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ABSTRACT 

Bone tissue mechanical properties and trabecular microarchitecture are the main factors 
that determine the biomechanical properties of cancellous bone. Artificial cancellous 
microstructures, typically described by a reduced number of geometrical parameters, can 
be designed to obtain a mechanical behavior mimicking that of natural bone. In this work, 
we assess the ability of the parameterized microstructure introduced by Kowalczyk 
(2006) to mimic the elastic response of cancellous bone. Artificial microstructures are 
compared with actual bone samples in terms of elasticity matrices and their symmetry 
classes. The capability of the parameterized microstructure to combine the dominant 
isotropic, hexagonal, tetragonal and orthorhombic symmetry classes in the proportions 
present in the cancellous bone is shown. Based on this finding, two optimization 
approaches are devised to find the geometrical parameters of the artificial microstructure 
that better mimics the elastic response of a target natural bone specimen: a Sequential 
Quadratic Programming algorithm that minimizes the norm of the difference between the 
elasticity matrices, and a Pattern Search algorithm that minimizes the difference between 
the symmetry class decompositions. The pattern search approach is found to produce the 
best results. The performance of the method is demonstrated via analyses for 146 bone 
samples. 

1 INTRODUCTION 

Bones are hierarchical bio-composite materials with a complex multiscale structural 
geometry (Carretta et al. 2013). Bone tissue is arranged either in a compact pattern 
(cortical bone) or a spongy pattern (cancellous bone). Cancellous bone can be found in 
vertebral bodies and at the epiphyses of long bones. In the vertebral body, it is the main 
load bearing structure, where as in the appendicular skeleton, it transfers mechanical 
loads from the articular surface to cortical bone. Furthermore, trabecular bone quality is 
an important determinant of the overall bone strength and affects fracture risk. To better 
understand the mechanics of cancellous bone is of interest for the diagnosis of bone 
diseases (osteoporosis), the evaluation of the risk of fracture, and for the design of 
artificial bone (Cowin 2001). 



Cancellous bone can be assimilated to a composite material with hierarchical structure. 
In a bottom-up description, the structure starts in the nanoscale (mineralized collagen 
fibril) and moves up to the sub-microscale (single lamella), the microscale (single 
trabecula), and mesoscale (trabecular bone) levels. Trabeculae are organized into a three-
dimensional lattice oriented mainly along the lines of stress, which forms a stiff and 
ductile structure that provides the framework for the soft bone marrow filling the 
intertrabecular spaces. Trabeculae consist of a nanometric extracellular matrix that 
incorporates hydroxyapatite, the bone mineral that provides bones rigidity (Sansalone et 
al. 2010, 2012), and collagen, an elastic protein which improves fracture resistance  
(Keaveny et al. 2001). 

Bone tissue mechanical properties and trabecular architecture are the main factors 
determining the mechanical properties of cancellous bone, which show a high 
dependency on species, anatomic site, age and size of the sample (Fritsch and Hellmich 
2007; Parkinson and Fazzalari 2013). The small dimensions of the trabeculae (of the 
order from tens to a cent of microns) hinder their mechanical characterization at tissue-
level. In recent years, nano-indentation has provided the means for the direct 
measurement of the elastic properties of trabecular bone tissue (a complete review of the 
available techniques, many of them indirect, can be found in the recent paper by Oftadeh 
et al. (2015)). By means of high resolution nano-indentation, Brennan et al. (2009) studied 
the tissue property variations within a single trabecula; they found that Young´s modulus 
and hardness increase towards the core of the trabeculae. Despite this findings, it is the  
common assumption that the mechanical inhomogeneity and anisotropy of bone tissue 
has a minor impact on the apparent properties of cancellous bone and, consequently, it 
can be approximated by an isotropic tissue modulus (Kabel et al. 1999a, b). 

Different experiments have shown that linear elasticity can predict the behavior of 
cancellous bone (Keaveny et al. 1994). The trabecular architecture determines the elastic 
anisotropy of cancellous bone, which can be described by a fourth rank elastic tensor, 
ℂ, which linearly relates stress and strains as 𝜎 = ℂ ∙ 𝜀. The elastic tensor is determined 
in its most general form by 81 components. Cancellous bone is generally assumed to 
behave as an orthotropic structure in the mesoscale, with three planes of symmetry, what 
requires of only nine independent components to fully describe the elastic behavior of the 
structure (Yang et al. 1998). 

Relationships between elastic properties and structural parameters of cancellous bone 
have been proposed in the literature. Apparent density, 𝜌𝑎𝑝𝑝, which is the product of bone 

volume fraction, 𝐵𝑉/𝑇𝑉, and of bone tissue density, 𝜌, is the primary component affecting 
the mechanical properties of cancellous bone (Oftadeh et al. 2015). Several studies have 
proposed linear and exponential forms that express the Young’s modulus as a function of 
𝜌𝑎𝑝𝑝, showing a high correlation with the experiments. However, these correlations 

exhibit limitations: the error in the elastic moduli can be up to 53% at certain volume 
fractions (van Rietbergen et al. 1999) and they cannot individually predict the elastic 
properties of trabecular bone in different anatomic sites and species (Helgason et al. 
2008). Similarly, cancellous bone elastic properties can be correlated to the fabric tensor, 
which is a descriptor of the anisotropy of trabecular bone (Gross et al. 2013; Maquer et al. 
2015). Another approach is to use large-scale finite element (FE) analysis of 
microstructural models built from micro-computed tomographic (CT) scans of real bone 
specimens. Finite element analyses can solve some of the drawbacks of the experimental 
techniques, since FE models can be subjected without restrictions to the load conditions 
needed to evaluate the anisotropic behavior of the microstructure. Moreover, the 



combination of finite element analysis (FEA) and modern in vivo high-resolution 
peripheral quantitative CT scanners, allow for the analysis of bone in-vivo in the 
peripheral skeleton (van Rietbergen and Ito 2015). FEA has been applied to large sets of 
data to find the orthotropic components of cancellous bone (Kabel et al. 1999a, 1999b), 
which show that there are strong correlations between 𝐵𝑉/𝑇𝑉 and elastic and shear 
moduli, whereas this correlation is weak for the Poisson’s ratio.  

Another approach is to use parametric models of trabecular bone, which consist in 
artificial microstructures formed by plates and rods. Artificial microstructures may be 
criticized for being somewhat unrealistic. However, their main advantage is that the 
mesoscopic properties characterizing such microstructures can be expressed as explicit 
continuous functions of some well-defined geometrical parameters. Moreover, it has been 
found that models based on local morphometry, composed of individual rods and plates, 
help improving the understanding of local structural changes in the determination of bone 
stiffness (Stauber and Müller, 2006a, 2006b). Explicit relations between geometrical 
parameters and mesoscopic properties are crucial for modeling the microstructure 
evolution at the large scale - it allows to formulate the problem as merely the evolution of 
a set of scalar variables, which is much more efficient in terms of computational cost than 
the analysis of the geometric evolution of certain components of micro-CT-based actual 
bone microstructures. Examples in this sense are the artificial trabeculae developed by 
Kowalczyk (2006) and Dagan et al. (2004), which have been successfully employed in the 
modeling of long-term changes in morphological and mechanical properties of trabecular 
bone in the proximal femur, see Be’ery-Lipperman and Gefen (2005) and (Kowalczyk 
2010), respectively. Artificial trabecular microstructures have been also used for the 
developing of continuum models to describe the trabecular-bone stress-strain response 
(Goda et al. 2014; Goda and Ganghoffer 2015a) and multiaxial yield and failure criteria 
(Goda and Ganghoffer 2015b) by means of homogenization analyses. In turn, 
homogenized properties of parametric models of trabecular bone can be integrated into 
multiscale optimization methods for the design of bone substitutes and natural micro-
scaffolds (Hollister 2005) for tissue engineering. Such hierarchical structures can be 
fabricated by means of emerging 3D printing technologies (Bose et al. 2013; Wang et al. 
2016). 

In this work the parameterized cancellous microstructures introduced by Kowalczyk 
(2006) are analyzed in terms of their ability to mimic the elastic response of natural 
cancellous bone. Artificial microstructures are compared with actual bone samples in 
terms of their symmetry classes and their elasticity matrices represented in terms of the 
geometry parameters. Two optimization approaches are proposed in this paper to design 
the parameterized microstructure that better mimics the elastic response of a target 
natural bone specimen: a Sequential Quadratic Programming algorithm that minimizes 
the norm of the difference between the elasticity matrices, and a Pattern Search algorithm 
that minimizes the difference between the symmetry class decompositions. Both 
approaches use the geometry parameters as design variables. 

2 ELASTIC PROPERTIES OF CANCELLOUS BONE 

2.1 Experimental data 

Two sources of experimental data are used: the database for human cancellous-bone 
specimens by Kabel et al. (1999a, 1999b), and five bovine femoral bone specimens that 
are examined as part of this work. 



The database by Kabel et al. (1999a, 1999b) provides the entire set of anisotropic elastic 
constants of 141 human cancellous-bone specimens of vertebral body, calcaneus, 
proximal tibia and distal femur. Specimen bone volume-to-total volume ratios cover the 
range 5% ≤ 𝐵𝑉/𝑇𝑉 ≤ 35%. The elastic constants are the results of finite element (FE) 
homogenization analyses performed on computer reconstructions of the specimen 
microarchitectures. Linear elastic and isotropic material properties were specified for the 
bone tissue, with a Young’s modulus of 𝐸 = 1 𝐺𝑃𝑎 and Poisson’s ratio 𝜈 = 0.3, so the 
homogenized results can be scaled for any value of the tissue modulus. The specimen 
imaging and homogenization procedures are fully described in Kabel et al. (1999b). 

The five bovine samples were obtained from femoral bones. They were X-ray scanned 
using micro computed tomography (µCT) with a resolution of 17.7 𝜇𝑚. CT images were 
processed with BoneJ (Doube et al. 2010) to obtain geometrical data over the Regions of 
Interest (ROI). The results for bone volume fractions, trabecular thicknesses and 
trabecular spacings are reported in Table 1. The elastic modulus of the bone tissue was 
measured via microindentation tests using the Oliver and Pharr (1992) method. 
Specimens were microindented in a TI 900 Triboindenter (Hysitron, MN, USA) using a 
Vickers diamond indenter. The maximum indentation load was set to 1500 𝑚𝑁, which 
was held constant for 45 𝑠 in order to minimize creep effects. The loading and unloading 
rates were set to 200 𝑚𝑁/𝑠 and 100 𝑚𝑁/𝑠 respectively. Eight indentations were 
performed on each sample. The resulting Young’s modulus was 𝐸𝑏 = 7.93 ± 0.86 𝐺𝑃𝑎. A 
Poisson’s ratio 𝜈 = 0.3 was assumed. The elastic homogenization analyses were 
performed using the Fast Fourier Transform method with models built after the µCT 
geometry data. The procedure is described in Colabella et al. (2017). The resulting 
elasticity matrices 𝐶𝑏 for the five specimens are reported in Appendix 1. 

Specimen ROI 
dimensions 
[𝑚𝑚] 

Pixel 
size 
[𝜇𝑚] 

BV/TV 
[%] 

Trabecular 
thickness, 
𝑡 [𝜇𝑚] 

Trabecular 
spacing, 
𝑠 [𝜇𝑚] 

Normalized 
trabecular 

thickness, 𝑡/(𝑡 +
𝑠) 

1 8.7x9.6x9.5 17.7 25 157 491 0.24 
2 9.9x10.3x9.8 17.7 38 241 471 0.34 
3 9.8x10.1x7.7 17.7 30 180 621 0.22 
4 9.6x9.2x8.9 17.7 20 180 757 0.19 
5 9.7x9.5x7.6 17.7 21 145 573 0.20 

Table 1: Geometrical data of the bovine samples 

2.2 Elastic symmetry analyses 

We propose here to study the elastic symmetries of the samples by decomposing their 
elasticity tensors into sums of orthogonal tensors belonging to the different symmetry 
classes. We use for this purpose the method by Browaeys and Chevrot (2004). This 
method relies on the following vectorial description of the elasticity tensor,  

𝑿 = (𝐶11, 𝐶22, 𝐶33, √2𝐶23, √2𝐶13, √2𝐶12, 2C44, 2𝐶55, 2𝐶66, 2𝐶14, 2𝐶25, 2𝐶36, 

2𝐶34, 2𝐶15, 2𝐶26, 2𝐶24, 2𝐶35, 2𝐶16, 2√2𝐶56, 2√2𝐶46, 2√2𝐶45), 
(1) 

where 𝐶𝑖𝑗 are the components of the elastic tensor ℂ in the Voigt notation. The 

normalization factors in the above expression are included so that the Euclidean norm of 
an arbitrary elastic tensor ℂ and its associated elastic vector 𝑿 are identical.  

The vector description of the elastic tensor possesses the property that any symmetry 
class constitutes a subspace of a class of lower symmetry and an orthogonal projection on 



this subspace removes the lower symmetry part, see Table 2. Thus, when expressed in the 
so-called symmetry Cartesian coordinate system (see Cowin and Mehrabadi, 1987), 𝑿 can 
be decomposed by a cascade of projections into a sum of vectors belonging to the 
symmetry classes triclinic, monoclinic, orthorhombic, tetragonal, hexagonal and 
isotropic: 

𝑿 = 𝑿𝑡𝑟𝑖 + 𝑿𝑚𝑜𝑛 + 𝑿𝑜𝑟𝑡 + 𝑿𝑡𝑒𝑡 + 𝑿ℎ𝑒𝑥 + 𝑿𝑖𝑠𝑜 , (2) 

The different elastic symmetry parts can be presented as fractions of the Euclidian norm 
of the elasticity vector ‖𝑿‖ as follows: 

𝑐𝑖𝑠𝑜 = 1 −
‖𝑿𝑡𝑟𝑖 + 𝑿𝑚𝑜𝑛 + 𝑿𝑜𝑟𝑡 + 𝑿𝑡𝑒𝑡 + 𝑿ℎ𝑒𝑥‖

‖𝑿‖
 

𝑐ℎ𝑒𝑥 = 1 − 𝑐𝑖𝑠𝑜 −
‖𝑿𝑡𝑟𝑖 + 𝑿𝑚𝑜𝑛 + 𝑿𝑜𝑟𝑡 + 𝑿𝑡𝑒𝑡‖

‖𝑿‖
 

𝑐𝑡𝑒𝑡 = 1 − 𝑐ℎ𝑒𝑥 − 𝑐𝑖𝑠𝑜 −
‖𝑿𝑡𝑟𝑖 + 𝑿𝑚𝑜𝑛 + 𝑿𝑜𝑟𝑡‖

‖𝑿‖
 

𝑐𝑜𝑟𝑡 = 1 − 𝑐𝑡𝑒𝑡 − 𝑐ℎ𝑒𝑥 − 𝑐𝑖𝑠𝑜 −
‖𝑿𝑡𝑟𝑖 + 𝑿𝑚𝑜𝑛‖

‖𝑿‖
 

𝑐𝑚𝑜𝑛 = 1 − 𝑐𝑜𝑟𝑡 − 𝑐𝑡𝑒𝑡 − 𝑐ℎ𝑒𝑥 − 𝑐𝑖𝑠𝑜 −
‖𝑿𝑡𝑟𝑖‖

‖𝑿‖
 

𝑐𝑡𝑟𝑖 = 1 − 𝑐𝑚𝑜𝑛 − 𝑐𝑜𝑟𝑡 − 𝑐𝑡𝑒𝑡 − 𝑐ℎ𝑒𝑥 − 𝑐𝑖𝑠𝑜 

(3) 

so that  

𝑐𝑖𝑠𝑜 + 𝑐ℎ𝑒𝑥 + 𝑐𝑡𝑒𝑡 + 𝑐𝑜𝑟𝑡 + 𝑐𝑚𝑜𝑛 + 𝑐𝑡𝑟𝑖 = 1. (4) 

Computations for the determination of the symmetry Cartesian coordinate system, the 
transformations into vector forms, the symmetry decompositions and normalizations 
were performed using the Matlab Seismic Anisotropy Toolkit (MSAT) by Walker and 
Wookey (2012). 

Symmetry class Planes of symmetry Dimension 
Triclinic 0 21 

Monoclinic 1 13 
Orthorhombic 3 9 

Tetragonal 5 6 
Hexagonal 7 5 
Isotropic ∞ 2 

Table 2: Number of planes of symmetry and dimension of the subspaces. Note that the dimension number 
corresponds to the number of distinct components of the elastic tensor.  

Figure 1 presents the results for the symmetry class decompositions of the 141 human 
bone samples in Kabel et al. (1999a, 1999b). The cumulative decompositions in (4) are 
presented as functions of the sample 𝐵𝑉/𝑇𝑉. Table 3 summarizes the extreme values for 
the symmetry classes.  It is observed from Figure 1 that the isotropic class accounts for 
the most significant fraction of the elasticity matrices over the complete 𝐵𝑉/𝑇𝑉 range. 
Although its wide dispersion, the mean value of the isotropic fraction increases linearly 
with 𝐵𝑉/𝑇𝑉, from 𝑐𝑖𝑠𝑜̅̅ ̅̅ ̅ = 0.49 for 𝐵𝑉/𝑇𝑉 = 5% to 𝑐𝑖𝑠𝑜̅̅ ̅̅ ̅ = 0.69 for 𝐵𝑉/𝑇𝑉 = 35%. Its 
standard deviation is 𝑆𝐷𝑖𝑠𝑜 = 0.12. The second relevant fraction is for the hexagonal class. 
Conversely to the isotropic class, the mean value of the hexagonal class decreases linearly 



with 𝐵𝑉/𝑇𝑉. The isotropic and hexagonal classes behave such that they add a constant, 
𝑐𝑖𝑠𝑜̅̅ ̅̅ ̅ + 𝑐ℎ𝑒𝑥̅̅ ̅̅ ̅ =≅ 0.83, with a standard deviation 𝑆𝐷𝑖𝑠𝑜+ℎ𝑒𝑥 = 0.07.  The tetragonal class 
fraction is marginal; around 1% for nearly 98% of the samples. The orthorhombic class 
presents a wide dispersion, but its mean value is nearly constant 𝑐𝑜𝑟𝑡̅̅ ̅̅ ̅ ≅ 0.10. The 
orthotropic symmetry, 

𝑐𝑜𝑟𝑡ℎ𝑜 = 𝑐𝑜𝑟𝑡 + 𝑐𝑡𝑒𝑡 + 𝑐ℎ𝑒𝑥 + 𝑐𝑖𝑠𝑜 , (5) 

presents a constant average value  𝑐𝑜𝑟𝑡ℎ𝑜̅̅ ̅̅ ̅̅ ̅̅ = 0.93 with 𝑆𝐷𝑜𝑟𝑡ℎ𝑜 = 0.04. This last result is 
consistent with the observation by Yang et al. (1998), who found that  ℂ matrices present 
orthotropic symmetry with a 95% confidence level. 

 
Figure 1: Symmetry class decomposition of the elasticity matrices of the 141 human-bone specimens reported 

by Kabel et al. (1999a, 1999b). Error bars indicate the standard deviations from the interpolated mean 
values. 

Symmetry class Human Samples 
Kabel et al (1999) 

Bovine Samples 
(this work) 

Parameterized 
Kowalczyk (2006) 

Min Max Min Max Min Max 
𝑐𝑖𝑠𝑜  0.24 0.84 0.50 0.79 0.36 1.00 
𝑐ℎ𝑒𝑥  0.02 0.65 0.04 0.20 0.00 0.49 

𝑐𝑖𝑠𝑜 + 𝑐ℎ𝑒𝑥  0.56 0.95 0.66 0.89 0.46 1.00 
𝑐𝑡𝑒𝑡  0.00 0.05 0.00 0.01 0.00 0.15 
𝑐𝑜𝑟𝑡  0.00 0.33 0.02 0.13 0.00 0.50 
𝑐𝑜𝑟𝑡ℎ𝑜  0.81 0.99 0.79 0.91 1.00 1.00 
𝑐𝑚𝑜𝑛  0.00 0.08 0.00 0.04 - - 
𝑐𝑡𝑟𝑖  0.01 0.19 0.08 0.19 - - 

Table 3: Extreme values of the symmetry classes of the natural and parameterized trabecular 
microstructures. 

The results for the symmetry class decompositions of bovine samples are in Figure 2. 
Extreme values for the symmetry classes are in Table 3. It is observed that although 
extreme values of the bovine symmetry classes are within those of the human data ranges, 



the sum of the isotropic and hexagonal classes is 0.66 ≤ 𝑐ℎ𝑒𝑥 + 𝑐𝑖𝑠𝑜 ≤ 0.89, which has the 
lower limit outside the standard deviation of the human data.  A similar behavior is 
observed for the orthotropic symmetry of the bovine samples, 0.79 ≤ 𝑐𝑜𝑟𝑡ℎ𝑜 ≤ 0.91. 

 
Figure 2: Symmetry class decomposition of the bovine samples. 



3 DEVELOPMENT OF A MIMETIC CANCELLOUS BONE 
MICROSTRUCTURE 

 
Figure 3: Workflow of the development of a mimetic cancellous bone microstructure. 

The workflow in Figure 3 depicts the procedure for the development of the mimetic 
cancellous bone microstructure. The first step is the computation of the elasticity and 
BV/TV data of the parameterized cellular microarchitecture introduced by Kowalczyk 
(2006), on which the development is based. The capabilities of the parameterized 
microstructure to mimic natural bone is assessed through the comparison and correlation 
of the elastic and BV/TV data with that of the natural specimens. Next, the elastic and 
BV/TV data are interpolated as functions of the geometrical parameters. These 
interpolations will play a key role in the implementation of the optimization algorithms 
in Section 4. Finally, the polynomial interpolations are checked for consistency. The 
details of this procedure are given next. 

3.1 The parameterized cellular microstructure  

The parameterized cellular microarchitecture introduced by Kowalczyk (2006) is shown 
in Figure 4. It consists in a repeatable cell that is inscribed into a space-filling 
dodecahedron, so it can be arranged in rows and layers to completely fill the 3-D space. 
The geometry of the cell is described by Bezier curves and corresponding surface patches. 
Surface transitions between neighboring cells are smooth. Shaded areas denote 
trabecular surface while the hatched areas are the cross-sections at which the cell is 
“stuck” to identical neighboring cells. 

The repeatable geometry is described in terms of four geometrical parameters: 𝑡𝑐, 𝑡ℎ and 
𝑡𝑣, which define proportions between trabecular plate widths and thicknesses to produce 



transversely isotropic microstructures in the 𝑥1 − 𝑥2 plane; and 𝑡𝑒 , which scales it in the 
𝑥1 direction to produce fully orthotropic microstructures. Parameters 𝑡𝑐, 𝑡ℎ and 𝑡𝑣 are 
non-dimensional as they are understood as fractions of the corresponding cell dimensions 
and may take values between 0 and 1. In order to produce feasible geometries, they must 
comply with the restrictions 

𝑡ℎ ≥ 𝑡𝑐, 𝑡𝑣 ≥ 𝑡𝑐 . (6) 

Parameter values can be set to produce microstructures with solid volume fractions in 
the range 0 < 𝐵𝑉 𝑇𝑉⁄ < 100%. 

 
Figure 4: Geometry of a repeatable cell. 

3.2 Homogenization analysis and comparison with natural specimens 

Kowalczyk (2006) used FE homogenization to compute the elasticity matrices for a broad 
set of microstructures given by (𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) quadruplets on the domains 𝑡𝑐 ∈ (0,1), 𝑡ℎ ∈
[𝑡𝑐, 1) and 𝑡𝑣 ∈ [𝑡𝑐, 1) in increments of 0.05, 𝑡𝑒 ∈ [0.6,1.4] in increments of 0.2, and elastic 
properties 𝐸 = 1 GPa and 𝜈 = 0.3. He studied in detail the dependency of the resultant 
effective elastic constants with 𝐵𝑉/𝑇𝑉, and tabulated functions for the elastic constants 
in terms of morphometric parameters: mean intercept length (MIL), volume orientation 
(VO) and star length distribution (SLD). From the comparison of the effective elastic 
constants to those of the natural samples by Kabel et al. (1999a, 1999b) he showed that 
individual ranges of  𝐸𝑖𝑗 , 𝐺𝑖𝑗  and 𝜈𝑖𝑗  of the parameterized microstructures are always 

wider than those of the natural specimens for every 𝐵𝑉/𝑇𝑉 value. 



In what follows, the above analysis is extended to assess the capability of the 
parameterized microstructure to mimic the natural elastic symmetries. To this end, the 
database of elastic constants for the parameterized microstructure was refined, such that 
the four geometric parameters were varied in increments of 0.05. The FE homogenization 
procedure of Kowalczyk (2006) was used for the computation of the effective elastic 
constants. The repeatable cells that result for each combination of the geometric 
parameters were discretized with 8-node linear brick elements and appropriate 
boundary conditions that ensure fitting of all deformed neighboring cells to each other 
were specified. Six load cases were considered for each cell: pure stretching in three 
orthogonal directions 𝑥1, 𝑥2, 𝑥3 (see  Figure 4) and pure shear in three orthogonal planes 
(normal to the three directions), which were specified in terms of the displacement fields. 
Reaction forces were measured for each case and used to compute the elements of the 
elasticity matrix. Thus, the construction of the database consisted of 41,990 
homogenization analysis that involved the solution of approximately 250,000 finite-
element models altogether. 

Stiffness matrices of the parameterized microstructures are decomposed into their 
symmetry classes using the same procedure introduced earlier for the natural specimens. 
The extreme values attained by the symmetry classes are reported in Table 3. It is found 
that the parameterized microstructure covers the complete extents of the tetrahedral and 
orthorhombic classes of the natural specimens. On the other hand, it fails to cover the 
lowermost values of the isotropic class, 0.24 ≤ 𝑐𝑖𝑠𝑜 < 0.36, and the uppermost values of 
the hexagonal class, 0.49 > 𝑐ℎ𝑒𝑥 ≥ 0.65 for the human specimens. However, it is worth 
noting that only a few samples lie within the excluded ranges: 5 samples have 𝑐𝑖𝑠𝑜 < 0.36 
and 2 samples have 𝑐ℎ𝑒𝑥 > 0.49, i.e., less than 5% of the 141 samples in the database. 
Symmetry classes of the bovine samples lie always within the extents of the 
parameterized microstructure. 

The capability of the parameterized microstructure to mimic the elastic behavior is 
further assessed in terms of the 𝐵𝑉/𝑇𝑉. Figure 5 shows the symmetry classes of the 
parameterized microstructures for the range of 𝐵𝑉/𝑇𝑉 of the natural samples; these are 
17,522 data points (in order to keep the figure clear not all data points were plot). Results 
are presented for 𝑐𝑖𝑠𝑜,  𝑐𝑖𝑠𝑜 + 𝑐ℎ𝑒𝑥 and 𝑐𝑜𝑟𝑡ℎ𝑜 in subfigures (a), (b) and (c), respectively. 
The corresponding data for the natural samples are also shown in the figures: gray areas 
indicate the standard deviation of the human samples (see Figure 1) while the square 
marks are the values of the bovine samples (see Figure 1). Figure 5(a) shows that with 
the only exception of the lowermost values, i.e., for 5%≲ 𝐵𝑉 𝑇𝑉⁄ ≲ 7%, the 
parameterized microstructure is able to mimic the isotropic class of the natural 
trabeculae. Regarding 𝑐𝑖𝑠𝑜 + 𝑐ℎ𝑒𝑥, Figure 5(b) shows that the parameterized 
microstructure completely encompasses the data of the natural samples (the gray area is 
hardly visible behind the symbols). Finally, the results for the orthotropic symmetry in 
Figure 5(c) show that, consistently with its geometric definition, the parameterized 
microstructure shows 𝑐𝑜𝑟𝑡ℎ𝑜 = 1 over the complete 𝐵𝑉/𝑇𝑉 range, which results in a 
consistent overestimation of the orthotropic symmetry by the parameterized 
microstructure, the mean value and standard deviation of which is 6.6 ± 3.8% with 
respect to the human samples. Regarding the bovine samples, the overestimation ranges 
from 9% to 19%. 



 

 

 
Figure 5: Comparison of elastic symmetry classes of the natural and the parameterized trabecular 

microstructures: (a) isotropic class, (b) isotropic + hexagonal classes, (c) orthotropy. 

3.3 Polynomial interpolation 

The discrete elastic-constant and symmetry-class data of the parameterized 
microstructures were examined to investigate their functionalities with the geometric 
parameters. 



 

It was observed that coefficients of the stiffness tensor ℂ behave as continuous and 
smooth functions of 𝑡𝑐, 𝑡ℎ, 𝑡𝑣 and 𝑡𝑒 over the complete range, and that in general, the 𝐶𝑖𝑗 

rise with the increment of the geometrical parameters. As examples, Figure 6 illustrates 
the behaviors of 𝐶11 and 𝐶12 as functions of 𝑡𝑣 and 𝑡𝑐 for 𝑡ℎ = 0.6 and 𝑡𝑒 = 1.2. 

On the other hand, symmetry classes showed to be, in some cases, discontinuous functions 
of the geometric parameters. Figure 7 depicts the changes of the symmetry classes 
associated to the variation of the elasticity coefficients given in Figure 6. It can be 
observed that, although ℂ coefficients have a continuous variation, the hexagonal, 
tetragonal and orthorhombic symmetries present discontinuities. 

Based on the above observations, the discrete elastic-constant data was used to 
interpolate an analytical expression for ℂ(𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒). The nine non-zero coefficients, 𝐶11, 
𝐶22, 𝐶33, 𝐶12, 𝐶13, 𝐶23, 𝐶44, 𝐶55 and 𝐶66, were interpolated polynomially by means of least-
square fitting. Polynomials of order 5 to 12 were used; the quality of the interpolations 
was assessed in terms of the coefficient of determination (R2), the root-mean-square 
error (RMSE) and the residual sum of squares (SSres).  Table 4 reports the averaged for 
the interpolations of the 9 coefficients. 

 
Figure 6: Parameterized-microstructure elasticity coefficients 𝐶11 and 𝐶12 as functions of 𝑡𝑐 and 𝑡𝑣 for 𝑡ℎ =

0.6 and 𝑡𝑒 = 1.2. 



 
Figure 7: Parameterized-microstructure symmetry classes as functions of 𝑡𝑣 and 𝑡𝑐 for  𝑡ℎ = 0.6 and 𝑡𝑒 = 1.2. 

Polynomial order R2 RMSE SSres Validity interval for 𝑡𝑐 
5 0.9999848 0.000893 0.04095 [0.16,0.95] 
6 0.9999965 0.000434 0.00979 [0.15,0.95] 
7 0.9999986 0.000281 0.00410 [0.09,0.95] 
8 0.9999991 0.000226 0.00265 [0.11,0.95] 
9 0.9999993 0.000197 0.00204 [0.10,0.95] 

10 0.9999994 0.000179 0.00167 [0.06,0.95] 
11 0.9999995 0.000163 0.00139 [0.09,0.95] 
12 0.9999996 0.000149 0.00115 [0.06,0.95] 

Table 4: Quality assessment of the polynomial interpolations of the elasticity coefficients in terms of the 
coefficient of determination (R2), the root-mean-square error (RMSE) and the residual sum of squares 

(SSres). 

Since the 𝐶𝑖𝑗 were interpolated separately, the thermodynamic requirement for 

ℂ(𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) was checked. The thermodynamic requirement (positive definiteness of 
strain energy) enforces the condition that the invariants of the elasticity matrix should be 
positive, or in other words, that both, ℂ(𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) and its inverse must be positive 
definite. These conditions were verified for the interpolated ℂ(𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒)  for  
quadruplets in the intervals 𝑡𝑐 ∈ [0.05, 0.95], 𝑡ℎ ∈ [𝑡𝑐, 0.95], 𝑡𝑣 ∈ [𝑡𝑐, 0.95] and 𝑡𝑒 ∈
[0.6,1.4] in increments of 0.01. The thermodynamic requirement was found valid on most 
of the interpolation range; validity intervals are reported in Table 4 in terms of 𝑡𝑐. 

Based on the results in Table 4, the polynomial fittings of order 10 are selected. 
Polynomials of order 10 produce accurate and valid interpolations over a wide range of 
the parameter values. The validity interval 𝑡𝑐 ∈ [0.06, 0.95] allows for solid volume 
fractions 1% ≤ 𝐵𝑉/𝑇𝑉 ≤ 99%. 



Bone volume-to-total volume ratio data was also interpolated polynomially to obtain an 
analytical expression for 𝐵𝑉 𝑇𝑉⁄ (𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒).  Polynomials of order 2 to 5 were explored; 
the results are summarized in Table 5. It can be observed that the quality of the 
interpolation consistently improves with the polynomial order. The reliability of the 
interpolations was verified by checking that they result in positive 𝐵𝑉/𝑇𝑉 values. It was 
found that with the only exception of the interpolation of order 2, all the interpolations 
produce positive 𝐵𝑉/𝑇𝑉 values for every combination of the geometrical parameters 
within their validity intervals. The polynomial fitting of order 5 is selected for the rest of 
the work. 

Polynomial order R2 RMSE SSres 
2 0.9987964 0.017454 12.79248 
3 0.9999748 0.002527 0.26814 
4 0.9999973 0.000821 0.02829 
5 0.9999992 0.000442 0.00821 

Table 5: Quality assessment of polynomial interpolation of the 𝐵𝑉 𝑇𝑉⁄  data. 

4 OPTIMIZATION 

 
Figure 8: Workflow of the optimization analysis. 



4.1 Problem statement 

The optimization problem is to find the parameterized microstructure that better mimics 
the elastic response of a target natural bone specimen. The elastic equivalence among the 
microstructures is posed via two approaches: in terms of the elasticity matrix norm and 
in terms of its symmetry classes. 

The workflow is illustrated in Figure 8. The analysis starts with the elastic 
homogenization of the target bone sample; the resultant elasticity matrix is decomposed 
into symmetry classes. The triclinic and monoclinic classes are suppressed to obtain the 
target elasticity matrix. Thus, the resultant  ℂ𝑡𝑎𝑟𝑔𝑒𝑡 has orthotropic symmetry, and it is 
compatible with the artificial microstructure.  

The problem posed in terms of the elasticity matrix norm consists in finding the 
quadruplet 𝑡𝑐, 𝑡ℎ, 𝑡𝑣 and 𝑡𝑒 that minimizes the norm of the difference between the ℂ𝑡𝑎𝑟𝑔𝑒𝑡 
and ℂ: 

ℛ1 = min
‖ℂ𝑡𝑎𝑟𝑔𝑒𝑡 − ℂ(𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒)‖

‖ℂ𝑡𝑎𝑟𝑔𝑒𝑡‖
, (7) 

The problem posed in terms of the symmetry classes consists in finding the quadruplet 𝑡𝑐, 
𝑡ℎ, 𝑡𝑣 and 𝑡𝑒 that minimizes the overall difference between the symmetry class 
decompositions: 

ℛ2 = min√
(𝑐𝑖𝑠𝑜
𝑡𝑎𝑟𝑔𝑒𝑡

− 𝑐𝑖𝑠𝑜)
2
+ (𝑐ℎ𝑒𝑥

𝑡𝑎𝑟𝑔𝑒𝑡
− 𝑐ℎ𝑒𝑥)

2

+(𝑐𝑡𝑒𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

− 𝑐𝑡𝑒𝑡)
2
+ (𝑐𝑜𝑟𝑡

𝑡𝑎𝑟𝑔𝑒𝑡
− 𝑐𝑜𝑟𝑡)

2  , (8) 

where 𝑐𝑖𝑠𝑜
𝑡𝑎𝑟𝑔𝑒𝑡

, 𝑐ℎ𝑒𝑥
𝑡𝑎𝑟𝑔𝑒𝑡

, 𝑐𝑡𝑒𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

, 𝑐𝑜𝑟𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

 and 𝑐𝑖𝑠𝑜, 𝑐ℎ𝑒𝑥, 𝑐𝑡𝑒𝑡, 𝑐𝑜𝑟𝑡 are the normalized symmetry 

classes of the target and the parameterized microstructures, respectively; 𝑐𝑖𝑠𝑜, 𝑐ℎ𝑒𝑥, 𝑐𝑡𝑒𝑡 
and 𝑐𝑜𝑟𝑡 are functions of 𝑡𝑐, 𝑡ℎ, 𝑡𝑣 and 𝑡𝑒 . 

For the two approaches, geometric parameters are subjected to the inequality restrictions 
in equation (6) and at the same time, they must comply with the restriction imposed by 
the bone volume-to-total volume ratio of the target microstructure, 

𝐵𝑉 𝑇𝑉⁄ (𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) = 𝐵𝑉 𝑇𝑉⁄ 𝑡𝑎𝑟𝑔𝑒𝑡
, (9) 

Alternatively, the restriction of the bone volume-to-total volume ratio might be relaxed, 
such as 

𝐵𝑉 𝑇𝑉⁄ 𝑡𝑎𝑟𝑔𝑒𝑡
(1 − 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙) ≤ 𝐵𝑉 𝑇𝑉⁄ (𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒)

≤ 𝐵𝑉 𝑇𝑉⁄ 𝑡𝑎𝑟𝑔𝑒𝑡
(1 + 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙), 
(10) 

where 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 is a prescribed tolerance that could take any value in the interval [0,1]. 

4.2 Algorithms 

Based on the continuity of the interpolations of ℂ and its symmetry classes (see Section 
3.3), different algorithms are used for the optimization problems posed in equations (7) 
and (8). 

Being the interpolation of the ℂ coefficient continuous, the optimization problem (7) is 
solved using and active-set Sequential Quadratic Programming (SQP) algorithm. SQP 
methods solve a sequence of optimization subproblems, each of which optimizes a 



quadratic model of the objective function subjected to a linearization of the constraints. 
We use in this work the SQP algorithm of the Matlab Optimization Toolbox (fmincon), 
which is a customized implementation of the algorithm by Gill et al. (1984, 1991). 
fmincon is gradient-based, and it works on problems where the objective and constraint 
functions are both continuous and have continuous first derivatives. fmincon finds the 
minimum of a problem specified by 

min
𝑥
𝑓(𝑥)  such that 

{
 
 

 
 𝑐𝑒𝑞(𝑥) = 0

𝑐𝑖𝑛𝑒𝑞(𝑥) ≤ 0

𝐴𝑖𝑛𝑒𝑞(𝑥) ∙ 𝑥 ≤ 𝑏𝑖𝑛𝑒𝑞
𝑏𝑙𝑜𝑤 ≤ 𝑥 ≤ 𝑏𝑢𝑝

 (11) 

where x = [𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒]
T and the objective function is 𝑓(𝑥) = ℛ1(𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒), see 

equation (7). 

The constrain functions are used for the restriction on 𝐵𝑉/𝑇𝑉. In the case of a prescribed 
target 𝐵𝑉/𝑇𝑉, the equality function constrain,  𝑐𝑒𝑞(𝑥) = 0, is 

𝐵𝑉 𝑇𝑉⁄ (𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) − 𝐵𝑉 𝑇𝑉⁄ 𝑡𝑎𝑟𝑔𝑒𝑡
= 0, (12) 

while if 𝐵𝑉/𝑇𝑉 is defined as in equation (10), two 𝑐𝑖𝑛𝑒𝑞(𝑥) ≤ 0 are specified: 

𝐵𝑉 𝑇𝑉⁄ (𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) − 𝐵𝑉 𝑇𝑉⁄ 𝑡𝑎𝑟𝑔𝑒𝑡
(1 + 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙) ≤ 0 (13) 

and 

𝐵𝑉 𝑇𝑉⁄ 𝑡𝑎𝑟𝑔𝑒𝑡
(1 − 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙) − 𝐵𝑉 𝑇𝑉⁄ (𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) ≤ 0. (14) 

Inequality constrains are the restrictions on the geometric parameters in equation (6). 
Thus, 𝐴𝑖𝑛𝑒𝑞(𝑥) ∙ 𝑥 ≤ 𝑏𝑖𝑛𝑒𝑞 is 

[
1 −1 0 0
1 0 −1 0

] [

𝑡𝑐
𝑡ℎ
𝑡𝑣
𝑡𝑒

] ≤ [
0
0
]. (15) 

Finally, inequality constrains 𝑏𝑙𝑜𝑤 ≤ 𝑥 ≤ 𝑏𝑢𝑝 are used to set the validity intervals for the 

polynomial interpolations in Section 3.2. For the polynomials of order 10, these are 

𝑏𝑙𝑜𝑤 = [

0.06
0.06
0.06
0.6

]   and 𝑏𝑢𝑝 = [

0.95
0.95
0.95
1.4

]. (16) 

Stopping criteria consist of two tolerances: FunctionTolerance, a lower bound on the 
change in the value of the objective function during a step, and StepTolerance, the 
termination tolerance on the step size. Iterations ends when either of the conditions is 
achieved. Both tolerances were set with the default values of 10−6.  

The optimization posed in term of the symmetry classes is solved using the derivative-
free constrained direct search solver patternsearch (PS) of the Matlab Global 
Optimization Toolbox. patternsearch computes a sequence of points that approach an 
optimal. At each step, the algorithm searches a set of points, called a mesh, around the 
current point. The mesh is formed by adding the current point to a scalar multiple of a set 
of vectors called a pattern. If the pattern search algorithm finds a point in the mesh that 



improves the objective function at the current point, the new point becomes the current 
point at the next step of the algorithm.  

The problem for the PS algorithm is specified using the same outline for the SQP in 
equation (11), but with the objective function 𝑓(𝑥) = ℛ2(𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) of equation (8). 
Restrictions to the geometric parameters due to the feasibility of the microstructures, 
𝐵𝑉/𝑇𝑉 and confidence intervals for the polynomial interpolations are the same as for the 
SQP algorithm. Stopping criteria involves tolerances for FunctionTolerance, the 
difference between the function value at the previous best point and function value at the 
current best point; MeshTolerance, the minimum size for the search mesh; and 
StepTolerance, the minimum distance from the previous best point to the current best 
point. The three tolerances were set with the default values of 10−6. 

4.3 Verification and tuning 

The optimization procedures were verified, tested and tuned by assessing its 
effectiveness to identify microstructures among those of the database used for the 
elasticity-matrix polynomial fitting (see Section 3.3). To this end, 100 parameterized 
microstructures were randomly selected from the database to serve as target 
microstructures. The optimization problems were solved with the SQP and PS methods 
for 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 = 1% and 5%. Since the thermodynamic requirement was checked only for 

discrete combinations (𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) in Section 3.3, there is no guarantee that all possible 
combinations will satisfy it. Therefore, the thermodynamic requirement for ℂ(𝑡𝑐, 𝑡ℎ, 𝑡𝑣, 𝑡𝑒) 
was checked at the end of each optimization procedure. 

Preliminary tests had shown that the performances of both algorithms were sensitive to 
the initial values (seeds) of the geometric parameters. Thus, SQP optimizations were 
attempted with different seeds as many times as necessary until the objective functions 
attained the condition ℛ1 < 0.001; the PS optimizations were run four times for different 
sets of random seeds and the best result reported. 

Table 6 reports the mean values of the residuals and the mean values and standard 
deviations of the relative errors of the geometric parameters and the symmetry classes. 
Errors for the geometric parameters are 

𝑒𝑡𝑐 =
𝑡𝑐 − 𝑡𝑐

𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑐
𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑒𝑡ℎ =

𝑡ℎ − 𝑡ℎ
𝑡𝑎𝑟𝑔𝑒𝑡

𝑡ℎ
𝑡𝑎𝑟𝑔𝑒𝑡 , 

𝑒𝑡𝑣 =
𝑡𝑣 − 𝑡𝑣

𝑜𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑣
𝑡𝑎𝑟𝑔𝑒𝑡   and  𝑒𝑡𝑒 =

𝑡𝑒 − 𝑡𝑒
𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑒
𝑡𝑎𝑟𝑔𝑒𝑡 . 

(17) 

Besides, errors for the symmetry classes are relative to the corresponding average value 
of the 100 target microstructures. This approach avoids the occurrence of boundless and 
misleading large errors for the target microstructures with zero or nearly zero symmetry 
classes. Thus, the errors for the symmetry classes are defined as follows 

 

𝑒𝑐𝑖𝑠𝑜 =
𝑐𝑖𝑠𝑜 − 𝑐𝑖𝑠𝑜

𝑡𝑎𝑟𝑔𝑒𝑡

𝑐𝑖𝑠𝑜
𝑡𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅

, 𝑒𝑐ℎ𝑒𝑥 =
𝑐ℎ𝑒𝑥 − 𝑐ℎ𝑒𝑥

𝑡𝑎𝑟𝑔𝑒𝑡

𝑐ℎ𝑒𝑥
𝑡𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅

, (18) 



𝑒𝑐𝑡𝑒𝑡 =
𝑐𝑡𝑒𝑡 − 𝑐𝑡𝑒𝑡

𝑡𝑎𝑟𝑔𝑒𝑡

𝑐𝑡𝑒𝑡
𝑡𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅

 and   𝑒𝑐𝑜𝑟𝑡 =
𝑐𝑜𝑟𝑡 − 𝑐𝑜𝑟𝑡

𝑡𝑎𝑟𝑔𝑒𝑡

𝑐𝑜𝑟𝑡
𝑡𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅

, 

where  𝑐𝑖𝑠𝑜
𝑡𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑐ℎ𝑒𝑥

𝑡𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑐𝑡𝑒𝑡
𝑡𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑐𝑜𝑟𝑡

𝑡𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ are the mean values of the symmetry class 

fractions for the target microstructures. 

Method 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙  

[%] 

Residual Error geom. parameters [%] Symmetry-class errors x 10-3 

𝑡𝑐 𝑡ℎ 𝑡𝑣 𝑡𝑒  𝑐𝑖𝑠𝑜  𝑐ℎ𝑒𝑥  𝑐𝑡𝑒𝑡  𝑐𝑜𝑟𝑡  

SQP 0 3.1×10-4 -1.0 
± 3.9 

1.1 ± 
4.9 

0.3 ± 
1.4 

0.02 ± 
0.09 

0.08 ± 
0.89 

500 ± 
1034 

-916 ± 
1036 

-250 ± 
761 

1 1.7×10-4 -0.4 
± 2.9 

0.3 ± 
2.6 

0.1 ± 
1.1 

0.00 ± 
0.07 

0.06 ± 
0.53 

499 ± 
1035 

-916 ± 
1037 

-250 ± 
761 

5 2.3×10-4 0.1 ± 
7.7 

0.1 ± 
4.2 

-0.1 
± 2.4 

0.00 ± 
0.07 

0.03 ± 
0.71 

500 ± 
1035 

-916 ± 
1037 

-250 ± 
761 

PS 0 1.4×10-2 17 ± 
41 

-0 ± 
38 

0 ± 
33 

2 ± 31 -4.8 ± 
18.3 

7 ± 
237 

80 ± 
502 

14 ± 
137 

1 5.6×10-3 12 ± 
33 

1 ± 
34 

-5 ± 
18 

4 ± 25 0.7 ± 
11.7 

18 ± 
168 

-33 ± 
262 

-0.4 ± 
47.9 

5 3.1×10-3 5 ± 
37 

4 ± 
36 

6 ± 
36 

5 ± 26 -0.8 ± 
4.2 

-1.4 ± 
88.9 

27 ± 
175 

10 ± 
66 

Table 6: Mean values of the residuals and errors for the geometric parameters and the symmetry classes. 

Table 6 shows that the SQP optimization produces the best results for the geometric 
parameters. SQP errors for the geometric parameters diminish with the relaxation of the 
𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙, maximum errors are around 1% for 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 = 0 and they reduce to less than 

0.1% for 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 = 5%. Maximum errors are for 𝑡𝑐 and 𝑡ℎ. Standard deviations are, in 

general, within a few percent. Symmetry class errors behave almost independently of 
𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙. The result for 𝑐𝑖𝑠𝑜 is very accurate, but in contrast, errors and standard 

deviations for 𝑐ℎ𝑒𝑥, 𝑐𝑡𝑒𝑡 and 𝑐𝑜𝑟𝑡 are very large. Mean values of 𝐵𝑉 𝑇𝑉⁄  for the optimal 
microstructures are almost coincident to the target values, with almost no effect of 
𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙;  mean values for the relative error 

𝑒𝐵𝑉 𝑇𝑉⁄ =
𝐵𝑉 𝑇𝑉⁄ − 𝐵𝑉 𝑇𝑉⁄ 𝑡𝑎𝑟𝑔𝑒𝑡

𝐵𝑉 𝑇𝑉⁄ 𝑡𝑎𝑟𝑔𝑒𝑡 , (19) 

are 𝑒𝐵𝑉 𝑇𝑉⁄̅̅ ̅̅ ̅̅ ̅̅ ̅ = 6 ∙ 10−5 and −5 ∙ 10−4 for 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 = 1%  and 5%, respectively. 

The PS optimization produces accurate results for the symmetry classes, with maximum 
errors of a few percent for 𝑒𝑡𝑒𝑡. Error 𝑒𝑡𝑒𝑡 diminishes from 8% to 3% with the increment 
of 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙. However, this is not the case for all the symmetry classes; note that 𝑒ℎ𝑒𝑥 and 

𝑒𝑜𝑟𝑡  present their minima for 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 = 1%. Maximum standard deviations are also for 

𝑒𝑡𝑒𝑡, and they reduce from 50% to 17% with the increment of 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙.  The largest error 

in the geometric parameters is for 𝑡𝑐, which diminishes from 17% to 5% as the tolerance 
for the bone volume fraction is relaxed from 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 = 0 to 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 = 5%. In 

contrast, minimum errors for  𝑡ℎ, 𝑡𝑣 and 𝑡𝑒 are for 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 = 0, and they deteriorate 

with 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙; in any case, maximum errors are of a few percent. The standard deviations 

for the geometric parameters are not sensitive to 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 and they are from 25% to 

40%. Like for the SQP procedure, mean 𝐵𝑉 𝑇𝑉⁄  of the optimal microstructures are very 
close the target values, in these cases 𝑒𝐵𝑉 𝑇𝑉⁄̅̅ ̅̅ ̅̅ ̅̅ ̅ = 7 ∙ 10−4 and −5 ∙ 10−3 for 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 =

1%  and 5%, respectively. 



In what respects to the computational performance, SQP algorithm had to be run, in 
average, 1.4 times for different seeds to attain the goal  ℛ1 < 0.001. Each run comprised 
an average of 32 iterations and 180 function evaluations. The performance of the SQP 
algorithm was independent of 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙. The PS algorithm employed on average 3.7 

iterations with 1720 function evaluations for each of the seed value sets. It is worth noting 
that, although the larger number of function evaluations, the PS method was always faster 
than the SQP. This is because, besides the greater complexity of the algorithm, the SPQ 
method needs of the cost function gradient, which is around five times more expensive to 
evaluate than the evaluation of the cost function itself. 

The above results show that SQP and PS methods are effective to retrieve randomly 
selected specimens from the parameterized microstructure database. The SQP method 
produces accurate results in terms of the geometric parameters, but they are poor in what 
respects to the symmetry classes. The PS method produces accurate results in terms of 
the symmetry classes, which, at the same time, show good results for the geometric 
parameters. The two methods are further assessed next, by finding parameterized 
microstructures that better mimic the elastic response of natural microstructures. 

5 APPLICATION TO NATURAL TRABECULAR SAMPLES 

5.1 Human specimens 

Elasticity matrices of the 141 human bone samples were filtered to retrieve their 
orthotropic parts. To do so, components 𝐶14, 𝐶15, 𝐶16, 𝐶24, 𝐶25, 𝐶26, 𝐶34, 𝐶35, 𝐶36, 𝐶45, 𝐶46 and 
𝐶56  were set equal to zero for the elastic tensors oriented in the symmetry Cartesian 
coordinate system and their symmetry class decompositions were computed such that 

𝑐𝑜𝑟𝑡
𝑜𝑏𝑗

+ 𝑐𝑡𝑒𝑡
𝑜𝑏𝑗

+ 𝑐ℎ𝑒𝑥
𝑜𝑏𝑗

+ 𝑐𝑖𝑠𝑜
𝑜𝑏𝑗

= 1. The resultant data was used as target values for the SQP 

and PS optimization procedures. Optimizations were performed for 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 =

0%, 1%, 5% and 10%. 

Symmetry classes for the obtained effective elastic properties are assessed in relation to 
the mean values of their extreme fractions for the human microstructures in Table 3, this 
is: 

𝑒𝑐𝑖𝑠𝑜
, =

𝑐𝑖𝑠𝑜 − 𝑐𝑖𝑠𝑜
𝑡𝑎𝑟𝑔𝑒𝑡

1
2 (𝑐𝑖𝑠𝑜

𝑚𝑎𝑥 + 𝑐𝑖𝑠𝑜
𝑚𝑖𝑛)

, 𝑒𝑐ℎ𝑒𝑥
, =

𝑐ℎ𝑒𝑥 − 𝑐ℎ𝑒𝑥
𝑡𝑎𝑟𝑔𝑒𝑡

1
2 (𝑐ℎ𝑒𝑥

𝑚𝑎𝑥 + 𝑐ℎ𝑒𝑥
𝑚𝑖𝑛)

, 

𝑒𝑐𝑡𝑒𝑡
, =

𝑐𝑡𝑒𝑡 − 𝑐𝑡𝑒𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

1
2 (𝑐𝑡𝑒𝑡

𝑚𝑎𝑥 + 𝑐𝑡𝑒𝑡
𝑚𝑖𝑛)

 and   𝑒𝑐𝑜𝑟𝑡
, =

𝑐𝑜𝑟𝑡 − 𝑐𝑜𝑟𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

1
2 (𝑐𝑜𝑟𝑡

𝑚𝑎𝑥 + 𝑐𝑜𝑟𝑡
𝑚𝑖𝑛)

. 

(20) 

Neither the SQP nor the PS showed significant improvements with the relaxation of the 
𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 constrain, so only the results for 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 = 1% are presented next. Mean 

errors for 141 samples when using the SQP method are  𝑒𝑐𝑖𝑠𝑜
,̅̅ ̅̅ ̅ = 0.23, 𝑒𝑐ℎ𝑒𝑥

,̅̅ ̅̅ ̅̅ = −0.50,  

𝑒𝑐𝑡𝑒𝑡
,̅̅ ̅̅ ̅̅ = 0.54 and 𝑒𝑐𝑜𝑟𝑡

,̅̅ ̅̅ ̅̅ = 0.17, while for the PS method they are 𝑒𝑐𝑖𝑠𝑜
,̅̅ ̅̅ ̅ = 0.07,  𝑒𝑐ℎ𝑒𝑥

,̅̅ ̅̅ ̅̅ = −0.09, 

𝑒𝑐𝑡𝑒𝑡
,̅̅ ̅̅ ̅̅ = −0.03 and 𝑒𝑐𝑜𝑟𝑡

,̅̅ ̅̅ ̅̅ = −0.02. It can be observed that, like in Section 4.3, the PS 

achieved better results than the SQP. 

Figure 9 presents the results for the PS optimizations in terms of the relative error for the 
elasticity matrices, 



𝑒‖ℂ‖ =
‖ℂ‖ − ‖ℂ𝑡𝑎𝑟𝑔𝑒𝑡‖

‖ℂ𝑡𝑎𝑟𝑔𝑒𝑡‖
. (21) 

It can be observed that  𝑒‖ℂ‖̅̅ ̅̅ ̅ and its dispersion diminish with 𝐵𝑉/𝑇𝑉, from 0.3 ≲ 𝑒‖ℂ‖ ≲ 4 

for 𝐵𝑉/𝑇𝑉 < 10% to 0.2 ≲ 𝑒‖ℂ‖ ≲ 0.8  for 𝐵𝑉/𝑇𝑉 > 32%. At the same time, it is 

interesting to note that, with only a few exceptions, 𝑒‖ℂ‖ > 0, what implies that the 

optimized parameterized microstructures are, in general, stiffer than the target natural 
ones. It might be argued that the parameterized microstructures make, in terms of 
stiffness, a more efficient use of the material than natural microstructures, being this 
greater efficiency more noticeable for low 𝐵𝑉 𝑇𝑉⁄ . This behavior allows to explain the 
poor performance of the SQP optimization: since parameterized microstructures are in 
general stiffer than the natural microstructures for a given 𝐵𝑉 𝑇𝑉⁄ , the objective function 
posed in terms of the elastic matrices (see (7)) is hard to minimize. On the other hand, the 
PS optimization, which is posed in terms of the symmetry classes, is not affected by the 
overall stiffness, and thus it conducts to better results. The 𝐵𝑉/𝑇𝑉 results confirm this 
observation: mean values of the error in (19) are close to zero for the PS method 
irrespectively of 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 (𝑒𝐵𝑉 𝑇𝑉⁄̅̅ ̅̅ ̅̅ ̅̅ ̅ = −1 ∙ 10−3, 5 ∙ 10−3 and 2 ∙ 10−2 for 𝐵𝑉 𝑇𝑉⁄
𝑡𝑜𝑙 =

1% , 5% and 10% , respectively), whereas for the SQP they are always almost coincident 
with the lowest value of the tolerance range. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 9: PS optimization of the human samples: stiffness-matrix error as function of 𝐵𝑉 ⁄ 𝑇𝑉. 

The solution of the PS optimization can be improved for 𝑒‖ℂ‖ by doing a convenient 

selection of the Young’s modulus of the artificial microstructure material. If the artificial 

microstructure is constructed using a material with Young´s modulus 𝐸′ =
‖ℂ𝑡𝑎𝑟𝑔𝑒𝑡‖

‖ℂ‖
𝐸 , the 

error for the elastic matrix norm 𝑒‖ℂ‖ = 0. Clearly, this scaling of the Young´s modulus 

does not affect the elastic symmetries. The above analysis was performed for the 141 

samples. The average scaling factor for the Young´s modulus was found 𝐸′ 𝐸⁄̅̅ ̅̅ ̅̅ ̅ = 0.55 with 
and standard deviation 𝑆𝐷𝐸′ 𝐸⁄ = 0.20. Resultant mean errors and standard deviations for 



the elasticity coefficients are reported in Table 7. Errors are reported relative to the 
individual elasticity coefficients,   

𝑒𝑖𝑗
𝐶 =

𝐶𝑖𝑗 − 𝐶𝑖𝑗
𝑡𝑎𝑟𝑔𝑒𝑡

𝐶𝑖𝑗
𝑡𝑎𝑟𝑔𝑒𝑡 , (22) 

and relative to the elasticity matrix norm 

𝑒𝑖𝑗
‖𝐶‖ =

𝐶𝑖𝑗 − 𝐶𝑖𝑗
𝑡𝑎𝑟𝑔𝑒𝑡

‖ℂ𝑡𝑎𝑟𝑔𝑒𝑡‖
. (23) 

It is observed that coefficients 𝐶12, 𝐶13 and 𝐶11 have the maximum individual relative 
errors, which range from 80% to 210%; however, when evaluated relative to ‖ℂ𝑡𝑎𝑟𝑔𝑒𝑡‖, 
maximum errors do not exceed 10%. 

Error Relative errors for elasticity matrix coefficients 
𝐶11 𝐶22 𝐶33 𝐶23 𝐶13 𝐶12 𝐶44 𝐶55 𝐶66 

𝑒𝑖𝑗
𝐶  mean 0.80 -0.04 -0.24 0.34 0.86 2.15 -0.28 0.05 -0.21 

SD 1.06 0.34 0.26 0.66 0.83 1.49 0.38 0.54 0.81 

𝑒𝑖𝑗
‖𝐶‖ mean 0.10 -0.02 -0.11 0.01 0.04 0.08 -0.04 0.00 -0.01 

SD 0.13 0.08 0.14 0.03 0.03 0.03 0.04 0.03 0.04 

Table 7: Relative errors for the elasticity matrix after the PS optimization. 

Further results concerning the performance of the SQP and PS algorithms are given in the 
Appendix. 

5.2 Bovine specimens 

The PS optimization was performed for the orthotropic part of the stiffness matrices of 
the 5 bovine specimens described in Section 2.1. Tolerance for the volume fraction was 
set 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 = 1%.  

The optimized microstructures are shown in Figure 10 together with their corresponding 
target natural samples. The stiffness matrices of the parameterized microstructures are 
given in the Appendix; their geometric parameters and  𝐵𝑉 𝑇𝑉⁄  values are reported in 
Table 8. Table 9 and Table 10 report the errors for the symmetry classes and the elasticity 
coefficients, respectively. Error for the symmetry classes are in relation to the ranges of 
the extreme fractions for the bovine microstructures in Table 3 as in equation (20). 

Table 9 shows that, with the only exception of the tetragonal symmetry, errors for the 
symmetry classes are very low. The large relative errors for the tetragonal symmetry are 
explained due to its small relative contribution to the elasticity matrix (see Figure 2).  The 
worst performance is for Sample #2, which has the particularity of having the lowest 
isotropic class and the highest orthorhombic class fractions, 𝑐𝑖𝑠𝑜 = 0.54 and 𝑐𝑜𝑟𝑡 = 0.27 , 
respectively. Bone volume fractions of the mimetic microstructures are coincident to 
those of the natural specimens (see Table 1) up to the second significant figure, which is    
coherent to the 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 = 1% used for the analyses. 

Error for the elasticity coefficients in Table 10 were computed after the scaling of the 
Young´s modulus to make 𝑒‖ℂ‖ = 0. The resultant scaling factors range 0.41 <

𝐸′ 𝐸 < 0.72⁄  with a mean value of 𝐸′ 𝐸⁄̅̅ ̅̅ ̅̅ ̅ = 0.55, which coincides with that of the human 
sample analysis in the previous section. It is observed that as for the human samples, 𝐶12 
presents the highest mean error level (around 9%); maximum errors are of around 17% 
for 𝐶11 and 𝐶22 of Sample #5. 



 

Figure 10: Natural bovine specimens and their mimetic parameterized microstructures. 

Sample Geometric parameters  𝐵𝑉 𝑇𝑉⁄   
[%] 𝑡𝑐 𝑡ℎ 𝑡𝑣 𝑡𝑒  

1 0.080 0.674 0.949 0.763 25 
2 0.187 0.229 0.931 0.600 38 
3 0.217 0.217 0.521 0.890 30 
4 0.080 0.391 0.718 0.727 20 
5 0.100 0.476 0.497 1.256 21 

Table 8: Geometric parameters and 𝐵𝑉 𝑇𝑉⁄  of the mimetic bovine samples. 

Sample Errors for symmetry classes 
𝑒𝑐𝑖𝑠𝑜
,  𝑒𝑐ℎ𝑒𝑥

,  𝑒𝑐𝑡𝑒𝑡
,  𝑒𝑐𝑜𝑟𝑡

,  

1 0.002 0.011 -0.076 0.018 

2 0.024 0.166 0.332 -0.696 

3 0.001 0.006 -0.049 0.013 

4 -0.002 -0.010 0.074 -0.019 

5 -0.001 -0.006 0.039 -0.004 

Table 9: Errors for the symmetry classes of the mimetic bovine samples. 

Sample Relative errors for elasticity matrix coefficients 
𝐶11 𝐶22 𝐶33 𝐶23 𝐶13 𝐶12 𝐶44 𝐶55 𝐶66 

1 0.034 0.016 -0.008 -0.039 -0.047 0.118 -0.028 -0.082 -0.032 
2 0.060 -0.016 -0.018 0.007 0.012 0.065 -0.007 0.015 -0.072 
3 -0.004 0.041 -0.035 0.005 0.003 0.048 -0.016 0.009 -0.054 
4 0.020 0.034 -0.048 0.029 0.014 0.087 -0.023 -0.001 -0.092 
5 0.167 -0.168 -0.039 -0.101 0.047 0.143 -0.062 0.003 -0.009 

Table 10: Relative errors for the elasticity matrix of the mimetic bovine samples. 

6 CONCLUSIONS 

This work introduces a procedure for the design of artificial parameterized 
microstructures that mimic the elastic response of cancellous bone. The procedure is 
based on the parameterized microstructure by Kowalczyk (2006), the geometric 
parameters of which are optimized to minimize the differences between the symmetry 
classes of the target and the artificial microstructure elastic tensor.  

Symmetry class analyses of experimental data from Kabel et al. (1999a, 1999b) and of 
specimens processed as part of this work show that elastic symmetries can be related to 
the specimen 𝐵𝑉/𝑇𝑉. The isotropic symmetry class constitutes the main fraction of the 
elastic tensor; it increases linearly with the specimen bone volume fraction, from around 
50% for 𝐵𝑉/𝑇𝑉 = 5% to 70% for 𝐵𝑉/𝑇𝑉 = 35%. The isotropic and hexagonal classes add 
to a constant, such that they account for around 82% of the elastic tensor over the 
complete 𝐵𝑉/𝑇𝑉 range. The orthotropic symmetry, given by the addition of the isotropic, 
hexagonal, tetragonal and orthorhombic classes, constitute around 93% of the elastic 
tensor, independently of the 𝐵𝑉/𝑇𝑉.  

The parameterized artificial microstructure is orthotropic by construction. It is shown in 
this work that it has the capability to combine the isotropic, hexagonal, tetragonal and 
orthorhombic symmetry classes in the proportions present in the cancellous bone. 
Analytical expressions for the elastic matrix in terms of the microstructure geometrical 
parameters are provided. These expressions could be integrated into multiscale design 



methodologies and used to explore the design of bone substitutes and natural micro-
scaffolds. Free Material Optimization Methods (FMO) are seen as a promising approach in 
this sense.  

Two optimization methods are proposed to find the parameterized microstructure that 
better mimics the elastic response of a target natural bone specimen: a Sequential 
Quadratic Programming algorithm to minimize the difference between the elasticity 
matrices, and a Pattern Search algorithm to minimize the difference between the 
symmetry class decompositions. Both approaches use the geometry parameters as design 
variables, polynomial interpolations to evaluate the parameterized microstructure 
elasticity matrix, and 𝐵𝑉/𝑇𝑉as a restriction. The Pattern Search approach is found to 
produce the best results. The analyses of 146 natural cancellous bone specimens resulted 
in mimetic microstructures whose symmetry class decompositions differ on average 6% 
with respect to the target values. 

The results for the elasticity matrix error allows to observe that the optimized 
microstructures are in general stiffer than their natural counterparts; this behavior is 
more noticeable for low 𝐵𝑉/𝑇𝑉. This deviation can be compensated by selecting the 
Young’s modulus for the optimized microstructure material such that norm of the 
difference between elasticity matrices of the target and optimized microstructure 
vanishes. Clearly, the Young´s modulus scaling does not affect the elastic symmetries. The 
mean value for such scaling factor was found equal to 0.55, i.e., the parameterized 
microstructure material should have, in average, half the stiffness of the trabecular bone 
tissue. After scaling, average errors between the optimized and target elasticity matrix 
coefficients do not exceed 10% relative to the matrix norm. 

Additional research is needed to further assess the effectivity of the parameterized 
microstructures to mimic the behavior of cancellous bone elastic response. A promising 
approach is to compare the elastodynamic responses of natural and parameterized 
microstructures by means of ultrasound analyses, and to correlate their behaviors with 
the elastic symmetry classes and the geometrical parameters. In turn, these results could 
be used to refine the optimization criteria of the Pattern Search method.  
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APPENDIX 

Human Samples 

Erreur ! Source du renvoi introuvable. depicts the residual ℛ1 and the symmetry class 
errors (18) of the SQP optimizations as functions of 𝐵𝑉/𝑇𝑉. Figure 11(a) shows that ℛ1 
and its dispersion diminish sharply with 𝐵𝑉/𝑇𝑉, from 0.5 ≲ ℛ1 ≲ 3 for 𝐵𝑉/𝑇𝑉 < 7.5% 
to 0.1 ≲ ℛ1 ≲ 0.6 for 𝐵𝑉/𝑇𝑉 > 32%. The relaxation of the 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 constrain does not 

result in significant improvements in ℛ1 (results not reported here for analyses 
performed for 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 = 10% exhibit the same behavior). Results in Erreur ! Source 

du renvoi introuvable.(b) allow to observe that 𝑐𝑖𝑠𝑜 and 𝑐ℎ𝑒𝑥 are systematically over and 
underestimated, respectively; their mean errors are 𝑒𝑐𝑖𝑠𝑜̅̅ ̅̅ ̅ = 0.20 and 𝑒𝑐ℎ𝑒𝑥̅̅ ̅̅ ̅̅ = −0.74. 

Errors tend to decrease with 𝐵𝑉/𝑇𝑉, the only exception is that of the tetragonal 
symmetry, which can attain values over the range −5 < 𝑒𝑐𝑡𝑒𝑡 < 12. Mean relative errors 

for the tetragonal and the orthorhombic symmetry classes are 𝑒𝑐𝑡𝑒𝑡̅̅ ̅̅ ̅̅ = 1.74 and 𝑒𝑐𝑜𝑟𝑡̅̅ ̅̅ ̅̅ =

0.18, respectively. 

 



 

 
Figure 11: SQP optimization of human samples: (a) residuals and (b) symmetry-class errors as functions of 

𝐵𝑉 ⁄ 𝑇𝑉. 

The PS optimization resulted in a mean value for the residual ℛ2̅̅ ̅̅ = 0.06 with standard 
deviation 𝑆𝐷ℛ2 = 0.09. Like for the SQP approach, the relaxation of the 𝐵𝑉 𝑇𝑉⁄

𝑡𝑜𝑙 

constrain did not result in significant improvements for ℛ2. In addition to the error for 
the elasticity matrices shown in Figure 9, Figure 12 presents the errors (18) for the 
symmetry classes. Figure 12 allows to observe that mean errors for the symmetry classes 
are much lower than those of the SQP approach in Figure 11(b) :  𝑒𝑐𝑖𝑠𝑜̅̅ ̅̅ ̅ = 0.06, 𝑒𝑐ℎ𝑒𝑥̅̅ ̅̅ ̅̅ =

−0.13, 𝑒𝑐𝑡𝑒𝑡̅̅ ̅̅ ̅̅ = −0.06 and 𝑒𝑐𝑜𝑟𝑡̅̅ ̅̅ ̅̅ = −0.02; standard deviations are 𝑆𝐷𝑒𝑖𝑠𝑜 = 0.11, 𝑆𝐷𝑒ℎ𝑒𝑥 =



0.27,  𝑆𝐷𝑒ℎ𝑒𝑥 = 0.27 and 𝑆𝐷𝑜𝑟𝑡 = 0.18. Like for the SQP optimization, 𝑒𝑐𝑡𝑒𝑡  presents the 

largest dispersion and there are tendencies to overestimate 𝑐𝑖𝑠𝑜 and to underestimate 
𝑐ℎ𝑒𝑥. The high dispersion of 𝑒𝑐𝑡𝑒𝑡  is consequence of the small relative contribution of the 

tetragonal symmetry to the elasticity matrix, which is always 𝑐𝑡𝑒𝑡 < 0.05, see Table 3 and 
Figure 1.  

 
Figure 12: PS optimization of human samples: symmetry-class error as function of 𝐵𝑉 ⁄ 𝑇𝑉. 

Bovine Samples 

Target elastic matrices of the bovine femoral samples 

ℂ𝑏1 =

[
 
 
 
 
 
0.268 0.087 0.152 −0.015 −0.011 −0.003
0.087 0.486 0.195 0.001 −0.066 0.023
0.152  0.195 0.677 0.010 0.044 0.011

−0.015 0.001 0.010 0.175 −0.042 −0.005
−0.011 −0.066 0.044 −0.042 0.198 0.001
−0.003  0.023 0.011 −0.005 0.001 0.112]

 
 
 
 
 

[GPa] (A. 1) 

ℂ𝑏2 =

[
 
 
 
 
 
0.306 0.152 0.199 0.060 −0.010 −0.010
0.152 1.202 0.421 −0.025 0.039 0.052
0.199  0.421 1.885 −0.040 0.067 0.007
0.060 −0.025 −0.040 0.461 −0.089 −0.149

−0.010 0.039 0.067 −0.089 0.268 0.064
−0.010  0.052 0.007 −0.149 0.064 0.256]

 
 
 
 
 

[GPa] (A. 2) 

ℂ𝑏3 =

[
 
 
 
 
 
0.573 0.234 0.219 −0.006 −0.015 0.004
0.234 0.640 0.253 −0.005 −0.016 0.006
0.219  0.253 1.260 −0.017 0.023 −0.003

−0.006 −0.005 −0.017 0.317 −0.017 −0.002
−0.015 −0.016 0.023 −0.017 0.246 0.052
0.004  0.006 −0.003 −0.002 0.052 0.224]

 
 
 
 
 

[GPa] (A. 3) 



ℂ𝑏4 =

[
 
 
 
 
 
0.163 0.075 0.068 −0.008 −0.016 0.010
0.075 0.350 0.126 −0.018 −0.005 0.018
0.068  0.126 0.606 0.029 −0.004 −0.032

−0.008 −0.018 0.029 0.148 −0.023 0.043
−0.016 −0.005 −0.004 −0.023 0.093 −0.014
0.010  0.018 −0.032 0.043 −0.014 0.110]

 
 
 
 
 

[GPa] (A. 4) 

ℂ𝑏5 =

[
 
 
 
 
 
0.318 0.075 0.107 −0.008 0.001 0.021
0.075 0.426 0.182 0.024 0.002 −0.017
0.107  0.182 0.464 −0.027 −0.003 −0.001

−0.008 0.024 −0.027 0.144 −0.007 0.002
0.001 0.002 −0.003 −0.007 0.116 0.008
0.021 −0.017 −0.001 0.002 0.008 0.114]

 
 
 
 
 

[GPa] (A. 5) 

The PS optimization of each sample was run ten times using different seeds. For each case, 
the best two outcomes (these are, the solutions that achieve the lowest values of the 
objective function) were compared to assess the repeatability of the solutions.  It was 
found that for Samples #2 and #4, the residuals of the best two solutions are almost 
coincident (they differ less than 1%), while the resultant values for the geometrical 
parameters coincide within 2%. For samples #1 and #3 the lowest two residuals differ in 
around 12% and the geometrical parameters have discrepancies of up to 80%. It is 
interesting to note that the parameter 𝑡𝑒 , the one which governs microstructure 
orthotropy, showed a remarkable repeatability, it presented discrepancies within 0.2% 
for the analyses of Samples #1, #2, #3 and #4. In contrast, for Sample #5, residuals of the 
best two solutions differ in nearly 90% and the geometrical parameters up to 70%; the 
best performance is for 𝑡𝑒 , which presents a discrepancy discrepancy of 13%. The 
behavior for 𝑡𝑒 could be explored as a mean for the refinement of the optimization 
procedure. 

Finally, the resultant elastic matrices for the mimetic parameterized microstructures are: 

ℂ𝑏1
′ =

[
 
 
 
 
 
0.302 0.204 0.105 0 0 0
0.204 0.502 0.156 0 0 0
0.105  0.156 0.669 0 0 0

0 0 0 0.147 0 0
0 0 0 0 0.116 0
0  0 0 0 0 0.081]

 
 
 
 
 

[GPa] (B. 1) 

ℂ𝑏2
′ =

[
 
 
 
 
 
0.268 0.087 0.152 0 0 0
0.087 0.486 0.195 0 0 0
0.152  0.195 0.677 0 0 0

0 0 0 0.175 0 0
0 0 0 0 0.198 0
0  0 0 0 0 0.112]

 
 
 
 
 

[GPa] (B. 2) 

ℂ𝑏3
′ =

[
 
 
 
 
 
0.566 0.316 0.224 0 0 0
0.316 0.709 0.261 0 0 0
0.224  0.261 1.201 0 0 0

0 0 0 0.290 0 0
0 0 0 0 0.261 0
0  0 0 0 0 0.132]

 
 
 
 
 

[GPa] (B. 3) 



ℂ𝑏4
′ =

[
 
 
 
 
 
0.179 0.163 0.079 0 0 0
0.143 0.377 0.133 0 0 0
0.079  0.133 0.569 0 0 0

0 0 0 0.125 0 0
0 0 0 0 0.092 0
0  0 0 0 0 0.038]

 
 
 
 
 

[GPa] (B. 4) 

ℂ𝑏5
′ =

[
 
 
 
 
 
0.452 0.190 0.145 0 0 0
0.190 0.291 0.101 0 0 0
0.145  0.101 0.433 0 0 0

0 0 0 0.094 0 0
0 0 0 0 0.118 0
0  0 0 0 0 0.106]

 
 
 
 
 

[GPa] (B. 5) 

 


