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ABSTRACT

In this paper, a proof is provided to show that Gaussian
signals will lose their Gaussianity if they are passed through
a polynomial of an order greater than 1. This can help in
blind compensation of polynomial nonlinearities on Gaussian
sources by forcing the output to follow a Gaussian distribu-
tion (the term “blind” refers to lack of any prior information
about the nonlinear function). It may have many applications
in different fields of nonlinear signal processing for removing
the nonlinearity. Particularly, in nonlinear blind source sepa-
ration, it can be used as a pre-processing step to transform the
problem to a linear one, which is already well studied in the
literature. This idea is proposed, proved, and finally verified
by a simple simulation as a proof of concept in this paper.

Index Terms— Gaussian Processes, Nonlinear Distor-
tion, Polynomial Mappings, Blind Source Separation, Non-
linear Signals Processing

1. INTRODUCTION

In signal processing applications, it is usual to have a num-
ber of signals measured by some sensors, while each of them
might be a mixture of a number of source signals. Even
though this problem is relatively easy to solve when the mix-
ture is linear (more specifically, the system is LTI), it becomes
mostly too difficult for nonlinear functions. Thus it is always
wanted to transform the nonlinear system to a linear one in
order that it can be processes by already established signal
processing methods for linear mixtures.

On the other hand, in many application of signal process-
ing, signals are modeled as stochastic processes. In this sense,
Gaussian random variables and Gaussian Processes (GPs) are
of the most interesting models because of their simplicity,
generality and nice characteristics. GPs [1] can be used to
track nonlinear communication channel or probabilistic chan-
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Fig. 1. BSS problem basic model

nel equalization [2], to classification [1] or to perform linear
source separation [3, 4].

In this work, the goal is to blindly transform a nonlinear
polynomial system to a linear one under the assumption that
the sources are normally distributed. As a result of this work,
problems in any domain of signals processing which satisfy
the mentioned assumptions, can be pre-processes in order to
be transformed to linear ones and then processes linearly.

Application to Nonlinear Blind Source Separation (BSS):
In BSS, we observe a number of signals each of which is a
mixture of some unknown sources (see Fig. 1) as

x(t) = f(s(t)) (1)

where x(t) and s(t) are the M × 1 observation and the N × 1
source vectors respectively. The goal is to blindly estimate
(separate) the sources, i.e. finding a separating function g
such that y(t) = g(x(t)) = g ◦ f(s(t)) = ŝ(t) is as close as
possible to the source vector s(t), up to classical indetermi-
nacies (order recovery, nonlinear distortions).

While this problem has been well studied for linear mix-
tures and many algorithms have been already proposed in this
regard [5, 6, 7, 8, 9, 10], there is not much progress in gen-
eral nonlinear cases. Consequently, except a few works on
nonlinear BSS in general case [11, 12], studies on this issue
were focused on specific applications with restricted mixing
models [13, 14, 15, 16, 17, 18]. This is why it is thought that
in general, roughly speaking, linear mixtures are separable
while nonlinear ones are not.

In this sense, the result of this work is important and re-
markable in the BSS domain. In this paper, we will show that
when f(·) is an (unknown) invertible polynomial nonlinear
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Fig. 2. Polynomial mixture

mapping of the sources, the Gaussianity property is sufficient
for inverting the nonlinear mapping and reducing the problem
to a source separation problem with linear mixtures.

It is worth noting that there are numerous practical ap-
plications of BSS where the sources are modeled by GPs,
e.g. [19, 3, 4, 20]. In these applications, utilizing the pro-
posed method leads to a set of signals which are linear mix-
tures of mutually independent sources. In order to reconstruct
the sources after linearizing the mixture, one can use either
conventional linear BSS techniques which use the temporal
correlation of the sources (like SOBI [9]) or recent specific
methods for GPs (like [21]).

The rest of the paper is organized as follows. The theo-
retical basis including the main proposed theorem comes in
Section 2. In Section 3 a simple algorithm is proposed based
on the theorem, which is supported by simulations in Section
4. Finally, some future works are suggested in Section 5.

2. THEORETICAL BASIS

As follows, it is proved that polynomials distort the Gaussian-
ity characteristic of their inputs, except linear ones.

Definition An N -dimensional mapping p : RN → RN ,
p(s) = (p1(s), . . . , pN (s))T (where s is an N × 1 vector
of variables and ·T denotes matrix transpose) is called an N -
dimensional polynomial mapping if each pi is a polynomial
(of order Oi of N variables s1, . . . , sN ).

Theorem 1. Let N sources s1, · · · , sN be jointly normally
distributed and mixed via an invertible polynomial mapping
p : RN → RN providing N outputs y1, · · · , yN (Fig. 2).

If the outputs y1, . . . , yN also follow a joint Gaussian dis-
tribution, the polynomial p is limited to be linear as y =
p(s) = As + b, where A and b are an N × N matrix and
an N × 1 vector of constant numbers respectively.

In other words, the theorem 1 says that the only polyno-
mial which preserves the Gaussianity is the linear one. It is
worth noting that the reverse is a well known result: a lin-
ear mixture of Gaussian processes (random variables) leads
to Gaussian processes (random variables).

Proof. Let us assume (s1, . . . , sN ) has a mean vector µs =
IE[s] and a covariance matrix Ks = IE[(s − µs)(s − µs)

T ]
(where IE represents the expected value). Similarly, the out-
put vector (y1, . . . , yN ) has a mean vector µy = IE[y] and a

covariance matrix Ky = IE[(y − µy)(y − µy)
T ]. Consider-

ing the Gaussianity, the probability density function (pdf) of
the vectors s and y, denoted by ρS(s) and ρY(y) respectively,
can be expressed as

ρS(s) =
1√

(2π)N |Ks|
e

−1
2 (s−µs)

T K−1
s (s−µs) (2)

ρY(y) =
1√

(2π)N |Ky|
e

−1
2 (y−µy)

T K−1
y (y−µy) (3)

where |Ks| and |Ky| are the determinants of Ks and Ky re-
spectively. On the other hand, we know that when y = p(s)
and p is an invertible function, the pdf of y follows

ρY(y) =
ρS(s)

|Jp|
(4)

where |Jp| is the determinant of the Jacobian of p.
By definition, it is easy to see that all elements of the Jaco-

bian of a polynomial mapping are polynomials. As a conse-
quence, the determinant of the Jacobian is the absolute value
of a polynomial. Let q(s) be a polynomial such that

det(Jp) = |q(s)|. (5)

Thus (4) can be rewritten as

|q(s)| × pY(y) = pS(s) (6)
⇒ ln |q(s)|+ ln pY(y) = ln pS(s). (7)

Using (2) and (3) to explicit (7) leads to

ln |q(s)| − 1

2
ln |Ky| −

1

2
(y − µy)

TK−1
y (y − µy) =

− 1

2
ln |Ks| −

1

2
(s− µs)

TK−1
s (s− µs), (8)

that is

c+ (y − µy)
TK−1

y (y − µy) =

(s− µs)
TK−1

s (s− µs) + 2 ln |q(s)| (9)

where c = ln(|Ky|/|Ks|) = ln |KyK−1
s | is a constant inde-

pendent of s and y. Now it should be proved that since (9)
holds for all s ∈ RN , y must be a linear function of s.

In particular, (9) holds for any vector s which lies on the
line where all entries of the vector take the same value, i.e.
s = (s, . . . , s)TN×1 = s1N×1. In this case, y = p(s) = p̃(s)
and q(s) become single variable polynomials of s as follows

s = s1N×1 ⇒ y = p̃(s) = [ p̃1(s), . . . , p̃N (s) ]T (10)

and q(s) = q̃(s) where

∀1 ≤ k ≤ N p̃k(s) = pk(s)
∣∣
s=s1N×1

=

dk∑
j=0

akjs
j (11)

q̃(s) = q(s)
∣∣
s=s1N×1

=

dJ∑
i=0

bis
i. (12)



Replacing (11) and (12) in (9) results in

c+ (p̃(s)− µy)
TK−1

y (p̃(s)− µy) =

(s1N×1 − µs)
TK−1

s (s1N×1 − µs) + 2 ln |q̃(s)| =
αs2 + βs+ γ + 2 ln |q̃(s)| (13)

where α = 1T
N×1K

−1
s 1N×1, β = −21T

N×1K
−1
s µs and γ =

µT
s K−1

s µs are constant scalars.
Particularly, it is interesting to study the equality (13)

when s tends to infinity. From (11) it can be seen that for
large s, the right side behaves as αs2, so the left side should
also behave as a second order polynomial. In other words, all
monomials in p̃(s), hence p(s), has a degree at most 1 and
p(s) is limited to be linear.

Corollary 1. In the model of Fig. 1, assuming f : RN → RN

to be an invertible polynomial, and given Gaussian Processes
as the sources, if we find a polynomial mapping g(x) such
that the outputs y1(t), y2(t), . . . , yN (t) are Gaussian Pro-
cesses, the whole function h = g ◦ f will be a linear mixture,
i.e. y(t) = g(x(t)) = h(s(t)) = As(t).

It should be noted that although GPs are special cases of
the main theorem, they are very useful and flexible in model-
ing many practical signals (as introduced in Section 1).

3. PROPOSED ALGORITHM

Although, based on Section 2, theorem 1 holds for any invert-
ible polynomial mapping, it is interesting to study it partic-
ularly when its inverse is also a polynomial. In this case, it
is necessary and sufficient for linearizaing the mixture to esti-
mate a polynomial g such that y(t) = g(x(t)) is a vector with
Gaussian distribution (because in this case, the combination
h = g ◦ f will be a polynomial and will satisfy the assump-
tion of the theorem 1). Consequently, one can propose an
algorithm which takes a cost function of “non-Gaussianity”
and minimizes it with respect to the polynomial g.

Here we assume a parametric model for the polynomial
and then the optimization is done with respect to the param-
eters of our model. The parametric model of an Lth order
polynomial of N signals is chosen as

g(x) =


g1(x)
g2(x)

...
gN (x)

 =


θ1

T

θ2
T

...
θN

T

k(x) = ΘN×PkP×1(x)

(14)
where θi for i = 1, . . . , N is a column vector of the param-
eters (constant scalars), k(x) is the column vector contain-
ing all monomials with degree less than or equal to L and
P =

(
N+L
L

)
= (N+L)!

N !L! is the number of the parameters of
each entry gi(·) which is equal to the number of monomials
with degree at most L.

For any 1 ≤ i ≤ N , the entropy of yi is defined as

H(yi) = −IE{ln ρYi
(yi)} (15)

where ρYi
(yi) is the pdf of the ith output signal yi. Conse-

quently, the neg-entropy [22] is calculated as

J (y) = H(ỹ)−H(y) (16)

where ỹ is a Gaussian random variable with the same co-
variance matrix as y’s.

It can be easily shown that among all distributions with
a given mean and variance, Gaussian pdf is the one with the
highest entropy. Thus, neg-entropy is always non-negative
and invariant by any linear invertible transformation, and van-
ishes iff the signal is Gaussian. Therefore, as well as some
previous works on BSS (e.g. [23, 10]), we also use neg-
entropy as such a measure of Gaussianity. It should be em-
phasized that in this work, neg-entropy is the cost function
that is minimized, because we need to recover the Gaussianity
of the sources. While in classical BSS methods, it is maxi-
mized in order to retrieve non-Gaussianity.

Thus the algorithm should optimize

minimize
Θ

‖J (Θk(x))‖2, (17)

considering the fact that each entry of J (Θk(x)) depends
only on one row of Θ, hence minimizing all the entries of
J (Θk(x)) will be equivalent to minimize its norm.

Since this cost function is not convex or even close to con-
vex at all and it has too many local minimas, the minimization
should done by a probabilistic method. For example, com-
paring the results of several runs of simulated annealing [24]
algorithm with different random initialization is suggested in
order to make sure that the global minimum is found.

4. SIMULATION RESULTS

The main theorem proposed in this work is supported by a
simple 2-by-2 simulated example as follows. The two sources
s1 and s2 are randomly chosen as N (0, 1) and are mixed
through a 2-dimensional polynomial mapping as[

s1
s2

]
→
[
x1
x2

]
=

[
s1 + (s1 + s2)

3

s2 − (s1 + s2)
3

]
(18)

to make the two observations.
From the scatter plot of the sources and the observations,

which is depicted in Fig. 3, it is obvious that the observations
do not follow a Gaussian distribution.

In cases when the order of the inverse polynomial is not
known, one can start from a linear polynomial, and gradually
increase the order until getting a low enough cost function. In
this experiment, given a cubic model, we are looking for the
parameters θ1

T = [θ10, . . . , θ19] in

y1 = θ10x
3
1 + θ11x

2
1x2 + θ12x

2
1 + θ13x1x

2
2 + θ14x1x2

+ θ15x1 + θ16x
3
2 + θ17x

2
2 + θ18x2 + θ19 (19)
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Fig. 3. The scatter plot of the sources and the observations of (18)
for 1000 samples and how the histogram of the first output fits a
Gaussian function. The neg-entropy for s1, s2, x1, x2 and y1 are
calculated 0.0524, 0.0476, 0.8664, 1.1073 and 0.0535 respectively.

such that y1 follows a Gaussian distribution. To this end, as
proposed in the previous section, the neg-entropy (16) of y1
should be minimized with respect to the parameters θ1 which
leads to a linear mixture of s1 and s2.

Simulations show that the 10-dimensional minimization
of θ1 is quite difficult mainly because of 1) too many local
minimas and non-convexity and 2) the high dimension of the
space and the computational cost of the minimization. How-
ever, it can be seen that any linear mixture of s1 and s2 is a
global minimum of the neg-entropy.

Particularly, it is interesting to see the behavior of the cost
function (16) around θ1 = [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], where
y1 = x1 + x2 = s1 + s2 is expected to be a global minimum.

Fig. 4 illustrates the partial variation of the neg-entropy
with respect to any of entries of θ1 around its optimal value
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0]. It is evident that the neg-entropy
tends to zero (global minimum) for the optimal value, and
taking distance makes it increase rapidly. It should also be
noted that changing θ19 does not affect the linearity of the
mixture, hence, does not change the neg-entropy.

As it can be seen from Fig. 5, although the global min-
imum is in the origin, there are too many other local mini-
mums that may trap the minimizing algorithm. This figure
also shows that the value of the neg-entropy is minimized with
respect to the coefficients of x1 and x2 (while not changing
the other parameters) as long as we stay on the line θ15 = θ18
where the two coefficients are equal. This can also be mathe-
matically seen that at any point of the line θ15 = θ18, y1 is a
linear mixture of s1 and s2, hence follows a Gaussian pdf.

5. DISCUSSION AND FUTURE WORKS

In this work, it is proved that the only invertible polynomial
which preserves the Gaussianity is a linear function. This
result can be used in many different applications dealing with
polynomial nonlinearities. As an example, in nonlinear BSS
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Fig. 4. The neg-entropy of y1 in (19) with respect to the entries
of θ1 centered around their optimal value [0, 0, 0, 0, 0, 1, 0, 0, 1, 0]
(from θ10 to θ19 in figures (a) to (j) respectively). Plotting with re-
spect to each entry, the other parameters are kept constant.
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Fig. 5. The value of the neg-entropy of y1 in (19) with respect
to the coefficients of x1 and x2 while the other parameters are kept
constant and equal to their optimal value in [0, 0, 0, 0, 0, 1, 0, 0, 1, 0].

problem, one may propose a two-step separating scheme,
where at the first step the mixture is transformed to linear
based on the result of this work, and the second step is a lin-
ear BSS method which can separate Gaussian signals based
on non-stationnarity [25] or correlation [9]. However, this is
a preliminary result and can be extended and generalized in
both theoretic and algorithmic aspects.

In practice, nonlinear mixture are not exactly polynomi-
als, but they may be approximated by polynomials. Thus it is
interesting to see how a similar result can be achieved in those
cases when the equations are not exact.

As mentioned earlier, the minimization of the neg-entropy
is a too difficult task to do because of the local minimas and
the computational cost. Thus, trying to find a mathematical
expression of the minimizer or providing a minimization tech-
nique capable of escaping from local minimas is a significant
subject for future. Moreover, instead of minimizing the neg-
entropy, one may suggest to take an approximation of it as a
cost function to be minimized (similar to [10]).
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