
HAL Id: hal-01552075
https://hal.science/hal-01552075

Preprint submitted on 30 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Partial Transport Problem with Lagrangian
costs

Noureddine Igbida, van Thanh Nguyen

To cite this version:
Noureddine Igbida, van Thanh Nguyen. Optimal Partial Transport Problem with Lagrangian costs.
2017. �hal-01552075�

https://hal.science/hal-01552075
https://hal.archives-ouvertes.fr


Optimal Partial Transport Problem with Lagrangian costs

Noureddine Igbida† and Van Thanh Nguyen‡

Institut de recherche XLIM-DMI, UMR-CNRS 6172
Faculté des Sciences et Techniques

Université de Limoges, France

April 2017

Abstract. We introduce a dual dynamical formulation for the optimal partial transport prob-
lem with Lagrangian costs

cL(x, y) := inf
ξ∈Lip([0,1];RN )


1∫

0

L(ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y


basing on a constrained Hamilton–Jacobi equation. Optimality condition is given that takes
the form of a system of PDEs in some way similar to constrained Mean Field Games. The
equivalent formulations are then used to give numerical approximations to the optimal partial
transport problem via augmented Lagrangian methods. One of advantages is that the approach
requires only values of L and does not need to evaluate cL(x, y), for each pair of endpoints x
and y, which comes from a variational problem. This method also provides at the same time
optimal active submeasures and the associated optimal transportation.

1. Introduction

Optimal transport deals with the problem to find the optimal way to move materials from
a given source to a desired target in such a way to minimize the work. The problem was
first proposed and studied by G. Monge in 1781 and then L. Kantorovich made fundamental
contributions to the problem in the 1940s by relaxing the problem into a linear one. Since the end
of the eighties, this subject has been investigated under various viewpoints with many surprising
applications in partial differential equations (PDEs), differential geometry, image processing and
many other areas. These cultivate a huge study with the development of intuitions and concepts
for the problem from both theoretical and numerical aspects. The problem has got a lot of
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2 N. IGBIDA AND V. T. NGUYEN

attention and has been also generalized in different directions. For more details on the optimal
transport problem, we refer to the pedagogical books [30], [31], [1] and [29].

Among generalizations of the optimal transport problem, we are interested in the so-called
optimal partial transport which aims to study the case where only a part of the commodity (re-
spectively, consumer demand) of total mass m needs to be transported (respectively, fulfilled).
More precisely, let µ, ν ∈ M+

b (RN ) be finite Radon measures and c : RN × RN −→ [0,+∞)
be a measurable cost function. For a prescribed total mass m ∈ [0,mmax] with mmax :=

min
{
µ(RN ), ν(RN )

}
, the optimal partial transport problem (or partial Monge-Kantorovich prob-

lem, PMK for short) reads as follows

min

K(γ) :=

∫
RN×RN

c(x, y)dγ : γ ∈ πm(µ, ν)

 , (1.1)

where

πm(µ, ν) :=
{
γ ∈M+

b (RN × RN ) : πx#γ ≤ µ, πy#γ ≤ ν, γ(RN × RN ) = m
}
.

Here, πx#γ and πy#γ are marginals of γ. This generalized problem brings out new unknown
quantities ρ0 := πx#γ, ρ1 := πy#γ called active submeasures. Here ρ0 and ρ1 are the sites where
the commodity is taken and the consumer demand is fulfilled, respectively. In the case where
µ and ν have the same mass (i.e., µ(RN ) = ν(RN )) and the desired total mass m := µ(RN ) =

ν(RN ), the problem (1.1) is nothing else the standard optimal transport problem.
The optimal partial transport problem (1.1) was first studied theoretically by Caffarelli and

McCann [9] (see also Figalli [17]) with results on the existence, uniqueness and regularity of
optimal active submeasures for the case where c(x, y) = |x − y|2. We also refer to the papers
[11, 13, 23] for the regularity. On the other hand, concerning numerical approximations, the
authors in [2] studied numerically the case c(x, y) = |x − y| via an approximated PDE and
Raviart–Thomas finite elements. Recently, Benamou et al. [8] introduced a general numerical
framework to approximate solutions of linear programs related to optimal transport such as
barycenters in Wasserstein space, multi-marginal optimal transport, optimal partial transport
and optimal transport with capacity constraints. Their idea is based on an entropic regularization
of the initial linear programs and Bregman–Dykstra iterations. This is a static approach to
optimal transport-type problems. In this direction, we also refer to the very recent paper of
Chizat et al. [12]. These approaches need to use (approximated) values of the ground cost
function cL(x, y) in the definition (1.2) below.

In this paper, we are interested in the optimal partial transport problem with Lagrangian
costs c(x, y) := cL(x, y), where

cL(x, y) := inf
ξ


1∫

0

L(ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y, ξ ∈ Lip([0, 1]; Ω)

 (1.2)

with a Lipschitz domain Ω ⊂ RN . The case where L(x, .) is convex, 1-homogeneous with a
linear growth was treated in the recent paper [22]. In this case, cL turns out to be a distance
which allows to reduce the dimension of the Kantorovich-type dual problem (by ignoring the
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time variable). The present article concerns the situation where L(x, .) has a superlinear growth.
Our main aim is to develop rigorously the variational approach to provide equivalent dynami-
cal formulations and use them to supply numerical approximations via augmented Lagrangian
methods. For the uniqueness, using basically the idea of [26], we establish the uniqueness of
optimal active submeasures in the case where the densities are absolutely continuous.

To introduce and comment our main results, let us take a while to focus on the typical
situation where the cost is given by

L(x, z) := k(x)
|z|q

q
for any (x, z) ∈ RN × RN (1.3)

with q > 1 and k being a (positive) continuous function. Recall here that if k ≡ 1 and q = 2,
the cost function cL corresponds to the quadratic case:

cL(x, y) = |y − x|2 for any x, y ∈ RN .

This is more or less the most studied case in the literature (cf. [9, 11, 13, 17, 23]). However,
let us mention here that our approach is variational and goes after our program of studying
the optimal partial transportation from the theoretical and numerical points of view (cf. [21]
and [22]). To begin with, it is not difficult to see that using standard results concerning the
Eulerian formulation of the optimal mass transport problem in the balanced case, i.e. equal mass
for the source and the target, an Eulerian formulation associated with the problem (1.1)-(1.3)
can be given by minimizing ∫∫

Q

k(x)
|υ(t, x)|q

q
dρ(t, x) (1.4)

among all the couples (ρ, υ) ∈M+
b (Q)× L1

ρ(Q)N satisfying the continuity equation

∂tρ+∇ · (υρ) = 0 in Q := [0, 1]× RN (1.5)

in a weak sense with ρ(0) ≤ µ and ρ(1) ≤ ν and ρ(0)(RN ) = m. However, to use the augmented
Lagrangian method to solve numerically (1.1), we will prove rigorously that in fact the mini-
mization problem of the type (1.4)-(1.5) is the Fenchel–Rockafellar dual of a new dual problem
to (1.1). Indeed, using the general duality result on the optimal partial transportation of [21],
we prove that a dynamical formulation of the dual problem of (1.1) consists in maximizing∫

RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) (1.6)

among the couples (λ, u) ∈ [0,∞)×Lip(Q), where u satisfies the following constrained Hamilton–
Jacobi equation 

∂tu(t, x) + k−α(x)
|∇xu(t, x)|q′

q′
≤ 0 for a.e. (t, x) ∈ Q

−λ ≤ u(0, x), u(1, x) ≤ 0 ∀x ∈ RN .

(1.7)
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Here q′ :=
q

q − 1
denotes the usual conjugate of q and α =

q′

q
. Then, even if the regularity

of the solutions here creates an obstruction to the application of the general theory, we will
prove that the minimization problem (1.4) remains to be the Fenchel–Rockafellar dual of the
maximization problem (1.6)-(1.7). Using these equivalents, we overbalance the problem into
the scope of augmented Lagrangian methods and give numerical approximations to the optimal
partial transport problem. In particular, we will see that this approach does not need to evaluate
cL(x, y), for each pair of endpoints x and y, but requires only some values of L. Also, the method
provides at the same time optimal active submeasures and the associated optimal transportation.

In addition, let us mention that the Fenchel–Rockafellar duality between the maximization
problem (1.6) and the minimization problem (1.4) brings up (as optimality conditions) a new
type of ”constrained” Mean Field Game (MFG) system. For the particular case (1.3), this system
aims to find (ρ, υ) ∈ M+

b (Q) × L1
ρ(Q)N satisfying both the usual MFG system associated with

the cost (1.1)-(1.3):

∂tu(t, x) + k−α(x)
|∇xu(t, x)|q′

q′
≤ 0 for a.e. (t, x) in Q

∂tρ+∇ · (υρ) = 0 in (0, 1)× RN

υ(t, x) = k(x)−α|∇xu(t, x)|q′−2∇xu(t, x) ρ-a.e. (t, x) in Q

(1.8)

and the following non-standard initial boundary values:

ρ(0)− µ ∈ ∂I[−λ,+∞)(u(0, .)) and ν − ρ(1) ∈ ∂I(−∞,0](u(1, .)). (1.9)

In other words, these initial boundary values may be written as: −λ ≤ u(0, .), u(1, .) ≤ 0, ρ(0) ≤
µ, ρ(1) ≤ ν, ρ(0) = µ in the set [u(0, .) > −λ] and ρ(1) = ν in the set [u(1, .) < 0]. In the system
(1.8), λ is an arbitrary non-negative parameter and the couple (ρ(0), ρ(1)) ∈M+

b (RN )×M+
b (RN )

is unknown. Once the system is solved with the optimal λ for (1.4), the couple (ρ(0), ρ(1)) gives
the optimal active submeasures and ρ gives the optimal transportation.

Actually, for a given λ ≥ 0, (1.8)-(1.9) is a new type of constrained MFG system. In this
direction, one can see some variant of constrained MFG systems and their connection with the
Mean Field Games under congestion effects in the paper [28]. However, let us mention that
(1.8)-(1.9) is different from the class of MFG systems introduced in [28]. In particular, one sees
that the constraints in (1.9) focus only the state at time t = 0 and t = 1. As to the constraints
in [28], they are maintained on all the trajectory for every time t ∈ [0, 1] to handle some kind of
congestion.

On the other hand, one sees that taking m = µ(RN ), the optimal partial transportation
problem (1.1) can be interpreted as the projection with respect to WL-Wasserstein distance
associated with cL onto the set of non-negative measures less or equal to ν. Recall here that the
case where k ≡ 1 and q = 2, this problem appears in the study of the congestion in the modeling
of crowd motion (cf. [25]). So, it is possible to merge our numerical approximation algorithm
into the splitting process of [25] for the study of the crowd motion with congestion.

At last, let us mention that the main difficulty in the study of the above variational approach
of the problem (1.1) for general Lagrangian L remains in the regularity of the solutions of the



OPTIMAL PARTIAL TRANSPORT 5

optimization problems like (1.4)-(1.5) and (1.6)-(1.7). To handle this difficulty we prove some
new results concerning the approximation of the solutions of general constrained Hamilton-
Jacobi equation like (1.7) by regular function. Moreover, we show how to use the notion of
tangential gradient to study MFG system like (1.8)-(1.9) in the general case. In particular, when
m = µ(RN ) = ν(RN ) and L(x, v) = L(v) is independent of x, this MFG system reduces to the
PDE as in the work of Jimenez [24].

The remainder of the article is organized as follows: In the next section, we begin with the
notations and assumptions. Section 3 concerns the uniqueness of optimal active submeasures.
Section 4 is devoted to the rigorously theoretical study of the problem with equivalent dual
formulations that would be used later for numerical approximation. Besides these, an optimality
condition is also given which recovers the Monge–Kantorovich equation as a particular case. The
details of our numerical approximation are discussed in Section 5. The paper ends up by some
numerical examples.

2. Notations and assumptions

Let X be a topological vector space and X∗ be its dual. We use 〈x∗, x〉 or 〈x, x∗〉 to indicate
the value x∗(x) for x ∈ X and x∗ ∈ X∗. The scalar product in RN is denoted by x · y or 〈x, y〉
for x, y ∈ RN . We denote by IK the indicator function of K and by ∂G the subdifferential of
convex function G : X −→ R ∪ {+∞} in the sense of convex analysis.

To avoid unnecessary difficulties, in our theoretical study, we will work with Ω = RN in
the definition (1.2) of cL . Throughout this article, we drop the subscript L and write simply c
instead of cL.

Assumption (A): Assume that the Lagrangian L : RN ×RN → [0,+∞) is continuous and
satisfies:

• L(x, .) is convex and L(x, 0) = 0 for each fixed x ∈ RN ;
• (Superlinearity) for any R > 0, there exists a function θR : R+ → R+ such that

θR(t)

t
→ +∞ as t→ +∞ and L(x, v) ≥ θR(|v|) ∀x ∈ B(0, R).

For example, the function L(x, v) := k(x)
|v|q

q
, q > 1 satisfies the above assumption whenever k

is (positive) continuous.

The convex conjugate H of L is defined by

H(x, p) := sup
v∈RN

{〈p, v〉 − L(x, v)} for any x ∈ RN , p ∈ RN .

Note that, under the assumption (A) on L, the function H(., .) is continuous in both variables
and that c(., .) is locally Lipschitz.

We set Q := [0, 1] × RN . The usual derivatives of u are denoted by ∂tu,∇xu, and ∇t,xu :=
(∂tu,∇xu). The continuity equation ∂tρ +∇ · (υρ) = 0, ρ(0) = µ, ρ(1) = ν is understood in the
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sense of distribution, i.e.∫∫
Q

∂tφdρ+

∫∫
Q

∇xφ · υdρ =

∫
RN

φ(1, .)dρ(1)−
∫
RN

φ(0, .)dρ(0)

=

∫
RN

φ(1, .)dν −
∫
RN

φ(0, .)dµ

(2.1)

for any compactly supported smooth function φ ∈ C∞c (Q). For short, we denote (2.1) by

−divt,x (ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ.

We say that (ρ0, ρ1) is a couple of optimal active submeasures if ρ0 = πx#γ and ρ1 = πy#γ for
some optimal plan γ of the PMK problem (1.1).

3. Uniqueness of optimal active submeasures

The existence of optimal active submeasures follows easily from the direct method (see e.g.
[9,21]). The present section concerns the uniqueness.

Theorem 3.1 (Uniqueness). Assume moreover that L(x, v) = L(v) is independent of x and
that L(v) = 0 if and only if v = 0. If µ, ν ∈ L1 and m ∈ [µ∧ ν(RN ),mmax] then there is at most
one couple of optimal active submeasures.

The idea of the proof is based on the recent paper [26, Proposition 5.2]. For completeness,
we give here an adaptation to our case.

Lemma 3.1. Assume that L satisfies the assumption (A). Let (ρ0, ρ1) be a couple of optimal
active submeasures and γ ∈ π(ρ0, ρ1) be an optimal plan. If (x∗, y∗) ∈ supp(γ) then ρ0 = µ a.e.
on Bc(y∗, R) := {t ∈ RN : c(t, y∗) < R} and ρ1 = ν a.e. on Bc(x∗, R) := {w ∈ RN : c(x∗, w) <
R)}, where R := c(x∗, y∗) = cL(x∗, y∗).

Proof. We prove that ρ1 = ν a.e. on Bc(x∗, R). If the conclusion is not true then there exists a
compact set K b Bc(x

∗, R) with a positive Lebesgue measure such that ρ1 < ν a.e. on K. The
proof consists in the construction of a better plan γ̃. Since (x∗, y∗) ∈ supp(γ), we have

0 < γ(B(x∗, r)×B(y∗, r)) ≤
∫

B(y∗,r)

νdx→ 0 as r → 0,

where B(x, r) is the ball w.r.t. the Euclidean norm. Now, geometrically speaking, instead of
transporting mass from x∗ to around y∗, we can give more mass on K. To be more precise, we
construct a new plan γ̃ as follows

γ̃ := γ − γ B(x∗,r)×B(y∗,r) +η

with

η :=
πx#(γ B(x∗,r)×B(y∗,r))⊗ (ν − ρ1) K∫

K

(ν − ρ1)dx
.
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Then πx#γ̃ = ρ0 and

πy#γ̃ ≤ πy#γ +
γ(B(x∗, r)×B(y∗, r))∫

K

(ν − ρ1)dx
(ν − ρ1) K ≤ ρ1 + (ν − ρ1) K ≤ ν

for all sufficiently small r. It follows that γ̃ ∈ πm(µ, ν). Furthermore, we have∫
c(x, y)dγ̃

=

∫
c(x, y)dγ −

∫
B(x∗,r)×B(y∗,r)

c(x, y)dγ +

∫
B(x∗,r)×K

c(x, y)dη

≤
∫
c(x, y)dγ −

(
inf

(x,y)∈B(x∗,r)×B(y∗,r)
c(x, y)− sup

(x,y)∈B(x∗,r)×K
c(x, y)

)
γ(B(x∗, r)×B(y∗, r)).

<

∫
c(x, y)dγ for small r,

where we used the fact that(
inf

(x,y)∈B(x∗,r)×B(y∗,r)
c(x, y)− sup

(x,y)∈B(x∗,r)×K
c(x, y)

)
> 0 for small r.

This holds because of the definition of K and the continuity of c. �

The next lemma provides an expression for optimal active submeasures1.

Lemma 3.2. Under the assumptions of Theorem 3.1, let (ρ0, ρ1) be couple of optimal active
submeasures. Then

ρ0 = χBc0µ, ρ1 = χBc1ν

for some measurable sets B0, B1.

Proof. Since L(x, v) = L(v), we get c(x, y) := cL(x, y) = L(y− x). Thus c(x, y) = 0 if and only
if x = y. This implies that the common mass µ ∧ ν must belong to optimal active submeasures,
i.e., µ ∧ ν ≤ ρ0 and µ ∧ ν ≤ ρ1. So without loss of generality, we can assume that the initial
measures µ and ν are disjoint, i.e., µ ∧ ν = 0. Now, let us define

B0 := Leb(µ)∩Leb(ν)∩Leb(ρ0)∩{ρ0 < µ}(1) and B1 := Leb(µ)∩Leb(ν)∩Leb(ρ1)∩{ρ1 < ν}(1).

Here, Leb(g) is the set of Lebesgue points of g and A(1) is the set of points of density 1 w.r.t. A.
We see that

Bc
0 = (Leb(µ) ∩ Leb(ν) ∩ Leb(ρ0))c ∪ ({ρ0 < µ}(1))c = Z ∪ {ρ0 = µ},

with LN (Z) = 0. So ρ0 = µ a.e. on Bc
0. Next, we show that ρ0 = 0 on B0. Indeed, if

ρ0(x) > 0 for some x ∈ B0 then x ∈ supp(ρ0). Hence there exists y ∈ supp(ρ1) such that
(x, y) ∈ supp(γ) for some optimal plan γ ∈ π(ρ0, ρ1). Since µ ∧ ν = 0, we can take y 6= x and
thus R := c(x, y) = L(y − x) > 0. Since Bc(y,R) is convex, it has the cone property, i.e. there

1Thanks to this expression, optimal active sumeasures are completely determined by their supports, called
active regions as used in [9,17].
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is a finite cone with vertex at x contained in Bc(y,R). It follows that there exists a sequence of
subsets of Bc(y,R) shrinking to x nicely (see e.g. [27, Theorem 7.10]). Using Lemma 3.1, ρ0 = µ
a.e. on Bc(y,R), we obtain ρ0(x) = µ(x), which is impossible. Consequently, the proof of the
expression ρ0 = χBc0µ is completed. In much the same way, we get ρ1 = χBc1ν. �

Proof of Theorem 3.1. Let (ρ0, ρ1) and (ρ̃0, ρ̃1) be couples of optimal active submeasures. By
Lemma 3.2, we have ρ0 = χBc0µ, ρ1 = χBc1ν, ρ̃0 = χB̃c0

µ and ρ̃1 = χB̃c1
ν. By the convexity of the

total cost, we see that
1

2
(ρ0, ρ1) +

1

2
(ρ̃0, ρ̃1) is also an optimal couple. If (ρ0, ρ1) 6= (ρ̃0, ρ̃1) then

1

2
(ρ0, ρ1) +

1

2
(ρ̃0, ρ̃1) does not admit any expression as in Lemma 3.2, a contradiction. �

Remark 3.2. (i) Following the proof, Theorem 3.1 is still true for any general cost c (not
necessary to be of the form cL) if we have the following properties:

• c is continuous.
• c(x, y) = 0 if and only if x = y.
• The balls w.r.t. c defined by Bc(y,R) := {t ∈ RN : c(t, y) < R} and Bc(x,R) := {w ∈
RN : c(x,w) < R)} are regular in the sense that given any point on the boundary of a
ball, there exists a sequence of subsets of the ball which shrinks nicely to that point.

(ii) In the case where L(x, v) = L(v) is strictly convex, Figalli [17] studied the strict convexity of
the function that associates to each m ∈ (µ ∧ ν(RN ),mmax] the total Monge–Kantorovich cost
to deduce the uniqueness.
(iii) When L(x, .) is positively 1-homogeneous, i.e., L(x, tξ) = tL(x, ξ) ∀x ∈ RN , ξ ∈ RN , t > 0,
the uniqueness can be obtained via PDE techniques applied to the so-called obstacle Monge–
Kantorovich equation (see [21]).

4. Equivalent formulations

In the present section, under the general assumptions of Section 2, we introduce and study
the equivalent formulations for the PMK problem of the type (1.4)-(1.5) and also (1.6)-(1.7).

4.1. Dual formulation. We start with the following Kantorovich-type dual formulation.

Theorem 4.3. Let µ, ν ∈M+
b (RN ) be compactly supported and m ∈

[
0,min

{
µ(RN ), ν(RN )

}]
.

Suppose that L satisfies the assumption (A). Then

min
γ∈πm(µ,ν)

K(γ) :=

∫
RN×RN

c(x, y)dγ


= max

(λ,u)


∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : λ ∈ R+, u ∈ Kλc

 ,

(4.1)

where
Kλc :=

{
u ∈ Lip(Q) : ∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 for a.e. (t, x) ∈ Q,

− λ ≤ u(0, x) and u(1, x) ≤ 0 ∀x ∈ RN
}
.
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To prove Theorem 4.3, we recall below the Kantorovich duality for the PMK problem. This
can be found in [21].

Theorem 4.4. (cf. [21]) Let µ, ν ∈ M+
b (RN ) be compactly supported Radon measures and

m ∈ [0,mmax]. The PMK problem has a solution σ∗ ∈ πm(µ, ν) and the Kantorovich duality
turns into

K(σ∗) = max
(λ,φ,ψ)

{∫
φ dµ+

∫
ψ dν + λm : λ ∈ R+, (φ, ψ) ∈ Sλc (µ, ν)

}
, (4.2)

where

Sλc (µ, ν) :=
{

(φ, ψ) ∈ L1
µ(RN )× L1

ν(RN ) : φ ≤ 0, ψ ≤ 0, φ(x) + ψ(y) + λ ≤ c(x, y) ∀x, y ∈ RN
}
.

Moreover, σ ∈ πm(µ, ν) and (λ, φ, ψ) ∈ R+ × Sλc (µ, ν) are solutions, respectively, if and only if

φ(x) = 0 for (µ− πx#σ)-a.e. x ∈ RN , ψ(y) = 0 for (ν − πy#σ)-a.e. y ∈ RN

and φ(x) + ψ(y) + λ = c(x, y) for σ-a.e. (x, y) ∈ RN × RN .

Remark 4.5. The duality (4.2) can be rewritten as

K(σ∗) = max
(λ,φ,ψ)

{∫
ψ dν −

∫
φ dµ+ λ(m− µ(RN )) : λ ∈ R+, (φ, ψ) ∈ Φλ

c (µ, ν)

}
, (4.3)

where

Φλ
c (µ, ν) :=

{
(φ, ψ) ∈ L1

µ(RN )× L1
ν(RN ) : −λ ≤ φ, ψ ≤ 0, ψ(y)− φ(x) ≤ c(x, y) ∀x, y ∈ RN

}
.

The maximization problem is called the dual partial Monge–Kantorovich (DPMK) problem.

Coming back to our analysis, we note that if u ∈ Kλc and u is smooth then, using the definition
of convex conjugate function H, we get

∂tu(t, x) + 〈∇xu(t, x), v〉 ≤ L(x, v) ∀(t, x) ∈ Q, v ∈ RN . (4.4)

In general, for any u ∈ Kλc , we can approximate u by smooth functions satisfying a similar
estimate for (4.4). This is the content of the following lemma. Although we obtain here only the
estimate at the limit, this is enough for later use.

Lemma 4.3. Fix any u ∈ Kλc . There exists a sequence of smooth functions uε such that uε
converges uniformly to u on Q and

lim sup
ε→0

(∂tuε(t, x) + 〈∇xuε(t, x), v〉) ≤ L(x, v) ∀(t, x) ∈ Q, v ∈ RN (4.5)

and, for all ξ ∈ Lip([0, 1];RN ),

lim sup
ε→0

1∫
0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt ≤

1∫
0

L(ξ(t), ξ̇(t))dt. (4.6)
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Proof. Let αε, βε be standard mollifiers on R and RN , respectively, such that

supp(αε) ⊂ [−ε, ε]. (4.7)

Set ηε(t, x) := αε(t)βε(x). Let ũ be a Lipschitz extension of u on R×RN . By means of convolution
in both time and spacial variables, let us define

ũε := ηε ? ũ,

and
uε(t, x) := ũε(ε+ (1− 2ε)t, (1− 2ε)x) for any (t, x) ∈ R× RN .

Let us show that uε satisfies all the requirements. First, since ũ is Lipschitz, uε converges
uniformly to u on Q. It remains to check the two inequalities (4.5) and (4.6). For all t ∈ [0, 1],
using (4.7), we have

uε(t, x) =

∫
R

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)ũ(s, y)dy ds

=

1∫
0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)u(s, y)dy ds.

Fix any v ∈ RN , for all t ∈ [0, 1], we have

∂tuε(t, x) + 〈v,∇uε(t, x)〉

= (1− 2ε)

1∫
0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)∂su(s, y) dy ds

+ (1− 2ε)

〈
v,

1∫
0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)∇yu(s, y) dy ds

〉

= (1− 2ε)

1∫
0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y) (∂su(s, y) + 〈v,∇yu(s, y)〉) dy ds

≤ (1− 2ε)

1∫
0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)L(y, v) dy ds

= (1− 2ε)

∫
RN

βε((1− 2ε)x− y)L(y, v) dy.

(4.8)

Letting ε → 0, we obtain (4.5). Finally, let us fix any ξ ∈ Lip([0, 1];RN ). Using (4.5) with
x = ξ(t), v = ξ̇(t), we have

lim sup
ε→0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
≤ L(ξ(t), ξ̇(t)) for a.e. t ∈ [0, 1]. (4.9)
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Recall that (the Reverse Fatou’s Lemma) if there exists an integrable function g on a measure
space (X, η) such that gε ≤ g for all ε, then

lim sup
ε

∫
gεdη ≤

∫
lim sup

ε
gεdη.

In our case, on X := [0, 1] with the Lebesgue measure, the functions gε(t) := ∂tuε(t, ξ(t)) +

〈∇xuε(t, ξ(t)), ξ̇(t)〉 for a.e. t ∈ [0, 1] are bounded by a common constant depending Lipschitz
constants of u and of ξ. Applying the Reverse Fatou’s Lemma and (4.9), we deduce that

lim sup
ε→0

1∫
0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt

≤
1∫

0

lim sup
ε→0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt

≤
1∫

0

L(ξ(t), ξ̇(t))dt.

�

Note that we can do even better in the case where L(x, v) = L(v) is independent of x. Indeed,
from our argument (4.8), we can choose uε such that

∂tuε(t, x) + 〈∇xuε(t, x), v〉 ≤ L(x, v) ∀(t, x) ∈ Q, v ∈ RN

without passing ε to 0.

Now, we are ready to prove the duality (4.1). We check directly that the maximization is less
than the minimum in (4.1) with the help of Lemma 4.3. For the converse inequality, we make
use of the theory of Hamilton–Jacobi equations.

Proof of Theorem 4.3. Fix any u ∈ Kλc . Let uε be the sequence of smooth functions given in
Lemma 4.3. Fix any ξ ∈ Lip([0, 1];RN ) such that ξ(0) = x, ξ(1) = y. By (4.6), we have

u(1, y)− u(0, x) = lim
ε→0

(uε(1, ξ(1))− uε(0, ξ(0)))

= lim
ε→0

1∫
0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt

≤
1∫

0

L(ξ(t), ξ̇(t))dt.

Since ξ is arbitrary, we get

u(1, y)− u(0, x) ≤ c(x, y) ∀x, y ∈ RN .
Thanks to Remark 4.5, we deduce that
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K(σ∗) ≥ sup
(λ,u)


∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : λ ∈ R+, u ∈ Kλc

 . (4.10)

Conversely, let (φ, ψ) ∈ Φλ
c (µ, ν) be a maximizer in (4.3). Set

φ1(x) := sup
y∈supp(ν)

(ψ(y)− c(x, y)) and φ∗(x) := max{φ1(x),−λ} for x ∈ supp(µ).

Since c(., y) is locally Lipschitz w.r.t. the variable x, φ∗ is Lipschitz on the compact set supp(µ).
Moreover, φ∗ is non-positive (since ψ ≤ 0 and c ≥ 0) and (φ∗, ψ) is also a maximizer of the
DPMK problem. By extension, we can assume that φ∗ is non-positive and Lipschitz on RN .
Now, we set

u∗(t, x) := inf
ξ


t∫

0

L(ξ(s), ξ̇(s))ds+ φ∗(ξ(0)) : ξ ∈ Lip([0, t];RN ), ξ(t) = x

 .

Then (see e.g. [16, Chapter 10] or [10, Chapter 6]) u∗ is Lipschitz on Q and u∗ is a viscosity
solution of the Hamilton–Jacobi equation

∂tu(t, x) +H(x,∇xu(t, x)) = 0

with u∗(0, x) = φ∗(x). It is not difficult to see that u∗(1, y) ≤ φ∗(y) ≤ 0, u∗(0, x) = φ∗(x) ≥
−λ ∀x, y ∈ RN and that

u∗(1, y) = inf
ξ


1∫

0

L(ξ(s), ξ̇(s))ds+ φ∗(ξ(0)) : ξ ∈ Lip([0, 1];RN ), ξ(1) = y


≥ inf

x∈RN
{c(x, y) + φ∗(x)}

≥ ψ(y) ∀y ∈ RN .

These imply that u∗ ∈ Kλc and that

u∗(1, y)− u∗(0, x) ≥ ψ(y)− φ∗(x) ∀x, y ∈ RN .

Thus ∫
RN

u∗(1, .)dν −
∫
RN

u∗(0, .)dµ+ λ(m− µ(RN )) ≥
∫
ψdν −

∫
φ∗dµ+ λ(m− µ(RN ))

= K(σ∗).

Combing this with (4.10), the duality (4.1) holds and u∗ is a solution of the maximization problem
on the right hand side of (4.1). �
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4.2. Eulerian formulation by Fenchel–Rockafellar duality. As we said in the intro-
duction, the Fenchel–Rockafellar duality is an important ingredient of our analysis, especially for
the numerical analysis by augmented Lagrangian method.

Theorem 4.6. Under the assumptions of Theorem 4.3, we have

max


∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc


= min


∫∫
Q

L(x, υ(t, x))dρ(t, x) : (ρ, υ, θ0, θ1) ∈ Bc

 ,

(4.11)

where

Bc :=
{

(ρ, υ, θ0, θ1) ∈M+
b (Q)× L1

ρ(Q)N ×M+
b (RN )×M+

b (RN ) : θ0(RN ) = µ(RN )−m,

− divt,x (ρ, υρ) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0)
}
.

Roughly speaking, the minimization in (4.11) is the Fenchel–Rockafellar dual of the maxi-
mization problem. However, the interesting point to note here is that the maximization problem
in (4.11) does not satisfy the sufficient conditions to use directly the dual theory of Fenchel–
Rockafellar. To overcome this difficulty, we approximate the maximization problem by a suit-
able supremum problem. To this end, for general Lagrangian L, we make use of the smooth
approximations given in Lemma 4.3.

Proof of Theorem 4.6. Let us first show that

max


∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc


≤ inf


∫∫
Q

L(x, υ)dρ : (ρ, υ, θ0, θ1) ∈ Bc

 .

(4.12)

Fix any u ∈ Kλc and (ρ, υ, θ0, θ1) ∈ Bc. Let uε be the sequence of smooth functions given in
Lemma 4.3. Taking uε as a test function in the continuity equation

−divt,x (ρ, υρ) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0),

we have∫∫
Q

∂tuεdρ+

∫∫
Q

∇xuε(t, x) · υ(t, x)dρ =

∫
RN

uε(1, .)d(ν − θ1)−
∫
RN

uε(0, .)d(µ− θ0).
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Since θ0(RN ) = µ(RN )−m, we get∫
RN

uε(1, .)dν −
∫
RN

uε(0, .)dµ+ λ(m− µ(RN ))

=

∫
RN

uε(1, .)dν −
∫
RN

uε(0, .)dµ− λ
∫
RN

dθ0

=

∫
RN

uε(1, .)d(ν − θ1)−
∫
RN

uε(0, .)d(µ− θ0) +

∫
RN

uε(1, .)dθ
1 −

∫
(uε(0, .) + λ) dθ0

=

∫∫
Q

(∂tuε +∇xuε · υ) dρ+

∫
RN

uε(1, .)dθ
1 −

∫
(uε(0, .) + λ) dθ0.

(4.13)

Letting ε→ 0, using Lemma 4.3 and the fact that u(1, .) ≤ 0, u(0, .) + λ ≥ 0, we have∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) ≤
∫∫
Q

L(x, υ(t, x))dρ+

∫
RN

u(1, .)dθ1 −
∫
RN

(u0, .) + λ) dθ0

≤
∫∫
Q

L(x, υ(t, x))dρ(t, x).

This implies the desired inequality (4.12).
Let us now prove the converse inequality. Obviously, we have

max


∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc


≥ sup


∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc , u ∈ C1,1(Q)

 .

It is sufficient to show that

sup


∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc , u ∈ C1,1(Q)


= min


∫∫
Q

L(x, υ(t, x))dρ : (ρ, υ, θ0, θ1) ∈ Bc

 .

(4.14)

This will be proved by using the Fenchel–Rockafellar dual theory. Indeed, the supremum problem
in (4.14) can be written as

− inf
(λ,u)∈V

F(λ, u) + G(Λ(λ, u)), (4.15)
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where

F(λ, u) := −

∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN ))

 for any (λ, u) ∈ V := R×C1,1(Q),

Λ(λ, u) := (∇t,xu, −λ− u(0, .), u(1, .)) ∈ Z := Cb(Q)N+1 × Cb(RN )× Cb(RN ),

G(q, z, w) :=

{
0 if z(x) ≤ 0, w(x) ≤ 0 and q1(t, x) +H(x, qN (t, x)) ≤ 0 ∀(t, x) ∈ Q
+∞ otherwise

with q := (q1, qN ) ∈ Cb(Q) × Cb(Q)N for all (q, z, w) ∈ Z. Now, using the Fenchel–Rockafellar
dual theory to the problem (4.15) (see e.g. [15, Chapter III]), we have

inf
(λ,u)∈V

F(λ, u) + G(Λ(λ, u))

= max
(Φ,θ0,θ1)∈Mb(Q)N+1×Mb(RN )×Mb(RN )

(
−F∗(−Λ∗(Φ, θ0, θ1))− G∗(Φ, θ0, θ1)

)
.

(4.16)

The proof is completed by computing explicitly the quantities in this maximization problem.
• Let us compute F∗(−Λ∗(Φ, θ0, θ1)). Since F is linear, F∗(−Λ∗(Φ, θ0, θ1)) is finite (and

is equal to 0 whenever finite) if and only if

〈−Λ∗(Φ, θ0, θ1), (λ, u)〉 = F(λ, u) = −
(∫

u(1, .) dν −
∫
u(0, .) dµ+ λ(m− µ(RN ))

)
∀(λ, u) ∈ V,

or

−〈∇t,xu,Φ〉−〈θ0,−λ−u(0, .)〉−〈θ1, u(1, .)〉 = −〈u(1, .), ν〉+〈u(0, .), µ〉−λ(m−µ(RN ))∀(λ, u) ∈ V.

This implies that

−〈∇t,xu,Φ〉 = 〈u(0, .), µ− θ0〉 − 〈u(1, .), ν − θ1〉 for all test functions u ∈ C1,1(Q)

and that
θ0(RN ) = µ(RN )−m.

Recall that Φ ∈Mb(Q)N+1, writing Φ = (ρ,E), the above computation gives

−divt,x (ρ,E) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0),

and
θ0(RN ) = µ(RN )−m.

• For G∗(Φ, θ0, θ1), since H(., .) is continuous, using the same arguments as in [29, Propo-
sition 5.18], we have

G∗(Φ, θ0, θ1) =


∫∫
Q

L(x, υ(t, x))dρ if θ0 ≥ 0, θ1 ≥ 0, Φ = (ρ,E), and ρ ≥ 0, E � ρ, E = υρ

+∞ otherwise.

Substituting F∗ and G∗ into (4.16), we obtain the needed equality (4.14). �
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4.3. Optimality condition and constrained MFG system. To write down the opti-
mality condition for the duality (4.11), we need to use the notion of tangential gradient to a
measure. This notion is an adaptation of the usual gradient (for Lebesgue measure) to any
finite Radon measure. Recall that the tangential gradient ∇ηu is well-defined for any Lipschitz
function u and any finite Radon measure η (see e.g. [6,7,24]).

Optimality condition for the duality (4.11) is related to the following PDE system:

− divt,x(ρ, υρ) = δ1 ⊗
(
ν − θ1

)
− δ0 ⊗

(
µ− θ0

)
L(x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. (t, x) in Q

∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. (t, x) in Q

−θ0 ∈ ∂I[−λ,+∞)(u(0, .))

θ1 ∈ ∂I(−∞,0](u(1, .))

(ρ, υ, θ0, θ1) ∈M+
b (Q)× L1

ρ(Q)N ×M+
b (RN )×M+

b (RN ),

(PDEλ)

where the condition θ1 ∈ ∂I(−∞,0](u(1, .)) means that

u(1, .) ≤ 0 and 〈θ1, φ− u(1, .)〉 ≤ 0 ∀φ ∈ Cb(RN ), φ ≤ 0,

or equivalently

u(1, .) ≤ 0, θ1 ≥ 0 and
∫
RN

u(1, .)dθ1 = 0.

Similarly, the condition −θ0 ∈ ∂I[−λ,+∞)(u(0, .)) reads as

u(0, .) ≥ −λ, θ0 ≥ 0 and
∫
RN

(u(0, .) + λ) dθ0 = 0.

Theorem 4.7. Assume that (ρ, υ, θ0, θ1) ∈ Bc and (λ, u) ∈ R+×Kλc are optimal for the two
problems in the duality (4.11). Then (ρ, υ, θ0, θ1, u) satisfies the system (PDEλ). Conversely, if
(ρ, υ, θ0, θ1, u) is a solution of (PDEλ), then (ρ, υ, θ0, θ1) and (λ, u) are solutions to the duality
(4.11) w.r.t. m = µ(RN )− θ0(RN ).

Remark 4.8. For the standard optimal transport problem, i.e., m = µ(RN ) = ν(RN ) (in
this case θ0 = θ1 = 0), the optimality conditions (PDEλ) can be reduced to the following system:

−divt,x(ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ
L(x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. in Q

∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. in Q.

(4.17)

In particular, if L(x, v) = L(v) is independent of the variable x then the system (4.17) recovers
the same PDE, called Monge–Kantorovich equation, as in the work of Jimenez [24].
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Remark 4.9. If m = µ(RN ) = ν(RN ) and assume moreover that ρ � LN+1, then the
conditions (4.17) can be rewritten as

−divt,x(ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ
∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. (t, x) in Q

∂tu(t, x) +H(x,∇xu(t, x)) = 0 ρ-a.e. (t, x) in Q

υ(t, x) ∈ ∂H(x,∇xu(t, x)) ρ-a.e. (t, x) in Q,

where ∂H is the subdifferential ofH w.r.t. the second variable. Indeed, the condition L (x, υ(t, x)) =
∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. implies that

L (x, υ(t, x)) = ∇t,xu(t, x) · (1, υ(t, x)) ρLN+1-a.e. in Q

= ∂tu(t, x) + υ(t, x) · ∇xu(t, x) ρLN+1-a.e. in Q.

This implies that

L (x, υ(t, x)) ≤ ∂tu+H(x,∇xu(t, x)) + L(x, υ(t, x)) ≤ L (x, υ(t, x)) ρLN+1-a.e. in Q.

Hence ∂tu(t, x) +H(x,∇xu(t, x)) = 0 ρ-a.e. in Q and υ(t, x) ∈ ∂H(x,∇xu(t, x)) ρ-a.e. in Q.

To prove Theorem 4.7, we need a similar estimate for (4.4) for any u ∈ Kλ
c . Since u is not

smooth in general, we will characterize the estimate (4.4) via the tangential gradient instead of
the usual one.

Lemma 4.4. Let u be a Lipschitz function on Q and ∂tu(t, x)+H(x,∇xu(t, x)) ≤ 0 a.e. (t, x) ∈
Q. For any (ρ, υ) ∈M+

b (Q)× L1
ρ(Q)N satisfying the continuity equation

−divt,x (ρ, υρ) = δ1 ⊗ ρ1 − δ0 ⊗ ρ0,

we have
∇ρu(t, x) · (1, υ(t, x)) ≤ L(x, υ(t, x)) ρ-a.e. (t, x) in Q.

Proof. Let uε be the sequence as in Lemma 4.3. Since −divt,x (ρ, υρ) = δ1 ⊗ ρ1 − δ0 ⊗ ρ0, we
see that (1, υ(t, x)) ∈ Tρ(t, x) for ρ-a.e. (t, x), where Tρ(t, x) is the tangential space w.r.t. ρ
(see [6, 7, 24]). Using Lemma 4.3 and the continuity of the tangential gradient (see e.g. [24,
Proposition 4.5]), we have∫∫

Q

∇ρu · (1, υ)ξ dρ = lim
ε→0

∫∫
Q

∇ρuε · (1, υ)ξ dρ

= lim
ε→0

∫∫
Q

∇t,xuε · (1, υ)ξ dρ

≤
∫∫
Q

L(x, υ(t, x))ξ dρ ∀ξ ∈ D(RN+1), ξ ≥ 0.

Thus the result of the lemma follows. �
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Proof of Theorem 4.7. Let (ρ, υ, θ0, θ1) ∈ Bc and (λ, u) ∈ R+ × Kλc be admissible elements,
respectively. Let uε be the sequence given by Lemma 4.3. By (4.13) and Lemma 4.4, we have∫

u(1, .) dν −
∫
u(0, .) dµ+ λ(m− µ(RN ))

= lim
ε→0

∫
uε dν −

∫
uε dµ+ λ(m− µ(RN ))

= lim
ε→0

∫∫
Q

(∂tuε +∇xuε · υ) dρ+

∫
RN

uε(1, .)dθ
1 −

∫
RN

(uε(0, .) + λ) dθ0


= lim

ε→0

∫∫
Q

(∂tuε +∇xuε · υ) dρ+

∫
RN

u(1, .)dθ1 −
∫
RN

(u(0, .) + λ) dθ0

≤ lim
ε→0

∫∫
Q

∇t,xuε · (1, υ)dρ

=

∫∫
Q

∇ρu · (1, υ)dρ

≤
∫∫
Q

L(x, υ(t, x))dρ.

(4.18)

1. From the assumptions on optimalities and the duality (4.11), the inequalities in (4.18)
become equalities. These imply that∫∫

Q

∇ρu · (1, υ)dρ =

∫∫
Q

L(x, υ(t, x))dρ,

or equivalently

L(x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. in Q (by Lemma 4.4);

and that
∫
RN

u(1, .)dθ1 = 0,

∫
RN

(u(0, .) + λ)dθ0 = 0. These show that (ρ, υ, θ0, θ1, u) satisfies the

system (PDEλ).
2. Conversely, if (ρ, υ, θ0, θ1, u) satisfies the system (PDEλ), the inequalities in (4.18) are
equalities. Using the duality (4.11), we obtain the desired optimalities. �

Remark 4.10. A solution (Φ∗, θ0∗, θ1∗) of the Fenchel–Rockafellar dual formulation (4.16)
gives an optimal couple of inactive submeasures and therefore optimal active submeasures ρ∗0 =
µ− θ0∗ and ρ∗1 = ν − θ1∗.

This remark allows us to solve the PMK problem by using numerical methods for approxi-
mation of the Fenchel–Rockafellar dual problem.
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5. Numerical approximation

We will apply the ALG2 algorithm to the dual formulation on the right hand side of (4.1) in
order to give numerical approximations for the optimal partial transport problem. We will solve
for optimal active submeasures ρ0 = µ − θ0, ρ1 = ν − θ1 and the optimal movement of density
ρt from ρ0 to ρ1.

5.1. ALG2 method. The method is to solve numerically the minimization of the form

inf
u∈V
{F(u) + G(Λu)} , (5.1)

where F ,G are l.s.c. convex functionals on Hilbert spaces V et Z; and Λ ∈ L(V,Z) is a linear
operator. The Fenchel–Rockafellar dual problem of (5.1) reads as

sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) .

By introducing a new variable q ∈ Z to the primal problem (5.1), we can rewrite it in the form

inf
(u,q)∈V×Z : Λu=q

F(u) + G(q).

ALG2 is a primal-dual method (i.e. it provides numerical solutions of both primal and dual
problems) consisting of 3 steps. Known σi, qi, the next step (ui+1, σi+1, qi+1) is computed as
follows. Fix any parameter r > 0 (in practice r = 1, 2):

• Step 1: Compute ui+1

min
u∈V

{
F(u) + 〈σi,Λu〉+

r

2
|Λu− qi|2

}
.

• Step 2: Compute qi+1

min
q∈Z

{
G(q)− 〈σi, q〉+

r

2
|Λui+1 − q|2

}
.

• Step 3: Update σi+1

σi+1 = σi + r (Λui+1 − qi+1) .

For the theory of this method, its interpretation, we refer the reader to [14,18,19]. Let us recall
below its convergence which is enough for our discretized problems later.

Theorem 5.11 (cf. [14], Theorem 8). Fixed r > 0, assuming that V = Rn, Z = Rm and that
Λ has full column rank. If the primal problem (5.1) and the Fenchel–Rockafellar dual problem
sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) have solutions, then {ui} converges to a solution of the primal prob-

lem (5.1) and {σi} converges to a solution of the Fenchel–Rockafellar dual problem. Moreover,
{qi} converges to Λu∗, where u∗ is the limit of {ui}.
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5.2. Applying ALG2 for the optimal partial transport problem. Recall that the
dual maximization formulation in (4.1) can be rewritten into the form

inf {F(λ, u) + G(Λ(λ, u)) : (λ, u) ∈ V } ,
where

F(λ, u) := −
(∫

u(1, .) dν −
∫
u(0, .) dµ+ λ(m− µ(RN ))

)
for any (λ, u) ∈ V := R×C1,1(Q),

Λ(λ, u) := (∇t,xu, −λ− u(0, .), u(1, .)) ∈ Z := Cb(Q)N+1 × Cb(RN )× Cb(RN )

and, for all (q, z, w) ∈ Z,

G(q, z, w) :=

{
0 if z(x) ≤ 0, w(x) ≤ 0 and q(t, x) = (q1(t, x), qN (t, x)) ∈ Kx ∀(t, x) ∈ Q,
+∞ otherwise,

with Kx :=
{

(a, b) ∈ R× RN : a+H(x, b) ≤ 0
}
, x ∈ RN .

Let us discuss the details of computation. Actually, in computation, we replace V,Z by
finite-dimensional spaces, for example, using Lagrangian piecewise polynomials. We denote by
Pi, i = 1, 2 the spaces of piecewise polynomials of degree i. We will use V = (R, P2) and

Z = (PN+1
1 , P2, P2), where PN1 := (

N times︷ ︸︸ ︷
P1, ..., P1). We use L2-norm for P1, P2, P

N+1
1 .

• Step 1: We split into two steps: First using λi to compute ui+1 and then using ui+1 to
calculate λi+1.

1. For ui+1, we solve

min
u

{
− (〈u(1, .), ν〉 − 〈u(0, .), µ〉) + 〈(σi, θ0

i , θ
1
i ), (∇t,xu,−u(0, .), u(1, .))〉

+
r

2
|(∇t,xu,−λi − u(0, .), u(1, .))− (qi, zi, wi)|2

}
.

This is a quadratic problem which is equivalent to a linear equation with a positive-definite
coefficient matrix. So this step can be solved effectively by many solvers. The linear equation is
detailed as (by taking derivative w.r.t. u)

r〈∇t,xui+1,∇t,xφ〉+ r〈ui+1(1, .), φ(1, .)〉+ r〈ui+1(0, .), φ(0, .)〉
= 〈φ(1, .), ν〉 − 〈φ(0, .), µ〉 − 〈(σi, θ0

i , θ
1
i ), (∇t,xφ,−φ(0, .), φ(1, .))〉

+ r〈(qi, zi, wi) , (∇t,xφ,−φ(0, .), φ(1, .))〉 − r〈λi, φ(0, .)〉 for all (t, φ) ∈ V.
2. For λi+1,

min
λ∈R

{
−λ(m− µ(Ω)) + 〈(σi, θ0

i , θ
1
i ), (0,−λ, 0)〉+

r

2
| − λ− ui+1(0, .)− zi|2

}
,

which is equivalent to

λi+1 =

m− µ(Ω) +
∫
Ω

θ0
i − r

∫
Ω

(zi + ui+1(0, .))

r
∫
Ω

1
.
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• Step 2: Since the function G(q, z, w) has the form of G1(q)+G2(z)+G3(w), we solve separately
for the variables q, z, w.

1. For zi+1,

zi+1 ∈ arg min
z∈P2

{
I[z≤0] − 〈θ0

i , z〉+
r

2
| − λi+1 − ui+1(0, .)− z|2

}
= Proj{[z∈P2:z≤0]}

(
−λi+1 − ui+1(0, .) +

θ0
i

r

)
.

This is computed in pointwise, i.e., given a grid with vertices xj , then

zi+1(xj) = Proj{[s∈R:s≤0]}

(
−λi+1 − ui+1(0, .)(xj) +

θ0
i (xj)

r

)
= min

{
−λi+1 − ui+1(0, .)(xj) +

θ0
i (xj)

r
, 0

}
.

2. For wi+1, similarly,

wi+1 = Proj{[w∈P2:w≤0]}

(
ui+1(1, .) +

θ1
i

r

)
.

3. For qi+1, similarly,

qi+1 = ProjKx

(
∇t,xui+1 +

σi
r

)
.

• Step 3: Update Lagrangian multipliers.

6. Some examples

Using the FreeFem++ software [20], we test some numerical examples. In all the examples
below, we work on the square Ω = [0, 1]× [0, 1] in R2 and use the discretization size 36× 36× 9
for the spatial-time variable. We test the examples for costs of the form

c(x, y) = inf
ξ


1∫

0

L(ξ(t), ξ̇(t)dt : ξ ∈ Lip([0, 1]; Ω), ξ(0) = x, ξ(1) = y

 ,

with L(x, v) = k(x)|v|2, k ∈ C(Ω), k(x) > 0 for all x ∈ Ω, v ∈ R2. For this cost, the last
projection in the Step 2 (the projection on Kx) is converted to a problem on R and the latter is
computed easily by the bisection method.

Example 6.12. The source and the target are Gaussian distributions of the same mass for
the Lagrangian L(x, v) = |v|2. We want to transport optimally a half of the mass. More details,

µ = 10 exp(−40(x1 − 0.25)2 − 40(x2 − 0.75)2),

ν = 10 exp(−40(x1 − 0.75)2 − 40(x2 − 0.25)2).

The optimal active submeasures and the optimal displacement are given in Figure 1. Timestep
0 and timestep 9 (ρ0 and ρ1) are optimal active submeasures of the source and the target,
respectively. The intermediate timesteps show the optimal movement of density from ρ0 to ρ1.
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IsoValue
-0.526316
0.263158
0.789474
1.31579
1.84211
2.36842
2.89474
3.42105
3.94737
4.47368
5
5.52632
6.05263
6.57895
7.10526
7.63158
8.15789
8.68421
9.21053
10.5263

Source

IsoValue
-0.579797
0.168792
0.667851
1.16691
1.66597
2.16503
2.66409
3.16315
3.6622
4.16126
4.66032
5.15938
5.65844
6.1575
6.65656
7.15562
7.65468
8.15373
8.65279
9.90044

Timestep 0

IsoValue
-0.409258
0.188779
0.587471
0.986162
1.38485
1.78354
2.18224
2.58093
2.97962
3.37831
3.777
4.17569
4.57438
4.97308
5.37177
5.77046
6.16915
6.56784
6.96653
7.96326

Timestep 1

IsoValue
-0.366258
0.170111
0.527691
0.88527
1.24285
1.60043
1.95801
2.31559
2.67317
3.03075
3.38833
3.74591
4.10349
4.46107
4.81864
5.17622
5.5338
5.89138
6.24896
7.14291

Timestep 2
IsoValue
-0.347182
0.157459
0.493886
0.830313
1.16674
1.50317
1.83959
2.17602
2.51245
2.84888
3.1853
3.52173
3.85816
4.19458
4.53101
4.86744
5.20387
5.54029
5.87672
6.71779

Timestep 3

IsoValue
-0.342306
0.154687
0.486015
0.817344
1.14867
1.48
1.81133
2.14266
2.47399
2.80531
3.13664
3.46797
3.7993
4.13063
4.46196
4.79329
5.12461
5.45594
5.78727
6.61559

Timestep 4

IsoValue
-0.342352
0.154612
0.485922
0.817231
1.14854
1.47985
1.81116
2.14247
2.47378
2.80509
3.1364
3.46771
3.79901
4.13032
4.46163
4.79294
5.12425
5.45556
5.78687
6.61514

Timestep 5

IsoValue
-0.347132
0.157469
0.493869
0.83027
1.16667
1.50307
1.83947
2.17587
2.51227
2.84867
3.18507
3.52147
3.85787
4.19427
4.53068
4.86708
5.20348
5.53988
5.87628
6.71728

Timestep 6
IsoValue
-0.366485
0.169848
0.527404
0.88496
1.24252
1.60007
1.95763
2.31518
2.67274
3.0303
3.38785
3.74541
4.10296
4.46052
4.81807
5.17563
5.53319
5.89074
6.2483
7.14219

Timestep 7

IsoValue
-0.409275
0.188694
0.58734
0.985986
1.38463
1.78328
2.18192
2.58057
2.97922
3.37786
3.77651
4.17515
4.5738
4.97245
5.37109
5.76974
6.16838
6.56703
6.96568
7.96229

Timestep 8

IsoValue
-0.579495
0.169071
0.668115
1.16716
1.6662
2.16525
2.66429
3.16333
3.66238
4.16142
4.66047
5.15951
5.65855
6.1576
6.65664
7.15568
7.65473
8.15377
8.65282
9.90043

Timestep 9

IsoValue
-0.526316
0.263158
0.789474
1.31579
1.84211
2.36842
2.89474
3.42105
3.94737
4.47368
5
5.52632
6.05263
6.57895
7.10526
7.63158
8.15789
8.68421
9.21053
10.5263

Target

Figure 1. Optimal active submeasures and their displacement

Example 6.13. We take the similar data to the previous example but the source and the
target are taken as the sums of two distributions,

µ = 10 exp(−40(x1 − 0.25)2 − 40(x2 − 0.25)2) + 10 exp(−40(x1 − 0.75)2 − 40(x2 − 0.75)2),

ν = 10 exp(−40(x1 − 0.75)2 − 40(x2 − 0.25)2) + 10 exp(−40(x1 − 0.25)2 − 40(x2 − 0.75)2).

The result is given in Figure 2.
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IsoValue
-0.526316
0.263158
0.789474
1.31579
1.84211
2.36842
2.89474
3.42105
3.94737
4.47368
5
5.52632
6.05263
6.57895
7.10526
7.63158
8.15789
8.68421
9.21053
10.5263

Source

IsoValue
-0.430252
0.0908771
0.438296
0.785716
1.13314
1.48055
1.82797
2.17539
2.52281
2.87023
3.21765
3.56507
3.91249
4.25991
4.60733
4.95475
5.30217
5.64959
5.99701
6.86555

Timestep 0

IsoValue
-0.302817
0.136771
0.42983
0.722888
1.01595
1.30901
1.60206
1.89512
2.18818
2.48124
2.7743
3.06736
3.36042
3.65347
3.94653
4.23959
4.53265
4.82571
5.11877
5.85141

Timestep 1

IsoValue
-0.276234
0.124799
0.392154
0.65951
0.926865
1.19422
1.46158
1.72893
1.99629
2.26364
2.531
2.79835
3.06571
3.33306
3.60042
3.86778
4.13513
4.40249
4.66984
5.33823

Timestep 2
IsoValue
-0.264929
0.116464
0.370725
0.624987
0.879249
1.13351
1.38777
1.64203
1.8963
2.15056
2.40482
2.65908
2.91334
3.1676
3.42187
3.67613
3.93039
4.18465
4.43891
5.07457

Timestep 3

IsoValue
-0.256217
0.113175
0.359436
0.605697
0.851958
1.09822
1.34448
1.59074
1.837
2.08326
2.32952
2.57579
2.82205
3.06831
3.31457
3.56083
3.80709
4.05335
4.29961
4.91527

Timestep 4

IsoValue
-0.256183
0.112651
0.358541
0.60443
0.85032
1.09621
1.3421
1.58799
1.83388
2.07977
2.32566
2.57155
2.81744
3.06332
3.30921
3.5551
3.80099
4.04688
4.29277
4.9075

Timestep 5

IsoValue
-0.263155
0.117339
0.371001
0.624664
0.878326
1.13199
1.38565
1.63931
1.89298
2.14664
2.4003
2.65396
2.90763
3.16129
3.41495
3.66861
3.92228
4.17594
4.4296
5.06376

Timestep 6
IsoValue
-0.277858
0.122348
0.389152
0.655956
0.922759
1.18956
1.45637
1.72317
1.98997
2.25678
2.52358
2.79039
3.05719
3.32399
3.5908
3.8576
4.1244
4.39121
4.65801
5.32502

Timestep 7

IsoValue
-0.302171
0.136641
0.429183
0.721724
1.01427
1.30681
1.59935
1.89189
2.18443
2.47697
2.76951
3.06206
3.3546
3.64714
3.93968
4.23222
4.52476
4.8173
5.10985
5.8412

Timestep 8

IsoValue
-0.384869
0.135835
0.48297
0.830106
1.17724
1.52438
1.87151
2.21865
2.56578
2.91292
3.26005
3.60719
3.95433
4.30146
4.6486
4.99573
5.34287
5.69
6.03714
6.90498

Timestep 9

IsoValue
-0.526316
0.263158
0.789474
1.31579
1.84211
2.36842
2.89474
3.42105
3.94737
4.47368
5
5.52632
6.05263
6.57895
7.10526
7.63158
8.15789
8.68421
9.21053
10.5263

Target

Figure 2. Optimal active submeasures and their displacement

Example 6.14. In this example, we take L(x, v) = k(x)|v|2 with

k(x1, x2) = 1 + 15 exp(−45(x1 − 0.5)2 − 45(x2 − 0.5)2),

µ = 20 exp(−60(x1 − 0.2)2 − 60(x2 − 0.8)2),

ν = 20 exp(−60(x1 − 0.8)2 − 60(x2 − 0.2)2),

and
m =

mmax

2
.

This cost means that we have to pay much if we transport through around (0.5, 0.5) (where k(x)
is big). The numerical result is illustrated in Figure 3.
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IsoValue
-1.05082
0.525408
1.57622
2.62704
3.67786
4.72867
5.77949
6.83031
7.88112
8.93194
9.98276
11.0336
12.0844
13.1352
14.186
15.2368
16.2877
17.3385
18.3893
21.0163

Source

IsoValue
-0.788189
0.315923
1.052
1.78807
2.52415
3.26022
3.9963
4.73237
5.46845
6.20452
6.9406
7.67667
8.41275
9.14882
9.8849
10.621
11.357
12.0931
12.8292
14.6694

Timestep 0

IsoValue
-0.645507
0.319435
0.96273
1.60602
2.24932
2.89261
3.53591
4.1792
4.8225
5.46579
6.10909
6.75238
7.39568
8.03897
8.68227
9.32556
9.96886
10.6122
11.2554
12.8637

Timestep 1

IsoValue
-0.671855
0.332662
1.00234
1.67202
2.3417
3.01137
3.68105
4.35073
5.02041
5.69009
6.35976
7.02944
7.69912
8.3688
9.03848
9.70816
10.3778
11.0475
11.7172
13.3914

Timestep 2
IsoValue
-0.687655
0.34065
1.02619
1.71172
2.39726
3.08279
3.76833
4.45387
5.1394
5.82494
6.51047
7.19601
7.88155
8.56708
9.25262
9.93815
10.6237
11.3092
11.9948
13.7086

Timestep 3

IsoValue
-0.704916
0.349202
1.05195
1.75469
2.45744
3.16019
3.86293
4.56568
5.26842
5.97117
6.67391
7.37666
8.07941
8.78215
9.4849
10.1876
10.8904
11.5931
12.2959
14.0527

Timestep 4

IsoValue
-0.705913
0.349722
1.05348
1.75724
2.46099
3.16475
3.86851
4.57226
5.27602
5.97978
6.68354
7.38729
8.09105
8.79481
9.49856
10.2023
10.9061
11.6098
12.3136
14.073

Timestep 5

IsoValue
-0.68805
0.340846
1.02678
1.71271
2.39864
3.08457
3.7705
4.45643
5.14236
5.82829
6.51422
7.20015
7.88608
8.57201
9.25794
9.94388
10.6298
11.3157
12.0017
13.7165

Timestep 6
IsoValue
-0.671711
0.332589
1.00212
1.67166
2.34119
3.01072
3.68026
4.34979
5.01932
5.68886
6.35839
7.02792
7.69746
8.36699
9.03652
9.70605
10.3756
11.0451
11.7147
13.3885

Timestep 7

IsoValue
-0.645015
0.319188
0.96199
1.60479
2.24759
2.8904
3.5332
4.176
4.8188
5.4616
6.1044
6.74721
7.39001
8.03281
8.67561
9.31841
9.96122
10.604
11.2468
12.8538

Timestep 8

IsoValue
-0.790055
0.314187
1.05035
1.78651
2.52267
3.25883
3.99499
4.73115
5.46731
6.20347
6.93964
7.6758
8.41196
9.14812
9.88428
10.6204
11.3566
12.0928
12.8289
14.6693

Timestep 9

IsoValue
-1.05082
0.525408
1.57622
2.62704
3.67786
4.72867
5.77949
6.83031
7.88112
8.93194
9.98276
11.0336
12.0844
13.1352
14.186
15.2368
16.2877
17.3385
18.3893
21.0163

Target

Figure 3. Optimal active submeasures and their displacement

Acknowledgements: The authors thank Profs J. D. Benamou and G. Carlier for many
discussions.

References

[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures.
Lectures in Mathematics ETH Zürich, Birkhäuser, 2005.

[2] J. W. Barrett and L. Prigozhin. Partial L1 Monge–Kantorovich problem: Variational formulation and nu-
merical approximation. Interfaces and Free Bound., 11 (2009), 201–238.

[3] J. D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge–Kantorovich mass
transfer problem. Numer. Math., 84 (2000), 375–393.

[4] J. D. Benamou and G. Carlier. Augmented Lagrangian Methods for Transport Optimization, Mean Field
Games and Degenerate Elliptic Equations. J Optim Theory Appl., 167 (2015), 1–26.

[5] J. D. Benamou, G. Carlier and R. Hatchi. A numerical solution to Monge’s problem with a Finsler distance
cost. ESAIM Math. Model. Numer. Anal., (2017), DOI:https://doi.org/10.1051/m2an/2016077.

[6] G. Bouchitté, G. Buttazzo and P. Seppercher. Energy with respect to a measure and applications to low
dimensional structures. Calc. Var., 5 (1997), 37–54.

https://doi.org/10.1051/m2an/2016077


OPTIMAL PARTIAL TRANSPORT 25

[7] G. Bouchitté, G. Buttazzo, and P. Seppecher. Shape optimization solutions via Monge–Kantorovich equation.
C. R. Acad. Sci. Paris Sér. I Math, 324 (1997), 1185–1191.

[8] J. D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. PeyrÃ c©. Iterative Bregman projections for regu-
larized transportation problems. SIAM J. Sci. Comput., 37 (2015), A1111–A1138.

[9] L. Caffarelli and R.J. McCann. Free boundaries in optimal transport and Monge–Ampere obstacle problems.
Annals of Math., 171 (2010), 673–730.

[10] P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton–Jacobi equations, and optimal control. Vol.
58 Progress in Nonlinear Differential Equations and Their Applications, Springer, 2004.

[11] S. Chen and E. Indrei. On the regularity of the free boundary in the optimal partial transport problem for
general cost functions. J. Differential Equations, 258 (2015), 2618–2632.

[12] L. Chizat, G. Peyré, B. Schmitzer and F. X. Vialard. Scaling algorithms for unbalanced transport problems.
arXiv preprint https://arxiv.org/abs/1607.05816 (2016).

[13] G. Davila and Y. H. Kim. Dynamics of Optimal Partial Transport. Calc. Var. (2016).
[14] J. Eckstein and D. P. Bertsekas. On the Douglas–Rachford splitting method and the proximal point algorithm

for maximal monotone operators. Math. Program., 55 (1992), 293–318.
[15] I. Ekeland and R. Teman. Convex analysis and variational problems. Studies in Mathematics and Its Appli-

cations, North-Holland American Elsevier, 1976.
[16] L. C. Evans. Partial Differential Equations, second edition. Vol. 19 of Graduate Studies in Mathematics,

American Mathematical Society, 2010.
[17] A. Figalli. The Optimal Partial Transport Problem. Arch. Ration. Mech. Anal. 195 (2010), 533–560.
[18] M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to the numerical solution of

boundary-value problems. Vol. 15 of Studies in Mathematics and Its Applications, North-Holland, 1983.
[19] R. Glowinski and P. Le Tallec. Augmented Lagrangian and operator-splitting methods in nonlinear mechanics.

Vol 9 of Studies in Applied and Numerical Mathematics, SIAM, 1989.
[20] F. Hecht. New development in freefem++. J. Numer. Math., 20 (2012), 251-266.
[21] N. Igbida and V. T. Nguyen. Optimal partial mass transportation and obstacle Monge–Kantorovich equation.

Submitted.
[22] N. Igbida and V. T. Nguyen. Augmented Lagrangian method for optimal partial transportation. IMA J.

Numer. Anal., (2017), DOI: https://doi.org/10.1093/imanum/drw077.
[23] E. Indrei. Free boundary regularity in the optimal partial transport problem. J. Funct. Anal., 264 (2013),

2497–2528.
[24] C. Jimenez. Dynamic formulation of optimal transport problems. J. Convex Anal. 15 (2008), 593–622.
[25] B. Maury, A. Roudneff-Chupin, F. Santambrogio. A macroscopic crowd motion model of gradient flow type.

Math. Models Methods Appl. Sci. 20 (2010), 1787–1821.
[26] G. D. Philippis, A. R. Mészáros, F. Santambrogio and B. Velichkov. BV estimates in optimal transportation

and applications. Arch. Ration. Mech. Anal., 219 (2016), 829–860.
[27] W. Rudin. Real and complex analysis. McGraw-Hill Book Co, New York, 1987.
[28] F. Santambrogio. A Modest Proposal for MFG with Density Constraints, Netw. Heterog. Media, 7 (2012),

337–347.
[29] F. Santambrogio. Optimal Transport for Applied Mathematicians. Vol. 87 of Progress in Nonlinear Differential

Equations and Their Applications, Birkhäuser, 2015.
[30] C. Villani. Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics, American Math-

ematical Society, 2003.
[31] C. Villani. Optimal Transport, Old and New. Vol. 338 of Grundlehren des Mathematischen Wissenschaften

(Fundamental Principles of Mathematical Sciences), Springer, New York, 2009.

https://arxiv.org/abs/1607.05816
https://doi.org/10.1093/imanum/drw077

	1. Introduction
	2. Notations and assumptions
	3. Uniqueness of optimal active submeasures
	4. Equivalent formulations
	5. Numerical approximation
	6. Some examples
	References

