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We derive exact scaling laws for a three-dimensional incompressible helical two-fluid plasma,

without the assumption of isotropy. For each ideal invariant of the two-fluid model, i.e. the total

energy, the electron helicity and the proton helicity, we derive simple scaling laws in terms of two-

point increment correlation functions expressed in terms of the velocity field of each species and

the magnetic field. These variables are appropriate for comparison with direct numerical simulation

data and with in-situ measurements in the near Earth space over a broad range of spatial scales .

Finally, using the exact scaling laws and dimensional analysis we predict the magnetic energy and

electron helicity spectra for different ranges of scales.

I. INTRODUCTION

The first exact law for incompressible hydrodynamic turbulence is the so-called von Kármán-Howarth equation,

which relates the time evolution of the second-order correlation velocity tensor to the divergence of the third-order

correlation velocity tensor [1]. Under the assumption of isotropy and homogeneity, von Kármán and Howarth [1]

found this exact result, which is considered as one of the cornerstones of turbulence theories [e.g. 2]. The most

important consequence of the von Kármán-Howarth equation is the “four-fifth” law, which predicts a linear scaling

for the longitudinal two-point third-order velocity structure function with the distance between the two points. As a

consequence, this exact scaling law puts strong constraints on the nonlinear dynamics of turbulent flows.

Following a similar formalism of von Kármán and Howarth [1], other exact laws have been derived under the

assumptions of homogeneity and isotropy of the turbulent fluctuations for helical hydrodynamic [3, 4], magnetohy-

drodynamic (MHD) [5–7], helical MHD [8], Hall-MHD (HMHD) [9], electron-MHD approximation (EMHD) [10] and

Lagrangian averaged models [11, 12]. Recently, Andrés et al. [13] have derived the von Kármán-Howarth equation

for a 3D incompressible two-fluid plasma and the equivalent of the hydrodynamic four-fifth law. However, in all

those derivations the assumption of isotropy limits the applicability of the laws, in particular, in magnetized (space

or laboratory) plasmas. Indeed, in those plasmas, e.g. the solar wind, the presence of a non-zero mean magnetic field

influences the statistical properties of the turbulence such as the spatial correlation function [e.g. 14]. This results in

having different scaling properties along and perpendicular to the local mean field [15, 16]. Therefore, general exact

laws that go beyond the assumption of spatial isotropy are needed to study the nonlinear dynamics in turbulent space

plasmas, in particular, when comparing to in-situ spacecraft obervations.

Galtier and Banerjee [17] have derived an exact law for the two-point correlation function associated with the

total energy in 3D compressible isothermal hydrodynamic (HD) turbulence, without the assumption of isotropy. The

authors found the presence of new types of terms in the inertial range (other than the Yaglom-like flux terms), which

play the role of sources or sinks for the mean energy transfer rate. In the same line of research, they derived an exact

law for compressible isothermal MHD turbulence using the two-point correlation function associated with the total

http://arxiv.org/abs/1608.08366v2


2

energy [18]. Recent works have studied scaling laws for correlation functions associated with the total energy [19] and

the magnetic (and generalized) helicity [20] for the HMHD model. It is worth mentioning that these exact scaling

laws give accurate estimates of the mean transfer rate (of the particular ideal invariant), which is an essential quantity

to characterize a turbulent system. In the present paper, we derive exact scaling laws for the two-point correlation

functions associated with each ideal invariant of a 3D incompressible and homogeneous two-fluid plasma, without the

assumption of isotropy.

The two-fluid model used in this work is derived from the general two-fluid equations when the non-relativistic

and the quasi-neutrality approximation are used. These two assumptions correspond to neglecting the displacement

current in the Maxwell-Ampère equation [21], which filters out the three high frequency (optic) eigenmodes of the

general two-fluid equations. The resulting (reduced) two-fluid model still retains small scale effects that are the Hall

term and electron inertia. The incompressibility assumption is further used; thus the resulting model does not include

either compressible modes or finite Larmor radius effects. In the linear limit, the system supports two propagating

modes at high frequency, generally referred to as whistler (right-handed) and Alfvén mode (left-handed), which become

degenerate in the MHD limit. The retained (Hall and electron inertia) terms introduce new spatial and temporal

scales into the theoretical plasma description [e.g. 22], which are respectively the ion and electron gyrofrequencies

and inertial lengths. It is worth mentioning that the two-fluid description includes MHD, HMHD and EMHD models,

which can be regarded as particular cases in the proper asymptotic limits. For instance, at length scales larger

than the ion inertial length, the Hall effect and electron inertia can be neglected. At those largest scales, the MHD

description is appropriate. At spatial scales comparable or smaller than the ion-skin depth, the ions are no longer

frozen-in to the magnetic field lines because of the Hall term. At those intermediate scales, the HMHD description

becomes valid and has been extensively studied both numerically [23–27] and analytically [20, 21, 28–31]. In the very

high frequency limit of the two-fluid model, ions can be considered as motionless (because of their large mass with

respect to electrons) and provide a neutralizing background, while the electrons carry the full electric current. This

approximation corresponds to the EMHD model, and is asymptotically valid at spatial scales comparable or smaller

than electron inertial length. In conclusion, the two-fluid description used in this work retains the whole dynamics of

both the ion and electron flows from the MHD down to the electron inertial length scales, within the non-relativistic,

quasi-neutrality and incompressibility approximations.

Using a recent alternative formulation [32], we derive exact scaling laws for the three ideal invariants of a 3D

incompressible and homogeneous two-fluid plasma. The rest of the paper is organized as follow: in Section II we

introduce the 3D incompressible two-fluid model and in Section III its ideal invariants. In Section IV we present our

main theoretical results for each ideal invariant, namely the total energy, the electron helicity and the proton helicity.

In Section V we discuss the implications of the derived exact scaling laws, and finally, in Section VI we provide a

summary of the results.



3

II. TWO FLUID EQUATIONS

The equations of motion for a quasi-neutral incompressible plasma of ions and electrons with masses mi,e, charges

±e, constant densities np = ne = n, pressures pe,p, and respective velocities ue and up are [33]

men
due

dt
= −en

(

E+
1

c
ue ×B

)

−∇pe + fe + de, (1)

min
dup

dt
= en

(

E+
1

c
up ×B

)

−∇pp + fp + dp, (2)

J =
c

4π
∇×B = en(up − ue). (3)

Here d/dt = ∂/∂t+u · ∇ is the total derivative, B and E are the magnetic and electric fields, J is the electric current

density, c is the speed of light and fe,p and de,p are the forcing and dissipative terms, respectively. Note that these

fluid equations do not include any kinetic plasma dissipation mechanisms (e.g., wave-particle interactions) due to

either electrons or ions.

The incompressibility assumption implies,

∇ · ue = 0, (4)

∇ · up = 0. (5)

Equations (1) and (2) can be written in dimensionless form in terms of a typical length L0, the particle density n, a

typical velocity vA = B0/(4πnM)1/2 (the Alfvén velocity, where B0 is a typical value of B, and M ≡ mi +me), and

with the electric field in units of E0 = vAB0/c,

µ
due

dt
= −

1

λ
(E+ ue ×B)−∇pe + fe + de, (6)

(1− µ)
dup

dt
=

1

λ
(E+ up ×B)−∇pp + fe + de, (7)

J =
1

λ
(up − ue), (8)

where we have introduced the dimensionless parameters µ ≡ me/M and λ ≡ c/(ωML0), where ωM = (4πe2n/M)1/2

has the form of a plasma frequency for a particle of mass M . Dimensionless ion and electron skin-depth can be

defined in terms of their corresponding plasma frequencies ωi,e = (4πe2n/mi,e)
1/2 simply as λi,e ≡ c/(ωi,eL0), and

their expressions in terms of µ and λ are λi = (1 − µ)1/2λ and λe = µ1/2λ. Note that in the limit of electron inertia

equal to zero, we obtain λ = λi = c/(ωiL0), which correspond to the usual Hall parameter [28]. Finally, to obtain a

hydrodynamic description of the two-fluid plasma, we can write ue and up in terms of two vector fields (see [34]): the

hydrodynamic velocity U = (1 − µ)up + µue, and J as given by Eq. (8). From these two fields, it is trivial to obtain

ue and up as

ue = U− (1 − µ)λJ, (9)

up = U+ µλJ. (10)
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III. IDEAL INVARIANTS

In general, a multi-fluid plasma made of N species has N + 1 ideal invariants. For a 3D incompressible two-fluid

plasma, using E = −∂tA−∇φ, we can readily show that the total energy ET is one of these ideal invariants, where

ET =
1

2

∫

d3r

(

µu2

e + (1 − µ)u2

p +B2

)

. (11)

The other two invariants are the electron helicity and the proton helicity,

He =
1

2

∫

d3r

(

A− λµue

)

·

(

B− λµωe

)

, (12)

Hp =
1

2

∫

d3r

(

A+ λ(1− µ)up

)

·

(

B+ λ(1− µ)ωp

)

, (13)

where ωe,p = ∇× ue,p. If we define the electron and proton vector potentials

he = A− λµue, (14)

hp = A+ λ(1− µ)up, (15)

equations (12) and (13) can be casted in a compact expressions as

He =

∫

dr3 he ·He, (16)

Hp =

∫

dr3 hp ·Hp, (17)

where

He = ∇× he = B− λµωe, (18)

Hp = ∇× hp = B+ λ(1 − µ)ωp. (19)

It is worth mentioning that in the HMHD limit, i.e. µ → 0 and λ → λi, the conservation of the electron helicity and

proton helicity corresponds to the conservation of the magnetic helicity and generalized helicity, respectively [28, 35].

IV. EXACT SCALING LAWS

A. The total energy ET

Following recent works [17, 20], we define the symmetric two-point correlation functions associated with the energy

of each species as,

REe
= R′

Ee
=

1

2
〈ue · u

′

e〉 , (20)

REp
= R′

Ep
=

1

2

〈

up · u
′

p

〉

, (21)

where the prime denotes field evaluation at x
′ = x + r (being r the displacement vector) and the angular bracket

denotes an ensemble average. The property of spatial homogeneity implies that all regions of space are similar so

far as the statistical properties are concerned, which suggests that the results of averaging over a large number of
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realizations at different positions in space could be obtained equally well by averaging over a large region of space for

one realization [36].

Using equations (6) and (7), with the corresponding large-scale forcing terms fe,p and small-scales dissipation terms

de,p in each equation (since we expect a direct cascade for the total energy [37]), we obtain a time evolution for the

symmetric two-point correlation function associated with the total kinetic energy REk
≡ REe

+REp
as,

∂

∂t

〈

REk
+R′

Ek

〉

= µ

〈

u
′

e ·
∂ue

∂t
+ ue ·

∂u′

e

∂t

〉

+ (1− µ)

〈

u
′

p ·
∂up

∂t
+ up ·

∂u′

p

∂t

〉

=

〈

u
′

e ·
[

ue × (µωe −
1

λ
B)

]

〉

+

〈

ue ·
[

u
′

e × (µωe

′ −
1

λ
B

′)
]

〉

+

〈

u
′

p ·
{

up × [(1− µ)ωp +
1

λ
B]

}

〉

+

〈

up ·
{

u
′

p × [(1 − µ)ω′

p +
1

λ
B

′]
}

〉

+
〈

J
′ ·E+ J · E′

〉

−
〈

u
′

e ·∇Pe − ue ·∇
′P ′

e − u
′

p ·∇Pp − up ·∇
′P ′

p

〉

+D + F (22)

where we have used equations (9) and (10), i.e. the expressions for the velocity field of electrons and protons, and we

have defined Pe,p ≡ λpe,p + se,pλu
2

e,p/2, with se = µ and sp = 1− µ, and D and F are given by

D =
〈

de · u
′

e + d
′

e · ue + dp · u
′

p + d
′

p · up

〉

,

F =
〈

fe · u
′

e + f
′

e · ue + fp · u
′

p + f
′

p · up

〉

. (23)

Using the vectorial property ∇ · (a×b) = (∇× a) · b− (∇×b) · a and the homogeneity assumption, we can readily

obtain an expression for the symmetric two-point correlation function associated with the magnetic energy

REB
=

1

2

〈

B ·B′
〉

, (24)

since

〈

J
′ ·E+ J · E′

〉

=
〈

(∇ ×B
′) ·E+∇×B ·E′

〉

=
〈

∇
′ · (B′ ×E) +∇ · (B×E

′)
〉

= −
〈

∇ · (B′ ×E)−∇
′ · (B×E

′)
〉

=
〈

(∇ ×E) ·B′ + (∇′ ×E
′) ·B

〉

= −

〈

B
′ ·

∂B

∂t
+B ·

∂B′

∂t

〉

= −
∂

∂t

〈

REB
+R′

EB

〉

.

Then, using definitions (14) and (15) and defining the symmetric two-point correlation function associated with the

total energy as RET
≡ REk

+REB
, equation (22) can be written as,

∂

∂t

〈

RET
+R′

ET

〉

= −
1

λ

〈

u
′

e · (ue ×He) + ue · (u
′

e ×H
′

e)
〉

+
1

λ

〈

u
′

p · (up ×Hp) + up · (u
′

p ×H
′

p)
〉

+D + F (25)

where the terms involving a gradient vanish by incompressibility and homogeneity. Equation (25) is an exact law for a

incompressible two-fluid plasma, even in anisotropic turbulence [38, 39]. Assuming the existence of an inertial energy
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range, in the limit of infinite Reynolds numbers (D → 0) and considering a statistical stationary regime (∂t ∼ 0), we

obtain

2εET
=

1

λ

[ 〈

u
′

e · (ue ×He) + ue · (u
′

e ×H
′

e)
〉

−
〈

u
′

p · (up ×Hp) + up · (u
′

p ×H
′

p)
〉 ]

, (26)

where F = 2εET
, with εET

the mean energy dissipation rate per unit mass. Finally, for a given field a, we introduce

the two-point increment correlation function as δa ≡ a
′ − a. Therefore, equation (26) can be written as,

2εET
=

1

λ
[〈δ(up ×Hp) · δup〉 − 〈δ(ue ×He) · δue〉] (27)

where we have used the property that ue,p is perpendicular to ue,p × He,p. The exact scaling law (27) is our first

main result. It is worth mentioning that this law is valid only in the inertial range and, therefore, is independent

of the dissipation mechanisms present in the plasma (assuming that the dissipation terms act only at the largest

wavenumbers). Furthermore, equation (27) is written only in terms of the two-point increment correlation functions,

which are rather easy to obtain from in-situ measurements and data from numerical simulations. In particular, these

two-point increments are written as a function of the velocity of each species and the magnetic field, variables which

now can be measured down to the electron scales in the near-Earth space by the recently launched NASA/MMS

(Magnetospheric Multiscale) mission [40]. Equation (27) is made of two terms, one per each species. The main

contribution to this scaling law is the proton term, which is mainly responsible for the dynamics at the large scales

and to a lesser extent at intermediate and small scales. On the other hand, the electron term mainly contributes to

the smallest scales through the terms proportional to µ. Finally, it is worth mentioning that in the HMHD (µ → 0,

λ → λp) and MHD limits (µ → 0 and λ → 0) we recover the result reported in Banerjee and Galtier [19].

B. Electron helicity He and proton helicity Hp

The equation of motion for electrons and protons (6) and (7), using E = −∂tA−∇φ, and assuming the existence

of small-scale forcing f̄e,p (since we expect an inverse cascade for each helicity [41, 42]), can be casted into

∂

∂t
(A− λµue) = ue × (B− λµωe)−∇P̄e + d̄e + f̄e, (28)

∂

∂t
[A+ λ(1 − µ)up] = up × [B+ λ(1− µ)ωp]−∇P̄p + d̄p + f̄p (29)

where we have defined P̄e,p = Pe,p + φ and d̄e,p is the large-scale dissipation. This last term is introduced to prevent

the formation of a condensate state [43]. Similar models have been studied in the literature using this technique [44].

Using definitions (14) and (15), equations (28) and (29) can be written as

∂he

∂t
= ue ×He −∇Pe + f̄e + d̄e, (30)

∂hp

∂t
= up ×Hp −∇Pp + f̄p + d̄p. (31)

For the computation of the exact scaling for each helicity, we use the curl of equations (30) and (31),

∂He

∂t
= ∇× (ue ×He) + F̄e + D̄e, (32)

∂Hp

∂t
= ∇× (up ×Hp) + F̄p + D̄p (33)
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where F̄e,p = ∇ × f̄e,p and D̄e,p = ∇ × d̄e,p. As in Section IVA, we define the symmetric two-point correlation

function associated with the helicity of each species as,

REHe
= R′

EHe
=

1

2

〈

He · h
′

e + he ·H
′

e

〉

, (34)

REHp
= R′

EHe
=

1

2

〈

Hp · h
′

p + hp ·H
′

p

〉

. (35)

Using equations (30)-(33), which are the equations of motion (and its curl) for electrons and protons written in terms

of he,p and He,p, we can obtain a time evolution for the symmetric two-point correlation functions as,

∂

∂t

〈

REHe
+R′

EHe

〉

=

〈

H
′

e ·
∂he

∂t
+He ·

∂h′

e

∂t
+ h

′

e ·
∂He

∂t
+ he ·

∂H′

e

∂t

〉

=
〈

H
′

e · (ue ×He)
〉

+
〈

He · (u
′

e ×H
′

e)
〉

+
〈

he ·∇
′ × (u′

e ×H
′

e)
〉

+
〈

h
′

e ·∇× (ue ×He)
〉

+ D̄e + F̄e, (36)

∂

∂t

〈

REHp
+R′

EHp

〉

=

〈

H
′

p ·
∂hp

∂t
+Hp ·

∂h′

p

∂t
+ h

′

p ·
∂Hp

∂t
+ hp ·

∂H′

p

∂t

〉

=
〈

H
′

p · (up ×Hp)
〉

+
〈

Hp · (u
′

p ×H
′

p)
〉

+
〈

hp ·∇
′ × (u′

p ×H
′

p)
〉

+
〈

h
′

p ·∇× (up ×Hp)
〉

+ D̄p + F̄p, (37)

where again the gradient terms vanish by the incompressibility and homogeneity of the plasma. Using these conditions,

we can show that,

〈

he,p ·∇
′ × (u′

e,p ×H
′

e,p)
〉

= ∇
′ · [(u′

e,p ×H
′

e,p)× he,p]

= −∇ · [(u′

e,p ×H
′

e,p)× he,p] = (u′

e,p ×H
′

e,p) ·He,p, (38)
〈

h
′

e,p ·∇× (ue,p ×He,p)
〉

= ∇ · [(ue,p ×He,p)× h
′

e,p]

= −∇
′ · [(ue,p ×He,p)× h

′

e,p] = (ue,p ×He,p) ·H
′

e,p. (39)

Therefore, introducing the two-point increments, we obtain the dynamical equations for each helicity as,

1

2

∂

∂t

〈

REHe
+R′

EHe

〉

=
〈

H
′

e · (ue ×He)
〉

+
〈

He · (u
′

e ×H
′

e)
〉

+
D̄e

2
+

F̄e

2

= −〈δ(ue ×He) · δHe〉+
D̄e

2
+

F̄e

2
, (40)

1

2

∂

∂t

〈

REHp
+R′

EHp

〉

=
〈

H
′

p · (up ×Hp)
〉

+
〈

Hp · (u
′

p ×H
′

p)
〉

+
D̄p

2
+

F̄p

2

= −〈δ(up ×Hp) · δHp〉+
D̄p

2
+

F̄p

2
. (41)

Equations (40) and (41) are exact expressions for helical incompressible two-fluid plasmas. Assuming the existence

of an inertial range far away from the forcing scales (F̄e,p ∼ 0), under quasi-stationary statistical conditions (∂t ∼ 0)

we obtain,

2εHe
= 〈δ(ue ×He) · δHe〉 , (42)

2εHp
= 〈δ(up ×Hp) · δHp〉 , (43)

where we have used D̄e,p = 4εHe,Hp
and εHe,Hp

are the electron and proton helicity dissipation rates per unit mass.

Equations (42) and (43) are the second main result of the paper. These expressions are valid in the inertial range,



8

without the assumption of isotropy. In particular, these results could be useful in astrophysical contexts where the

condition of isotropy is usually not fulfilled [45, 46]. Finally, as equation (27), expressions (42) and (43) are written

as scalar products of fields increment correlation functions.

V. DISCUSSION

Equations (27), (42) and (43) are the main results of the present paper. These equations give exact relations for the

two-point increments of anisotropic turbulence in an incompressible and homogeneous two-fluid plasma. In particular,

these expressions give exact scaling relations for the three ideal invariants, i.e. the total energy, the electron helicity

and the proton helicity. In contrast to previous results in the literature [7, 8, 20, 47], our results are written as a

function of the velocity field of each species of the plasma and of the magnetic field. These quantities are directly

measurable in-situ in the near-Earth space, which should make straigthforward the estimation of the transfer rate of

each invariant from spacecraft data [e.g. 39, 48] as well as from numerical simulation [e.g. 49, 50]. Moreover, since we

retain the electron inertia, we are able to study the turbulence cascade from the MHD scales down to the electron

inertial scale length. It is worth recalling that this broad range of scales cannot be captured by the HMHD or the

massless EMHD models. Finally, our exact scaling laws are independent of the dissipation mechanism present in the

plasma, since it only requires that the dissipation term gets off all the power injected by the forcing term at the very

large scale.

In the limit of large and intermediate scales, i.e. the MHD and HMHD ranges, we recover the exact laws recently

reported by Banerjee and Galtier [19] for the total energy. Assuming isotropy and equipartition between magnetic

and kinetic energy, expression (27) can be used to provide theoretical predictions for the magnetic energy spectrum

in a turbulent plasma. In fact, in a stationary and isotropic turbulent regime, the energy cascade corresponds to

a constant energy flux in Fourier space Fk which is therefore equal to the energy dissipation rate ε. For instance,

in the case of incompressible hydrodynamic turbulence, the modulus of the energy flux in Fourier space goes like

Fk ∼ ku3

k = ε, which leads to the well known Kolmogorov’s energy power spectrum Ek ∼ ε2/3k−5/3, using Ek ∼ u2

k/τk

and τk ∼ (kuk)
−1 (τk is the nonlinear transfer time). At MHD scales (k ≪ λ−1

i ) we recover the Kolmogorov spectrum,

EB(k) ∼ B2

k/k ∼ k−5/3 [37, 51], using the transfer nonlinear time τk ∼ (kBk)
−1. At HMHD scales (k ∼ λ−1

i and

k ≪ λ−1

e ), using τk ∼ (λik
2Bk)

−1, we obtain a magnetic spectrum EB(k) ∼ k−7/3, which is roughly compatible

with solar wind observations [52–57] and numerical simulation results [9, 13, 58] at these intermediate scales. Finally,

at the smallest scales (k ∼ λ−1

e ), where we can assume than the proton motion is negligible with respect to the

electron motion, the transfer nonlinear time τk ∼ (µλ3k4Bk)
−1 leads to EB(k) ∼ k−11/3. This scaling has been

observed recently in numerical simulations [59] and is compatible with previous theoretical calculation in the EMHD

approximation [10, 60].

Figure 1 shows a summary of our theoretical predictions for the magnetic energy spectrum, which emerges from the

exact law (27). This spectrum is roughly consistent with solar wind observations [54]. However, it is worth mentioning

that: i) theoretical predictions for the magnetic energy spectrum is strongly dependent of the ratio between magnetic

and kinetic energy [27, 61]; ii) the actual scaling of the magnetic energy spectra in the solar wind, in particular

near and below the electron scale, is still an open question that cannot be resolved unambiguously with the current

spacecraft data due to instrumental limitations [e.g. 57, 62]. The fate of the turbulent cascade and the resulting
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Figure 1. Schematic magnetic energy spectrum through different scales, from the energy contain wavenumber λ
−1

F
up to the

dissipation wavenumber λ−1

D
.

dissipation at those small scales is a crucial subject, which is deeply related to the problems of particle heating and

acceleration in solar wind and in many other astrophysical plasmas [63]. Our exact results provide a way to estimate

the transfer rate of the total energy (and other invariants) over a broad ranges of scales. Application of the exact

laws to spacecraft data should therefore inform us about the amount of energy transfered separately into ions and

electrons.

Regarding the electron helicity and proton helicity, using definitions (14) and (15), equations (42) and (43) can be

written as,

2εHe
= 〈δ(ue ×B) · δB〉 − λµ 〈δ(ue × ωe) · δB+ δ(ue ×B) · δωe)〉

+ λ2µ2 〈δ(ue × ωe) · δωe〉 , (44)

2εHp
= 〈δ(up ×B) · δB〉 − λ(1 − µ) 〈δ(up × ωp) · δB+ δ(up ×B) · δωp)〉

+ λ2(1− µ)2 〈δ(up × ωp) · δωp〉 . (45)

When µ → 0 and λ → 0, from both expressions we recover the MHD results for the magnetic helicity [20]. Assuming

isotropy and a maximum helicity state, the corresponding magnetic helicity spectrum is EHB
(k) ∼ AkBk/k ∼ k−2

[64]. At HMHD scales, exact scaling laws (44) and (45) correspond to the exact laws for the magnetic and generalized

helicity, respectively. In particular, this feature is consistent with the polarization associated with each helicity found

recently by Banerjee and Galtier [20]. Besides, assuming a transfer time τHe

k ∼ (λik
2Bk)

−1 for intermediate scales,

we obtain EHe
(k) ∼ AkBk/k ∼ k−8/3 in the maximum helicity state.

At the smallest scales where one can assume up ∼ 0, equation (45) does not provide new useful information about

the proton helicity. On the other hand, the behavior of electron helicity depends strongly on the ratio between

magnetic and kinetic energies. For instance, at scales proportional to λe one can assume that the electron kinetic

energy is dominant. Since the transfer time is τHe

k ∼ (µ2λ2k3uek)
−1, the electron helicity spectrum corresponds to

EHe
(k) ∼ uekωek/k ∼ k−8/3, which is the same theoretical prediction for the massless EMHD limit [20]. In particular,

in this scenario where the electron kinetic energy is dominant (and the magnetic energy is negligible), the equation
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of motion of electrons is similar to the classical 3D hydrodynamic Euler equation (where kinetic energy and kinetic

helicity are the two ideal invariants). In this hydrodynamic case, if the large scales of the flow are helical, there should

be a joint cascade of both energy and helicity to small scales [65]. In particular, numerical results strongly support

that the magnetic and helicity spectra have the same slope, i.e. EU (k) ∼ EH(k) ∼ k−5/3 [66, 67]. However, we do

not obtain the same slope for both invariants. This result is related to the transfer time of electron helicity at length

scales proportional to λe = µ1/2λ due to the presence of two different species in the plasma. Numerical simulation of

3D incompressible and homogeneous two-fluid plasmas could shed light onto some aspects of the nonlinear dynamics

of the electron helicity at these smallest scales.

Finally, as we discussed it in the Introduction, in many cases symmetries with preferred directions have direct

impact on the structure of exact scaling laws. Therefore, if we consider the presence of a mean magnetic field B0,

exact laws (27), (42) and (43) are modified as,

2εET
=

1

λ

{ 〈

u
′

e · [ue × (He +B0)] + ue · [u
′

e × (H′

e +B0)]
〉

−
〈

u
′

p · [up × (Hp +B0)] + up · [u
′

p × (H′

p +B0)
}〉

=
1

λ
[〈δ(up ×Hp) · δup〉 − 〈δ(ue ×He) · δue〉], (46)

2εHe
= 〈δ(ue ×He) · δHe〉 −

[

〈He · (u
′

e ×B0)〉+
〈

H
′

e · (ue ×B0)
〉 ]

, (47)

2εHp
= 〈δ(up ×Hp) · δHp〉 −

[ 〈

Hp · (u
′

p ×B0)
〉

+
〈

H
′

p · (up ×B0)
〉 ]

. (48)

As expected, the presence of a local magnetic field does not modify the exact scaling law for the total energy. However,

the exact scaling laws associated with the electron helicity and proton helicity are modified by the presence of local

magnetic field. This result is compatible with the fact that the presence of a strong magnetic field has a direct impact

on the nonlinear dynamics and the turbulent cascade [e.g. 46]. Therefore, equations (46), (47) and (48) may have a

wide application for space plasmas, for instance, for the solar wind, which is usually embedded in a moderate uniform

magnetic field.

VI. CONCLUSIONS

We derived exact scaling laws associated with each ideal invariant in a 3D incompressible and homogeneous two-

fluid plasma. Without assuming isotropy, we have found exact scaling laws valid in different inertial ranges and

independent of the dissipation mechanism present in the plasma. Our main results, i.e. equations (27), (42) and (43),

are given in term of two-point increments correlation functions only, which are expressed in terms on the velocity field

of each species and the magnetic field. The data from the recently launched MMS mission have unprecedented high

time resolution of the plasma measurements (∼ 30 ms for electrons and ∼ 150 ms for ions) should allow us to use the

exact laws derived here to analyze the nonlinear cascade in the turbulent plasmas of the magnetosheath and the solar

wind, although the incompressibility assumption may not be valid at sub-ion scales in those media. Furthermore, large

statistical samples, i.e. long time series, will be needed at high cadence to ensure the statistical convergence of the

estimation of the transfer rate of each particular ideal invariant. This would give strong constraints on the theoretical

models of turbulence [46, 68, 69], and could help to study the evolution of spatial anisotropy of the turbulence over a

broad range of scales, covering the largest MHD scales to the smallest electron ones.
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