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Part III: Model derivation on a globally

spherical geometry

Gayaz Khakimzyanov, Denys Dutykh∗, and Zinaida Fedotova

Abstract. The present article is the third part of a series of papers devoted to the shallow

water wave modelling. In this part we investigate the derivation of some long wave models

on a deformed sphere. We propose first a suitable for our purposes formulation of the full

Euler equations on a sphere. Then, by applying the depth-averaging procedure we derive

first a new fully nonlinear weakly dispersive base model. After this step we show how to

obtain some weakly nonlinear models on the sphere in the so-called Boussinesq regime.

We have to say that the proposed base model contains an additional velocity variable which

has to be specified by a closure relation. Physically, it represents a dispersive correction

to the velocity vector. So, the main outcome of our article should be rather considered as

a whole family of long wave models.
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1. Introduction

Recent mega-tsunami events in Sumatra 2004 [1, 47, 69] and in Tohoku, Japan 2011
[31, 57] required the simulation of tsunami wave propagation on the global trans-oceanic
scale. Moreover, similar catastrophic events in the future are to be expected in these regions
[54]. The potential tsunami hazard caused by various seismic scenarii can be estimated by
extensive numerical simulations. During recent years the modelling challenges of tsunami
waves have been extensively discussed [14, 59]. On such scales the effects of Earth’s rotation
and geometry might become important. Several authors arrived to this conclusion, see e.g.
[15, 32]. There is an intermediate stage where the model is written on a tangent plane to
the sphere in a well-chosen point. In the present study we consider the globally spherical
geometry without such local simplifications.

The direct application of full hydrodynamic models such as Euler or Navier–Stokes

equations does not seem realistic nowadays. Consequently, approximate mathematical
models for free surface hydrodynamics on rotating spherical geometries have to be proposed.
This is the main goal of the present study. The existing (dispersive and non-dispersive)
shallow water wave models on a sphere will be reviewed below. Nowadays, hydrostatic
models are mostly used on a sphere [73, 79]. The importance of frequency dispersion
effects was underlined in e.g. [71]. Their importance has been realized for tsunami waves
generated by sliding/falling masses [4, 22, 23, 76]. However, we believe that on global
trans-oceanic scales frequency dispersion effects might have enough time to accumulate
and, hence, to play a certain rôle. Finally, the topic of numerical simulation of these
equations on a sphere is another important practical issue. It will be addressed in some
detail in the following (and the last) Part IV [38] of the present series of papers entirely
devoted to shallow water wave modelling.

Shallow water equations describing long wave dynamics on a (rotating) sphere have been
routinely used in the fields of Meteorology and Climatology [79]. Indeed, there exist many
similarities in the construction of approximate models of atmosphere and ocean dynamics
[53]. The derivation of these equations by depth-averaging can be found in the classical
monograph [33]. The main numerical difficulties here consist mainly in (structured) mesh
generation on a sphere and treating the degeneration of governing equations at poles (the
so-called poles problem). So far, the finite differences [46, 49] and spectral methods [9]
were the most successful in the numerical solution of these equations. Our approach to
these problems will be described in [38].

It is difficult to say who was the first to apply Nonlinear Shallow Water Equations
(NSWE) on a sphere to the problems of Hydrodynamics. Contrary to the Meteorology,
where the scales are planetary from the outset and the spherical coordinates are intro-
duced even on local scales [52], in surface wave dynamics people historically tended to use
local Cartesian coordinates. However, the need to simulate trans-oceanic tsunami wave
propagation obliges us to consider spherical and Earth’s rotation effects. We would like to
mention that in numerical modelling of water waves on the planetary scale the problem
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of poles does not arise since these regions are covered with the ice. Thus, the flow cannot
take place there.

In [77] one can find various forms of shallow water equations on a sphere along with
standard test cases to validate numerical algorithms. The standard form of Nonlinear
Shallow Water Equations (NSWE) in the spherical coordinates O λϕ r is

H t + ∇ · [Hu ] = 0 ,

(H u) t + ∇ · [H uu ] =
(

̥ +
u

R
tanϕ

)

H v − gH

R cosϕ

∂η

∂λ
,

(H v) t + ∇ · [H vu ] = −
(

̥ +
u

R
tanϕ

)

H u − gH

R

∂η

∂ϕ
.

Here H(λ, ϕ, t)
def
:=
(
η + d

)
(λ, ϕ, t) is the total water depth and u(λ, ϕ, t) is the linear

speed vector with components

u (λ, ϕ, t)
def
:=
(

R cos(ϕ) · λ̇, R ϕ̇
)

,

where the over dot denotes the usual derivative with respect to time, i.e. ˙(·) def
:= d(·)

dt
.

Function d specifies the bottom bathymetry shape and ̥
def
:= 2Ω sinϕ is Coriolis’s

parameter, Ω being the Earth constant angular velocity. The constant g is the absolute
value of usual gravity acceleration. The divergence operator in spherical coordinates is
computed as

∇ ·
(
(·)1, (·)2

) def
:=

1

R cosϕ

[ ∂(·)1
∂λ

+
∂
(
cosϕ (·)2

)

∂ϕ

]

.

The right hand sides of the last two NSW equations contain the Coriolis effect, additional
terms due to rotating coordinate system and hydrostatic pressure gradient. Recently a new
set of NSW equations on a sphere was derived [12, 13] including also the centrifugal force
due to the Earth rotation. The applicability range of this model was discussed [12] and
some stationary solutions are provided [13]. NSWE on a sphere are reported in [59] in a
non-conservative form and including the bottom friction effects. The derivation of these
equations can be found in [43, 45]. In earlier attempts such as [58] NSWE did not include
terms ( u

R
tanϕ

)

H v and
( u

R
tanϕ

)

H u .

We remark however that the contribution of these terms might be negligible for tsunami
propagation problems. This system of NSWE is implemented, for example, in the code
MOST∗ [72]. The need to include dispersive effects was mentioned in several works. In [15]
linear dispersive terms were added to NSWE and this model was integrated in TUNAMI-N2

code. This numerical model allowed the authors to model the celebrated Sumatra 2004
event [69]. In another work published the same year Grilli et al. (2007) [32] outlined the
importance to work in spherical coordinates even if in [32] they used the Cartesian version

∗Method Of Splitting Tsunami (MOST)
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of the code FUNWAVE. This goal was achieved six years later and published in [41]. Kirby

et al. used scaling arguments to introduce two small parameters (ς and µ in notation of
our study). A weakly nonlinear and weakly dispersive Boussinesq-type model was given
and effectively used in [50, 51]. However, the authors did not publish the derivation of
these equations. Moreover, they included a free parameter which can be used to improve
the dispersion relation properties, even if this modification may appear to be rather ad-hoc
without a proper derivation to justify it.

The systematic derivation of fully nonlinear models on a sphere was initiated in our
previous works [26–28, 66]. In this work we would like to combine and generalize the exist-
ing knowledge on the derivation of dispersive long wave models in the spherical geometry
including rotation effects. We cover the fully and weakly nonlinear cases. The relation of
our developments to existing models is outlined whenever it is possible. The derivation in
the present generality has not been reported in the literature before.

The present study is organized as follows. In Section 2 we present the full Euler

equations on an arbitrary moving coordinate system. The modified scaled Euler equations
are given in Section 2.3. The base nonlinear dispersive wave model is then derived in
Section 3 from the modified Euler equations. The base model has to be provided with a
closure relation. Two particular and popular choices are given in Sections 4 and 5. Finally,
the main conclusions and perspectives of the present study are outlined in Section 6. As a
reminder, in Appendix A we explain the notations and provide all necessary information
from tensor analysis used in our study.

2. Euler equations

The full Euler equations in spherical coordinates can be found in many works (see
e.g. the classical book [42]). However, for our purposes we prefer to have a more compact
form of these equations. It will be derived in the present Section departing from Euler

equations written in a standard Cartesian coordinate system Ox1 x2 x3. We assume that
the axis Ox3 coincides with the rotation axis and points vertically upwards to the North
pole. In this setting the coordinate plane Ox1 x2 coincides with the celestial equator. The
definition of the employed Cartesian and spherical (curvilinear) coordinate systems is
illustrated in Figure 1.

Moreover, we introduce a virtual sphere of radius R whose center coincides with the
center of Earth, R being the mean Earth’s radius. This sphere rotates with the angular
velocity Ω. We shall need this object below for the derivation of the base shallow water
model. The real planet shape does not have to be spherical. We only assume that its
geometry is globally spherical and can be obtained as a continuous deformation of the
virtual sphere (shown in blue in Figure 1).

Among all volumetric forces we consider only the Newtonian gravity g directed towards
the center of the rotating sphere. In other words, the force acting on a fluid particle located
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Figure 1. Cartesian and spherical coordinates used in this study.

at the point x =
(
x1, x2, x3

)
has the following expression:

g = −g
x

|x | = − g

|x |
(

x1
i1 + x2

i2 + x3
i3

)

,

where
{
iα

}3

α=1
are unitary vectors of the Cartesian coordinate system. In the derivation

of the base model we shall assume that the liquid layer depth is much smaller than Earth’s
(mean) radius R . However, for the Euler equations this assumption is not really needed.
Moreover, we assume that the liquid is homogeneous, thus liquid density ρ ≡ const .
Moreover, for the sake of simplicity we assume that the gravity acceleration g = | g |
is also constant throughout the fluid bulk∗. Under these conditions the equations which
describe the motion of an ideal incompressible fluid are well known:

∂
(
ρUα

)

∂xα
= 0 , (2.1)

∂
(
ρUβ

)

∂t
+

∂
(
ρUβ Uα

)

∂xα
+

∂P

∂xβ
= −ρ g

xβ

|x | , β = 1, 2, 3 . (2.2)

∗The authors are not aware of any study in the field of Hydrodynamics where this assumption was not

adopted.
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In equations above and throughout this study we adopt the summation convention over

repeating lower and upper indices. Functions
{
Uα

}3

α=1
are Cartesian components of the

fluid particles velocity vector and P is the fluid pressure.

2.1. Euler equations in arbitrary moving frames of reference

A curvilinear coordinate system (q0, q1, q2, q3) is given by a regular bijective homomor-
phism (or even a diffeomorphism) onto a certain domain with Cartesian coordinates
(x0, x1, x2, x3). In the present study for the sake of convenience we give a different treat-
ment to time and space coordinates, i.e.

x0 = q0 = t , xα = xα
(
q0, q1, q2, q3

)
, α = 1, 2, 3 . (2.3)

More precisely, we assume that the mapping above satisfies the following conditions [55]:

• The map is bijective
• The map and its inverse are at least continuous (or even smooth)
• The Jacobian of this map is non-vanishing

More information on curvilinear coordinate systems is given in Appendix A. As one can see,
the time variable t is chosen to be the same in both coordinate systems. It does not have to
change (at least in the Classical Mechanics). Consequently, a point P having Cartesian

(spatial) coordinates (x1, x2, x3) will have curvilinear coordinates (q1, q2, q3) .

Remark 1. Before reading the sequel of this article we strongly recommend to read first
Appendix A where we provide all necessary information from tensor analysis and we explain
the system of notations used below.

The system of equations (2.1), (2.2) can be recast in a compact tensorial form as follows
[44]:

∇ · T = ρF ,

where T =
{
T i ′ j ′

} 3

i ′ j ′ =0
is the 2−tensor and F =

{
F i ′
} 3

i ′ =0
is the 1−tensor. The last

form has the advantage of being coordinate frame invariant (i.e. independent of coordinates
provided that the components of tensors T and F are transformed according to some well-
established rules). However, in the perspective of numerical discretization [38], one needs
to introduce explicitly the coordinate system into notation to work with. It can be done
starting from the components of tensors T and F in a Cartesian frame of reference:

T 0 ′ j ′

= ρU 0 ′

U j ′ ≡ ρU j ′

, T α ′ j ′

= ρU α ′

U j ′

+ P δ α ′ j ′

,

F 0 ′

= 0 , F α ′

= −g
xα ′

|x | .

We employ indices with primes in order to denote Cartesian components. For instance,
U j ′

is the jth component of the velocity vector in a Cartesian frame of reference and it
can be computed as

U j ′

= ẋ j ′ def
:=

dx j ′

dt
,
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U 0 ′

being equal to 1 thanks to the choice (2.3). In any other moving curvilinear frame of
reference the components of tensor T can be computed according to formulas (A.13):

T 0 j = D
0
i ′ D

j
j ′ T

i ′ j ′

= D
0
0 ′ D

j
j ′ T

0 ′ j ′

= D
j
j ′ T

0 ′ j ′

= D
j
j ′

(
ρU j ′

)
= ρV j ,

T α 0 = D
α
i ′ D

0
j ′ T

i ′ j ′

= D
α
i ′ D

0
0 ′ T

i ′ 0 ′

= D
α
i ′

(
ρU i ′

)
= ρVα ,

T αβ = D
α
i ′ D

β

j ′ T
i ′ j ′

= D
α
0 ′ D

β

j ′ T
0 ′ j ′

+ D
α
α ′ D

β

j ′ T
α ′ j ′

=

D
α
0 ′

(
ρVβ

)
+ D

α
α ′

(
ρU α ′

Vβ
)

+ P · D α
α ′ D

β

j ′ δ
α ′ j ′

=

ρVα Vβ + P ·
(
D

α
i ′ D

β

j ′ δ
i ′ j ′ − D

α
0 ′ D

β

j ′ δ
0 ′ j ′
)

≡
ρVα Vβ + P ·

(
g αβ − g α 0 g β 0

)
,

where {g ij}3i, j=0 are components of the contravariant metric tensor (defined in Appendix A)

and V j is the jth contravariant component of velocity in a curvilinear frame of reference:

V j = q̇ j def
:=

dq j

dt
= D

j
j ′ U

j ′

. (2.4)

The components of tensor F are transformed as

F 0 = D
0
i ′ F

i ′ ≡ 0 , F α = D
α
i ′ F

i ′ = −g
xα ′

|x | D
α
α ′ .

We have obviously that V 0 = 1 , T 0 0 = ρ and in Appendix A we show that

g 0α ≡ q α
t , g 0β ≡ q

β
t .

The expressions of 2−tensor T elements along with the 1−tensor F are used to write the
full Euler equations in an arbitrary curvilinear coordinate system. The following compact
notation is already familiar to us:

(∇ · T) i = ρF i , i = 0, . . . , 3 ,

or using formula (A.15) for the divergence operator we have

∂ (JT i j)

∂q j
+ JΥ i

jk T
j k = ρ JF i , i = 0, . . . , 3 . (2.5)

For instance, for i = 0 we obtain the mass conservation equation in an arbitrary frame
of reference:

∂ (ρ J)

∂t
+

∂ (ρ JVα)

∂q α
= 0 . (2.6)
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For i = 1, 2, 3 from equation (2.5) one obtains the momentum conservation equations,
which can be expanded by inserting expressions of 2−tensor components T i j :

∂ (ρ JVβ)

∂t
+

∂ (ρ JVα Vβ)

∂q α
+ J

(
g αβ − g α 0 g β 0

) ∂P

∂q α
+ ρ JΥβ

j k V
j V k +

P·
[

J
∂ (g αβ − g α 0 g β 0)

∂q α
+
(
g αβ − g α 0 g β 0

) ∂ J

∂q α
+ JΥβ

α γ

(
g α γ − g α 0 g γ 0

) ]

︸ ︷︷ ︸

(⋆)

= ρ JF β ,

(2.7)

where β = 1, 2, 3 . By using formula (A.14) to differentiate the components of the
contravariant metric components g αβ along with formula (A.11) one can show that ex-
pression (⋆) ≡ 0 . Consequently, the momentum conservation equations simplify sub-
stantially. However, this set of equations still represents an important drawback: each
equation contains the derivative of the pressure with respect to all three coordinate direc-
tions q α , α = 1, 2, 3 . So, we continue to modify the governing equations. We take index
ν ∈ {1, 2, 3} and we multiply the continuity equation (2.6) by the covariant metric tensor
component g 0 ν . Then, momentum conservation equation (2.9) is multiplied by gβ ν and
we sum up obtained expressions. As a result, we obtain the following equation:

∂ (ρ g j ν JV
j)

∂t
+

∂ (ρ g j ν JV
α V j)

∂q α
+ J gβ ν ·

(
g αβ − g α 0 g β 0

) ∂P

∂q α

− ρ JV j ∂g j ν

∂t
− ρ JVα V j ∂g j ν

∂q α
+ ρ gβ ν JΥ

β

j k V
j V k = ρ g j ν JF

j .

Using relation (A.6) we can show that

gβ ν ·
(
g αβ − g α 0 g β 0

)
≡ δ α

ν .

Using the relations (A.9) between covariant and contravariant components of a vector one
obtains also

g j ν F
j = F ν , g j ν V

j = V ν . (2.8)

Above, F ν and V ν are covariant components of the force and velocity vectors (or 1−tensors)
respectively. Finally, we obtain the conservative form the full Euler momentum equations
in an arbitrary frame of reference:

∂ (ρ JV ν)

∂t
+

∂ (ρ JVα V ν)

∂q α
+ J

∂P

∂q ν
+ ρ JV j

V
k
[

gβ ν Υ
β
j k −

∂ g j ν

∂q k

]

= ρ JF ν , ν = 1, 2, 3 .

By using the continuity equation (2.6), one can derive similarly the non-conservative form
of the momentum equation:

∂V ν

∂t
+ Vα ∂V ν

∂q α
+

1

ρ

∂P

∂q ν
+ V j V k

[

Υ j k, ν − ∂g j ν

∂q k

]

= F ν , ν = 1, 2, 3 , (2.9)

where we used Christoffel symbols of the first kind for the sake of simplicity.
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2.2. Euler equations in spherical coordinates

From now on we choose to work in spherical coordinates since the main applications
of our work aim the Geophysical Fluid Dynamics on planetary scales. As we know the
planets are not exactly spheres. Nevertheless, the introduction of spherical coordinates
still simplifies a lot the analytical work.

Consider a spherical coordinate system O λ θ r with the origin placed in the center of a
virtual sphere of radius R rotating with constant angular speed Ω . By λ we denote the
longitude whose zero value coincides with a chosen meridian. Angle θ is the colatitude

defined as θ
def
:= π

2
− ϕ , where ϕ is the geographical latitude. Finally, r > 0 is the radial

coordinate. Since latitude −π
2

< ϕ < π
2
, we have that 0 < θ < π . However, we

assume additionally that

θ0 6 θ 6 π − θ0 ,

where 1 ≫ θ0 = const > 0 is a small angle. In other words, we exclude the poles with
their small neighbourhood∗. Spherical coordinates q 0 = t , q 1 = λ , q 2 = θ , q 3 = r

and Cartesian coordinates x 0 , x 1 , x 2 , x 3 are related by the following formulas:

x 0 = t ,

x 1 = r cos(λ + Ω t) sin θ ,

x 2 = r sin(λ + Ω t) sin θ ,

x 3 = r cos θ .

Using formula (A.10) it is not difficult to show that Jacobian of the transformation above
is

J = −r2 sin θ . (2.10)

Similarly, using formulas (A.7), (A.8), one can compute covariant components of the metric
tensor:

g 0 0 = 1 + Ω2 r2 sin2 θ , g 1 0 ≡ g 0 1 = Ω r2 sin2 θ , g 2 0 = g 0 2 = g 3 0 = g 0 3 ≡ 0 ,

g 1 1 = r2 sin2 θ , g 2 2 = r2 , g 3 3 = 1 , gαβ = gβα ≡ 0 ,

with α, β = 1, 2, 3 and α 6= β . From formulas (2.4) we compute contravariant
components of the velocity vector:

V 0 = 1 , V 1 = λ̇ , V 2 = θ̇ , V 3 = ṙ .

∗In Atmospheric sciences this assumption is not realistic, of course. However, in Hydrodynamics it is

justified by natural ice covers around pole regions — Arctic and Antarctic. So, water wave phenomena do

not take place near Earth’s poles.



Dispersive shallow water wave modelling. Part III 13 / 48

The covariant components of the velocity vector {Vα}3α=1 and the exterior volume force
{Fα}3α=1 are computed thanks to relations (2.8):

V 1 = g 1 0 + g 1 1 V
1 = Ω r2 sin2 θ + r2 sin2 θ λ̇ ,

V 2 = g 2 2 V
2 = r2 θ̇ ,

V 3 = g 3 3 V
3 = ṙ ,

and the force components are

F 1 = F 2 ≡ 0 , F 3 = −g .

Finally, by using the definition of Christoffel symbols of the first kind, we obtain the
sequence of the following relations for the term

V j V k
[

Υ j k, ν − ∂g j ν

∂q k

]

≡
3∑

k=1

k−1∑

j=0

[

2Υ j k, ν − ∂g j ν

∂q k
− ∂g k ν

∂q j

]

V j V k +

3∑

j=0

[

Υ j j, ν − ∂g j ν

∂q j

]

(V j) 2 =

−
3∑

k=1

k−1∑

j =0

∂g j k

∂q ν
V j V k − 1

2

3∑

j=0

∂g j j

∂q ν
(V j) 2 .

Using the fact that the Jacobian J is time-independent (see formula (2.10)), we obtain the
full Euler equations governing the flow of a homogeneous incompressible fluid in spherical
coordinates:

∂(ρ JVα)

∂q α
= 0 , (2.11)

∂Vβ

∂t
+ Vα ∂Vβ

∂q α
+

1

ρ
· ∂P

∂q β
= Sβ , β = 1, 2, 3 , (2.12)

where

Sβ =







0 , β = 1 ,

(Ω + V 1)2

2
· ∂g 1 1

∂θ
, β = 2 ,

−g +
(Ω + V 1)2

2
· ∂g 1 1

∂r
+

(V 2)2

2
· ∂g 2 2

∂r
, β = 3 .

The derivatives of covariant components of the metric tensor can be explicitly computed
to give:

∂g 1 1

∂θ
= 2 r2 sin θ cos θ ,

∂g 1 1

∂r
= 2 r sin2 θ ,

∂g 2 2

∂r
= 2 r .
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We notice that components S 2, 3 contain correspondingly the terms r2Ω 2 sin θ cos θ and
rΩ 2 sin2 θ . They are due to the centrifugal force coming from the Earth rotation. The
presence of this force causes, for instance, the deviation of the pressure gradient from
the radial direction even in the quiescent fluid layer. This effect will be examined in the
following Section.

2.2.1 Equilibrium free surface shape

When we worked on a globally flat space [37], the free surface elevation y = η(x, t)
was measured as the excursion of fluid particles from the coordinate plane y = 0 . This
plane is chosen to coincide with the free surface profile of a quiescent fluid at rest. On a
rotating sphere, the situation is more complex since the equilibrium free surface shape does
not coincide, in general, with any virtual sphere of a radius R . It is the centrifugal force
which causes the divergence from the perfectly symmetric spherical profile. So, when we
work on a sphere, the free surface elevation will be also measured as the deviation from the
equilibrium shape. In this Section we shall determine the equilibrium free surface profile
r = R + η 0 0( λ, θ) by using two natural conditions:

• The equilibrium profile along with bottom are steady
• The pressure P on the free surface is constant. Since the flow is incompressible,

this constant can be set to zero without any loss of generality.

In the case of a quiescent fluid (i.e. all Vα ≡ 0), the full Euler equations of motion
simply become

∂P

∂λ
= 0 ,

∂P

∂θ
= ρΩ2 r2 sin θ cos θ ,

∂P

∂r
= −ρ g + ρΩ2 r sin2 θ .

The solution of these equations can be trivially obtained by successive integrations in each
of spherical independent variables:

P = −ρ g r +
ρ r2Ω 2

2
sin2 θ + C ,

where C = const ∈ R is an arbitrary integration constant which is to be specified later.
Now we can enforce the dynamic boundary condition on the free surface, which states that
the pressure P = 0 vanishes at the free surface r = R + η 0 0(λ, θ) . This gives us an
algebraic equation to determine the required profile η 0 0(λ, θ) :

−ρ g (R + η 0 0) +
ρ (R + η 0 0)

2Ω 2

2
sin2 θ + C = 0 .

The constant C is determined from the condition that on the (North) pole θ = 0 the free
surface elevation is fixed. For simplicity we choose η 0 0(λ, 0) = 0 . Then, the constant C
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R

1

2

Ω

Figure 2. Stationary free surface profiles of a liquid layer over a virtual sphere
of radius R and rotating with constant angular speed Ω: (1) solution of Euler

equations; (2) solution of modified Euler equations.

can be readily computed by evaluating the equation above at the North pole:

C = ρ g R .

With this value of C in hands, the algebraic equation to determine the function η 0 0(λ, θ)
simply becomes:

−g η 0 0 +
(R + η 0 0)

2Ω 2

2
sin2 θ = 0 .

The physical sense has the following solution to the last equation:

η 0 0(θ) =
2

g
Ω 2 R2 sin2 θ ·

[

1 +

√

1 − 2

g
Ω 2R sin2 θ

]−2

. (2.13)

This solution is represented in Figure 2(1). This solution will be used below as zero level
y = 0 in free surface flows on globally flat geometries (see, for example, Part I of the
present series of papers [37]). For example, the solid impermeable bottom of constant
depth h0 is given by the following equation

r = R + η 0 0(θ) − h0 .
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2.2.2 Boundary conditions

When we model surface water waves, it is standard to use the full Euler equations as
the governing equations. However, in the presence of impermeable bottom and free surface,
the corresponding boundary conditions have to be specified [67]. From now on, we assume
that the solid uneven moving bottom is given by the following equation:

r = R + η 0 0(θ) − h(t, λ, θ)
def
=: ř(t, λ, θ) ,

and the free surface is given by

r = R + η 0 0(θ) + η(t, λ, θ)
def
=: r̃(t, λ, θ) .

By taking the full (material) derivative of the last two equations with respect to time, we
obtain two kinematic boundary conditions on the free surface and bottom respectively:

η t + V 1 η λ + V 2 (η + η 0 0) θ − V 3 = 0 , r = r̃ , (2.14)

h t + V 1 h λ + V 2 (h − η 0 0) θ + V 3 = 0 , r = ř . (2.15)

Finally, on the free surface we also have the following dynamic condition:

P = 0 , r = r̃ .

The last condition expresses the fact that the free surface is an isobar and the constant
pressure is chosen to be zero without any loss of generality. Lateral boundary conditions
are dependent on the application in hands and they have to be discussed separately.

2.3. Modified Euler equations

In order to derive shallow water equations in a moving curvilinear frame of reference, we
have to estimate the relative importance of various terms already at the level of the full
Euler equations (2.6), (2.9). Consequently, we have to pass to dimensionless variables.
Let ℓ and d be characteristic flow scales in horizontal and vertical directions correspondingly.
Let α be the typical wave amplitude. Then, we can form three important dimensionless
numbers:

ε
def
:=

α

d
: Measure of the nonlinearity

µ
def
:=

d

ℓ
: Measure of the frequency dispersion

ς
def
:=

d

R
: Measure of flow thickness.

Parameters ε and µ are well known in long wave modelling (see, for example, [37]), while
parameter ς is specific to globally spherical geometries. The values of all three parameters
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(ε, µ, ς) characterize the aspect ratios of the flow. Various assumptions on the (relative)
magnitude of these parameters allow to simplify more or less significantly the governing
equations of Hydrodynamics.

2.3.1 Dimensionless variables

We shall use also some ‘derived’ dimensionless quantities. Another dimensionless hori-
zontal scale can be introduced on a sphere as

γ
def
:=

ς

µ
≡ ℓ

R
.

The characteristic time scale τ is introduced as follows

τ
def
:=

ℓ

c
,

where c
def
:=

√
g d is the usual (linear) gravity wave speed. Then, we can easily introduce

the characteristic angular velocity of wave propagation:

ω
def
:=

γ

τ
≡ c

R
.

Finally, from now on we introduce also a new (independent) signed radial variable:

r̊
def
:= r − R .

Using the characteristic scales introduced above, we can scale all dependent and indepen-
dent variables in our mathematical formulation:

{ λ ⋆, θ ⋆ } ⋉
{ λ, θ }

γ
, { h ⋆, r̊ ⋆, H ⋆ } ⋉

{ h, r̊, H }
d

, η ⋆
⋉

η

α
,

t ⋆ ⋉
t

τ
, Ω ⋆

⋉
Ω

ω
, P

⋆
⋉

P

ρ c 2
.

Contravariant components of the velocity vector are scaled as follows

V
β, ⋆

⋉
Vβ

ω
, V

3, ⋆
⋉

V 3

µ c
,

and covariant coordinates scale as

V ⋆
β ⋉

Vβ

R c
, V ⋆

3 ⋉
V 3

µ c
,

where β = 1, 2 . Finally, we adimensionalize also the transformation Jacobian along
with non-zero components of the covariant metric tensor:

{
J ⋆, g ⋆

1 1, g
⋆
2 2

}
⋉

{
J, g 1 1, g 2 2

}

R2
, g ⋆

0 1 ⋉
g 0 1

Rc
.
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2.3.2 Modification of Euler equations

The parameter ς represents the relative thickness of the liquid layer and usually in
geophysical applications it rarely exceeds ς > 10−3 . Consequently, the presence of
this factor in front of O(1) terms shows their negligible importance. The modification
of Euler equations consists in omitting such terms in equations (2.11), (2.12). Later,
from these modified equations we shall derive the base wave model in Section 3. The
main difference between the original and modified Euler equations is that the Jacobian

along with metric tensor components loose their dependence on the radial coordinate r (or
equivalently r̊) after the modification.

Consider, for example, the case of the Jacobian J, which is computed using formula
(2.10) in the original Euler equations. In dimensionless variables the Jacobian becomes

J
⋆ =

J

R2
= −

( r

R

)2

sin θ = −
(

1 +
r̊

R

)2

sin θ =

−
(
1 + ς r̊ ⋆

)2
sin(γ θ ⋆) ≃ − sin(γ θ ⋆) .

Above we neglected the term ς r̊ ⋆ = O(ς) . By making similar transformation with
covariant metric tensor components, we obtain

g ⋆
1 1 = sin2(γ θ ⋆) , g ⋆

2 2 = 1 , g ⋆
0 1 = Ω ⋆ sin2(γ θ ⋆) .

For the sake of completeness we provide also the modified quantities in dimensional vari-
ables as well:

J = −R2 sin θ , g 1 1 = R 2 sin2 θ , g 2 2 = R 2 , g 0 1 = ΩR 2 sin2 θ . (2.16)

After these modification we obtain the modified Euler equations, which have the same
form as (2.11), (2.12), but the Jacobian J and metric tensor {g i j} are modified as we
explained hereinabove. The right-hand side in momentum equation (2.12) is modified as

well Sβ  S̀β, since the quantities g 1 1 and g 2 2 do not depend on r anymore:

S̀β =







0 , β = 1 ,

(Ω + V 1)2R 2 sin θ cos θ , β = 2 ,

−g , β = 3 .

2.3.3 Modified stationary free surface profile

After the modifications we introduced into Euler equations, we have to reconsider ac-
cordingly the question of the stationary water profile, which will serve us as the unperturbed
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water level. The modified Euler equations for the quiescent fluid are

∂P

∂λ
= 0 ,

∂P

∂θ
= ρΩ 2R 2 sin θ cos θ ,

∂P

∂r
= −ρ g .

The last equations can be similarly integrated and the most general solution is

P = −ρ g r +
ρΩ 2 R 2

2
sin2 θ + C ,

where C = const ∈ R . Imposing the dynamic boundary condition P(λ, θ, r) = 0
at the free surface r = R + η 0 0(λ, θ) and the additional condition on the North pole
η 0 0(λ, 0) = 0 , we obtain the following expression for the required function η 0 0(λ, θ) :

η 0 0(λ, θ) ≡ η 0 0(θ) =
Ω 2 R 2

2 g
sin2 θ , 0 6 θ 6 π . (2.17)

It can be readily seen that the equilibrium free surface profile η 0 0(θ) predicted by modified
Euler equations is different from the expression (2.13) derived above. The modified
expression (2.17) is depicted in Figure 2(2). However, it is not difficult to show that the
modified expression (2.17) can be obtained by neglecting the terms of order O(ς) in the
dimensionless counterpart of equation (2.13).

In case of modified Euler equations the bottom r = ř and free surface r = r̃ are
described using corresponding deviations −h(λ, θ, t) and η(λ, θ, t) from the unperturbed
water level r = R + η 0 0(θ) . The kinematic boundary conditions on the free surface
(2.14) and bottom (2.15) for modified Euler equations remain unchanged.

2.3.4 Modified Euler equations in dimensionless variables

In this Section we summarize the developments made so far and, thus, we provide ex-
plicitly the modified Euler equations in scaled variables. For the sake of simplicity, we
drop the superscript ⋆, which denotes dimensionless quantities. The continuity equation
(2.11) becomes:

[
JV

1
]

λ
+
[
JV

2
]

θ
+
[
JV

3
]

r̊
= 0 .

Non-conservative momentum equations (2.12) are
(
1 + (µ2 − 1) δ 3

β

)
·
[
Vβ, t + V 1 · Vβ, λ + V 2 · Vβ, θ + V 3 · Vβ, r̊

]
+ P q β = Sβ ,

where β = 1, 2, 3 and as usually q 1 ≡ λ , q 2 ≡ θ , q 3 ≡ r̊ . The second index

denotes the partial derivative operation, i.e. Vβ, q α

def
:=

∂Vβ

∂q α . Covariant and contravariant
components of the velocity are related in the following way:

V 1 = g 0 1 + g 1 1 · V 1 , V 2 = V 2 , V 3 = V 3 .
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Dimensionless right-hand side Sβ has the following components:

S 1 = 0 , S 2 =
ς

µ
(Ω + V 1)2 sin(γθ) cos(γθ) , S 3 = −1 . (2.18)

Dimensionless kinematic and dynamic boundary conditions take the following form:

ε η t + εV 1 · η λ + V 2 · (ε η + η 0 0) θ − V 3 = 0 , r̊ = r̊ s ,

h t + V 1 · h λ + V 2 · (h − η 0 0) θ + V 3 = 0 , r̊ = r̊ b ,

P = 0 , r̊ = r̊ s ,

where we introduced the traces of the shifted (dimensionless) radial variable r̊ at the bottom
and free surface correspondingly:

r̊ b
def
:= η 0 0 − h , r̊ s def

:= η 0 0 + ε η .

Finally, the dimensionless ‘still’ water level is give by the following formula:

η 0 0(θ) =
Ω 2

2
sin2(γθ) .

Below we shall need also the gradients of this profile:

∂ t η 0 0 = 0 , ∂ λ η 0 0 = 0 , ∂ θ η 0 0 =
ς

µ
Ω 2 sin(γθ) cos(γθ) . (2.19)

3. Nonlinear dispersive shallow water wave model

In order to derive an approximate long wave model, we shall work with dimensionless
modified Euler equations summarized in the preceding Section. Moreover, by analogy
with the globally flat case [37], we would like to separate momentum equations into ‘hori-
zontal’, i.e. tangential and ‘vertical’, i.e. radial components. The complete set of equations
is given here:

∇̄ ·
[
JU

]
+
[
JW

]

r̊
= 0 , (3.1)

Vt +
(
U · ∇

)
V + W V r̊ + ∇P = S , (3.2)

µ2
(
W t + U · ∇W + W W r̊

)
+ P r̊ = −1 , (3.3)

where vectors U
def
:=
(
V 1, V 2

)
and V

def
:=
(
V 1, V 2

)
are contravariant and covariant com-

ponents of the ‘horizontal’ velocity. Moreover, we have the following relation among them

V = G + G ·U , G
def
:=

(

g 0 1

0

)

, G
def
:=

(

g 1 1 0

0 1

)

. (3.4)

The ‘vertical’ component of velocity was denoted by W
def
:= V 3. On the right hand side

we have vector∗ S
def
:= ⊤(S 1, S 2) . The ‘horizontal’ gradient operator ∇

def
:=
(
∂ λ, ∂ θ

)
and

∗In the sequel by ⊤ we denote the transposition operator of linear objects such as vectors and matrices.
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the associated ‘flat’ divergence operator is:

∇̄ ·U
def
:=

∂V 1

∂λ
+

∂V 2

∂θ
.

We have the following relations similar to the flat case:

U · ∇W = V 1 · W λ + V 2 · W θ ,
(
U · ∇

)
V = ⊤

(
U · ∇V 1, U · ∇V 2

)
.

In order to write boundary conditions in a compact form similar to the flat case, we
introduce two new functions:

h̊
def
:= h − η 0 0 , ε η̊

def
:= ε η + η 0 0 .

Finally, the boundary conditions in new variables become

ε η̊ t + εU · ∇η̊ − W = 0 , r̊ = ε η̊ , (3.5)

h̊ t + U · ∇h̊ + W = 0 , r̊ = −h̊ , (3.6)

P = 0 , r̊ = ε η̊ . (3.7)

3.1. Horizontal velocity approximation

In long wave models we describe traditionally the flow using the total water depth
H and some velocity u(t, λ, θ) =

(
u 1(t, λ, θ), u 2(t, λ, θ)

)
variable, which is supposed

to approximate the ‘horizontal’ velocity U (t, λ, θ, r̊) . In weakly dispersive models we
can assume that u approximates U up to the order O(µ2) in the dispersion parameter.
Mathematically it can be written as

U (t, λ, θ, r̊) = u(t, λ, θ) + µ2U d (t, λ, θ, r̊) . (3.8)

Here by U d (t, λ, θ, r̊) =
(
U 1

d (t, λ, θ, r̊), U
2
d (t, λ, θ, r̊)

)
we denote the dispersive∗ compo-

nent of the velocity field. For potential flows one can compute explicitly an approximation
to U d (t, λ, θ, r̊) . However, in the present derivation we do not adopt this simplifying
assumption.

For example, in [41] the authors choose u(t, λ, θ) to be the ‘horizontal’ flow velocity
computed on a certain surface r̊ = r̊ (t, λ, θ) which lies between† the bottom and free
surface so that the following expression makes sense:

u(t, λ, θ)
def
:= U

(
t, λ, θ, r̊ (t, λ, θ)

)
.

In other works (see e.g. [25, 78]) u(t, λ, θ) is taken to be the depth-averaged ‘horizontal’
velocity U (t, λ, θ, r̊) of (modified) Euler equations.

∗We call this component dispersive, since it disappears from the equations if we take the dispersionless

limit µ → 0 .
†The moving boundaries can be included.



G. Khakimzyanov, D. Dutykh & Z. Fedotova 22 / 48

Using relation (3.4) we can similarly write the following decomposition for the covariant
velocity vector V (t, λ, θ, r̊) as a sum of a component v(t, λ, θ) independent from the
‘vertical’ coordinate and a dispersive addition V d =

(
Vd, 1(t, λ, θ, r̊), Vd, 2(t, λ, θ, r̊)

)
:

V (t, λ, θ, r̊) = v(t, λ, θ) + µ2 V d (t, λ, θ, r̊) , (3.9)

where as in (3.4) we have the following relations:

v = G + G · u , V d = G ·U d . (3.10)

By integrating the representation (3.8) over the water depth, we trivially obtain:

1

H

ˆ ε η̊

−h̊

U (t, λ, θ, r̊) dr̊ = u(t, λ, θ) + µ2
U(t, λ, θ) , (3.11)

where the total water depth H(t, λ, θ) is defined as

H
def
:= ε η̊ + h̊ ≡ ε η + h .

We introduced another depth-averaged contravariant velocity variable:

U(t, λ, θ) = ⊤
(
U 1(t, λ, θ), U 2(t, λ, θ)

) def
:=

1

H

ˆ ε η̊

−h̊

U d (t, λ, θ, r̊) dr̊ .

Similarly, one can introduce the depth-averaged covariant velocity component:

V(t, λ, θ) = ⊤
(
V 1(t, λ, θ), V 2(t, λ, θ)

) def
:=

1

H

ˆ ε η̊

−h̊

V d (t, λ, θ, r̊) dr̊ ≡ G ·U .

The last identity comes from the independence of metric tensor components from the radial
(‘vertical’) coordinate r̊ in modified Euler equations.

In general, the vector field U(t, λ, θ) is not uniquely defined, unless some additional
simplifying assumptions are adopted. For the moment we shall keep this function arbitrary
(as we did in the globally plane case [37]) to derive the most general base long wave model.
However, before this model can be applied to any particular situation, one has to express U
in terms of other variables H(t, λ, θ) and u(t, λ, θ) . In Physics such relations are usually
called the closures (see e.g. [6, 74]).

3.2. Continuity equation and the radial velocity component

Let us integrate the continuity equation (3.1) in variable r̊ over the total water depth:

∇̄ ·

[

J

ˆ ε η̊

−h̊

U dr̊

]

− J
(
ε U · ∇η̊ − W

)∣
∣
r̊= ε η̊ − J

(
U · ∇h̊ + W

)
∣
∣
∣
r̊=−h̊

= 0 .

From the last identity using boundary conditions (3.5), (3.6) along with equation (3.11),
we obtain the continuity equation on a sphere:

(JH) t + ∇̄ ·
[
JHu

]
= −µ2

∇̄ ·
[
JHU

]
.
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Finally, by using the curvilinear divergence operator definition (A.12) we can rewrite the
continuity equation in a more familiar form (to be compared with the flat case [37]):

H t + ∇ ·
[
Hu

]
= −µ2

∇ ·
[
HU

]
, (3.12)

where we remind that

∇ ·
[
Hu

]
≡ (JHu 1) λ + (JHu 2) θ

J
, ∇ ·

[
HU

]
≡ (JHU 1) λ + (JHU 2) θ

J
.

By integrating the same continuity equation (3.1) in the radial coordinate from −h̊ to r̊

we obtain

W = −D h̊ − (̊r + h̊)∇ · u
︸ ︷︷ ︸

(�)

+ O(µ2) . (3.13)

It is natural to adopt the term (�) as the ‘vertical’ velocity in the nonlinear dispersive
model:

̟
def
:= −D h̊ − (̊r + h̊)∇ · u , ̟ 4 W + O(µ2) .

The last relation ̟ 4 W denotes the fact that a quantity ̟ is obtained from W by an
asymptotic truncation. Thus, we can say informally that ̟ contains less information than
W . The operator D is the ‘horizontal’ material derivative defined traditionally as

D
def
:=

∂

∂t
+ u · ∇ .

3.3. Pressure representation

In order to derive the pressure field approximation in terms of variables H and u, we
integrate the ‘vertical’ momentum equation (3.3) over the radial coordinate from r̊ to ε η̊.
By taking into account the ‘horizontal’ velocity ansatz (3.8) we obtain

P = µ2

ˆ ε η̊

r̊

(
DW + W Wρ + O(µ2)

)

︸ ︷︷ ︸

(♦)

dρ − r̊ + ε η̊ . (3.14)

We transform the expression (♦) under the integral by employing the approximation (3.13)
for the ‘vertical’ velocity component W < ̟ :

DW + W W r̊ = D̟ + ̟
∂̟

∂r̊
+ O(µ2) =

−D 2 h̊ − (̊r + h̊) ·D (∇ · u) + (̊r + h̊) · (∇ · u)2 + O(µ2) ≡
− (̊r + h̊)R1 − R2 + O(µ2) ,

where we introduced

R1
def
:= D (∇ · u) − (∇ · u)2 , R2

def
:= D 2 h̊ .
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By substituting the last asymptotic approximation for (♦) into (3.14), we obtain the
approximate pressure distribution over the fluid layer:

P = H − (̊r + h̊) − µ2

[(

H − (̊r + h̊)
)

R2 +
(
H 2

2
− (̊r + h̊)2

2

)

R1

]

︸ ︷︷ ︸

(2)

+ O(µ4) .

The term (2) will serve us as the pressure in the nonlinear long wave model:

P = H − (̊r + h̊) − µ2

[ (

H − (̊r + h̊)
)

R2 +
(
H 2

2
− (̊r + h̊)2

2

)

R1

]

. (3.15)

We would like to insist on two important facts that have been just shown:

• Pressure P approximates the three-dimensional pressure distribution P to the as-
ymptotic order O(µ4), i.e. P = P + O(µ4) . This fact we will be also denoted by
P 4 P + O(µ4) .

• The expression (3.15) does not depend on the variable U , which is to be specified
later.

Remark 2. One can notice that

D 2 h̊ = D 2 h − D 2 η 0 0 = D 2 h − D

( ς

µ
u 2Ω 2 sin(γθ) cos(γθ)

)

.

Thus, we can write:

D 2 h̊ = D
2 h + O

( ς

µ

)

.

By noticing that terms R1, 2 appear with the coefficient µ2 , one can equivalently define R2

as

R
⋆
2

def
:= D

2 h ,

consistently with modified Euler equations. The difference between two quantities being
asymptotically negligible, i.e.

µ2
(
R2 − R

⋆
2

)
= O(ς µ) .

3.4. Momentum equations

In order to derive the ‘horizontal’ momentum equations in the nonlinear dispersive wave
model, we integrate the horizontal momentum equation (3.2) over the fluid layer depth.
By taking into account the dynamic boundary condition (3.7), we obtain:
ˆ ε η̊

−h̊

(
Vt +

(
U · ∇

)
V + W V r̊

)

︸ ︷︷ ︸

(⋆)

dr̊ + ∇

ˆ ε η̊

−h̊

P dr̊ − P | r̊=−h̊ ·∇h̊ =

ˆ ε η̊

−h̊

S dr̊ .

(3.16)
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We underline the fact that the last identity is exact. In order to simplify this equation, we
exploit first the approximation for P worked out above:

∇

ˆ ε η̊

−h̊

P dr̊ = ∇P + O(µ4) , P| r̊=−h̊ = p̌ + O(µ4) ,

where we introduced the depth-integrated and bottom pressures defined respectively as

P
def
:=

ˆ ε η̊

−h̊

P dr̊ ≡ H 2

2
− µ2℘ ,

p̌
def
:= P | r̊=−h̊ ≡ H − µ2 ̺ .

Above we separated hydrostatic terms from non-hydrostatic ones summarized in functions
℘ and ̺ defined as

℘ def
:=

H 3

3
R1 +

H 2

2
R

⋆
2 , ̺

def
:=

H 2

2
R1 + HR

⋆
2 .

Physically, in our dispersive wave model ̺ is the non-hydrostatic pressure trace at the
bottom and ℘ is the depth-integrated non-hydrostatic pressure component. Then, we
have

̺∇h̊ =
(
H − µ2 ̺

)
·
(
∇h − ∇η 0 0

)
=
(
H − µ2 ̺

)
∇h − H∇η 0 0 + µ2 ̺∇η 0 0 .

From (2.19) it follows that

∇η 0 0 =




0

ς

µ
Ω 2 sin(γθ) cos(γθ)



 ,

and consequently we have

p̌∇h̊ =
(
H − µ2 ̺)∇h − H∇η 0 0 + O(µ4 + ς µ + ς 2) .

Now we proceed to the approximation of remaining terms in the depth-integrated ‘hor-
izontal’ momentum equation (3.16). The term involving the ‘vertical’ velocity component
can be approximated as follows

ˆ ε η̊

−h̊

W V r̊ dr̊ = µ2

ˆ ε η̊

−h̊

̟
∂V d

∂r̊
dr̊ + O(µ4) =

µ2
{

(̟V d ) | r̊= ε η̊

r̊=−h̊
−
ˆ ε η̊

−h̊

V d

∂̟

∂r̊
dr̊
}

+ O(µ4) =

µ2
{

−
(
D h̊ + H (∇ · u)

)
V d

∣
∣
∣

r̊= ε η̊

+ D h̊V d

∣
∣
∣
r̊=−h̊

+ HV (∇ · u)
}

+ O(µ4) .
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The group of terms in (3.16) involving the ‘horizontal’ velocities are similarly transformed:

ˆ ε η̊

−h̊

[
Vt +

(
U ·∇

)
V
]
dr̊ =

ˆ ε η̊

−h̊

[ (
v + µ2 V d

)

t
+
((

u+ µ2U d

)
·∇

)

·
(
v + µ2V d

) ]

dr̊ =

ˆ ε η̊

−h̊

[

v t + (u ·∇) v
]

dr̊ + µ2

ˆ ε η̊

−h̊

[

V d t + (u ·∇)V d + (U d ·∇) v
]

dr̊ + O(µ4) =

H
[
v t + (u ·∇) v

]
+ µ2

{

(HV) t − ε η̊ t V d

∣
∣
r̊= ε η̊ − h̊ t V d

∣
∣
r̊=−h̊

+ (u ·∇) · (HV)

− ε (u · ∇η̊)V d

∣
∣
r̊= ε η̊ − (u · ∇h̊)V d

∣
∣
r̊=−h̊

+ H (U · ∇) v
}

+ O(µ4) =

H
[
v t + (u · ∇) v

]
+ µ2

{

(HV) t + (u · ∇) (HV) +

H (U · ∇) v − ε (D η̊)V d

∣
∣ r̊= ε η̊ − (D h̊)V d

∣
∣
r̊=−h̊

}

+ O(µ4) .

Combining the last two results we obtain the following expression for the term (⋆):

ˆ ε η̊

−h̊

(
Vt +

(
U · ∇

)
V + W V r̊

)

︸ ︷︷ ︸

(⋆)

dr̊ = H
[
v t + (u · ∇) v

]

− µ2
[
DH + H (∇ · u)

]

︸ ︷︷ ︸

(z)

V d

∣
∣
r̊= ε η̊

+ µ2
{

(HV) t + (u · ∇) · (HV) + H (U · ∇) v + HV (∇ · u)
}

+ O(µ4) .

The term (z) can be simplified by taking into account the mass conservation equation
(3.12):

(z) ≡ DH + H (∇ · u)
(3.12)
= −µ2

∇ · (HU) = O(µ2) < 0 .

The last step consists in averaging the right hand side of equation (3.2):

ˆ ε η̊

−h̊

S dr̊ = HS + O(ς µ) .

The term O(ς µ) can be consistently neglected in accordance with modified Euler equa-
tions. The components of S = ⊤(S 1, S 2) are defined in (2.18). The first component
S 1 ≡ 0, so its averaging is rather a trivial task. Let us focus on S 2 component:

S2 =
ς

µ

(
Ω + u 1 + µ2U 1

d

)2
sin(γθ) cos(γθ) =

ς

µ

(
Ω + u 1

)2
sin(γθ) cos(γθ)

︸ ︷︷ ︸

S2

+ O(ς µ) .

Thus, S = ⊤(0, S 2) with S 2 defined above.



Dispersive shallow water wave modelling. Part III 27 / 48

After combining all the developments made above and neglecting the terms of order
O(µ4), we obtain the required momentum balance equation in dimensionless variables:

H
(
v t + (u · ∇) v

)
+ ∇

(
H 2

2

)

= H∇h + H
(
S − ∇η 0 0

)
+

µ2
(
∇℘ − ̺∇h

)
− µ2

[

(HV) t + (u · ∇) (HV) + H (U · ∇) v + HV (∇ · u)
]

.

(3.17)

3.5. Base model in conservative form

For theoretical and numerical analysis of the governing equations, it can be beneficial
to recast equations in the conservative form. In order to achieve this goal, we have to
introduce the tensorial product operation ⊗ . For our modest purposes it is sufficient to
define this operation on vectors in R2 . Let us take a covariant vector α = (α 1, α 2) and
a contravariant vector β = (β 1, β 2) . Then, their tensorial product is defined as

α ⊗ β
def
:=

(

α 1β
1 α 1β

2

α 2β
1 α 2β

2

)

.

The divergence of the 2−tensor α ⊗ β is a vector defined as

∇ · (α ⊗ β)
def
:=

(

∇ · (α 1β)

∇ · (α 2β)

)

,

or in component-wise form as

∇ · (α ⊗ β)
def
:=

1

J

((
Jα 1β

1
)

λ
+
(
Jα 1β

2
)

θ(
Jα 2β

1
)

λ
+
(
Jα 2β

2
)

θ

)

. (3.18)

Then, by using this definition of the tensor product (in curvilinear coordinates), one can
show the following formula remains true by analogy with the usual (i.e. ‘flat’) vector
calculus:

∇ · (α ⊗ β) ≡ α (∇ · β) + (β · ∇)α .

We have set up all the tools to transform the momentum equation (3.17). By multiplying
the continuity equation (3.12) by v and adding it to (3.17) we obtain the balance equation
for the total ‘horizontal’ momentum:

(H v) t + ∇ · (H v ⊗ u) + ∇

(
H 2

2

)

= H∇h + H
(
S − ∇η 0 0

)
+

µ2
(
∇℘ − ̺∇h

)
− µ2

[

(HV) t + ∇ · (H v ⊗ U) + ∇ · (HV ⊗ u)
]

.
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By using formula (3.18), we can rewrite the last equation in partial derivatives:

(JH v) t +
[
JH v u 1

]

λ
+
[
JH v u 2

]

θ
+ ∇

(

J
H 2

2

)

=

JH∇h +
H 2

2
∇J + JH

(
S − ∇η 0 0

)
+ µ2

J
(
∇℘ − ̺∇h

)

− µ2
{

(JHV) t +
(
JH (U 1 v + u 1

V)
)

λ
+
(
JH (U 2 v + u 2

V)
)

θ

}

.

The conservative structure of the governing equations will be exploited in the following
Part IV [38] in order to construct a modern finite volume TVD scheme for the numerical
simulation of nonlinear dispersive waves on a sphere.

3.5.1 Transformation of the source term

Some additional simplification can be achieved in the last equation if we analyze the
expression JH

(
S − ∇η 0 0

)
. Indeed, this expression contains centrifugal force terms

proportional to ∝ Ω 2 . It is not difficult to see that these terms cancel each other due to
the judicious choice of the ‘still water’ level r = η 0 0(θ) . As a result, we obtain

S − ∇η 0 0 =




0

ς

µ

(
2Ωu 1 + (u 1)2

)
sin(γθ) cos(γθ)




def
=: S ⋆ .

The momentum balance equation reads now

(JH v) t +
[
JH v u 1

]

λ
+
[
JH v u 2

]

θ
+ ∇

(

J
H 2

2

)

=

JH∇h +
H 2

2
∇J + JHS ⋆ + µ2 J

(
∇℘ − ̺∇h

)

− µ2
{

(JHV) t +
(
JH (U 1 v + u 1

V)
)

λ
+
(
JH (U 2 v + u 2

V)
)

θ

}

.

3.6. Base model in dimensional variables

In applications it can be useful to have the governing equations in dimensional (unscaled)
variables. In this way we obtain the following system of equations which constitute what
we call the base model in the present study:

(JH) t + ∇̄ ·
[
JHu

]
= −∇̄ ·

[
JHU

]
, (3.19)
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(JH v) t + ∇̄ ·
[
JH v ⊗̄u

]
+ g∇

(

J
H 2

2

)

=

gHJ∇h + JHS ⋆ + g
H 2

2
∇J + J

(
∇℘ − ̺∇h

)

−
{

(JHV) t +
(
JH (U 1 v + u 1

V)
)

λ
+
(
JH (U 2 v + u 2

V)
)

θ

}

, (3.20)

where ⊗̄ is the usual ‘flat’ tensorial product of two vectors, H
def
:= η + h and covariant

v = ⊤(v 1, v 2) / contravariant u = ⊤(u 1, u 2) components of the velocity vectors are
related as

v = G + G · u , G
def
:=

(

g 0 1

0

)

, G
def
:=

(

g 1 1 0

0 g 2 2

)

.

The Jacobian J and the metric tensor components {g i j} 06 i, j 6 2 are computed as specified
in (2.16). The velocity variable U = ⊤

(
U 1, U 2

)
has to be specified by a closure relation.

Then, the vector function V = ⊤
(
V 1, V 2

)
is recomputed using relation V = G ·U .

Physically, the vector function U describes the deviation of the chosen ‘horizontal’ ve-
locity variable u from the depth-averaged profile. Below we shall consider two particular
(and also popular) choices of U leading to different models which can be already used in
practical applications.

4. Depth-averaged velocity variable

One natural way to choose the approximate velocity variable u in the dispersive wave
model is to take the three-dimensional ‘horizontal’ velocity field U (t, λ, θ, r̊) and replace
it by its average over the total fluid depth, i.e.

u =
1

H

ˆ η̊

−h̊

U (t, λ, θ, r̊) dr̊ .

Then, from formula (3.11) it follows that U ≡ 0 . It is probably the simplest possible
closure relation that one can find. By substituting U = 0 into governing equations of the
base model we obtain:

(JH) t + ∇̄ ·
[
JHu

]
= 0 , (4.1)

(JH v) t + ∇̄ ·
[
JH v ⊗̄u

]
+ g∇

(

J
H 2

2

)

=

gHJ∇h + JHS ⋆ + g
H 2

2
∇J + J

(
∇℘ − ̺∇h

)
. (4.2)
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4.1. Base model in terms of the linear velocity components

The last system of equations describes the evolution of the total water depth H and two
contravariant components u 1 , u 2 of the velocity vector u . However, for the numerical
modelling and the interpretation of obtained results it can be more convenient to use
directly the linear components u , v of this vector:

u
def
:=

√
g 1 1 u

1 ≡ Ru 1 sin θ , v
def
:=

√
g 2 2 u

2 ≡ Ru 2 .

By using formulas (2.16) and relation (3.10) equations (4.1), (4.2) become:

(HR sin θ) t +
[
H u

]

λ
+
[
H v sin θ

]

θ
= 0 , (4.3)

(H uR sin θ) t +
[

H u2 + g
H 2

2

]

λ
+
[
H u v sin θ

]

θ
= gH h λ

−H u v cos θ − ̥H v R sin θ + ℘
λ − ̺ h λ , (4.4)

(H v R sin θ) t +
[
H u v

]

λ
+
[ (

H v2 + g
H 2

2

)
sin θ

]

θ
= gH h θ sin θ

g
H 2

2
cos θ + H u2 cos θ + ̥H uR sin θ +

(℘
θ − ̺ h θ

)
sin θ , (4.5)

where ̥
def
:= 2Ω cos θ is the Coriolis parameter defined in terms of the colatitude θ . In

equations above u2 and v2 denote u ·u and v · v respectively. The quantities Rα , α = 1, 2
arising in ℘ and ̺ can be computed by the following formulas:

R1
def
:= (∇ · u) t +

1

R sin θ

{

u (∇ · u) λ + v (∇ · u) θ sin θ
}

− (∇ · u)2 ,

R
⋆
2

def
:= (D h) t +

1

R sin θ

{

u (D h) λ + v (D h) θ sin θ
}

,

where the divergence operator ∇ · u and the material derivative D h can be computed in
linear velocity components u , v as

∇ · u
def
:=

1

R sin θ

{

u λ + (v sin θ) θ

}

,

D h
def
:= h t +

1

R sin θ

{

u h λ + v h θ sin θ
}

.

The hydrodynamic model (4.3)–(4.5) presented in this Section is the base fully nonlinear
weakly dispersive model with depth-averaged velocity written in dimensional variables. We
stress out that in the derivation above the flow irrotationality has never been assumed. It
plays the same rôle in the spherical geometry as the so popular nowadays Serre–Green–
Naghdi equations [29, 30, 64, 68] in the flat case (see [37] for the derivation of the base
model on a globally flat space). By applying further simplifications to these equations we
can obtain weakly nonlinear dispersive and fully nonlinear dispersionless equations.



Dispersive shallow water wave modelling. Part III 31 / 48

4.2. Weakly nonlinear model

Above we considered the fully nonlinear base model with depth-averaged velocity vari-
able. During the derivation of this model we have not assumed that the wave scaled
amplitude ε = O(1) is a small parameter. In the present Section we propose a weakly
nonlinear weakly dispersive model. Analogues of this model have been used for the numer-
ical modelling of tsunami propagation in the ocean [15, 50, 51].

Weakly nonlinear models can be easily obtained from their fully nonlinear counterparts
by adopting the simplifying assumption ε ≪ 1 . It is quite common to work in the
so-called Boussinesq regime [8, 10, 18] where we relate the nonlinear parameter to the
magnitude of the dispersion:

ε = O(µ2) .

Thus, the terms of order O(ε2 + εµ2) can be neglected in the governing equations. As a
result we obtain the same governing equations (4.3)–(4.5) with one important modification
— in the computation of dispersive terms we use the following linearized formulas∗:

℘ def
:=

h 3

3
R

wnl
1 +

h 2

2
R

wnl
2 ,

̺
def
:=

h 2

2
R

wnl
1 + h R

wnl
2 ,

and R wnl
α , α = 1, 2 are defined as

R
wnl
1

def
:= (∇ · u) t , R

wnl
2

def
:= (Dh) t +

1

R sin θ

{

u h tλ + v h t θ sin θ
}

.

4.3. Dispersionless shallow water equations

Another important particular system can be trivially obtained from the base model
(4.3)–(4.5) with the depth-averaged velocity by neglecting the non-hydrostatic terms ℘ , ̺ ,
which have the asymptotic order O(µ2) . We reiterate on the fact that the three-dimensional
flow irrotationality is not needed as a simplifying assumption. In this way we obtain a
dispersionless model similar to nonlinear shallow water (or Saint-Venant) equations in
the globally flat space [17]. This system of equations (4.3)–(4.5) (without non-hydrostatic
terms) has the hyperbolic type. Consequently, it is natural to use finite volume methods
for the numerical discretization of these equations [3, 48]. This method was proven to be
very successful in solving hydrodynamic problems in coastal areas (see e.g. [24, 40]). The
unique form of equations (4.3)–(4.5) for the entire hierarchy of asymptotic hydrodynamic
models is very beneficial for the development of efficient numerical algorithms. Namely,
we expect that neglecting non-hydrostatic terms in the discrete equations will result in a
robust finite volume scheme for the remaining hyperbolic part of the equations. Numerical

∗In the superscripts we use the abbreviation ‘wnl’ which stands for ‘weakly nonlinear’.
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discretizations respecting the hierarchy of hydrodynamic models will be developed in the
following Part IV [38] by analogy with the globally flat space [39].

4.4. State-of-the-art

In this Section we make a review of published literature devoted to the derivation and/or
application of nonlinear dispersive wave models with the depth-averaged velocity variable.
The case of the velocity defined on an arbitrary surface in the fluid bulk will be discussed
below in Section 5 (see Section 5.4 for the corresponding literature review).

We can report a Boussinesq-type model in spherical coordinates which uses the depth-
averaged velocity variable [15]. The equations presented in that study have the advantage
of being written in the conservative form. The bathymetry is assumed to be stationary.
The Coriolis force is taken into account. However, some nonlinear terms in the right
hand side (such as H u v cos θ and H u 2 cos θ) are omitted. Finally, the dispersive terms
are written as if the bottom were flat. In the notation of our study, Dao & Tkalich

(2007) take the dispersive terms as

℘ =
H h2

3
R

wnl
1 , ̺ ≡ 0 , R

wnl
2 ≡ 0 .

Moreover, R wnl
1 is simplified by assuming that cos θ ≪ 1 . For the justification of this form

of dispersive terms Dao & Tkalich refer to [36]. Then, this weakly nonlinear and weakly
dispersive model was incorporated into TUNAMI-N2 code, which was used to study Sumatra
2004 event. The authors came to the conclusion that the inclusion of dispersive effects and
Earth’s sphericity are needed to reproduce the observed data. In the aforementioned paper
[36] the authors used Cartesian coordinates only. Their dispersive terms were directly
transformed into spherical coordinates by Dao & Tkalich (2007) [15]. In the following
publication Horillo et al. (2012) [35] used the spherical coordinates and depth-integrated
equations with non-hydrostatic pressure (similar non-hydrostatic barotropic models are
well-known for the flat space, see e.g. [11, 16]). However, in contrast to [36], in [35]
Horillo et al. do not write explicitly non-hydrostatic terms.

Another dispersive model with depth-averaged velocity variable in spherical geometry
was published in [50, 51]. This weakly nonlinear and weakly dispersive model is presented
in a non-conservative form. Their model is the spherical counterpart of the classical Pere-

grine model well-known in flat space [62]. However, some additional dispersive terms are
added in order to improve the linear dispersion properties. The new terms come with a co-
efficient γ . If we set γ = 0 in their model, one obtains weakly dispersive model presented
above with all nonlinear dispersive and Coriolis terms neglected. Strictly speaking, only
with γ = 0 their velocity variable can be interpreted as the depth-integrated one. For
γ 6= 0 we rather have a spherical analog of Beji–Nadaoka system [5]. The deriva-
tion of this model can be found only in a technical report [61]. Later this model was
called GloBouss. This model was applied to model the propagation of a trans-Atlantic
hypothetic tsunami resulting from an eventual landslide at the La Palma island.
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A linear dispersive model in spherical coordinates was used in [56]. The linearization
was justified by the need to produce a ‘fast’ solution for the operational real time tsunami
hazard forecast. The spherical Boussinesq system was borrowed from [70]. Recently a
parallel implementation of spherical weakly nonlinear Boussinesq equations was reported
in [2]. The authors used a conservative form of equations along with conservative variables.
The authors came to the following conclusions:

[ . . . ] A clear discrepancy was apparent from comparison of tsunami wave-
forms derived from dispersive and non-dispersive simulations at the DART21418
buoy located in the deep ocean. Tsunami soliton fission near the coast
recorded by helicopter observations was accurately reproduced by the disper-
sive model with the high-resolution grids [ . . . ]

We are not aware of any fully nonlinear models using the depth-averaged velocity variable.
In this respect the present work fills in this gap. In the following Part IV [38] we shall
describe an efficient splitting∗-type approach to solve an important representative of this
class of dispersive wave models.

5. Velocity variable defined on a given surface

Another hierarchy of nonlinear dispersive wave models can be obtained by making a
different choice of the velocity variable. A practically important choice consists in taking
the trace of the three-dimensional ‘horizontal’ velocity field at a given surface lying in the
fluid bulk, i.e.

u (λ, θ, t)
def
:= U

(
λ, θ, r̊σ (λ, θ, t), t

)
. (5.1)

This choice was hinted in a pioneering paper by Bona & Smith (1976) [7] and developed
later by Nwogu (1993) [60] in the flat case. In order to close the system, one has to
specify also the ‘dispersive’ component of the velocity field U d = U d (H, u) in terms of
other dynamic variables H and u . With the choice of the velocity u as specified above
in (5.1), U d 6= 0 in general (similar to the case described in Section 4, where only the
integral of U d over the water column height has to vanish due to the choice of u) and we
need an additional assumption to close completely the system. Consequently, in this case
we proceed as follows: first, we construct U d to the required accuracy and then, we apply
the depth-averaging operator to determine U . For example, in [41] the authors assumed
the 3D flow to be irrotational. Here we shall give a derivation under weaker assumptions.
Namely, we assume that only first two components ω 1, 2 of the vorticity field (A.16) vanish.
The ‘vertical’ vorticity component ω 3 can take any values. In dimensionless variables this
assumption can be expressed as

V r̊ = µ2
∇W . (5.2)

∗The splitting is naturally performed in the hyperbolic and elliptic parts of the governing equations.
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By differentiating (3.9) with respect to r̊ and substituting the last identity into asymptotic
expansion (3.13) we obtain

∂V d

∂r̊
= ∇w + O(µ2) = −∇(D h̊) − (∇ · u)∇h̊ − (̊r + h̊)∇(∇ · u) + O(µ2) .

By integrating this identity over the vertical coordinate r̊ one obtains the following expres-
sion for V d :

V d = −(̊r+ h̊)
[

∇(Dh̊) + (∇·u)∇h̊
]

− (̊r + h̊)2

2
∇(∇·u) + V d

∣
∣
r̊=−h̊

+ O(µ2) .

By using the connection between covariant and contravariant components U d = G−1 ·V d ,
which follows from (3.10), we obtain an asymptotic approximation to the 3D ‘horizontal’
velocity field:

U (λ, θ, r̊, t) = u(λ, θ, t) + µ2
G

−1 ·
{

(̊r + h̊)A +
(̊r + h̊)2

2
B + C

}

︸ ︷︷ ︸

(X)

+ O(µ4) ,

(5.3)
where we introduced three vectors:

A
def
:= −∇(Dh̊) − (∇ · u)∇h̊ ,

B
def
:= −∇(∇ · u) ,

C
def
:= V d

∣
∣
r̊=−h̊

.

In order to compute the term C in terms of other dynamic variables, we consider the
asymptotic representation for U (λ, θ, r̊, t) and evaluate (5.3) at r̊ = r̊σ(λ, θ, t) . By
definition (5.1) we must have U (λ, θ, r̊σ, t) ≡ u . Consequently, at r̊ = r̊σ(λ, θ, t) the
expression in braces (X) ≡ 0 must vanish. Thus, we obtain

C = −(̊rσ + h̊)A − (̊rσ + h̊)2

2
B .

Thus, the substitution of this expression for C into (5.3) yields

U (λ, θ, r̊, t) = u(λ, θ, t) + µ2
G

−1 ·
{

(̊r−r̊σ)A +
(̊r + h̊)2 − (̊rσ + h̊)2

2
B

}

+ O(µ4) .

In other words, the distribution of the ‘horizontal’ velocity is approximatively quadratic to
the asymptotic order O(µ4) . The last formula can be used to reconstruct approximatively
the 3D velocity field by having in hands the solution of the dispersive system only. As
another side result of the formula above we obtain easily the required expression for the
dispersive correction U d :

U d = G
−1 ·

{

(̊r − r̊σ)A +
(̊r + h̊)2 − (̊rσ + h̊)2

2
B

}

+ O(µ2) .
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By applying the depth-averaging operator we obtain also the required closure relation to
close the base model:

U = G
−1 ·

{[
H

2
− (̊rσ + h̊)

]

A +
[
H 2

6
− (̊rσ + h̊)2

2

]

B

}

+ O(µ2) .

The base model in physical variables has the same expressions (3.19), (3.20), but vector
functions U and V have to be set accordingly to the closure presented in this Section.

5.1. Further simplifications

Some expressions and equations above can be further simplified by noticing that

∇(Dh̊) = ∇(Dh) − ∇(Dη 0 0) = ∇(Dh) + O

( ς

µ

)

,

∇h̊ = ∇h − ∇η 0 0 = ∇h + O

( ς

µ

)

.

Thus, ∇(Dh̊) and ∇h̊ can be asymptotically interchanged with ∇(Dh) and ∇h corre-
spondingly since U and V always appear in equations with coefficient µ2 . Consequently,
we have

µ2
U = µ2

G
−1 ·
{[

H

2
− (rσ+h)

]

A
⋆ +

[
H 2

6
− (rσ + h)2

2

]

B

}

+ O(µ4 + ς µ + ς 2) ,

where rσ ≡ r̊σ − η 0 0 , with −h 6 rσ 6 ε η and

A
⋆ def
:= −∇(D h) − (∇ · u)∇h .

Let us summarize the developments made so far in this Section. First, the ‘horizontal’
fluid velocity was defined in equation (5.1). Then, we made a simplifying assumption (5.2),
which allowed us to derive the following closure relation:

U = G
−1 ·

{[
H

2
− (rσ + h)

]

A
⋆ +

[
H 2

6
− (rσ + h)2

2

]

B

}

. (5.4)

The base model with velocity choice (5.1) has the same form (3.19), (3.20) in dimensional
variables. The invariance of equations with respect to the choice of ‘horizontal’ velocity is
among the main advantages of our modelling approach.

5.2. Base model in terms of the linear velocity components

Similarly as we did in Section 4.1, we can recast the base model (3.19), (3.20) in terms of
the components of linear velocity u and v (and we refer to Section 4.1 for their definition):

(
HR sin θ

)

t
+
[
H u

]

λ
+
[
H v sin θ

]

θ
= −

{

(HU) λ + (H V sin θ) θ

}

,
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(
H uR sin θ

)

t
+
[

H u2 + g
H 2

2

]

λ
+
[

H u v sin θ
]

θ
=

gH h λ − H u v cos θ − ̥H v R sin θ + ℘
λ − ̺ h λ

−
{(

HU R sin θ
)

t
+
(
2HU u

)

λ
+
(
H (U v + V u

)
sin θ

)

θ

}

,

(
H v R sin θ

)

t
+
[

H u v
]

λ
+
[ (

H v2 + g
H 2

2

)

sin θ
]

θ
=

gH h θ sin θ + g
H 2

2
cos θ + H u2 cos θ + ̥H uR sin θ +

(℘
θ − ̺ h θ

)
sin θ

−
{(

H V R sin θ
)

t
+
(
HU v + H V u

)

λ
+
(
2H V v sin θ

)

θ

}

where U
def
:= RU 1 sin θ , V

def
:= RU2 and U 1, 2 were defined in (5.4). The computation

of non-hydrostatic pressure contributions are computed precisely as it is explained in Sec-
tion 4.1. In the second equation above we omitted intentionally in the right hand side
three terms H (U v + V u) cos θ and ̥H V R sin θ since in dimensionless form they have
the asymptotic order O(ς µ) .

One can notice that equations (4.3)–(4.5) can be obtained from the last system by setting
U 1, 2 ≡ 0 or equivalently U = V ≡ 0 . The analogue of these equations was obtained
in [41]. However, the system presented above admits a more elegant form since it enjoys
the quasi-conservative mathematical structure.

5.3. Weakly nonlinear model

In order to obtain a weakly nonlinear model with a velocity variable defined on an
arbitrary surface, it is sufficient to simplify accordingly the system of equations given in
the previous Section. Namely, all nonlinearities in the dispersive terms are to be neglected.
The first group of terms to be simplified consists in non-hydrostatic pressure corrections
∇℘ − ̺∇h , which is present for any choice of the velocity variable u (or equivalently
for any closure relation U = U (H, u) ). This simplification was explained above in
Section 4.2.

The second group of terms contains the vector U . They are present in both continu-
ity and momentum conservation equations. Vector U appears always with dimensionless
coefficient µ2 . Taking into account the Boussinesq (i.e. weakly nonlinear) regime and
definition H = h + ε η , we obtain that instead of closure relation (5.4), we have to use
consistently

U = U 0 + G
−1 ·
[(h

2
+ rσ

)(

∇(u·∇h) + (∇·u)∇h
)

−
(h 2

6
− (rσ + h) 2

2

)

∇(∇·u)

]

,

(5.5)
where

U 0
def
:=
(h

2
+ rσ

)

G
−1 ·∇h t .
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In other words, since coefficients A ⋆ and B are linear in velocities, then it was sufficient
to replace H by h . The same operation has to be performed consistently in the right hand
sides as well:

(
HU

)

λ
+
[
H V sin θ

]

θ
 

(
hU
)

λ
+
[
hV sin θ

]

θ
,

(
HU R sin θ

)

t
 

(
hU R sin θ

)

t
,

(
H V R sin θ

)

t
 

(
hV R sin θ

)

t
.

The components U and V are computed as above

U = RU 1 sin θ , V = RU 2 ,

with the only difference is that U 1, 2 are given by equation (5.5).
Similar transformations (in this case linearizations) H  h , U  U 0 , V  V 0

have to be done in the remaining terms as well:

2
[
H uU

]

λ
+
[
H (U v + V u) sin θ

]

θ
 2

[
h uU 0

]

λ
+
[
h (U 0 v + V 0 u) sin θ

]

θ
,

[
H (U v + V u)

]

λ
+ 2

[
H v V sin θ

]

θ
 

[
h (U 0 v + V 0 u)

]

λ
+ 2

[
h v V 0 sin θ

]

θ
,

where U 0 and V 0 are defined through components of the vector U 0 as

U 0
def
:= RU

1
0 sin θ , V 0

def
:= RU

2
0 .

Obtained in this way weakly nonlinear model is a spherical analogue of well-known
Nwogu system on the plane [60]. If we vanish the dispersive velocity correction U ≡ 0

we shall obtain the spherical counterpart of the classical Peregrine system [62].

5.4. State-of-the-art

Let us mention a few publications which report the derivation or use of dispersive wave
models on a sphere with the velocity defined on an arbitrary surface lying in the fluid
bulk. A detailed derivation of the fully nonlinear weakly dispersive wave model with this
choice of the velocity is given in [41, 65]. However, the resulting equations turn out to be
cumbersome and in numerical simulations the Authors employ only the weakly nonlinear
spherical Boussinesq-type equations. For example, in [34] a numerical coupling between
3D Navier–Stokes (for the landslide area) and 2D spherical Boussinesq (for the far
field propagation) is reported.

To our knowledge, the fully nonlinear model derived in the present study and earlier
in [65] has never been used for large scale numerical simulations. It can be partially
explained by the complexity of equations and by the lack of robust and efficient numerical
discretizations for dispersive PDEs on a sphere.

6. Discussion

After the developments presented hereinabove in a globally spherical geometry, we finish
the present manuscript by outlining the main conclusions and perspectives of our study.
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6.1. Conclusions

In this work we derived a generic weakly dispersive but fully nonlinear model on a
rotating, possibly deformed, sphere. This model contains a free contravariant 1−tensor
variable U (or its covariant equivalent V). In order to close the system, one has to specify
U as a function of two other model variables, i.e. U = U (H, u) . This functional
dependence is called the closure relation. By choosing various closures, we show how one
can obtain from the base model by simple substitutions some well-known models (or, at
least, their fully nonlinear counterparts). Other choices of closure U = U (H, u) lead
to completely new models, whose properties are to be studied separately. Moreover, for
any choice of the closure relation the base model has a nice conservative structure. Thus,
this work can be considered as an effort towards further systematization of dispersive wave
models on a spherical geometry. Moreover, the governing equations of the base model
are given for the convenience in terms of the covariant/contravariant and linear velocity
variables. For every model we give also its weakly nonlinear counterparts in case simpler
models are needed. Of course, the classical nonlinear shallow water or Saint-Venant

equations on a rotating sphere can be simply obtained from the base model by neglecting
all non-hydrostatic terms.

Two popular closures were proposed in our study. In our study we always tried to use
only the minimal assumptions about the three-dimensional flow. For instance, in contrast
to [41, 65] we do not assume the flow to be irrotational. We note also the fact that the
bottom was assumed to be unstationary. It allows to model tsunami generation by seismic
[19–21] and landslide [4, 22] mechanisms.

6.2. Perspectives

In the present manuscript the base model derivation was presented in a spherical ge-
ometry. This choice was made by the Authors due to the importance of applications in
Meteorology, Climatology and Oceanography on global planetary scales. However, in this
study we prepare a setting which could be fruitfully used in more general geometries. For
instance, we believe that the techniques presented in this manuscript could be used to
derive long wave models for shallow flows on compact manifolds. Curvilinear coordinates
are routinely used in Fluid Mechanics. However, we believe that the right setting to work
with Fluid Mechanics equations in complex geometries is the Riemannian geometry. In
future studies we plan to show successful applications of this technology on more general
geometries.

In the following (and the last) Part IV [38] of this series of papers we shall discuss the
numerical discretization of nonlinear long wave models on globally spherical geometries.
Namely, for the sake of simplicity, we shall take a particular avatar of the base model
and we shall show how to discretize it using modern finite volume schemes. After a direct
generalization it can be easily extended to the base model as well, if it is needed, of course.
The numerical solution of fully nonlinear dispersive wave equations with the velocity defined
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on an arbitrary level in the fluid bulk still constitutes a challenging problem which will be
addressed in our future studies.
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A. Reminder of basic tensor analysis

In this Appendix (as well as in our study above) we adopt Einstein’s summation con-
vention, i.e. the summation is performed over repeating lower and upper indices. Moreover,
indices denoted with Latin letters i, j, k, etc. vary from 0 to 3, while indices written with
Greek letters α, β, γ, etc. vary from 1 to 3 . Some indices will be supplied with a prime,
e.g. α, α ′. In this case α and α ′ should be considered as independent indices. Along with
the diffeomorphism

x0 = q0 = t , xα = xα
(
q0, q1, q2, q3

)
, α = 1, 2, 3 , (A.1)

we shall consider also the inverse transformation of coordinates:

q0 = x0 = t , qα = qα
(
x0, x1, x2, x3

)
, α = 1, 2, 3 . (A.2)

For the sake of convenience we introduce also short-hand notations for partial derivatives
of the direct (A.1) and inverse transformations (A.6):

D
i ′

i

def
:=

∂x i ′

∂q i
, D

i
i ′

def
:=

∂q i

∂x i ′
,

which are equivalent to the series of definitions

D
0 ′

0 = 1 , D
0 ′

α = 0 , D
α ′

0 =
∂xα ′

∂t
D

α ′

α =
∂xα ′

∂q α
, (A.3)

D
0
0 ′ = 1 , D

0
α ′ = 0 , D

α
0 ′ =

∂q α

∂t
D

α
α ′ =

∂q α

∂xα ′
. (A.4)

We also have the following obvious identities:

D
i
i ′ · D i ′

j = δ i
j , D

i ′

i · D i
j ′ = δ i ′

j ′ , (A.5)

where δ
j
i is the Kronecker symbol. We remind again that in the first formula there is

an implicit summation over index i ′ and over i in the second one.
In the sequel we complete the set of Cartesian basis vectors {iα}3α=1 with an additional

vector i 0 = (1, 0, 0, 0) . In other words, we use the standard orthonormal basis {i i}3i=0

in the Euclidean space R4 =
{
(t, x1, x2, x3)

}
. Sometimes, in order to introduce

the summation, we shall equivalently employ basis vectors {i i}3i=0 with the upper index
notation.
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The transformation of coordinates (A.1) along with the inverse transformation (A.6)
induces two new bases in R4:

{e i}3i=0 : moving covariant basis

{ei}3i=0 : moving contravariant basis

By definition, the components of covariant and contravariant basis vectors can be expressed
as follows:

e i ≡ D
i ′

i · i i ′ , e
i ≡ D

i
i ′ · i i

′

, i = 0, . . . , 3 .

Right from this definition and relations (A.5) we can write down the connection among all
the bases introduced so far:

i i ′ = D
i
i ′ ei = i

i ′ = D
i ′

i e
i ,

ei = δ i ′ j ′ · D i ′

i D
j ′

j e
j , e

i = δ i ′ j ′ · D i
i ′D

j
j ′ e j , e i · e

j = δ
j
i .

Using vectors of these new bases we can define covariant {g ij}3i, j=0 and contravariant

{g ij}3i, j=0 components of the metric tensor as scalar products of corresponding basis vec-
tors:

g ij
def
:= ei · ej ≡ D

i ′

i D
j ′

j · δ i ′ j ′ ≡ g ji ,

g ij def
:= e

i
· e

j ≡ D
i
i ′D

j
j ′ · δ i ′ j ′ ≡ g ji .

Moreover, thanks to (A.5), one can easily check that

g ij · g jk = δ k
i . (A.6)

Using formulas (A.3), (A.4) we obtain that

g 00 = 1 + D
α ′

0 D
α ′

0 δα ′ α ′ , g 0α = D
α ′

0 D
α ′

α δα ′ α ′ , gαβ = D
α ′

α D
α ′

β δα ′ α ′ , (A.7)

g 00 = 1 , g 0α = D
α
0 ′ , g αβ = D

α
0 ′ D

β

0 ′ + D
α
α ′ D

β

α ′ · δ α ′ α ′

. (A.8)

For a Cartesian coordinate system the metric tensor components coincide with the
Kronecker symbol. Indeed,

g i ′ j ′

def
:= i i ′ · i j ′ ≡ δ i ′ j ′ , g i ′ j ′ def

:= i
i ′
· i

j ′ ≡ δ i ′ j ′

.

Consequently, when we change the coordinates from Cartesian to curvilinear, the metric
tensor components are transformed according to the following rule:

g ij = D
i ′

i D
j ′

j · g i ′ j ′ , g ij = D
i
i ′ D

j
j ′ · g i ′ j ′

.

Let us take an arbitrary vector v ∈ R
4 . As an element of a vector space it does

not depend on the chosen coordinate basis. This object remains the same in any basis∗.

∗This statement applies to any other tensor of the first rank.
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However, for simplicity, it is easier to work with vector v coordinates, which are changing
from one basis to another. Let us develop vector v in three coordinate systems:

v = v i ′ i
i ′ = υ i e

i = υ i
e i .

Consequently, {v i ′}3i ′ =0 are Cartesian, {υ i}3i=0 are covariant and {υ i}3i=0 are contravari-
ant components of the same vector v ∈ R

4 . As we said, a vector v as an element of a
vector space is invariant [75]. However, sometimes we shall say that a vector is covariant
(contravariant) by meaning that this vector is given in terms of its covariant (contravariant)
components. Using aforementioned relations between various bases vectors we can obtain
relations among the covariant and contravariant components solely [75]:

υ i = g ij υ
j , υ i = g ij υ j , (A.9)

or express covariant (contravariant) components through respective Cartesian coordi-
nates:

υ i = D
i ′

i v i ′ , υ i = D
i
i ′ v

i ′ ,

and inversely we can express the Cartesian coordinates through the covariant (contravari-
ant) components of the vector v :

v i ′ = D
i
i ′ υ i ≡ v i ′ = D

i ′

i υ i .

Two last sets of relations express actually the transformation rules of a general 1−tensor
from a coordinate system to another one. Notice also that

v 0 ′ = v 0 ′

=
dx0

dt
= 1 , thus, υ 0 ≡ 1 .

Let us denote by J the Jacobian of the transformation (A.1):

J
def
:= det

{
D

i ′

i

}
. (A.10)

It is not difficult to show that we have also

J = det
{
D

α ′

α

}
, | J | =

√

det
{
g ij

}
=

1
√

det
{
g ij
} .

Also from Cramer’s rule we have

D
α
α ′ = (−1)α−α ′ det

{
D γ ′

γ

}

J
, γ 6= α , γ ′ 6= α ′ .

For the sequel we shall need to introduce the so-called Christoffel symbols. First we
introduce vectors

e ik ≡ e ki

def
:=

∂ e i

∂qk
≡ ∂ e k

∂qi
.

The expansion coefficients of these vectors in contravariant and covariant bases

e ij = Υ ij, k e
k = Υ k

ij e k

are called Christoffel symbols of the first and second kind correspondingly:

Υ ij, k

def
:= e ij · e k , Υ k

ij

def
:= e ij · e

k .
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It is not difficult to see that for a Cartesian coordinate system all Christoffel sym-
bols are identically zero. In the general case Christoffel symbols satisfy the following
relations

Υ ij, k ≡ Υ ji, k , Υ k
ij ≡ Υ k

ji , Υ 0
jk ≡ 0 ,

Υ kj, i + Υ ij, k =
∂g ik

∂q j
, Υ i

jk = D
i
j ′ ·

∂D
j ′

j

∂q k
,

Υ ik, j =
1

2

[ ∂g ij

∂q k
+

∂g kj

∂q i
− ∂g ik

∂q j

]

, Υ ik, j = g ℓj Υ
ℓ
ik , Υ ℓ

ik = g ℓj Υ ik, j .

Using the definition of the Jacobian J, it is straightforward to show the following impor-
tant identity:

Υ i
ik =

1

J

∂J

∂q k
. (A.11)

In curvilinear coordinates the analogue of a partial derivative with respect to a coordinate
(i.e. an independent variable) is a covariant derivative over curvilinear coordinates which
is defined using Christoffel symbols. For example, the covariant derivative ∇k of a
covariant component υ i of vector v is defined as

∇k υ i =
∂ υ i

∂q k
− Υ j

ik υ j .

Similarly one can define the covariant derivative of a contravariant component υ i of vector
v :

∇k υ
i =

∂ υ i

∂q k
+ Υ i

kj υ
j .

We remind that in Cartesian coordinates the covariant derivatives coincide with usual
partial derivatives since Christoffel’s symbols vanish. For instance, the divergence of a
vector field v

(
q0, q1, q2, q3

)
∈ R

4 can be readily obtained:

∇ · v = ∇i υ
i =

∂ υ i

∂q i
+ Υ i

ik υ
k .

The last equation can be equivalently rewritten using formula (A.11) as

∇ · v =
1

J

∂(Jυ i)

∂q i
. (A.12)

In order to recast Euler equations in arbitrary moving frames of reference, we shall
have to work with 2−tensors as well. Similarly to vectors (or 1−tensors) these objects are
independent from the frame of reference. However, when we change the coordinates, tensor

components change accordingly. Suppose that we have a 2−tensor T =
{
T i ′ j ′

} 3

i ′ j ′ =0

and we know its components T i ′ j ′ ≡ T i ′ j ′

in a Cartesian frame of reference. Then, in
any other curvilinear coordinates these components can be computed as

T ij = D
i ′

i D
j ′

j T i ′ j ′ , T ij = D
i
i ′ D

j
j ′ T

i ′ j ′

. (A.13)
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Similarly, covariant derivatives of a 2−tensor components are defined as

∇ k T ij =
∂ T ij

∂q k
− Υ ℓ

ik T ℓj − Υ ℓ
jk T iℓ ,

∇ k T
ij =

∂ T ij

∂q k
+ Υ i

kℓ T
ℓj + Υ j

kℓ T
iℓ .

Now one can show that covariant derivatives of the metric tensor vanish, i.e.

∇k g ij = 0 , ∇k g
ij = 0 . (A.14)

Finally, we can compute the divergence of a 2−tensor, which is by definition a 1−tensor
defined as

{
∇ · T

} i
= ∇j T

ij .

Similarly to the divergence of a vector field, the divergence of a 2−tensor can be also
expressed through the Jacobian thanks to the aforementioned definition and formula
(A.11) as

{
∇ · T

} i
=

1

J

∂ (JT ij)

∂q j
+ Υ i

jk T
jk . (A.15)

Flow vorticity. Using the Levi-Civita tensor εαβ γ , which is defined as [63]:

εαβ γ =







1

J
, sign

(

1 2 3

α β γ

)

= 1 ,

−1

J
, sign

(

1 2 3

α β γ

)

= −1 ,

0 , (α = β) ∨ (α = γ) ∨ (β = γ) ,

where sign(·) is the signature of a permutation. In other words the sign of Levi-Civita

tensor components change the sign depending if the permutation (α β γ) is odd or even.
Using this tensor, we can define the rotor of a vector v as:

ω = rotv = ω γ
e γ , ω γ def

:= εαβ γ ·∇α υβ .

We can write explicitly the contravariant components of vector ω :

ω 1 =
1

J

(∂υ 3

∂q 2
− ∂υ 2

∂q 3

)

, ω 2 =
1

J

(∂υ 1

∂q 3
− ∂υ 3

∂q 1

)

, ω 3 =
1

J

(∂υ 2

∂q 1
− ∂υ 1

∂q 2

)

.

(A.16)
These technicalities are used in our paper in order to reformulate the full Euler equa-

tions in an arbitrary moving curvilinear frame of reference. As a practical application we
employ these techniques to the globally spherical geometry due to obvious applications in
Geophysical Fluid Dynamics on the planetary scale.
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B. Acronyms

In the text above the reader could encounter the following acronyms:

NSW: Nonlinear Shallow Water

PDE: Partial Differential Equation

TVD: Total Variation Diminishing

DART: Deep-ocean Assessment and Reporting of Tsunamis

MOST: Method of Splitting Tsunami

NSWE: Nonlinear Shallow Water Equations
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