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1 INTRODUCTION

Magnetic non destructive methods are widely used in the industries of steel since magnetic behavior
demonstrates a good sensitivity to the microstructural and/or mechanical changes. It is well known
that plastic deformations lead to a sharp degradation of the magnetic properties of ferromagnetic ma-
terials (strong decrease of susceptibility, increase of hysteresis losses) especially for weak plastic
strain levels [1] . Therefore, Magnetic method can be potentially used to evaluate the plastic state of a
material. This evaluation requires an accurate model as principal part of the non destructive procedure.
This model has to predict the magnetic behavior of the material involved. It must on the other hand
demonstrate low computation time to allow "on line" inverse identification of the mechanical and
metallurgical state. Such magneto-mechanical modeling is proposed. It is based on the so-called mul-
tidomain model. Plasticity is introduced through internal stress characterizing heterogenous biphasic
structure. It is shown that kinematic hardening can be estimated by magnetic measurements.

2 MECHANICAL MODELING

This modeling must respect time constraints inherent with the calculation specifications for NDE.
Thus, the micro-macro approach commonly used in mechanics should be avoided. The modeling pro-
posed requires first the calculation of residual stress fields considering the material as a two phased
material as initially proposed by Mughrabi [2]. The effect of plastic deformation on the macrosco-
pic magnetic behavior is supposed to correspond to an average effect of the residual stresses on the
magnetic behavior of each phase.

2.1 Composite model
At the macroscopic scale, we consider a representative volume element (RVE) consisting of two
phases: a soft phase s and a hard phase h, meaning that s phase exhibits a lower yield stress and
strengthening than the h phase. f

s

and f
h

indicate the volume fraction of s and h phases. The RVE
is submitted to an elastoplastic stress tensor ⌃. Ee, Ep and E denote the elastic, plastic and total
deformation tensors respectively so that :

E = Ee + Ep = C�1⌃+ Ep (1)

where C indicates the stiffness tensor of the medium supposed isotropic and homogeneous whatever
the phase. The same decomposition can be made for each phase:
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Macroscopic stress and deformation ⌃ and E are given by:
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The local stress is given on the other hand by the Hill’s relationship [3] so that:
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h

) (4)

where C⇤ indicates the Hill’s constraint tensor.
Because of isotropic elasticity, the plastic deformation tensors verify:
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s

✏p
s

+ f
h

✏p
h

(5)

so that it is possible to define two residual stress tensors D
s

and D
h

satisfying:
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2.2 Correlation with kinematic hardening
On the other hand the plastic straining of a material is suitably described by the yield function f which
can be expressed as function of the macroscopic deviatoric stress tensor S 1, yield stress ⌃

y

, isotropic
R and kinematic X hardening components [4]:

f(⌃) =

r
3

2
(S�X) : (S�X)� ⌃

y

�R (8)

assuming that the strengthening is suitably described by a von Mises criterion. X tensor is a non
linear function of the plastic strain tensor Ep (9), related to the position of the yield function (f = 0)
in the stress space and representative of heterogeneous and multiaxial residual stress field within the
material.

Ẋ = g(Ėp) (9)
Coming back to the previous decomposition in soft and hard phases, it can be shown that the kinematic
hardening is directly associated to the residual stress within the soft phase, so that:

D
s

= �3

2
X (10)

Assuming that the volume fraction of hard and soft phases are known, an experimental estimation of
the quantity X allows to define the stress field within the two phases.

3 MAGNETIC MODELING [5]

The multidomain modeling is a two-scales (domain ↵ and grain g) reversible modeling allowing the
prediction of the magneto-mechanical behavior of isotropic polycrystals. Based on an energetic mi-
nimization, this model can predict the magneto-mechanical behavior of single crystal submitted to
a magnetic field ~H and/or uniaxial stress � applied along a same direction ~n

c

defined by angles �
c

and ✓
c

of the spherical frame. This direction is restricted to the standard triangle defined by crystal-
lographical directions < 100 >, < 110 > and < 111 >: cubic symmetry means that at any loading
direction, there is a corresponding direction in this triangle. Uniform strain and field hypotheses are
used over the crystal and domain walls contribution to the total energy is neglected [6]. Thanks to
an analytical minimization of the total energy of each domain ↵, it is possible to express constitutive
laws for the evolution of magnetization angles of each domain and of the volumetric fraction f

↵

, as
function of magnetic field, stress, and loading direction parameters (see [5] for more details). Average
magnetization and magnetostriction (11) are projected along the loading axis ~n

c

leading to the beha-
vior of the single crystal M(H,�) and ✏µ

//

(H,�) (12). We assume on the other hand that because all
possible loading directions are restricted to the standard triangle, the behavior of an isotropic poly-
crystal is necessarily given by a loading along a specific direction inside the triangle. Since behaviors
are not linear, this direction is not the average direction and is theoretically changing with stress or
magnetic field level. We consequently make the assumption that this change is small enough to be
neglected. To simulate the magnetic behavior of a magnetic material, parameters to be identified are

1. with S = ⌃� 1
3 tr(⌃)I; I: identity tensor.
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of the specific direction and A
s

(as an adjustment parameter).

~M =
X

↵

f
↵

~M
↵

✏µ =
X

↵

f
↵

✏µ
↵

(11)
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We consider now a plastified material composed of hard (h) and soft (s) phases. We suppose on the
other hand that macroscopic stress ⌃, kinematic hardening X and volume fraction of s and h phases
are known. The stress field within the two phases is consequently defined (�

s

,�
h

). Considering finally
homogeneous magnetic field condition and assuming that the magnetic behavior of each phase is
known, a mixing law allows the estimation of the magneto-mechanical behavior of the whole material:
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Magnetization and magnetostriction of the s and h phases can be modeled separately thanks to the
multidomain modeling.
A first step is to get the parameters of each phase (loading axis and constant A

s

). A second step is
to change the multiaxial stresses �

s

and �
h

into uniaxial magneto-mechanical equivalent stresses
according to the direction of the magnetic loading. We use for that purpose the simplified equivalent
stress recently defined in [7]:

�eq

i

=
3

2
t~nS

i

~n (15)

Index i indicates s or h phase. S
i

is the deviatoric tensor associated to �
s

and �
h

respectively. ~n
indicates the direction of the magnetic loading.

4 EXPERIMENTAL VALIDATION: TENSILE STRENGTHENING

4.1 Experimental protocol
A dual phase steel is used for the study. Its microstructure consists of about 30%vol of hard martensite
islands dispersed in a soft and ductile ferritic matrix. As a first approximation, the martensite does not
play any significant role in the magnetic behavior. The ferritic matrix can be considered as pure iron.
The stress-strain ⌃(E) behavior of the material is carried out and unloading/reloading tests permit
to estimate the kinematic X and isotropic R hardenings as function of the plastic strain Ep thanks
to a Cottrell’s method. An experimental protocol permits to inspect the magnetic state as function
of plastic straining.The prestrained samples are submitted to an increasing level of tensile stress.
Magnetic and magnetostrictive measurements are performed. Figures 1.a et 1.b show respectively
the evolution of the magnetic and magnetostrictive behaviors of the sample prestrained at 3% and
reloaded at various stress levels indicated in the figure. We observe that a critical stress ⌃�

c

(resp. ⌃µ

c

)
allows to recover the initial magnetic (resp. magnetostrictive ) behavior of the material.
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FIG. 1 – Anhysteretic magnetic (a) and parallel magnetostrictive (b) behaviors of the sample pres-
trained at 3% and reloaded at different stress levels
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4.2 Comparison between experiments and modeling
Let consider a tensile loading of axis ~x leading to an axial plastic deformation Ep. The material can
be reloaded along the same direction. The macroscopic plastic strain tensor is constant, diagonal and
deviatoric, as well as the kinematic hardening. The stress tensors are:
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Considering on the other hand a magnetic loading along ~x axis, the magneto-mechanical equivalent
stresses in s is �eq

s

= ⌃� 9
4X and in h is �eq

h

= ⌃+ fs

fh

9
4X .

The following points can be highligthed:
– At zero applied stress, we observe that the s phase is submitted to compression, the h phase to

traction. This result joins the hypotheses of Cullity [1] in order to interpret the results carried
out on a plastic strained iron-silicon alloy (the h phase was actually corresponding to the grain
boundaries of the material).

– In order to annul the equivalent stress in the s phase, a tensile stress must be superimposed
⌃0 =

9
4X . The equivalent stress in the h phase is non zero: �eq

h

= ⌃0
fh

6= 0.
This result joins the experimental observations of Iordache [8] observed on Fe-3%Si. The h phase
corresponding to the grain boundaries of the material does not participate to the magnetic behavior
although the stress in the h phase is high. The reason is that the volume fraction of grain boundaries
is negligible compared to the volume fraction of matrix.

Ep ⌃�

c

(MPa) ⌃µ

c

(MPa) ⌃0 (MPa)
0.001 180 80 225
0.01 300 260 405
0.03 380 340 540

TAB. 1 – Recovery stresses - experimentaly estimated (⌃�

c

,⌃µ

c

) and foreseen by the model (⌃0).

Table 1 includes the recovery stresses as experimentally estimated (⌃�

c

,⌃µ

c

) and predicted by the mo-
del (⌃0). Values of ⌃�

c

and ⌃µ

c

are in accordance. The recovery stress predicted by the model is
excessive. Another interpretation is that kinematic hardening measured thanks to Cortell’s method is
not accurate. Magnetic method leads to another evaluation (e.g. ✏p = 0,03, X = 4

9(⌃
�

c

+ ⌃µ

c

)12 =
160MPa± 18).

5 CONCLUSION

The experimental procedure presented in this study allows a qualitative validation of a multidomain
modeling applied to the plastic straining thanks to a composite model. The role of martensite in the
magnetic behavior should be taken in account for a better result. Nevertheless this model is not able
to predict the influence of plastic deformation on coercive field or hysteresis losses since the pinning
effect due to the metallurgical defects is not considered. Magnetic measurement appears finally as an
interesting way to evaluate the kinematic hardening in magnetic materials.
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