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Abstract. The main goal of this paper is to evaluate the potential of
some combinations of watershed hierarchies. We also propose a new com-
bination based on merging level sets of hierarchies. Experiments were
performed on natural image datasets and were based on evaluating the
segmentations extracted from level sets of each hierarchy against the
image ground truths. Our experiments show that most of combinations
studied here are superior to their individual counterparts, which opens
a path for a deeper investigation on combination of hierarchies.
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1 Introduction

In this work, we investigate combinations of watershed hierarchies through their
saliency maps. Other approaches can be found in the literature, such as [6, 14].

Figure 1 provides an example of two different watershed hierarchies, an area-
based one and a dynamics-based one, and their combination, which are built from
successive filterings of an initial watershed segmentation. Hierarchies are repre-
sented thanks to their saliency maps [1, 3, 4, 7, 11], i.e., edge-weighted graphs
which comprise information of hierarchical contours. We observe that the sky is
oversegmented at high levels in the first hierarchy and that the beach ground is
oversegmented in the second hierarchy, but this is balanced by their combina-
tion. This observation is general, and no hierarchy is optimal for a whole image.
We expect combinations of hierarchies to perform better, as illustrated for in-
stance in [4], where the authors have shown that a simple combination of area
and dynamics-based watershed hierarchies produces better visual results than
the individual hierarchies.

The main contributions of this paper are:

– Investigation of combinations of hierarchies through their saliency maps us-
ing supremum, infimum, linear combination and concatenation functions;
and

? This work is partially supported by the Labex Bézout.
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Fig. 1. First row from left to right: original image, saliency map and the 50th highest
level set of area based hierarchy. Second row from left to right: saliency map and the
50th highest level sets of dynamics and the combination of area and dynamics based
hierarchies.

– Evaluation of supervised and unsupervised combinations of watershed hier-
archies.

The plan of the paper is the following. We first review basic notions on
hierarchies and saliency maps and present several ways for combining hierarchies
(section 2). Then we describe our assessment methodology in section 3. The
evaluation results and improvement of combinations compared to the individual
watershed hierarchies are described in section 4.

2 Combination of hierarchies

In this section, we give the notations needed to define combinations of hierarchies
through saliency maps and the types of combinations investigated here.

2.1 Hierarchy of Quasi Flat Zones and Saliency Map

This section presents the formal definitions of graphs, hierarchy of partitions,
quasi-flat zones hierarchy and saliency map.

A graph is a pair G = (V,E), where V is a finite set and E is a set of
unordered pairs of distinct elements of V , i.e., E ⊆ {{x, y} ⊆ V, x 6= y}. Each
element of V is called a vertex or a point (of G), and each element of E is called
an edge (of G).

Let G = (V,E) be a graph. Let X be a subset of V . A sequence π =
〈x0, . . . , xn〉 of elements of X is a path (in X) from x0 to xn if, for any i in
{1, . . . , n}, {xi−1, xi} is an edge of G. The subset X of V is said to be connected
if for any x and y in X, there exists a path from x to y. A subset X of V is a
connected component of G if X is connected and, if, for any connected subset Y
of V , if X ⊆ Y , then we have X = Y . The set of connected components of a
graph G is denoted by C(G).
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Let V be a set. A partition of V is a set P of non empty disjoint subsets of
V whose union is V . If P is a partition of V , any element of P is called a region
of P. Given a graph G = (V,E), the set C(G) of all connected components of G
is a partition of V .

Let V be a set and let P1 and P2 be two partitions of V . We say that P1

is a refinement of P2 if every element of P1 is included in an element of P2. A
hierarchy (of partitions) is a sequence H = (P0, . . . ,Pn) of partitions of V such
that Pi−1 is a refinement of Pi, for any i in {1, . . . , n} and such that Pn = {V }.
A partition of a hierarchy H is called a level set of the hierarchy.

Let G be a graph, if w is a map from the edge set of G to the set R+ of
positive real numbers, then the pair (G,w) is called an (edge-)weighted graph.
If (G,w) is an edge-weighted graph, for any edge u of G, the value w(u) is called
the weight of u (for w).

Important notation. In the sequel of this article, we consider a weighted
graph (G,w). We assume that the vertex set of G is connected. We also denote
by W the range of w, i.e., the set {w(u) | u ∈ E} and by W• the set W∪{k+1},
where k is the greatest value of W.

Let λ be any element in R. We denote by Gλ the graph (V,Eλ) such that
Eλ = {e ∈ E | w(e) < λ}. The set C(Gλ) of all connected components of Gλ is
called the λ-level partition of G. The sequence

QFZ(w) = (C(Gλ) | λ ∈W•) (1)

is a hierarchy called the Quasi-Flat Zones hierarchy of w.
The saliency map of a hierarchy H = (P0, . . . ,Pn) is a map from E to

{0, . . . , n}, denoted by Φ(H), such that, for any edge e = {x, y} in E, we
have Φ(H)(e) is the greatest value i in {0, . . . , n} such that x and y do not
belong to the same region of Pi.

In [4], the authors provide a bijection between saliency maps and hierarchies
based on quasi-flat zones hierarchies. Hence, a hierarchy is equivalently repre-
sented by its saliency map, a property that is particularly useful in the remaining
part of this article.

Note also that, for visualization purposes, when the graph G is associated to
a digital image [3, 4, 7, 11], saliency maps can be visualized with images, called
ultrametric contour maps in [1], in which the contours brightness is proportional
to their saliency values.

2.2 Generic scheme of combination of hierarchies

Combining partitions and, a fortiori, hierarchies is not straightforward. This
problem has been tackled in [2, 4, 7] thanks to the use of saliency maps and
we follow the same approach as used in those papers. More precisely, in order
to combine two hierarchies H1 and H2, built from the same fine partition,
we proceed in three steps [2, 7, 4]: first the saliency maps of H1 and H2 are
considered, then the two saliency maps are combined to obtain new weights on
the edges of G, and, finally, the combination of hierarchies is the quasi-flat zones
hierarchy of the new weight function.
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Let F be the set of all maps from E into R+. Let n be any positive integer,
any map c from Fn into F is called a combining n-weight function.

Given a sequence of hierarchies (H1, . . . ,Hn) and a combining n-weight func-
tion c, the combinations of (H1, . . . ,Hn) by c is the hierarchy Hc(H1, . . . ,Hn)
defined by:

Hc(H1, . . . ,Hn) = QFZ(c(Φ(H1), . . . , Φ(Hn))). (2)

2.3 Combining n-weight functions

We consider three classical functions in the instantiation of the combining n-
weight function (supremum, infimum and linear combination) and we propose a
new type of combination called concatenation of hierarchies.

The supremum, infimum and linear combination functions are respectively
denoted by g, f and �Θ. Given a sequence (w1, . . . , wn) of n saliency maps and
a sequence Θ = (α1, . . . , αn−1) of n−1 values in R such that (α1 + · · ·+αn−1) ≤
1 and αi ≥ 0 for i ∈ {1, . . . , n − 1}, the linear combination of (w1, . . . , wn)
parametrized by Θ is the sum α1w1 + · · ·+αn−1wn−1 + (1−α1−· · ·−αn−1)wn.
We denote by A the case where the linear combination is equal to the average.
One example of combination of hierarchies by infimum is shown in Figure 3.

The concatenation of hierarchies is based on merging different level sets of
each hierarchy. This type of combination can be useful, for example, when one
hierarchy H1 succeeds at describing the small details of an image at lower level
sets, but fails at filtering the small regions to capture the main large objects
at higher level sets. Therefore, it can be interesting to concatenate H1 with
another hierarchy H2 whose high level sets describe well the important regions
in the image. This general idea is represented in Figure 2.

Fig. 2. Concatenation of low levels of H1 with high levels of H2.

Given two weight maps w1 and w2 and a threshold value λ, the concatenation
of w1 and w2 consists in: i) setting to zero all weights of w2 lower than λ; ii)
setting to λ all weights of w1 greater than λ; and iii) computing the supremum
of the two maps obtained at steps i) and ii). More generally, given a sequence
(w1, . . . , wn) of n weight maps and a series (λ1, . . . , λn−1) of n−1 threshold values
in R such that λ1 < λ2 < · · · < λn−1, we define the concatenation of (w1, . . . , wn)
parametrized by (λ1, . . . , λn−1), thanks to the combining n-weight function ]Θ,
by:

∀e ∈ E,]Θ(w1, . . . , wn)(e) = max{T (w1(e), 0, λ1), . . . , T (wn(e), λn−1,∞)} (3)
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where, given a, b, and c ∈ R, we have T (a, b, c) equals 0 if a is lower than b
and equals min(a, c) otherwise. Consequently, given a sequence of hierarchies
(H1, . . . ,Hn) and threshold values Θ = (λ1, . . . , λn−1), the concatenation of
(H1, . . . ,Hn) with parameter Θ is H]Θ

(H1, . . . ,Hn). One example of concate-
nation of two hierarchies is shown in Figure 3.
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Fig. 3. Illustration of combination by infimum and concatenation of a pair of hi-
erarchies. First row from left to right: H1, Φ(H1), H2 and Φ(H2). Second row
from left to right: f(Φ(H1), Φ(H2)), QFZ(f(Φ(H1), Φ(H2))), ](2)(Φ(H1), Φ(H2)) and
QFZ(](2)(Φ(H1), Φ(H2)))

3 Assessment methodology and set-up of experiments

In this section, we present the assessment methodology used to evaluate hierar-
chies of segmentations.

3.1 Assessment methodology

In order to account for the performance of the different combinations, we use a
supervised assessment strategy developed in [12]. This framework evaluates the
possibility of extracting a good segmentation from a hierarchy with respect to a
given ground-truth, the quality of the extracted segmentation being measured
using the Bidirectional Consistency Error (BCE) [8]. In order to take account
for the hierarchical aspect of the representations, the score of a segmentation is
measured against its level of fragmentation, i.e., the ratio between the number
of regions in the proposal segmentation compared to the number of regions in
the ground-truth segmentation.

Two ways of extracting segmentations from a hierarchy are considered. 1)
We compute the cut that maximizes the BCE score for each fragmentation level,
leading to the Fragmentation-Optimal Cut score curve (FOC). 2) We compute
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the BCE score of each level set of the hierarchy, leading to the Fragmentation-
Horizontal Cut score curve (FHC). A large difference between the FOC and
FHC curves, called here fragmentation curves, suggests that the optimization
algorithm has selected regions from various levels of the hierarchy to find the
optimal cut: the regions of the ground-truth segmentations are thus spread at
different levels in the hierarchy. The normalized area under those curves, denoted
respectively by AUC-FOC and AUC-FHC, provides an overall performance sum-
mary over a large range of fragmentation levels. Since the importance of having
high AUC-FOC and AUC-FHC scores varies according to the application, we
consider the average of both scores to quantitatively compare hierarchies. The
average of AUC-FOC and AUC-FHC will be denoted here by AUC-FOHC.

3.2 Set-up of experiments

We describe here the set-up of evaluation of combinations of hierarchies.
In this work, hierarchical watersheds are considered. More precisely, the suc-

cessive level sets of the considered hierarchies correspond to watershed segmen-
tations of filtered versions of the weight map w, the higher level sets of the
hierarchies being associated to the higher level of filterings [3]. The successive
filtering levels are given by ranking the minima according to extinction values
associated with regional attributes: area [10], dynamics [9], volume [10], topo-
logical height [15], number of minima, number of descendants and diagonal of
bounding box [15]. To shorten the notations, we denote those attributes by Area,
Dyn, Vol, Height, Min, Desc and DBB.

The evaluations were performed on the 200 test images of the Berkeley Seg-
mentation Dataset and Benchmark 500 (BSDS500) [1].

The hierarchies of segmentation are computed from the image gradients ob-
tained from the Structured Edge (SE) detector [5], which achieved a high contour
detection rate on BSDS500.

4 Assessment of combinations of hierarchies

In this section we present the experiments with combinations of watershed hi-
erarchies. We then compare the combinations of hierarchies with the individual
hierarchies and other two techniques [1, 14].

4.1 Baseline

Our baseline is the AUC-FOHC scores of individual watershed hierarchies pre-
sented in Table 1. The scores were computed over the test set of BSDS500.

4.2 Evaluation of parameter-free combinations

The evaluation of parameter-free combinations consisted in computing the AUC-
FOHC scores of all combinations of pairs of watershed hierarchies over the test
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Area DBB Dyn Height Desc Min Vol

AUC-FOC 0.603 0.592 0.541 0.560 0.604 0.609 0.617
AUC-FHC 0.423 0.435 0.480 0.493 0.425 0.453 0.465

AUC-FOHC 0.513 0.514 0.510 0.527 0.514 0.531 0.541
Table 1. AUC-FOC, AUC-FHC and AUC-FOHC scores of individual hierarchies com-
puted over the test set of BSDS500.

set of BSDS500 using g, f and A functions. For each pair of watershed hier-
archies, H1 and H2, we applied the following combining n-weight functions to
their saliency maps: g(Φ(H1), Φ(H2)), f(Φ(H1), Φ(H2)) and A(Φ(H1), Φ(H2)).

The highest scores achieved by parameter-free combinations is shown in Table
2. We can observe that, for most pairs of watershed hierarchies, the combination
with A presents the highest score. In addition, the highest scores are obtained
with combinations using A.

HH
HHHH1

H2
Area DBB Dyn Height Desc Min Vol

Area - g A A g A f
0.513 0.515 0.566 0.567 0.515 0.529 0.529

DBB - A A g A g
0.514 0.566 0.568 0.516 0.526 0.529

Dyn - f A A g
0.510 0.522 0.567 0.563 0.551

Height - A A A
0.527 0.568 0.563 0.554

Desc - A f
0.514 0.530 0.529

Min - g
0.531 0.540

Vol -
0.541

Table 2. Combining n-weight functions and highest AUC-FOHC scores obtained from
c(Φ(H1), Φ(H2)). For each pair of hierarchies, we have the global combination func-
tion which provided the highest AUC-FOHC score and the score obtained from this
combination.

4.3 Evaluation of unsupervised concatenation of hierarchies

We present here the evaluation of concatenation of pairs of watershed hierarchies.
To determine the parameter that should be used in the concatenation of each

pair of watershed hierarchies, we analyze their fragmentation curves. For each
pair of watershed hierarchies, we check which one presents the highest AUC-FOC
and AUC-FHC scores for low and high fragmented segmentations. If one of the
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hierarchies presents the highest scores for both low and high fragmented seg-
mentations, we do not expect to obtain better results from their concatenation.
For example, in the curves of Figure 4, we see that, only for a fragmentation
larger than 0 and smaller than approx. 0.65, area outperforms dynamics based
watershed hierarchy. Therefore, we conclude that high level sets of area, which
are less fragmented, describe an image better than dynamics based hierarchies,
and the opposite is true for lower level sets. Hence, the parameters are tuned to
concatenate high levels of area to the low levels of dynamics based hierarchy.

In general, the fragmentation curves of concatenations has a smaller differ-
ence than the curves of their individual counterparts, which can be seen in Figure
4. This means that the segmentations extracted from the level sets of concate-
nations are closer to the optimal cuts for each fragmentation level. Also, half
of the concatenations tested here presented higher AUC-FOHC scores than the
individual watershed hierarchies, as shown in Table 3.
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Fig. 4. Fragmentation curves of non-horizontal and horizontal cuts of the concatenation
of area and dynamics based watershed hierarchies. The 10th highest levels of area were
concatenated to the lower level sets of the dynamics based hierarchy.

H2 Dynamics Height

H1 Area DBB Desc Min Vol Area DBB Desc Min Vol

AUC-FOC 0.579 0.561 0.586 0.589 0.591 0.579 0.574 0.580 0.582 0.585
AUC-FHC 0.472 0.462 0.462 0.483 0.498 0.472 0.475 0.473 0.485 0.500

AUC-FHCO 0.525 0.511 0.526 0.536 0.545 0.525 0.524 0.527 0.534 0.542

Table 3. AUC-FOC, AUC-FHC and AUC-FHCO scores of ]Θ(Φ(H1), Φ(H2)), where
different values of Θ were used for each concatenation. The AUC-FHCO scores in bold
are the ones which are higher than the AUC-FHCO scores of individual H1 and H2

hierarchies.
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4.4 Evaluation of supervised linear combinations

We present here the evaluation of linear combinations of pairs of watershed
hierarchies using learned parameters.

For each pair of watershed hierarchies, we determined the linear combination
parameter α that optimizes the AUC-FOHC score on the 300 images of the
training set of BSDS500.

From the highest scores reached for each combination, we can see that not all
combinations produce relevant results, mainly the ones which do not include ei-
ther dynamics nor topological height based watershed hierarchies. This is shown
in Table 4, that contains the best-fitting parameter for each linear combination
and their AUC-FOHC scores.

HH
HHHH1

H2
Area DBB Dyn Height Desc Min Vol

Area - α = 0.92 α = 0.60 α = 0.51 α = 0 α = 0.11 α = 0
0.513 0.512 0.568 0.569 0.514 0.531 0.541

DBB - α = 0.43 α = 0.35 α = 0.19 α = 0.07 α = 0.02
0.514 0.566 0.566 0.512 0.531 0.541

Dyn - α = 0.03 α = 0.38 α = 0.51 α = 0.24
0.510 0.527 0.569 0.564 0.558

Height - α = 0.42 α = 0.51 α = 0.36
0.527 0.569 0.560 0.560

Desc - α = 0.25 α = 0
0.514 0.530 0.541

Min - α = 0.12
0.531 0.542

Vol -
0.541

Table 4. Parameters α and AUC-FOHC scores of each linear combination
�(α)(Φ(H1), Φ(H2)). The AUC-FOHC scores in bold are the highest scores achieved
with linear combination of hierarchies.

One example comparing segmentations extracted from the individual hier-
archies based on number of descendants and topological height and their linear
combination using the learned parameters is shown in Figure 5. The linear com-
bination computed for this single image presents a higher AUC-FHC score than
the individual hierarchies (0.604 versus 0.465 and 0.551) and a slightly higher
AUC-FOC score (0.802 versus 0.801 and 0.708). Based on the AUC-FHC score,
we expect this combination to have better horizontal cuts than the the individual
hierarchies. We can see that the segmentation extracted from the combination
separates better the main regions in this image: sky, mountains and the two sea
regions.
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Fig. 5. From left to right: original image, saliency map and the 5th highest level set of
three hierarchies: number of descendants and topological height based hierarchies, and
their linear combination using learned parameters.

4.5 Comparison with other techniques

In order to have a more complete evaluation, we have performed a compari-
son with a state-of-the-art method [14], called Multiscale Combinatorial Group-
ing (MCG), and an well-know technique [1], named Ultrametric Contour Map
(UCM), including different assessment measures: Precision-Recall (PR) for bound-
aries [1] and the Marked Segmentation [13] (Figure 6).

The PR for boundaries score is also assessed on BSDS500 and it evaluates the
matching between the boundaries of a given segmentation and the ground-truth
segmentation. The PR curves are built from the F-measure scores of the level
sets of the hierarchies and are summed up in two measures: Optimal Dataset
Scale (ODS) and Optimal Image Scale (OIS).

The Marked Segmentation aims to measure the difficulty of extracting a good
segmentation in a hierarchy given sets of background and foreground markers.
The markers are generated through erosion, skeletonization and frame of the
ground truth, and the score of each segmentation is given by the F-Measure
computed over the Weizmann and Grabcut datasets. Each pair of Background-
Foreground markers are denoted by the method used to compute them. Figure
6 shows the Marked Segmentation results for three pairs of background and
foreground markers: Er-Er, Fr-Sk and Sk-Sk, in which Er, Fr and Sk stand for
Erosion, Frame and Skeleton, respectively. The box plots show the quartile dis-
tribution of scores on both datasets. The median score of those three pairs of
markers is denoted by ODM. Therefore, the best hierarchies in terms of Marked
Segmentation correspond to the ones with highest ODM scores and most com-
pressed box plots.

MCG explores hierarchies of images at different resolutions based on com-
bined local contours cues. Single segmentations at different resolutions are aligned
and combined into a single saliency map. The UCM described in [1] is obtained
from the watershed transform of the output of a high quality contour detector.

Our best combination does not achieve the PR and fragmentation scores pre-
sented by MCG and UCM, but it outperforms UCM in terms of Fragmentation
Curves for non-horizontal cuts and presents competitive Marked Segmentation
results compared to MCG and UCM.
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Fig. 6. Comparison of our linear combination of area and topological height with
MCG and UCM: Precision-recall (PR) for boundaries, Fragmentation curves of non-
horizontal cuts (plain curve) and horizontal cuts (dashed curve), and Marked Segmen-
tation of three pairs of markers.

5 Discussion and conclusion

This paper shows the potential of combination of hierarchies through the evalu-
ation of supervised and unsupervised combinations of watershed hierarchies. We
evaluated combinations of pairs of watershed hierarchies using classical functions
(infimum, supremum and linear combination) and a newly proposed method
called concatenation of hierarchies.

All combinations described here were proved to be useful for at least one
pair of watershed hierarchies. However, not all pairs of hierarchies presented
significant results when compared to the individual hierarchies. For example, the
parameter-free combination of area and volume based hierarchies with highest
score did not present a score superior to the individual volume based hierarchy.
Also, the best-fitting parameter α for the linear combination of area and volume
based hierarchies is equal to zero. This means that none of the combinations of
area and volume tested here was superior to both individual hierarchies.

We observed that the combinations with highest scores contained either dy-
namics or topological height based hierarchies, but not both. Both dynamics and
topological height are related to depths. Therefore, this is not surprising that the
combination of hierarchies based on those attributes does not bring new inter-
esting results. This is also valid for other similar attributes as area and diagonal
of bounding box.

Among all linear combinations with learned parameters, the ones with best
performance presented scores close to the combination by average, with the
learned parameter α ranging between 0.39 and 0.51. So, the combination of
hierarchies by average seems to be a valuable and simple choice.

The framework presented in this article can be used to combine other types of
hierarchies, but we have not investigated whether the results could be interesting.
The main point is that the contours of watershed hierarchies overlap and this
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ensures that none of their combinations will present duplicated contours for a
same boundary of the input image, which could happen using other hierarchies.

Since we have explored only a few types of combinations, there is still room to
find new functions able produce relevant results. The evaluation of combinations
performed here also invites us to go a step further in this topic, for example, by
learning how to choose the optimal combination parameters for each image.
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