0 | < ε ∀n ≥ nη,ε,

where ũ = −ev− + (1 + e)projq(t0)
(v−,V (q(t0)).

Proof We just need to observe that the projection op-
erator is defined by

projy
(
x,V (y)

)

= x − max
(
0, x · ∇g(y)

)

t∇g(y)M−1(y)∇g(y)
M−1(y)∇g(y)

for all (x, y) ∈ E2 if g(y) ≥ 0 and ∇g(y) �= 0. So,
there exists δ > 0 such that

∀x ∈ B(v−, δ), ∀y ∈ B̄
(
q(t0), δ

)

g(y) ≥ 0 =⇒
∣
∣projy

(
x,V (y)

)− projq(t0)

(
v−,V (q(t0)

)∣∣≤ ε

1 + e
.

Then we consider ηε ∈ (0, η0] such that

R√
α0

ηε ≤ δ

2
,

4

α0
ηεCf,W ≤ ε

2(1 + e)

and, for all η ∈ (0, ηε], we define nη,ε ≥ nη such that

‖q − qn‖C0([0,τ∗];E) ≤ δ

2
∀n ≥ nη,ε,

∣∣un(t0 − η) − v−∣∣≤ ε

2(1 + e)
.

We conclude by applying the previous lemma. �

Next we estimate the variation of the discrete ve-
locities after the first discrete impact.

Lemma 12 Let ε ∈ (0,1]. There exists a positive con-
stant C such that

k∑

j=i0+1

|un,j − un,j−1|qn,j
≤ Cε (30)
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for all n large enough.

Proof Let ε ∈ (0,1]. Let a ∈ E be defined by

a = ũ − ε
1

t∇g(q(t0))M−1(q(t0))∇(q(t0))

× M−1(q(t0)
)∇(q(t0)

)
.

Observing that ũ = −eprojq(t0)
(v−,N∗

L(q(t0)))

+ projq(t0)
(v−,V (q(t0))) ∈ V (q(t0)), we get

Bq̃

(
a,

ε

2

)
⊂ intV (q̃), |ũ − a|q̃ = ε.

Then, for all u ∈ B̄q(t)(a, ε/2) we have

∇g
(
q(t)

) · u
≤ −ε

∣∣∇g
(
q(t0)

)∣∣∗
q(t0)

+ ε

2

∣∣∇g
(
q(t0)

)∣∣∗
q(t)

+ ε

2
√

α0

∣
∣∇g

(
q(t)

)− ∇g
(
q(t0)

)∣∣

and the continuity of the mappings t �→ ∇g(q(t)) and
t �→ M−1(q(t)) implies that there exists δ > 0 such
that

B̄q

(
a,

ε

2

)
⊂ V (q) ∀q ∈ B̄(q̃, δ).

We apply the previous lemma to define ηε and nη,ε for
all η ∈ (0, ηε].

Let η ∈ (0,min(ε, ηε)] and n ≥ nη,ε . We recall that
tn,i0+1, . . . , tn,k are the discretization nodes after ti0
which belong to (t0 − η, t0 + η].

Then for all j ∈ {i0 + 1, . . . , k} we have |qn,j −
q(t0)| < δ. By using the definition of the numerical
scheme

|un,j − un,j−1|qn,j

= (1 + e)

∣∣∣∣−un,j−1

+ Pn,j

(
un,j−1 + h

1 + e
M−1

n,j fn,j

)∣∣∣∣
qn,j

≤ (1 + e)
∣∣−xn,j−1 + Pn,j (xn,j−1)

∣∣
qn,j

+ h
∣∣M−1

n,j fn,j

∣∣
qn,j

(31)

with

xn,j−1 = un,j−1 + h

1 + e
M−1

n,j fn,j .

We apply Moreau’s lemma to obtain

∣∣xn,j−1 − Pn,j (xn,j−1)
∣∣
qn,j

≤ 1

ε

(|xn,j−1 − a|2qn,j
− |Pn,j (xn,j−1) − a|2qn,j

)

and with the same computations as in Proposition 1 we
get

∣∣xn,j−1 − Pn,j (xn,j−1)
∣∣
qn,j

≤ 1

ε
[Aj + Bj + Cj + Dj ]

with

Aj = |un,j−1 − a|2qn,j
− |un,j − a|2qn,j

,

Bj = e2

(1 + e)2
|un,j − un,j−1|2qn,j

,

Cj = 2e

1 + e

〈
a − Pn,j (xn,j−1), un,j−1 − un,j

〉
qn,j

,

Dj = 2

〈
un,j−1 − a,

h

1 + e
M−1

n,j fn,j

〉

qn,j

+ h2

(1 + e)2

∣∣M−1
n,j fn,j

∣∣2
qn,j

.

Hence

k∑

j=i0+1

Aj ≤ |un,i0 − a|2qn,i0

+ h(k − i0)LV,1
R√
α0

(
R√
α0

+ |a|
)2

.

But

|un,i0 − a|2qn,i0

≤ |un,i0 − a|2q(t0)
+ LV,1

∣∣qn,i0 − q(t0)
∣∣|un,i0 − a|2

≤ |un,i0 − a|2q(t0)

×
(

1 + LV,1

α0

(
‖q − qn‖C0([0,τ∗];E) + R√

α0
η

))

and

|un,i0 − a|q(t0) ≤ |un,i0 − ũ|q(t0) + |ũ − a|q(t0)

≤ ε

(
1√
α0

+ 1

)
.
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Hence

k∑

j=i0+1

Aj

≤ ε2
(

1√
α0

+ 1

)2

×
(

1 + LV,1

α0

(
‖q − qn‖C0([0,τ∗];E) + R√

α0
η

))

+ LV,1
R√
α0

(
R√
α0

+ |a|
)2

η.

Moreover

k∑

j=i0+1

Bj ≤ e2

(1 + e)2
C0,1h(k − i0) ≤ e2

(1 + e)2
C0,1η,

k∑

j=i0+1

Cj ≤ 2e

1 + e
Cf,W

(
R√
α0

+ |a|
)

h(k − i0)

≤ 2e

1 + e
Cf,W

(
R√
α0

+ |a|
)

η,

and

k∑

j=i0+1

|Dj | ≤ 2h

1 + e
Cf,W

(
R√
α0

+ |a|
)

η

+ h2C2
f,W

(1 + e)2α0
η.

By combining these estimates with (31) we obtain the
announced result. �

Finally, for all ε > 0 and for all η ∈ (0,min(ε, ηε)]
such that |v+ − v(t0 + η)| < ε, we have

∣∣v+ − ũ
∣∣ ≤ ∣∣v+ − un(t0 + η)

∣∣

+ |un(t0 + η) − un,i0 | + |un,i0 − ũ|
≤ ∣∣v+ − un(t0 + η)

∣∣

+ 1√
α0

k∑

j=i0+1

|un,j − un,j−1|qn,j

+ |un,i0 − ũ|

≤ ∣∣v+ − un(t0 + η)
∣∣+

(
C√
α0

+ 1

)
ε

≤
(

C√
α0

+ 2

)
ε + ∣∣v(t0 + η) − un(t0 + η)

∣∣

for all n ≥ nη,ε . Passing to the limit as n tends to +∞,
then as ε tends to zero, we may conclude that

u+ = v+ = ũ

= −eu− + (1 + e)projq(t0)

(
v−,V

(
q(t0)

))
.

4 Global convergence result

In the previous sections we have already established
a local convergence result for the proposed scheme.
Now we will prove that the convergence holds on a
time interval which depends only on the data. First we
recall the following property of the solutions of the
Cauchy problem.

Proposition 4 (Energy estimate) If R > |u0|q0 , there
exists τ(R) > 0 such that, for any solution (q,u) of the
Cauchy problem defined on [0, τ̃ ],τ̃ ∈ (0, T ] we have

∣∣u(t)
∣∣
q(t)

≤ R,
∣∣q(t) − q0

∣∣≤ R

∀t ∈ [0,min
(
τ̃ , τ (R)

)]
.

Proof See Lemma 7.1 in [13]. �

As a consequence, if we denote by (qn′ , un′)n′ a
subsequence of the approximate solutions converging
to a solution (q,u) of the Cauchy problem on [0, τ̃ ∗],
we have

∣∣u(t)
∣∣
q(t)

≤ R,
∣∣q(t) − q0

∣∣≤ R

∀t ∈ [0,min
(
τ̃ ∗, τ (R)

)]

for all R > |u0|q0 . Next we infer a more precise esti-
mate on the discrete velocities.

Lemma 13 Let R > |u0|q0 , and let (qn′ , un′)n′ be a
subsequence of the approximate solutions converging
to a solution (q,u) of the Cauchy problem on [0, τ̃ ∗].
Then,

lim sup
h→0

sup
{∣∣un,i

∣
∣
qn,i

;0 ≤ tn,i ≤ min
(
τ̃ ∗, τ (R)

)}

≤ ess sup
{∣∣u(t)

∣∣
q(t)

;0 ≤ t ≤ min
(
τ̃ ∗, τ (R)

)}
.
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Proof We prove this result by contradiction. So, let us
assume that there exists ε > 0 such that

lim sup
h→0

λh ≥ λ + 2ε

with

λh′ = sup
{|un,i |qn,i

;0 ≤ tn,i ≤ min
(
τ̃ ∗, τ (R)

)}
,

∀h′ = T

n′

and

λ = ess sup
{∣∣u(t)

∣∣
q(t)

;0 ≤ t ≤ min
(
τ̃ ∗, τ (R)

)}
.

So, there exists a subsequence, still denoted λh′ , and
there exists an integer i′ not larger than n(h′) =
�min(τ̃ ∗, τ (R))/h′� such that

λh′ = |un′,i′ |qn′,i′ ≥ λ + ε ∀h′ = T

n′ .

We denote ti′ = i′h′ ∈ [0, τ̃ ∗]. Possibly extracting
another subsequence, we may assume without loss
of generality that (ti′)h′>0 converges to a limit t∗ ∈
[0, τ̃ ∗]. With the estimates obtained in lemma 1, we
have

|un′,i′ |qn′,i′ ≤ |un′,j |qn′,j + (tn′,i′ − tn′,j )Ra,

∀j ∈ {0, . . . , i′} (32)

with Ra = L
Ṽ ,2R

2

α
Ṽ

+ C
f,W̃√
α

Ṽ
with Ṽ = B̄(q0,R), W̃ =

[0, T ] × B̄(q0,R) × B̄(0, R√
α

Ṽ
).

Thus

λ + ε ≤ |un′,i′ |qn′,i′ ≤ |un′,0|qn′,0 + tn′,i′Ra

∀h′ > 0. (33)

But

|un′,0|qn′,0 = |u0|q0 = lim
t→0+

∣∣u(t)
∣∣
q(t)

≤ λ

and passing to the limit as h′ tends to zero in (33), we
infer that t∗ > 0.

Now (32) implies that

λ + ε

2
≤ |un′,j |qn′,j ∀tn′,j ∈

[
tn′,i′ − ε

4Ra

, tn′,i′
]

.

Since (tn′,i′)h′>0 converges to t∗ > 0, there exists ñ′ ∈
N

∗ such that [t∗ − ε
8Ra

, t∗ − ε
16Ra

] ⊂ [tn,i′ − ε
4Ra

, tn,i′ ]

for all n′ ≥ ñ′ and thus |un′,j |qn′,j ≥ λ + ε
2 if tn′,j ∈

[t∗ − ε
8Ra

, t∗ − ε
16Ra

]. Since |un(t)|qn(t) converges to
|u(t)|q(t) for almost every t in [0, τ̃ ∗] we infer that

ess sup

{∣∣u(t)
∣∣
q(t)

;max

(
0, t∗ − ε

8Ra

)
< t

< min

(
t∗ − ε

16Ra

, τ ∗
)}

≥ λ + ε

2

and we get a contradiction with the definition of λ. �

Then we obtain:

Proposition 5 Let R > |u0|q0 and τ(R) > 0 be such
that, for any solution (q,u) of the Cauchy problem de-
fined on [0, τ̃ ], τ̃ ∈ (0, T ] we have

∣∣u(t)
∣∣
q(t)

≤ R,
∣∣q(t) − q0

∣∣≤ R

∀t ∈ [0,min
(
τ̃ , τ (R)

)]
.

Then, there exists a subsequence of the approximate
solutions (qn,un)n≥1 which converges to a solution
(q,u) of the Cauchy problem on [0,min(T , τ (R))].

Proof We already know that there exists τ ∗ ∈ (0, T ]
and a subsequence of the approximate solutions, still
denoted (qn,un)n≥n0 , which converges on [0, τ ∗] to a
solution (q,u) of the Cauchy problem.

Let R > |u0|q0 . Of course, if min(T , τ (R)) ≤ τ ∗
the result is immediate. So let us assume now that
min(T , τ (R)) > τ ∗. By proposition 4 we have

∣∣u(t)
∣∣
q(t)

≤ R,
∣∣q(t) − q0

∣∣≤ R

∀t ∈ [0,min
(
τ ∗, τ (R)

)]= [0, τ ∗].
Applying Lemma 13, we get

lim sup
h→0

sup
{|un,i |qn,i

;0 ≤ tn,i ≤ τ ∗}

≤ ess sup
{∣∣u(t)

∣∣
q(t)

;0 ≤ t ≤ τ ∗}≤ R,

so there exists h̃ > 0 such that

sup
{|un,i |qn,i

;0 ≤ tn,i ≤ τ ∗}≤ R + 1

2
,

∀h ∈ (0, h̃
]
.

Since (qn)n≥n0 converges uniformly to q on [0, τ ∗],
possibly by decreasing h̃, we also have |qn(t) − q0| ≤
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R + 1
2 for all t ∈ [0, τ ∗]. Let now R1 = R + 1, V1 =

B̄(q0,R1) and let α1, β1 and δ1 be as in (8) and in
Lemma 3, with respect to V1. Let h ∈ (0, h̃] and let
tn,i0 ∈ (τ ∗ − 2ε, τ ∗ − ε) with τ∗

4 > ε > 0. We have

|qn,i0 − q0| ≤ R + 1

2
, |un,i0 |qn,i0

≤ R + 1

2
,

and we reproduce the construction proposed in Lem-
ma 1 with V1 instead of V and q̃0 = qn,i0 , ũ0 = un,i0

instead of q0 and u0. We obtain

|q̃n,i − q̃0| = |qn,i0+i − qn,i0 | ≤ h

i−1∑

j=0

|un,i0+j |

≤ ihR1√
α1

≤ 1

2

if ih ≤
√

α1

2R1

and

|ũn,i0+i+1|qn,i0+i+1 − |ũn,i0+i |qn,i0+i

h

≤ L
Ṽ ,2

α1
|ũn,i0+i |2qn,i0+i

+ Cf,W1√
α1

with

W1 = [0, T ] × B̄(q0,R1) × B̄

(
0,

R1√
α1

)
.

We can compare |un,i0+i |qn,i0+i
to the solution θ̃ of the

following Cauchy problem:

⎧
⎪⎨

⎪⎩

dθ̃
dt

= k1θ̃
2 + k2,

θ̃ (0) = R + 1

2
with k1 = L

Ṽ ,2

α1
, k2 = Cf,W1√

α1
,

which is given by

θ̃ (t) =
√

k1

k2
tan
(√

k1k2t + C
)

with C = Arctan

(√
k1

k2

(
R + 1

2

))

.

Then we have

|un,i0+i | ≤ 1√
α1

|un,i0+i |i0+i ≤ θ̃ (ih)√
α1

if ih ≤
√

α1

2R1
.

So we choose τ̃ ∗ > 0 such that

0 < τ̃ ∗ ≤
√

α1

2R1
,

R1τ̃
∗

√
α1

≤ δ1 and

(34)
θ̃ (τ̃∗) ≤ R1.

Then there exists h̃∗ > 0, depending only on R1 and
the data (see (11)), such that the fixed point technique
of Lemma 1 allows us to construct (qn,i0+i , un,i0+i )

for all ih ∈ [0, τ̃ ∗] and for all h ∈ (0, h̃∗], and

|un,i0+i |qn,i0+i
≤ R1, |qn,i0+i − q0| ≤ R1,

|qn,i0+i − qn,i0 | ≤ min

(
1

2
, δ1

)
.

Moreover, reproducing the same computations as in
Proposition 1, with R1, W1 and δ1 instead of R, W

and δ, we obtain a uniform estimate for the discrete
accelerations of the extended approximate solutions. It
follows that we can extend the convergence property to
[0,min(τ∗ − 2ε + τ̃ ∗, T )]. By choosing ε ∈ (0, τ̃ ∗/4),
we obtain τ ∗ − 2ε + τ̃ ∗ ≥ τ ∗ + τ̃ ∗/2 and, by means
of a finite number of extensions, we finally obtain the
convergence on [0,min(τ (R),T )]. �
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