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§ Ο. Introduction. In this paper it is attempted to relate the definitions of the 

fuzzy subset lattices with the other classical definitions of Postean and Boolean 

lattices in the context of Universal algebra. In particular it is obtained a kind of 

equivalence (mutual isomorphic representations) of the fuzzy subsets, Postean 

and Boolean lattices. (corollaries 28,29,30.).This unification is worked out with 
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the axiomatic introduction of the λ-rainbow lattices (§1). In order to obtain these 

results, it is used the extended Stone's representation theorem (theorem 1). The 

way that this theorem is formulated makes use of the extended Birkhoff-Stone 

theorem  (corollary 21). It is given new and more enlightening and simpler 

proofs for both theorems. They are discussed partial abelian semigroups, abelian 

groups, rings and modules that are also lattices. It is Introduced the concept of  

compatibility of the order relation and the algebraic structure. The previous 

equivalence theorems have important consequences in a kind of equivalence, 

up-to-lattices of the Fuzzy, 3-valued and 2-valued Logic. It is possible obtain the 

fuzzy logic as a general Logic  (according to  [J. Mesenquer 1987]). By 

introducing an ordering it is possible to  investigate the relation of a general 

Logic, the Fuzzy, the 3-valued and the 2-valued Logic. 

In the paragraph §2 is introduced the transfinite real, complex, quaternion Fuzzy 

subset lattices. They can be considered as a kind of Arithmetisation of the 

abstract λ-Fuzzy lattices. They have special good properties that can be 

understood only by a familiarity with the transfinite real numbers. 

 

§1 The λ-rainbow (or fibber) lattices and the λ-Fuzzy subsets lattices. 

As it is known the category of Boolean lattices has been extensively studied, 

mainly because of its applications in  Logic. The attempts to give alternative 

formulations of Logic led to other categories of lattices, like the Postean lattices 

(see e.g.[Carvallo M.1968],[Lukasiewicz,J1920],[Post E.L. 1921]), or  the  
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lattices  of  Fuzzy   subsets (see e.g.,[Zadeth,L.A 1965]). A closer  study  of  the  

Boolean, Postean Fuzzy -subsets, modular- complemented lattices leads 

naturally to a broad category  of lattices  which  we  define  axiomatically   in 

this paragraph  and  we  call  rainbow  or  fibber  lattices. In  conceiving  the 

idea of rainbow lattices I was partly influenced at least by the terminology, of 

the Kantian ideas of transcendental analytic and synthetic logic and of 

Aristotle’s term of “colors of the word”. As we shall see transfinite numbers 

appear also. 

 

 

Remark: If a lattice has minimum and maximum elements we denote them with 

0,1 respectively. 

We are now in a position to define the rainbow (or fibber) lattices: Let an non-

empty order type which we denote by λ. Let a lattice, which we denote by L 

such that: 

The λ-rainbow (or fibber) axioms: 

A0: The order   type  λ is a sublattice of L and the L has 0 and 1. 

A1: If αλ α0 and for a xL it holds xa=0 then x=0. 

A2: If α λ, α1 and for a xL holds xa=1 then x=1. 

The spectral axioms: 

For every xL there is a λ-family of elements of L {xα| αλ} which, is called 

the λ-spectrum of the x, such that: 
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B0: )( 


 xx  


 The previous representation is called the λ-spectral expansion 

of x. 

B1: If α1α2 for two λ-indices of the spectrum of x, then xα1 xα2 =0 

B2: For the λ-spectrum of x holds 1




x . 

 

Definition 1. A Lattice that satisfies the axioms A0, A1, A2, B0, B1, B2 as above, 

is called a λ-rainbow (or λ-fibber) llattice. 

Remark 2: If the λ is the order type of an ordinal number α, we write simply a-

rainbow lattice. If λ=3={-1<0<+1} and the L is furthermore distributive we   get 

the definition of a Postean lattice (see e.g.[Carvallo 

,M.1968],[Lukasiewicz,J.1920],[Post, E.L. 1921]). In other words a Postean 

lattice is defined as a distributive 3-rainbow lattice. We shall prove that the 

Fuzzy-subsets lattices are λ-rainbow lattices .We shall describe in the first a way 

to construct λ-rainbow lattices from λ-order types. 

Remark. Let us suppose that the order type is at the same time a commutative 

partial semigroup such that the order and the operations are compatible: In other 

words if we denote by i the identity mapping and for two elements a, b the sums 

i (a)+i(b), i(ab)+i(ab) exist then it holds that i(ab)+i(ab)=i(a)+i(b). In other 

word, again the identity mapping is a (partial semigroup valued) lattice valuation 

.Then a λ-rainbow lattice on such a λ is called rainbow lattice with algebraic 
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fibber. If the partial semigroup λ, is a category, commutative group, ring, field, 

module, or vector space, then we put this term before the term algebraic. 

Lemma 3. The (direct) product  
x

 in the category of lattices of the order type 

λ with extremes 0,1, X-times where X is an arbitrary set, is a distributive λ-

rainbow lattice. 

Proof: The order type λ is contained as a sublattice in the  
x

, as the element 

with all the coordinates equal. 

Thus the axioms A0, A1, A2 are satisfied .We define as the λ-spectrum of an 

element x of  
x

the elements {xα| αλ} such that the xα is the element with all 

the coordinates equal  to 0  except  at  the places where the coordinates of x are 

equal to a where it is equal, to  1. It is direct that the axioms B0, B1, B2 are 

satisfied. The order type λ is a distributive lattice. Obviously the same holds for 

the (direct) product  
x

                                                                              Q.E.D.                                  

Remark 4. The λ-rainbow lattices  
x

 with extremes 0,1, 

 (in other words as in lemma 3 ) are the λ-Fuzzy subsets lattices  

Corollary 5. The λ-Fuzzy-subsets lattices are distributive, λ-rainbow lattices. 

Proof: A λ-Fuzzy-subset lattice on a set X is exactly the (direct), product  
x

 in 

the category of lattices ;Where the λ is, an order type .Thus we apply the 

previous Lemma Q.E.D. 
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Lemma 6. Let two order types λ1, λ2 such that λ1  λ2 (the λ is isomorphic to  a 

suborder type of λ2).The lattice 
x

1  is isomorphic to  a sublattice of  
x

2 . 

 

Proof :1Direct from the definitions and that λ1  λ2.                                       

Q.E.D. 

Lemma 7. A lattice is complemented  if and only if it  is a 2-rainbow lattice. 

Remark 8. A lattice is called complemented if it has extremes, 0,1 and for any 

element x there is an element x' such that, xvx'=1 and x^x'=0 .The x' is called the 

complement of x .(See also [v Neumann J.1960] part 1 ch 1 axiom v pp 2 or the 

paper with the same title in his collected works ) .It is not postulated uniqueness 

of the complement of an element . 

Proof  : The order type λ is the two element set {0,1} thus the, order type of 2. 

Thus the axioms A0, A1, A2  are satisfied .As the {0,1}spectrum of any element 

x we define the two element set {x0, x1 } with x0=x' and x1=x .By x' we denote 

the complement of x . It holds by the definition of the complement that (0^x0) 

v(1^ x1 )=(0^x')v(1^ x)=0vx=x ;and x0^x1 =x'^x=0, x0 vx1 =x' vx=1.  

Thus the axioms B0, B1, B2 are satisfied. Conversely in every 2-rainbow lattice 

the x0  can be taken as a complement of x=x1.          Q.E.D. 

Corollary 9. A lattice is a Boolean lattice if and only if it is, a distributive 2-

rainbow lattice. 
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Proof: Direct from the previous lemma and that every Boolean, lattice is defined 

as a complemented (distributive) lattice. Q.E.D. 

§2 .The transfinite real, complex, quaternion Fuzzy subsets and lattices. 

Remark 10. In the next we introduce the transfinite real, complex,, quaternion 

Fuzzy subsets .We shall examine at first the elementary cases of the real, 

complex and quaternion fuzzy subsets. In the definition of the ordinary [0,1]-

fuzzy subsets (see e.g.[Zadeth,,L.A.1965]) what matters is the interval [0,1] as 

an order type and not what numbers are the extremes of it. Let us consider the 2-

point compactification of the linearly ordered field of the real numbers 

}{}{ RR , where the -, + are the minimum and maximum of R . 

As it is known the R is order isomorphic order type to the order type  [0,1]. 

Therefore the [0,1]-Fuzzy subsets can be considered as R -Fuzzy subsets. The 

latter form is some how more convenient as we can make use of the algebraic 

structure of the field R . Furthermore negative values of the index or 

characteristic function of a fuzzy subset can appear. 

It is very natural to substitute the linearly ordered (commutative) field Rwith 

the field of the complex numbers C or the (non-commutative) field of the 

quaternion numbers H. (See also [v.Weizacker C.F.-Sheibe,E. Sussmann G. 

1958]. Actually we have to use the compactifications of them 

}{},{,  HHCCR . Thus the elements of the products in the category of 

sets 
XXX

HCR  , , , where the x is an arbitrary set, are the real ,complex and 



 8 

quaternion Fuzzy subsets of x .The norm of the characteristic functions of them 

give real Fuzzy subsets. But the advantage of the complex and quaternion Fuzzy 

subsets is that besides their real norm they have respectively a phase e
i
, e

q
  

(where i is the imaginary unit and the q is a unit vector of the Euclidean space 

R
3
). The way to define the transfinite real, complex and quaternion Fuzzy 

subsets is plausible and formalises a non-Archimedean phased Fuzziness.It is to 

be understood that the next arguments do not have to depend on the [Conway 

J.H.1976],[Robinson A. 1966].It can be proved that all the three different 

techniques of the transfinite real numbers,  the surreal numbers and the ordinal 

real numbers give by inductive limit or union the same class of numbers known 

already as the class No. This class can be called the totally ordered, finitary 

Newton-Leibniz realm of numbers. Till the moment that this shall be understood 

we can be  content  with  the transfinite real numbers in [Glayzal 

A.1937].Although logically not necessary, any additional references to the 

ordinal real numbers shall be in parenthesis and shall not affect the arguments. 

The author believes that the Ordinal real numbers shall be indispensable, in the 

future, for numerical and quantitative applications of mathematics to other 

sciences. 

The transfinite real numbers were defined at first by A.Glayzal in 1937(!) 

(see [Glayzal A.1937] ). His technique was what it is now known as formal 

power series fields.  His main idea was to define by formal  power series fields, 

Archimedean complete (although non-Archimedean) linearly ordered fields. The 
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concept of non-Archimedean order is known in the process management of 

operating systems in computer science and in operation research (Goal 

programming) as pre-emptive prioritisation. 

 

(It it can proved that they are fundamental (Cauchy) complete (in the order 

topology ) and Dedekind complete. I repeat that the reader can be content with 

their definition in [Glayzal A.1937] which we repeat concisely .Let any order 

type which we denote by λ. Let the Lexicographic product of λ-copies of the 

field of the real numbers R, which we denote by 


RL . Its elements are the 

elements of the Group-product 


Rwhich have zero all the components except 

on a well-ordered subset of λ. This subset is called as usually the support of the 

element. The group 


RL is a linearly ordered group in the lexicographic 

ordering .The formal power series field 


 ) R)(L ( R  )( R  is defined as the 

transfinite real numbers of Archimedean base λ. Let us denote by R (R (λ) ) the 

real closure of the transfinite real numbers  ; it  can  be  obtained by  adjunction 

of the square roots of its positive elements But the R (λ) is a formal  power  

series field, thus it contains the n-roots of its positive elements (see [v.Neumann] 

B.H. 1949] 4.91 Corollary pp 211). In other words it is Pythagorean complete. 

Thus R (R (λ) ) = R (λ). 
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Consequently its extensions of degree 2 with the imaginary unit C (λ) = R (λ) (i) 

is also algebraically closed .The algebraically closed and formal power series 

field C (λ) we call transfinite complex numbers of Archimedean base λ . It holds 

obviously that 


 ) R)(L ( C  )( C . Similarly the field that is obtained by the 

quaternion extension of R (λ) ,which is the field 


  R)(L (   )( HH  is called the 

transfinite quaternion numbers of Archimedean base λ. Let us consider the 

extensions of them }{  )( H  )( H },{  )( C  )( C },{  }{-  )( R  )( R  

where the -, + are the minimum and maximum of the order type )(R . 

Definition 11. The products  
XXX

HCR )(,)(,)(  in the category of sets, 

where the X is an arbitrary set ,are called the transfinite, real ,complex, 

quaternion Fuzzy subsets of X. 

Remark 12. The norm of the transfinite real ,complex ,quaternion  numbers of 

some Archimedean base λ , is defined as in the  minimal case of the real, 

complex ,and quaternion numbers. Only that the norm is not a positive real 

number but a transfinite positive real number. By taking the norm , the 

transfinite real, complex, quaternion  Fuzzy  subsets  define )(R -fuzzy subsets. 

Such (real) Fuzzy subsets we call transfinite Fuzzy subsets. They are special 

Fuzzy subsets, since the order types )(R have special good properties; 

(fundamental completeness in the order topology, Dedekind completeness , they 

contain initial segments of the ordinal numbers e.t.c.). 
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The applications of the (real) transfinite Fuzzy subsets are as the applications of 

the general Fuzzy subsets and even better. 

Remark. By the way that the transfinite real numbers are defined (over an 

arbitrary order type which is its Archimedean base) it is clear that any order type 

λ is order embeddable  in some field of transfinite real numbers .Therefore after 

lemma 6 every λ-Fuzzy subsets lattice is isomorphic with the a sublattice of 

some transfinite real Fuzzy subsets lattice. 

Corollary (The transfinite Fuzzy subsets lattice reduction ) 

Any λ-Fuzzy subsets lattice is isomorphic with a sublattice of some transfinite 

(real) Fuzzy subsets lattice. 

Remark. It can be proved that any order type can be constructed by the ordinal 

numbers. This constitutes a genuine and better Arithmetisation of the λ-Fuzzy 

subsets). 

§3 Rings that are also lattices. Auxiliary rings. 

As it is known J.v.Neumann has studied the orthomodular 2-rainbow lattices 

that appear  as  lattices  of projections in Hilbert spaces. He has also introduced 

and studied a special category of modular 2-rainbow lattices that he called 

continuous geometry (see [v.Neumann,J. 1960]). He proved that such lattices 

admit valuations in the real numbers .He proved that the modular 2-rainbow 

lattices have an up-to-isomorphism representation as lattices of ideals of rings. 

The ring that corresponds to every such lattice is called auxiliary ring (see 

[v.Neumann J.1960] part ii). This technique is not little laborious. 
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In the case of the Boolean lattices the auxiliary ring is again the Boolean algebra 

and the ring operations are x+y=(x^y')v(x'^y) and x.y=x^y .Any element of the 

Boolean lattice corresponds to the principal ideal that it defines . The principal 

lattice-ideals and the principal ring-ideals coincide. The correspondence is a  

lattice isomorphism. The present representation theorem gives also a result of 

the same type. In other words an auxiliary ring appears also. Thus it can be also 

considered as a J.v.Neumann- type representation. 

Definition 13. Let us denote a lattice by L and a ring by R. The ring R is called 

auxiliary to the lattice L if there is an isomorphism of L with a lattice of ideals 

of R. 

Such an isomorphism is called a J.v.Neumann-type representation. 

Remark 14: By the Stone's representation theorem we deduce that every 

Boolean lattice is isomorphic with a sublattice of the Power- set P(X) which is 

also a  lattice of a set X .Considering the characteristic functions of the subsets 

of X we deduce that every Boolean lattice is isomorphic with a sublattice of the 

abelian Ζ2-linear algebra 
X

Z2 . The product is considered in the category of 

rings and simultaneously in the category of lattices .The Galois field Ζ2 is 

considered as a lattice with the ordering 0<1. 

It might be interesting to have a closer look to modules and rings that are also 

lattices (see also remark after remark 2). 
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Let a ring R and an lattice ordering on it .We do not suppose any compatibility 

of the ordering and the ring operations. 

E.g. we may consider the rings Zn with the linear ordering  

01/π-11/π-2…1/21. 

Or we may consider any linearly ordered ring e.g. the field real numbers. 

The (direct) product 
X

R  over a set of indices X simultaneously 

in the category of rings , and of lattices is a ring which is also a lattice .In the 

previous examples the 
X

nZ are Zn-modules and rings which are also 

distributive n-rainbow lattices. 

If n=p where p is a prime natural number then the distributive p-rainbow lattice 


X

pZ is also a Zp-linear algebra. 

In these commutative Zp-linear algebras holds that x
P
=x and px=0 (it is of, 

characteristic n) ;which is a consequence of the Fermat theorem for the Galois 

fields Zp. 

The identity function has the property that xvy + xy = x+y. 

Thus it is a Lattice valuation with values in the commutative semigroup 
X

nZ . 

For n=2 or 3 the relation of the lattice-operations and the ring operations are: 
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a.b  if a≠b               a+b -a.b   if a≠b 

a^b = a    if a=b     avb=  a             if a=b . 

The lattices 
X

pZ p=2,3 have as auxiliary rings again the 
X

pZ . 

 

To every element corresponds the principal ring-ideal that it defines. The 

principal lattice-ideals and the principal ring-ideals ,coincide. 

§4 The inverse of the Birkhoff-Stone theorem in lattices 

Definition 15. A set , that we denote by Θ , of congruencies in a lattice, 

 

that we denote by L, is said that it is separating iff  for any two elements x,yL 

with x ≠y there is a congruence Θ such that x≠y mod.  

Remark 16: If the lattice L has minimum, that we denote by 0, then as it is 

known to every congruence  corresponds an ideal that we denote by Ι, which is 

the equivalence class of 0. Thus we have also the next definition : 

Definition 17 Let a lattice, be denoted by L, and a set of ideals of it, be denoted 

by I. It is said that the I is a separating set of ideals iff for any two x, yL with 

x≠y there is an ideal iI such that xi and yi. 

Definition 18.Let a lattice, be denoted by L. The set of its prime ideals we 

denote by SpecL and we call the spectrum of the lattice L. 

Definition 19. A lattice, which is denoted by L, is said that it is with separating 

spectrum iff the set of ideals SpecL is separating in the L. 
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Theorem 20. (The extended  Birkhoff-Stone theorem) 

A lattice is with  separating  spectrum if  and  only  if  it  is distributive . 

Proof: see [Sirkoski,R 1969] Appendix 6 §13 first page of the paragraph 

Q.E.D. 

The Stone's representation theorem makes use of the fact that the spectrum of a 

Boolean  lattice  coincides  with  the  set  of  its maximal ideals and that and the 

Birkhoff-Stone theorem  which  gives that any distributive lattice  is  with  

separating  spectrum .  

The Stone's representation theorem can be  extended  to any  

lattice with separating spectrum . 

Theorem 21. (The extended Stone's isomorphic representation theorem ). 

Let us denote by L a lattice with separating spectrum. 

There is an isomorphism of L with a lattice of sets. 

Proof: See [Birkhof,G 1967] ,or [Gratzer,G 1979] ,or[Sikorski,R 1969] or any  

comprehensive  book  about  

lattices. Q.E.D. 
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Corollary 22. (J.v.Neumann-type isomorphic representation ) 

Every distributive lattice has an auxiliary (abelian) ring. 

Proof: The distributive 2-rainbow lattices 
X

Z2 by the last remark of §3 have 

auxiliary ring the same set as a product abelian ring. 

Q.E.D. 

The next corollaries are results about the relation of the Boolean, Postean, and 

Fuzzy-subset lattices. 

Corollary 23.  (The Z2 reduction) 

Every Postean and Fuzzy-subset lattice is isomorphic to a lattice of sets and has 

an auxiliary ring. 

Corollary 24. Every distributive λ-rainbow lattice is isomorphic with a 

sublattice of a λ’-rainbow lattice  
X

, for every order type λ’ with extremes, in 

other words with a sublattice of a λ’-Fuzzy subsets lattice. 

Proof: We apply the theorem 20 and the lemma 6 .The Z2 2-rainbow lattice is 

the minimal (or trivial ) rainbow lattice.  

Corollary 25. (The λ-Fuzzy representation of distributive λ-rainbow lattices) 

Every distributive λ-rainbow lattice is isomorphic with a sublattice of a λ-Fuzzy  

lattice.  

Corollary Every distributive λ-rainbow lattice is isomorphic with a sublattice of 

a transfinite (real) Fuzzy subset lattice. 
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Proof: We apply the transfinite Fuzzy reduction of the Fuzzy subsets lattices of 

§2 and the previous lemma.  

Corollary 26. (The Z3 reduction). Every distributive lattice and in particular 

every Fuzzy-subset lattice is isomorphic with a sublattice of a Postean lattice of 

type 
X

Z3 . 

Corollary 27. (The Fuzzy-reduction) 

Every distributive lattice isomorphic with a sublattice  of a Fuzzy-subset lattice  

Corollary 28. (The Z2↔Fuzzy equivalence) 

Every Boolean lattice is isomorphic with a sublattice of a Fuzzy-subset lattice 

and every Fuzzy-subset lattice is isomorphic with a sublattice of a Boolean 

lattice. 

Corollary 29. (The Z2↔Z3 equivalence) 

Every Boolean lattice is isomorphic with a sublattice of a Postean lattice and 

every Postean lattice is isomorphic with a sublattice of a Boolean lattice. 

Corollary 30. (The Z3↔Fuzzy equivalence) 

Every Postean lattice is isomorphic with a sublattice of a Fuzzy-subset lattice 

and every Fuzzy-subset lattice is isomorphic to a sublattice of a Postean lattice. 

Corollary 31. (The equivalence up-to-lattices of the Fuzzy, 3-valued and 2-

valued Logic.) 
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The Fuzzy, 3-valued, 2-valued Logics are up-to-lattices equivalent in the sense 

that there are mutual isomorphic representations of the logical (lattice) orders of 

them. 

(See also [A.I.Appudia etc 1977],[J.Barwise,S Feferman 1985],[Carvallo 

,M.1968],[Conway J.H.1976],[Mesenqeur J.1989]) 

Remark 32. We remind to you that by the extended Stone's representation 

theorem for any distributive lattice we get as a corollary that: 

Every partially ordered set has a monomorphic image in a lattice of sets (relative 

to inclusion ). 

Every partially ordered set has a monomorphic image in the full binary tree. 

This is a very useful result that is not mentioned widely. 

It can be also considered as an extension of the Stone's representation theorem, 

in two directions: a) to every (partially)ordered set b) the representation is not 

order-isomorphism but order-monomorphism (isotonous mapping ). 

About its proof: As it is known, it holds a "linearisation" theorem for any 

(partially) ordered set :Every (partially) ordered set has an order-monomorphic 

image in an order type .The order types are distributive lattices. Thus by the 

extended Stone's representation theorem every (partially) ordered set has an 

order-monomorphic image in a lattice (relative to inclusion) of sets. 

About the second assertion: The lattice of sets that was mentioned in the 

previous assertion is a Boolean lattice of the type
X

Z2 . The lattice direct-
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product ordering of it has by the identity mapping an order-monomorphic image 

in the set 


2Z ={0,1}
α
 and in the lexicographic ordering; where the a is the  

cardinality of X, thus an initial ordinal number. 

The {0,1}
α
 is a level of the full binary tree Dα of height a. 

The ordering of the level can be taken to be the lexicographical ordering  Q.E.D. 
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Note on the relation of the Fuzzy subsets, Postean, 

Boolean lattices. The λ-rainbow lattices. 

The transfinite (real, complex, quaternion) Fuzzy subsets. 

 

By Dr Constantine E. Kyritsis 

 

Abstract 

In this short note the main results are: 

1) They are introduced axiomatically the λ-rainbow lattices. It is proved that the 

λ-Fuzzy subsets lattices are distributive λ-rainbow lattices and other relations of 

these two classes of lattices. 

2) They are introduced the transfinite real, complex, quaternion. Fuzzy subsets. 

They can be considered as a kind of Arithmetisation of the abstract λ-Fuzzy 

subsets lattices. The transfinite real Fuzzy subsets are special λ-Fuzzy subsets 

with good properties. 

3) It is proved a mutual isomorphic representation of the Boolean (2-valued 

logic) Postean (3-valued logic) and Fuzzy-subsets (Fuzzy-logic) lattices. 

 

extremes 0,1 of the lattice. We define the function: 
SpecL

ZLh 2: by h(x)=ax 

where ax (t) = SpecL t 
t xif 0

t xif 1









. 



 27 

We shall prove that the h is a lattice isomorphism of L and its range 


SpecL

2Z (L) h . 

a) We shall prove that h (xy)=h(x)h(y). Let h(x)=ax and h(y)=ay. 

Let us suppose that xt and yt for some t SpecL. Then ax=1=ay. If xyt and 

because the t isa prime ideal we deduce that either xt or yt, contradiction. 

Thus xyt, hence axy=1 and axy=1=11=axay. The other case is that either 

xt or yt. Then either ax=0 or ay=0. In both cases, because the t is an ideal 

xyt and thus axy=0; and axy=0=0(0 or 1) = axay. 

b) We shall prove that h(xvy)=h(x)vh(y). Let us suppose that  xt and yt for 

some tSpecL. Then ax(t)=1=ay(t). If xvy and because the t is an ideal we 

deduce that x, yt, which is a contradiction. 

Thus xvyt and axvay=1. Thus axvy (t)=1=1v1=ax (t)vay(t). The other case is that 

either xt or yt. Then either ax(t)=o or ay(t)=0. And if xvyt then because the t 

is an ideal we deduce that x,yt thus axvy(t)=0=0v0=ax(t)vay(t). If xvyt, then 

either xt or yt (in the contrary xvyt which is a contradiction). Thus either 

xt and yt or xt and yt. In both cases axvy(t)=1=1v0=0v1=ax(t)vay(t). 

c) We shall prove that if xy then h(x)h(y). 

If xy because the SpecL is separating there is tSpecL such that xt and yt. 

Thus ax(t)=0 and ay(t)=1 hence axay or h(x)h(y). By the a), b), c) we conclude 
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that the h is a monomorphism of the lattices L and h(L) 
SpecL

Z2 . But in the 

category of lattices a monomorphism and epimorphism is also an isomorphism 

                                                                                                                      Q.E.D.                                                  

Corollary 21. (The extended Birkhoff-Stone theorem). 

A lattice is with separating spectrum if and only if it is distributive. 

Proof: By the Birkhoff-Stone theorem we get that any distributive lattice is with 

separating spectrum. By the extended Stone’s theorem 20 we get that any lattice 

with separating spectrum is isomorphic with a sublattice of a Boolean lattice. 

But any sublattice of a Boolean lattice is a distributive lattice. 

                Q.E.D. 

Remark: We conclude that any distributive lattice has a representation with sets: 

This seems that it is already known (see [Sirkoski,R 1969] Appendix §3 first 

page of the paragraph). Our proof does not nevertheless make use of any 

distributive assumption for the lattice. With our technique it is proved something 

more: The inverse of the Birkhoff-Stone theorem. 

 


