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A hybrid approach for computing products of high-dimensional geometric algebras
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Geometric Algebra is considered as a very intuitive tool to deal with geometric problems and it appears to be increasingly e cient and useful to deal with computer graphics solutions. For example, the Conformal Geometric Algebra includes circles, spheres, planes and lines as algebraic objects, and intersections between these objects are also algebraic objects. More complex objects such as conics, quadric surfaces can also be expressed and be manipulated using an extension of the conformal Geometric Algebra. However due to high dimension of their representations in Geometric Algebra, implementations of Geometric Algebra that are currently available do not allow e cient realizations of these objects. is paper presents a Geometric Algebra implementation dedicated for both low and high dimensions.

e proposed method is a hybrid solution for precomputed code with fast execution and runtime computations with low memory requirement. More speci cally, the proposed method combines a precomputed table approach with a recursive method using binary trees. Some rules are de ned to select the most appropriate choice, according to the dimension of the algebra and the type of multivectors involved in the product. e resulting implementation is well suited for high dimensional spaces (e.g. algebra of dimension 15) as well as for lower dimensional space. is paper details the integration of this hybrid method as a plug-in into Gaalop, which is a very advanced optimizing code generator. is paper also presents some benchmarks to show the performances of our method, especially in high dimensional spaces.

INTRODUCTION

Geometric algebras can be understood as a set of very intuitive tools to represent, construct and manipulate geometric objects. Some works [START_REF]Geometric Algebra for Computer Science, An Object-Oriented Approach to Geometry[END_REF][START_REF]Foundations of Geometric Algebra Computing[END_REF][START_REF]Geometric Algebra and its Application to Computer Graphics[END_REF][START_REF]Geometric algebra with applications in engineering[END_REF] proved that Geometric Algebra can be used very advantageously in computer graphics and computer vision. Other works [START_REF]Double conformal geometric algebra[END_REF] and [START_REF]non-degenerate dupin cyclides in the space of spheres using geometric algebra[END_REF] show that geometric algebra can be used to express and transform more complex objects such as conics and quadrics.

ere already exists numerous geometric algebra implementations, and most of the programming languages or famous mathematical frameworks can nd a geometric algebra library well suited for a comfortable use. However, very few of these libraries can handle computations in high dimensional spaces, i.e. more than 12. Moreover, the huge size of the subspace generated by high dimensional spaces makes these few libraries very slow to process. is paper presents a new method based on binary trees and tables that e ciently computes Geometric Algebra for both low and higher dimensional spaces.

e key feature of the proposed method is to assign the computation to either the binary tree or the table according to the dimension of the multivectors involved in the product.

e paper is organized as follows: Section 2 presents a state of the art of the main geometric algebra implementations. Section 3 discusses the implementation constraints related to high dimensional spaces. Section 4 describes the proposed hybrid method. Finally, Section 5 details the integration of the hybrid approach as a plug-in into Gaalop, a very advanced geometric algebra tool.

STATE OF THE ART

ere exist various implementations of geometric algebra, each of them dedicated for a speci c use. Some of these implementations are designed to t to a speci c framework as a plug-in. is is the case for the library CLIFFORD [START_REF]Using periodicity theorems for computations in higher dimensional cli ord algebras[END_REF] developed by Rafal Ablamowicz and Bertfried Fauser, based on Maple. More recently, Steve Sangwine and Eckhard Hitzer developed a Multivector Toolbox [START_REF]Cli ord multivector toolbox (for MATLAB)[END_REF] for Matlab. Maxima also nds its Cli ord Algebra implementation [START_REF]Cli ord algebra implementation in maxima[END_REF] presented by Dimiter Prodanov. Some implementations of geometric algebra target a speci c programming language like GAlgebra [START_REF] Galgebra | [END_REF] for Python or GALua [START_REF] Galua | [END_REF] for Lua. Versor [START_REF]Spatial computing with conformal geometric algebra[END_REF] developed by Pablo Colapinto is a C++ library that focuses on 5D conformal geometry. CLUCalc [START_REF]CLUCal/CLUViz interactive visualization[END_REF], conceived and wri en by Christian Perwass handles more general geometric algebras. Finally, Gaalet [START_REF] W¨ | Gaalet-a c++ expression template library for implementing geometric algebra[END_REF] proposed by Florian Seybold, standing for Geometric Algebra ALgorithms Expression Template, is also a C++ library and uses expression templates and metaprogramming techniques.

All these libraries present a comfortable use in their dedicated framework or programming language and are very well suited for experimentations in geometric algebra. Some other libraries expressly focus on computation performance. e main way to speed up the process is to precompute a selection of geometric algebra operations. e level of optimization can range from very high but quite static to less optimized with more exibility. e most optimized libraries perform most of the computation during the compilation stage from a simple high level language.

e optimizations are obtained by a low level source code generation as well as with some symbolic optimizations in terms of algebra. e most advanced program in this category is certainly Gaalop [START_REF]Geometric algebra enhanced precompiler for C++, OpenCL and Mathematica's OpenCLLink[END_REF][START_REF]Foundations of Geometric Algebra Computing[END_REF] developed by Dietmar Hildenbrand et al. Gaalop, standing for Geometric Algebra Algorithms Optimizer, uses symbolic operations wri en in CLUCalc to produce C++, C++ AMP (Accelerated Massive Parallelism), OpenCL, CUDA, CLUCalc or La-TeX optimized output. GMac [START_REF]Optimized automatic code generation for geometric algebra based algorithms with ray tracing application[END_REF] developed by Ahmad Hosny Eid is also a very optimized library for geometric algebra. GMac stands for Geometric MACro, and is closely coupled with .NET languages like C++, C#, VB.NET, F#, and IronPython. GMac presents advanced conception and implementation, but it is not open source. ese compilation optimizations produce a very optimized code dedicated for a speci c task, however they are not well suited for runtime computation where the operations are not decided in advance.

A more exible way to use geometric algebra consists in using libraries where the product between some multivectors with dened grade or structure are optimized. Typically, products between homogeneous multivectors (non-zero vector basis with same grade) can be hardcoded. is is the case for Gaigen [START_REF]Geometric Algebra for Computer Science, An Object-Oriented Approach to Geometry[END_REF][START_REF]Gaigen 2:: a geometric algebra implementation generator[END_REF] presented by Daniel Fontijne. Gaigen stands for Geometric Algebra Implementation GENerator and can produce C++, C, C# and Java source code which implements a geometric algebra with a speci ed dimension and metric. e geometric algebra products are computed at run time using the hard coded functions. Exotic multivectors (part of non-homogeneous multivectors) are computed with a general class that presents a lower optimization level. Breuils et al. [START_REF]A geometric algebra implementation using binary tree[END_REF] introduce a similar library that produces hard coded products in C++ code with SIMD instructions, leading to higher performances.

HIGH DIMENSIONS

Geometric algebra in a large sense includes many algebras among which Conformal Geometric Algebra (CGA) is certainly one of the most studied [START_REF]Geometric algebra with applications in engineering[END_REF]. CGA is built from 5 dimensional vector space, and thus includes 2 5 = 32 basis vectors. Although some people consider 32 components per multivector to be already high, some studies are conducted to explore higher dimensions. Easter and Hitzer [START_REF]Double conformal geometric algebra[END_REF] represent some quartics and quadrics 3-d shapes using a double conformal geometry of R 3 . Extending this process to a triple conformal geometry would lead to a 15 dimensional algebra containing 2 15 = 32, 768 elements. For such geometry, the memory requirement for optimized libraries explodes far beyond consumer grade hardware capabilities. More regular approaches lead to very long processing time. is section gives some details about this memory and processing time issues, as well as an e cient solution for this problem.

Geometric algebra products

e geometric product, the inner product and the outer product between 2 multivectors a and b are distributive over the addition and can conceptually be computed by iterating over the components of both a and b. For conciseness purpose, we limit our description to the outer product but the overall method remains true for the geometric product and the inner product. e outer product c = a ∧ b can be expressed as:

c = 2 d -1 k =0 c k E k = 2 d -1 i=0 a i E i ∧ 2 d -1 j=0 b j E j (1) 
where E i refers to a basis vector, i.e E i ∈ {1, e 1 , e 2 , e 3 , e 12 , ...}. Each pair {a i , b j } leads to a computed element that contributes to the nal value of c, and should be assigned to the adequate basis vector of c, namely E k = ± E i ∧ E j . is assignment can be decided either by a precomputed table that requires some memory space or by a function that requires some additional processing time.

Table based methods

An e cient way to compute the geometric algebra products is to use precomputed 2D-tables indicating the result of the products between any basis blades. is approach can be used by Gaalop. A product between two multivectors a and b consists of a loop over each basis blades present in the two multivectors. For each couple {a i , b j }, the program refers to the table to know where to put the result. Although this approach is simple and e ective, it includes some useless operations. Indeed, the outer product between dependent basis blades (e.g. e 1 ∧ e 12 ) requires a table access and are discarded if the table says so. e pseudo-code of this approach is presented on Algorithm 1. In the worst case, each basis blade product is a constant time algorithm, however, this Algorithm 1: Product using the table based method.

Input: multivectors: A and B, Table : T and S, Dimension of the algebra: d Output: resulting multivector: C

1 for i from 0 to 2 d -1 do 2 if A[i] non-zero blade then 3 for j from 0 to 2 d -1 do 4 if B[j] non-zero blade then 5 index ← T [i, j] 6 if index null then // i.e. ae i ∧ be j 0 7 si n ← S[i, j] 8 C[index] += si n × A[i] × B[j]
product can be optimized by storing the multivector components in a list, which may speedup the loops of lines 1 and 3. e main drawback of this approach is the memory consumption of the where to put the result and a sign (sometimes, the result is negative). Moreover, geometric algebra involves at least 3 products (geometric, outer and inner products), leading to at least 3 tables. If we assume that the sign and index are stored in a signed integer of 6 bits, then the size of the tables would be 2 5 × 2 5 × 6 × 3 ≈ 18 kbits. However this would be a lower bound. Indeed, a product between two basis basis blades might result in a sum of basis blades, as encountered in Conformal Geometric Algebra. us, in practice, the tables contain a structure element that may enclose more than one index and sign.

In order to estimate the precise memory requirement of the table based methods, we ran a pro ler on Gaalop. In a 5-dimensional space, Gaalop requires 1.1 MB of memory and requires 710 MB for dimension 10. According to the progression of a O (4 d ) memory complexity, we can infer that for a dimension 11, the table size will occupy more than 2 GB memory and for a dimension 15, it would be around 360 GB. is memory requirement becomes a critical issue for high dimensional spaces.

Function based methods

Iterative methods.

During the product between a and b, the access to a table can be replaced by a call of a function that speci es where to put the result of a product between an element of a and an element of b. In practice, this approach just changes lines 5 and lines 7 of Algorithm 1. Gaalop as well as Gaigen propose this kind of functions, based on logical operations on a binary representation of the basis vectors. Another function, also based on binary operators, is required to specify the sign of a product contribution. Breuils et al. introduce a faster sign computation function [START_REF]A geometric algebra implementation using binary tree[END_REF] derived from [START_REF]Implementing geometric algebra products with binary trees[END_REF]. e library CLIFFORD [START_REF]Using periodicity theorems for computations in higher dimensional cli ord algebras[END_REF] uses linear algebra to decompose and compute each product. is decomposition makes possible to handle high dimensional space computations. Moreover, the authors extend this program to a parallel version in [START_REF] Steinmetz | On parallelizing the cli ord algebra product for CLIFFORD[END_REF].

Recursive methods.

Fuchs and éry [START_REF]Implementing geometric algebra products with binary trees[END_REF] present a method to recursively compute the products and [START_REF]A geometric algebra implementation using binary tree[END_REF] gives some implementation elements. Each product is represented by a recursive function scanning a binary tree whose leaves de ne the basis vectors of the considered algebra.

e multivectors product thus takes the following recursive form:

a ∧ b = a 1 , a 0 ∧ b 1 , b 0 (2) 
where the subscript a 0 or a 1 respectively refers to the right and le subtree of a. e recursive outer product starts with the iteration n = 0 and is de ned as:

if n < d, a n ∧ b n = a n+1 1 ∧ b n+1 0 + a 0 n+1 ∧ b n+1 1 , a n+1 0 ∧ b n+1 0 n if n = d, a n ∧ b n = a d ∧ b d (3) 
where a expresses the anticommutativity of the outer product. As showed in [START_REF]A geometric algebra implementation using binary tree[END_REF], this method avoids useless products like outer product between dependent basis blade, resulting in a complexity of

O (3 d ) instead of O (4 d ).
is complexity enhancement has a huge e ect in high dimensional spaces.

To handle sparse multivectors, Fuchs and éry propose to use unbalanced binary trees where the subtrees leading to leaves with coe cient set to 0 are removed. A recursive call leading to nodes without subtrees is immediately discarded, as presented in Algorithm 2. Note that for clarity purpose, Algorithm 2 omits sign computations.

Algorithm 2: Recursive outer product (unbalanced binary tree)

1 Function wedge Input: C: resulting binary tree, A, B: binary tree 

2 if A is a leaf then 3 C += A × B // (×

HYBRID APPROACH

We propose a new hybrid approach combining the table based approach of Gaalop [START_REF]Geometric algebra enhanced precompiler for C++, OpenCL and Mathematica's OpenCLLink[END_REF] with the recursive approach [START_REF]A geometric algebra implementation using binary tree[END_REF][START_REF]Implementing geometric algebra products with binary trees[END_REF].

Recursive method revisited

is section focuses on the recursive method and more speci cally on how to minimize the number of conditionals in the recursive products. Indeed, a recursive call from a recursion level to the next involves some tests on the existence of subtrees, i.e. line 5, 7 and 9 of Algorithm 2 for the outer product. We express this set of conditions as a deterministic nite automaton with boolean transitions according to the existence of le subtree a 1 and right subtree a 2 of the current node a (respectively for b). As an example, the automaton of the outer product is depicted in Figure 1. To each nal state of the automaton is associated a subset of the set of products of equation ( 3), except for state 5 where no product is required. We remark that in the worst case four conditionals are required but less in the average case. For example, if we consider that a 2 and b 2 are non-null binary tree whereas a 1 and b 1 are null binary subtrees, then the control ow will be formed of two conditional instead of four.

Table and recursive method hybridization

e table method developed in this paper is a restructured version of the table based approach described in Section 3.2. Instead of looping over two multivectors, the proposed algorithm uses the recursive algorithm presented in section 4.1 and switch to the table based method when the recursive call reaches the leaves level of the trees.

e pseudo-code of our method is presented in Algorithm 3 for the outer product, where the function outerRecursiveFlow(a 0 , a 1 , b 0 , b 1 ) recursively calls the function outerHybrid with the automaton process of section 4.1.

e Algorithm 3 enables the two following properties:

• to compute the per-blade product in constant time.

• to avoid useless products, for example, outer product between dependent basis blade. However, this method still requires the storage of a table whose size is 4 d , where d is the dimension.

Dimension restrictions

To x the issue raised above, we limit the table size to a decided threshold. us, the table will be used only for the computation between elements that are represented in the table. e remaining computation will be performed by the fully recursive process. : T and S Output: resulting binary tree:

C 2 if A is a leaf then 3 i ← A.index 4 j ← B.index 5 index ← T [i, j] 6 si n ← S[i, j] 7 C[index] += si n × A × B
// (product of scalars) 1: Gaalop memory occupation, including tables. e threshold dimension is decided such that the memory used for the table does not exceed a certain limit. To know the memory requirement of the tables in real conditions, we use the results of our pro ling tests conducted on Gaalop. e generated tables concern outer, geometric and inner products between the general multivectors. We tested the memory occupation of the leading program for di erent dimensions ranging from 5 to 10. e results are depicted in Table 1.

Firstly, the Table 1 shows high memory occupation in 5-dimensional space compared to the low bound previously computed. is could be explained by the fact that Gaalop is doing symbolic algebra, not optimized to the bit level. us, each entry of the table stores an expression for evaluation in symbolic computing rather than mere bits, therefore this memory optimization becomes crucial even at smaller dimensions than a mere numerical implementation. From this table we can also infer that for a dimension greater than 10, the occupation of all the program will be greater than 1GB. Indeed, the occupation is roughly multiplied by 4 at each incrementation of the dimension. us, in 11-dimensional space, the memory occupation would be 2.8 GB and dimension 15 would require around 360 GB.

Select table components

Once the size of the table is decided, we have to decide which basis blade will be represented in the table. Firstly, we assume that the basis blades of the table are in grade-ascending order. Here is an example of this order in a 3-dimensional Euclidean space:

1, e 

In the average case, the bigger the grade of a basis blade, the higher will be the number of products between these two basis blades. To prove this, we consider the geometric product between two basis blades A and B with respective grade k and l. ese two basis blades will be denoted as A k and B l which is the notation used by Perwass in [START_REF]Geometric algebra with applications in engineering[END_REF]. e geometric product of these two basis blades is:

AB = A k B l |k -l | + A k B l |k -l |+2 + • • • + A k B l k +l -2 + A k B l k +l (5)
us, the number of elements is bounded above by:

k + l -|k -l | (6) 
Now suppose that we increase the grade of A and the grade of B by i and j respectively (i, j ∈ N). e grade of A is now k + i and the grade of B is l + j. en from Equations ( 5) and ( 6), the new number of elements is upper bounded by:

k + l + i + j -(k -l ) + (i -j) (7) 
From the triangle inequality, we get an upper bound on the number of elements of lower grade:

(k -l ) + (i -j) ≤ |k -l | + |i -j | (8) 
e la er inequality leads to a new upper bound to the number of elements:

k + l + i + j -|k -l | + |i -j | (9) 
By di erence between the two upper bounds of Equation ( 9) and ( 6), we get the following formula:

i + j + |i -j | (10) 
If i < j then |i -j | = -i + j and Equation ( 10) becomes:

i + j -(i -j) = 2j (11) 
When i > j, then |i -j | = ij and Equation ( 10) is:

i + j + (i -j) = 2i (12) 
We get the same result if i = j.

is result shows that when the grade of the basis blades increases, the number of elements increases. Furthermore, the per-blade product of the table approach is computed in constant time, regardless of the grade of the multivectors. us, in the average case, it will be more e cient to use the table based approach for highest graded multivectors than for low graded multivectors.

INTEGRATION INTO GAALOP

e resulting implementation was integrated into Gaalop as a plugin that includes the fully recursive approach explained in Section 4.1, the table computations presented in Section 4.2 and the hybrid approach explained in Section 4. For the la er approach, we rst need to set the thresholds. Firstly, the threshold dimension is determined such that the memory used for the table does not exceed a limit. In the case of Gaalop, this limit is the heap size of the JVM, i.e. the total size of the table is set to 1GB. e limit dimension will thus be set to 10. From this limit dimension, the size of the table is thus 4 10 . Secondly, the components of the table are the elements whose index are greater 2 d -2 10 . en, all the basis blades whose grade are higher than the grade of 2 d -2 10 will be computed using the To test our Plug-in, we compare it to the table based approach. Firstly, we test the memory occupation of our binary tree approach with the table based approach in the worst case. is worst case corresponds to the full binary tree (2 d non-null leaves). We compute the inner, geometric and outer product for dimensions ranging from 6 to 15, and run a memory pro ler on the resulting programs. We also run the pro ler on the binary tree program. All the results are detailed in Table 2. We can observe that in 10-dimensional space, the occupation of the table approach is 10 times greater than the binary tree approach.

is factor can be explained by the fact that we also pro le our binary tree approach for higher dimensional spaces from 11 to 15, see Table 3. Finally, we compared the runtime performance of our binary hybrid method compared to the iterative methods of section 3.3.1 for dimensions ranging from 5 to 15. e results show that the hybrid method is 9 times faster in a 15-dimensional space. is gain is higher for the outer product that is 30 times faster in 15-dimensional space.

CONCLUSION

In this paper, we presented a new Geometric Algebra implementation with a hybrid design between precomputations with tables and on-the-y computations with a recursive binary tree. e program selects the rst or the second method according to the dimension of the algebra and the grade of multivectors. Some tests were performed in high dimensional spaces and demonstrate the be er performance of the proposed method, both in terms of memory and speed computation.

e resulting implementation was integrated into Gaalop as a Plug-in. As future work, we would like to extend our approach to handle higher dimension applications, namely higher than 15.
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	Dimension	6	7	8	9	10
	Table (KB)	53 198 816 3,283 12,732
	Binary tree (KB) 8.1 18	38	71	131

Table 2 :

 2 Binary tree and table memory occupation

	Dimension	11	12	13	14	15
	Binary tree (KB) 258 524 1,031 2,108 4,124

Table 3 :

 3 Binary tree memory occupation for dimensions from 11 to 15