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French experiments carried out over the last three years on mathematics teaching in 

complex calculator environments -- in particular with TI-92 -- allow to draw some 

lessons: 

- the introduction of this kind of calculators does not simplify the teacher’s work, nor 

the pupils’ ; 

- it requires a new teaching organization of learning space and a new management 

style of time. 

We shall argue that, under these conditions, work in complex calculator environments 

can lead to a transformation of students’ relationships to mathematics (giving priority 

to the creative side of work). Moreover, one can observe a transformation of students’ 

collective relationships to knowledge (giving greater importance to social aspects). 

 

1. About a common idea 

New technological environments make teachning and learning easier or more 

interesting : it’s a belief appearing in some papers about experiments with computers or 

calculators. Shoaf (1997) describes students’s behaviour in such environments as « a 

process in which the student is silently conversing with himself through the calculator, 

asking questions of himself as he manipulates the concrete screen image. This leads him 



to have the knowledge to conjecture not only what is actually occuring with the image, 

but what it is happening. By using the graphic calculator students are more likely to 

construct their own mathematical understanding through conscious reflection ». 

Such point of view can also appear from inquiries among students.  I teach mathematics 

for five years in the last level of a french highschool (students 18 years old) in an 

experimental environment : each student has a TI-92 which is given by the school (from 

september to june). He can use it both at school and at home, in normal courses as in 

practicals (Trouche, 1997). We can see below these students’answers at four questions : 

- does this calculator environment help you for understanding mathematics ? 

- what do you think about doing practicals in pairs ? 

- does this kind of environment modify your point of view on calculators ? 

- does this kind of environment modify your point of view on mathematics ? 
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The students’answers, very positives, do’nt allow to know what they have actualy learnt 

in these environment. Knowing it needs to study what they precisely do with a 

calculator and what they precisely take off their own activity. 

 

2. Seeing is reality (Trouche & Guin, 1996) 

 

The first lesson of our experiment is about he perception of mathematical objects 

throughout calculators. As Noss and Hoyles (1996) wrote, « these tools wrap up some 

of the mathematical ontology of the environment and form part of the web of ideas and 

actions embedded in it ». 

An example : the students had to 

find the equation of a quadratic 

curve tangential to three given 

lines.  

 

They try various coefficients and 
 



find an approximate solution. To 

check this solution, they made 

successive zooms. 

The teacher asked : « What is 

your definition of a line 

tangential ? ».  
 

One student answered : « A line is all the more tangential to a curve that it shares the 

higher number of points with it ». This isn’t a definition possible in a paper and pencil 

environment… But in a calculator environment, it’s a definition created by the zooming 

action.  

Frequent students’use of calculators bears on the conceptualization process :it can lead 

to a confusion between mathematical objects and their representations by the tool. 

 

3. Particular environment, particular action. 

 

The second lesson of ou experiment is the influence of the environment on the 

students’mathematical actions. This kind of influence exists also for the teacher, or the 

mathematician himself… 

 

3. a. Auto-observation. 

The following question comes from a personnal problem, arrived during the ICTM4 

(Plymouth, August 1999). My bag was lost by the airline compagny and arrives at 

Plymouth four days after me (quite at the end of the conference). I imagined that an 

airline compagny had a lot of ways to bring a bag from Montpellier to Plymouth : 



- a direct way (that means carrying my bag in the same airplane than me, from 

Montpellier to Plymouth) ; 

- an indirect way (that was the way choosed by the airline compagny : Montpellier-

Paris-London-Philadelphia USA-London-Plymouth…) ; 

- a random way. That is the way I would like to study in an TI-92 environment, and 

in the same time, I would like to look at me solving this kind of problem, in order to 

analyse the influence of this kind of environment. 

What is for me a random way ? Look at the figure 1 below. 
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Figure 1 

 

Montpellier is at the square 0. Plymouth at the square n. Each time I throw a dice. my 

bag can progress (between one and six squares obviously). I ask (to me) three 

questions : 

- what is, in such conditions, the probability to reach Plymouth ? 

- if I call P(n) the probability to reach the square n, what is the limit of P(n) when n 

tends to infinity ? 

- has this problem something to do with technology (why and how) ? 

Let’s try to answer to the first question. 



We could modelize this walk with 

the command « random » of a TI-

92 (see first screen below) ; we 

could so realize a simulation of a 

lot of walks and have a statistic  
 

 
answer for each value of n. It’s a « tentation » in this kind of environment to use 

immediatly the powerfull of the calculator and see what happens. I call this first 

movement a movement to calculator concretisation : to try, to calculate something is 

easy with a calculator, so we do it, even if it is not the most usefull… 

It is also possible to use sequences syntax : we can have quicker some « random 

walks » (see screens below).  

Little problem : althought these 

sequences are (from their 

definition) growing, the table of 

values shows some irregular 

phenomenas… It happens often in 

a calculator environment : an 

amazing event arises, and attracts 

our attention. It is perhaps an 

interesting thing, but it is far from 

our problem…  

 
 

 
I call this a movement of distraction. 

I suppose that I don’t follow this movement. So I leave my calculator and I calculate 

the first values of P(n). It is quite obvious than P(0) = 1 (my bag start surely from 

Montpellier…). The only possibility to reach the square 1 is obtaining 1 when throwing 



the dice : 
  
P1 =

1
6

. To reach the square 2, two possibilities : obtaining 2 with a dice or 

obtaining twice 1 (when throwing two dices). Then 
  
P2 =

1
6
+

1
36

. To reach the square 3, 

one can obtain 3 (with only one dice), or 1-2, or 2-1 (with two dices), or 1-1-1 (with 

three dices) ; 
  
then P3 =

1
6
+

2
62 +

1
63  ; 

It becomes more and more complicated. Here takes place, in a calculator 

environment, a second movement, a movement of abstraction : it is necessary to give 

a mathematical form to the problem if one wants to be helped by the calculator. So I’ll 

try to detect a regularity in the first results, to find a general formula for P(n). 

It’s easy to observe at the denominators the successive powers of 6 (because one 

throws one dice, then two dices, etc…) ; it’s necessary to think a little more to remarque 

at the numerators the «  Pascal triangle» : 1, puis 1-1, puis 1-2-1… 

Then I have two possibilities : 

- if I follow the movement of calculator concretisation, I’ll try immediatly to enter the 

new formula in my calculator « to see what happens » ; 

- if I follow the movement of abstraction, I’ll try to understand the reasons of such a 

formula. It needs to think again : to reach the square n with p throwing of a dice, I 

need to share n in p non empty pieces. It means I have to choose (p-1) « partitions» 

among the (n-1) spaces separating the n squares. In fact, I do obtain   Cn−1
p−1  

possibilities. 

So my temporary result is :for n > 0 : 
  
Pn =

Cn−1
p−1

6pp=1

n
∑ .  

Now I’ll see what happens on my calculator : 
 



The first results are well convenient : we 

obtain the results already known. 

Let’s see further : the sequence graph 

(see below) is a little surprising. The 

probabilities overtake 1… 
 

 
So our formula is perhaps true for the 

first values of n, then it’s false. Why ? 

For a numerical reason first. We can 

tranform our result by using the Newton 

binomial formula :  

  
Pn =

Cn−1
p−1

6pp=1

n
∑ =

1
6

Cn−1
p−1 1

6p−1 =
1
6

Cn−1
k 1

6k =
1
6

(1 +
1
6

)n−1

k=0

n−1
∑

p=1

n
∑ . The exponential increasing 

of our result is now obvious… 

For a theoritical reason also ! It’s always usefull to think about the validity domain of a 

result. Our formula for Pn suppose than we can reach the square n with 1 dice, or 2 

dice… or n dice. From the square 7, our formula is false, because 7 cannot be obtained 

with a dice alone ! Then 
  
P7 =

C6
p−1

6pp=2

7
∑ . For the same reason, the square 13 can be 

reached with ad less three dices. One can see here how the two movements of 

abstraction and concretisation are linked, and how it’s is difficult to come out the 

calculator and engage a theoritical reflexion. 

I have now two possibilities : 

- looking for another strategy ; 

- trying to modify my first formula. 

For some « economical thinking reasons », I’ll choose the second possibility. I have a 

good formula for the first values, I spent a lot of time to write this formula for my 



calculator, I have understood the origine of my mistake, so I can hope doing a good 

« reparation » of it. 

My sum has to be made from the integer part of (n-1)/6. I obtain a new formula : 

  

Pn =
Cn−1

p−1

6p
p= E( n−1

6
)

n
∑  

I try straight away this new formula. 

It’s OK for n=2, n=7. 

Let’s try further. Alas (see below) ! The 

probabilities become also bigger than 1… 

 

Thinking again : for n=9 (for example), if 

one shares the walk in two parts, one can 

obtain a part of 1 (possible with a dice) 

and a part of 8 (impossible with a dice !). 

 

Our new formula is true till 7, false further. Again two possibilities, looking for a new strategy 

or trying to treat our poor formula… 

Our choice : changing our point of view. It’s very important for a scientific thinking (cf. 

Robert et Tenaud 1989). Many authors have showed how difficult it was to change a 

representation register, even to change, inside a same representation register, a problem 

form (cf. Duval, 1995). This movement of diversification is not natural in any 

mathematical environment. It’s even more difficult in a calculator environment : one 

can often observe in such environment a movement of fixation on a same application 

(graphical for example) and then on the same form of a given problem. 



So, about our problem. Let us try to come back on our walk : because we know the 

first results, could we find a « recurrence » (I need help from reviewers, I don’t know 

the english word !) formula ? We suppose known the results till square (n-1), let us 

calculate Pn. If we are on square n, where were we just before ? Of course, on square n-

1, or on square n-2, or on square n-3, or on square n-4, or on square n-5, or at last on 

square n-6. Each of these possibilities has the same probability (if our dice is not 

fixed…). Then 
  
Pn =

1
6

(Pn−1 + Pn−2 + Pn−3 + Pn−4 + Pn−5 + Pn−6 ) . 

Let’s have a glance on such a defined 

sequence (I use the TI-92 sequences 

editor, which provides approximate 

values ). The graphic representation, 

with always the same window, seems  

to show a convergent phenomena. It 

seems quite « normal », because of the 

formula barycentric form.  

The opposite screen shows  a 

« stabilisation » of the sequence at 

about 0,28571429. We are at the end 

of the movement to calculator 

concretisation. We can see the 

sequence, know the differentes values 

of P(n), have a quite precise idea of 

the sequence limit. 

 
 

 
 

 
To go further, it’s necessary to follow both a movement of abstraction and 

diversification : 



- our sequence is a classical linear sequence, with classical ways of studies (study of 

the carateristic polynomial, research of its roots, etc…). It would be too long to do 

this here, but it would need both theoritical calculation and calculator use ; 

- the apparent sequence limit, about 0,28571429, can also arouse some thinking. If it 

was a rational number, it could be 2/7. Why such a limit ? It’s quite easy to 

understand (after asking to himself the question !). With a dice, we can obtain 1, 2, 

3, 4, 5 or 6, with an equal probability. So the arithmetical mean of a step is 

  
1+ 2 + 3 + 4 + 5 + 6

6
=

7
2

. It means that, at the limit, we can reach two squares among 

seven squares. This is our limit for P(n) ! 

End of my bag’s random walk and of a mathematician thinking about it… 

One can see, through this example, both the virtualities of a symbolic calculator and the 

difficulties to stand back the first results of the screen. The movements of distraction (to 

follow each new calculator suggestion), of concretisation (to see at once something) and 

of fixation on a single application (by trying and trying again, by zooming and zooming 

again) are very strong in a calculator environment. Following a movements of 

abstraction or diversification requieres a conscious effort of a mathematician. Seeing 

and thinking is absolutely not the same thing. And what is true for a teacher is all the 

more true for a learner ! 

 

3.b. A second example, about students’ behaviour 

Let’s look at various students work about a particular problem solving. The students 

have to find, according to the different values of n, the number of solutions of the 

équation :   ex = x2n . 



One can see a « weak » student’s 

realization : 

- he tries to give the problem to the 

calculator, before thinking about. But 

what is the unknown  ? 
 

 
He tries x, then n, without any success. At last, he repeats the same question, in the 

approximate mode. No more success… We recognize here a movement of calculator 

concretisation (to see what happens with the calculator) and of fixation in the same 

application, but in a quasi random way (it’s quite similar as throwing a dice…) : trying 

to translate the question for the calculator on each possible (or imaginative) form. 

Artigue (1995) calls this kind of behaviour a « fishing behaviour ». 

After this first attempt, a second one, after changing the problem form. 

This student remember it’s possible 

to solve a problem by studying some 

functions variations. He tries to 

derivate the exponential function 

with the calculator. 
 

 
(I ask to him : « you don’t know this derivative ? », he answers : « yes, but I prefer to 

check it ! »). Alas, he uses a false syntax, and obtains some answers he can’nt 

understand (false syntax for the derivative, false syntax for the exponential function- he 

uses the letter e). Again the same movements of calculator concretisation and of 

fixation one a same application, but in an approximative form. 

On the contrary, a « good » student of the same class follows first a movement of 

abstraction. With a small drawing (cf. figure 2 below), he sets the differents elements 

of the problem. He reminds the theoritical result : the exponential function increases 



faster than each power function. Then he supposes the existence of three solutions (we 

can observe the deformation of the curve in order to obtain the third solution). 

 

Figure 2 

After (and only after this theoritikal 

thought, he tries some particular 

resolutions in the TI-92 numerical 

application and in the graphic one.  

He knows there is a third solution. Then 

(see the third screen right) he precises 

x>100 : no solution. He looks for the lost 

solution further : x>200 : he finds this 

solution : thus he doesn’t know because 

he sees, but he sees because he knows. 

He says : « I cannot seek each third 

solution for each value of n at random, I 

have to find an easier way… ». A 

possible explanation of the TI-92 

difficulties is the magnitude of numbers 

like ex. So he changes the equation form 

by using logarithms. 

 
 

 
 

 
 

We recognize a movement of diversification, under a theoritical control. 

 



Next stage of his work, to win some time, 

he chooses the sequences editor, writes 

three sequences according to the three 

previous solutions (one can notice a 

great syntaxe precision).  

 

It’s a manifestation of the articulation ot 

the movement of abstraction and the 

movement of calculator concretisation. 

 

He ends this exercice by interpretation of 

the first results (for n=0 and n=1). 

 
 

 
 

The differences between these two students’ kind of work are very significant. It shows 

a real danger : a complex calculator environment may increase disparities among 

pupils’ behaviour, favouring the better students, hampering the weakers ones. 

 

4. Some theoritical elements 

 

In order to understand what kind of knowledge can be learnt in these computer 

environment, it is usefull to give due consideration to cognitive ergonomy. As langage 

and thought are related, Vygotsky (1962) points out the fundamental relationship 

between gestures and thought. Verillon and Rabardel’s (1995) studies focusing on 

learning processes in the area of cognitive ergonomy are based on this idea. If cognition 

evolves through interaction with the environment, accomodating to artefacts may have 

an effect on cognitive development, knowledge construction and processing, and the 



nature itself of the knowledge generated. They suggest models to analyse the 

instrumented activity of students confronted with tasks involving artefacts :  

- an instrument does not exist in itself, an artefact (like a calculator) becomes an 

instrument when the subject has been able to appropriate it for himself and has 

integrated it with his activity ; 

- this appropriation is not only an individual process ; as in each human activity, it’s a 

social process, in wich both the teacher ‘s responsability and the peers’one are 

engaged. 

This model gives us some guiding ideas to control the calculator appropriation process : 

- the teacher is the designer of activities where mathematics is the central focus. 

Dreyfus (1993) stresses the importance of the choice and the way activities are 

promoted by the teacher for making an effective learning tool. Situations have to be 

carefully designed in order to take advantage of the constraints and discrepancies 

caused by calculators, which may be considered as new learning potential ; 

- the choice of the applications involved in the activity and their articulation aims to 

improve investigation by enhancing varying points of view (to favour the 

movement of diversification) ; 

- one must develop situations aiming to foster experimental work with interaction 

between graphic observations and theoritical calculation, in order to tackle the 

distorsion between the paper and machine environment (to favour the articulation 

of the calculator concretisation movement and of the abstraction one) ; 

- it is important to buid classroom devices to allow the control by the teacher of the 

pupils’instrumented activity (in order to limit the movement of distraction, the 

random research way, to correct the approximate syntax) ; 



- it’s at last important to buid classroom collectives work divices, to favour social 

learning process : students’ various behaviours can compensate each to each (for 

example it can favour a diversification of the action, a combination of calculator 

concretisation and abstraction). 

So new environments require a new teaching organization of learning space and a new 

management style of time. 

5. Some ideas from our experimental work with a TI-92 highschool class. 

 

We shall present here only two elements of this new organization (Guin & Trouche, 

1999). 

 

1. A new organization of the ordinary learning space 

 

As the figure 3 shows it, the teacher, througout his courses, combines both blackboard 

and screen to enhance interactions between paper/pencil and screen/keyboard 

classwork ; the data from one student’s calculator are overhead projected on the class 

screen : it gives a particular go-between role to him (and it allows the control by the 

teacher and by the other students of this student’s instrumented activity). 

 



 
 

Figure 3 

 

 

2. A new management style of time 

 

Figure 4 



 

Precise research moments – practicals- are weekly organized ; pupils working in pairs 

have to solve « open » problems (see figure 4 above).  

 

- The problem terms are choosed to enhance interaction between calculator and paper 

work (for example the research of the number of solutions of the equation   ex = x2n) 

and to enhance a research process : the question has to be actualy problematic ; 

- The pairs are choosed to constitute complementary research teams ; 

- The students have to note successive stages of their work (their results as their dead-

end findings) into their research notebooks ; 

- The teacher lets time necessary to try various methods ; he gives partial correction 

to each pair after the first session in order to boost thinking again. Time in all the 

more necessary in such complex environments ; 

- Great emphasis is laid upon the synthesis moments, both to take stock of the 

practicals’ results and highlight the diversity of problem-solving ways discovered 

by students pairs ; 

- This last stage ends with a period of presentation of a new mathematic notion by the 

teacher : clearness of the notion definition is the indispensable « counterpoint » to 

the diversity of points of view which have led to its introduction. 

 

Thus the introduction of technology does not simplify by itself the teacher’s work, nor 

the pupils. Controling complex calculator environment needs in fact to build complex 

teachning and learning environment. We argue than, under these conditions, work in 

this kind of environment can lead to a transformation of student’s relationship to 

mathematics (giving priority to the creative side of work). Moreover, one can observe a 

transformation of students’collective relationships to knowledge, giving greater 



importance to social aspects. This transformation of the relationship with knowledge is 

a condition to give to the students the desire to learn, and to learn together, to 

understand the world, to distinguish what is true, what is false. It will be our temporary 

conclusion : a symbolic calculator doesn’t create automaticaly new behaviour for 

mathematical research os study ! Calculator environment needs to be built by the 

teacher. 
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