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Abstract. Optimal partial mass transport, which is a variant of the optimal transport prob-
lem, consists in transporting effectively a prescribed amount of mass from a source to a target.
The problem was first studied by Caffarelli and McCann [12, Ann. of Math., 2010] and Fi-
galli [21, Arch. Ration. Mech. Anal., 2010] with a particular attention to the quadratic cost.
Our aim here is to study the optimal partial mass transport problem with Finsler distance
costs including the Monge cost given by the Euclidian distance. Our approach is different and
our results do not follow from previous works. Among our results, we introduce a PDE of
Monge–Kantorovich type with a double obstacle to characterize optimal active submeasures,
Kantorovich potential and optimal flow for the optimal partial transport problem. This new
PDE enables us to study the uniqueness and monotonicity results for the optimal active sub-
measures. Another interesting issue of our approach is its convenience for numerical analysis
and computations that we develop in a separate paper [23, IMA J. Numer. Anal., 2017].

1. Introduction

The Monge–Kantorovich (MK) problem (or optimal transport) aims to find the best way to
move all mass from a given source into a prescribed target. The source and target are modelled
by two finite Radon measures µ, ν ∈ M+

b (RN ) with µ(RN ) = ν(RN ) and the problem can be
written as

min
γ∈M+

b (RN×RN )

K(γ) :=

∫
RN×RN

c(x, y)dγ : πx#γ = µ, πy#γ = ν

 ,
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mum flow problem, obstacle Monge–Kantorovich equation, tangential gradient, nonlinear PDE.
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where πx#γ and πy#γ are marginals of γ (see Section 2) and c(x, y) is a given ground cost,
i.e., c(x, y) is the cost one pays to move one unit of the material from x to y. This problem
and related topics are central in the optimal transport theory which has become popular in the
last few decades with applications in PDEs, differential geometry, image processing and many
other areas. For a further discussion on the MK problem, its history and applications, we refer
to pedagogical books [1], [31], [34] and [35].

The partial Monge–Kantorovich (PMK) problem (or optimal partial transport) is a very
natural extension of the original optimal transport problem. The problem aims to study the
case where only a part of the commodity (respectively, consumer demand) of total mass m needs
to be transported (respectively, fulfilled). Given µ, ν ∈ M+

b (RN ) and a prescribed total mass
0 ≤m ≤ min

{
µ(RN ), ν(RN )

}
, the PMK problem reads as follows

min
γ∈M+

b (RN×RN )

K(γ) :=

∫
RN×RN

c(x, y)dγ : πx#γ ≤ µ, πy#γ ≤ ν, γ(RN × RN ) = m

 .

This generalized problem brings out new unknown quantities ρ0 := πx#γ and ρ1 := πy#γ called
active submeasures. Here ρ0 and ρ1 are the sites where the commodity is taken and the consumer
demand is fulfilled, respectively. Existence, uniqueness and regularity issues were initially studied
by Caffarelli and McCann [12] with a special focus on the quadratic cost, i.e., c(x, y) = |x− y|2.
Thereafter, in an original paper [21], Figalli significantly improves the results. In particular, he
removes the disjointness assumption on the supports of the corresponding initial measures. The
regularity issues are also discussed in [15,24] for c(x, y) = |x− y|2 and in [14] for general costs
under assumptions on "smoothness" of c and regularity of µ, ν. In [6], Barrett and Prigozhin
study the problem from the numerical point of view for the case where c(x, y) = |x− y|.

In this paper, our aim is to give a complete and rigorous study of the PMK problem with the
cost given by a Finsler distance c(x, y) = dF (x, y) (including the case of Euclidean distance cost).
We introduce first the Kantorovich-type duality for the PMK problem with general costs. Then,
using the triangle inequality satisfied by dF , we introduce the notion of Kantorovich potential
for the PMK problem with Finsler distance costs. Recall that in the case c(x, y) = |x − y|2,
the obstacle Monge–Ampère equation (cf. [12] and [21]) plays an important role to gather many
informations on the PMK problem. In our case, we introduce the obstacle Monge-Kantorovich
(OMK) equation and show how it is information-rich PDE for the PMK problem and how it
can operate effectively. In particular, the uniqueness of the so called optimal active submeasures
is one of the main issues of our approach connected to the OMK equation. Notice that an
interesting resulting numerical study of the PMK problem can be found in [23].

Before giving the plan of the paper, let us take a while to comment our approach and main
ideas. It is not difficult to see that the PMK problem is a bilevel optimization problem that
aims to find the optimal active submeasures with the constraint on the total mass as well as the
optimal plan. The authors in [12] introduce a Lagrange multiplier λ for the mass constraint,
add a point at infinity which acts as a tariff-free reservoir for transporting the extra mass, and
study the relations given by classical duality results. In their duality, λ is a parameter to be
straightened to study the original PMK problem. In this way, they could deduce existence and
uniqueness of minimizers when the supports of µ and ν are disjoint. As to the strategy of [21]
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is to study directly the minimization problem by studying the convexity of the function that
associates to each m the total Monge-Kantorovich work. In particular, this allows the author to
prove the uniqueness without the disjoint support condition on µ and ν. Note that the methods
used in [12] and [21] do not work for the uniqueness of optimal active submeasures of the PMK
problem with the Euclidean cost (a particular case of Finsler costs). Our point of view is to
obtain the uniqueness via the study of the OMK equation. Our approach is different and our
results do not follow readily from previous works. We begin by handling directly the problem
for general costs by adding two arbitrary sites in RN to process the problem into a balanced
optimal mass transportation. Taking the cost for free to the new sites, we show that the new
total work coincides with the total work of the PMK problem. Moreover, combining this with
classical duality results, we introduce a bilevel maximization problem to provide a natural dual
partial Monge–Kantorovich (DPMK) problem for the optimal partial transportation. In the
case of Finsler distance, the variable of the DPMK problem can be expressed as a couple (λ, u)
where u can be interpreted as the Kantorovich potential associated with the PMK problem and
λ would be used to give informations on active submeasures. Recall that in the case where
the cost is given by the square of the Euclidean distance (cf. [12]), the connection between the
obstacle Monge–Ampère PDE and the PMK problem is given by a map that associates to each
value parameter λ a solution of the Monge–Ampère PDE. In our case, we introduce a map
that associates to each value λ a solution of the OMK equation. Then, we show how a right
value λm enters in connection with the Kantorovich potential to bring out the solution of the
PMK problem. Among the main issues of our approach, the uniqueness of the optimal active
submeasures as well as their monotonicity hold true in the case where µ and ν are absolutely
continuous without disjointness condition of the supports.

The paper is organized as follows: In Section 2, we start in the first part by recalling the
Kantorovich duality for a general lower semicontinuous cost function c. In the second part of
Section 2, we summarize our main results on the PMK problem for a general cost c as well as
for the case where c satisfies the triangle inequality. The third part deserves the results for the
case of Finsler distance and the OMK equation. The remaining sections aim to prove the main
results. The proof of the duality is given in Section 3. We study the existence and uniqueness
issues for the OMK equation in Section 4. In Section 5, we show the connection between the
OMK equation and the optimal active submeasures for the PMK problem by using the DPMK
problem and the partial minimum flow problem. Thanks to this connection and the results
on the OMK equation, we deduce the uniqueness of optimal active submeasures. To finish the
proof of the main results, we study some strong L1 continuous dependence and monotonicity of
the solution of the OMK equation with respect to the obstacle in Section 6. We terminate the
paper by an appendix in which we give a chain rule for the tangential gradient with respect to
a measure.

2. Preliminaries and main results

In this section, we recall the Kantorovich duality for the optimal transport problem with a
general cost c : RN ×RN → [0,+∞]. After that, we summarize our main results. The details of
the proofs are given in the remaining sections.
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Given metric spaces X1, X2, a measure η ∈ M+
b (X1) and Borel map T : X1 −→ X2, we

denote by T#η the pushforward measure of η by T ,

T#η(B) := η(T−1(B)) for every Borel subset B ⊂ X2.

2.1. Preliminaries on Monge–Kantorovich problem. To begin with, we assume that
µ(RN ) = ν(RN ). The Monge–Kantorovich problem (MK) reads as

min

K(γ) :=

∫
RN×RN

c(x, y)dγ : γ ∈ π(µ, ν)

 ,

where
π(µ, ν) :=

{
γ ∈M+

b (RN × RN ) : πx#γ = µ, πy#γ = ν
}
.

Here πx, πy : RN × RN −→ RN denote the standard projections and are given by πx(x, y) =

x, πy(x, y) = y for any x, y ∈ RN . The measure γ ∈ π(µ, ν) is called transport plan. One of
basic concepts in the optimal transport theory is the Kantorovich duality that can be restated
as follows:

Theorem 2.1. (cf. [35], Chapter 5) Let c be a lower semicontinuous cost function (l.s.c.)
and µ, ν ∈M+

b (RN ) be such that µ(RN ) = ν(RN ). Then
(i) The MK problem has an optimal plan and the Kantorovich duality holds true, i.e.

min {K(γ) : γ ∈ π(µ, ν)} = sup

{∫
RN

udµ+

∫
RN

vdν : (u, v) ∈ Sc(µ, ν)

}
, (2.1)

where

Sc(µ, ν) :=
{

(u, v) ∈ L1
µ(RN )× L1

ν(RN ) : u(x) + v(y) ≤ c(x, y) ∀x, y ∈ RN
}
.

(ii) It does not change the value of the supremum in the right-hand side of (2.1) if one restricts
the definition of Sc(µ, ν) to those functions (u, v) which are bounded and continuous.
(iii) If c(x, y) ≤ Cµ(x) + Cν(y) for some (Cµ, Cν) ∈ L1

µ × L1
ν , then the dual problem on the

right-hand side (called Kantorovich dual problem) has an optimal solution.
(iv) If the cost function satisfies the triangle inequality and c(x, x) = 0 for any x ∈ RN , then the
Kantorovich dual problem can be rewritten as

sup

{∫
RN

ud(ν − µ) : u ∈ Lipc
}
,

where Lipc :=
{
u : RN 7→ R : u ∈ L1

µ ∩ L1
ν , u(y)− u(x) ≤ c(x, y) ∀x, y ∈ RN

}
. A solution of the

Kantorovich dual problem is called Kantorovich potential.

An interesting situation where the triangle inequality is fulfilled corresponds to the case
where the cost is proportional to a distance. Monge’s original optimal mass transport problem
corresponds to the Euclidean distance. The case where the cost c is given by a continuous Finsler
distance has been studied recently in [22] (see also [30] for the symmetric case).
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Let us begin with a reminder concerning Finsler metric. A continuous function F : RN ×
RN −→ [0,+∞) is called Finsler metric on RN if
• F (x, .) is positively 1-homogeneous ∀x ∈ RN , i.e.

F (x, tv) = tF (x, v) for every x ∈ RN , v ∈ RN and t > 0;

• F (x, .) is convex for every x ∈ RN .
In addition, in this paper, we assume that F is nondegenerate in the sense that there exist
β, α > 0 such that

α|v| ≤ F (x, v) ≤ β|v| for all (x, v) ∈ RN × RN .
The Finsler distance dF on RN is defined by

dF (x, y) = inf


1∫

0

F (ξ(t), ξ̇(t))dt : ξ ∈ Γx,y(RN )

 , (2.2)

where Γx,y(RN ) is the set of Lipschitz curves on [0, 1] taking values in RN joining x to y. Under
the above assumptions, it is known that the inf problem (2.2) is actually the minimum and that
dF is not necessary symmetric distance, i.e. dF satisfies
• dF (x, y) ≥ 0; dF (x, y) = 0 if and only if x = y.

• dF (x, y) ≤ dF (x, z) + dF (z, y) for any x, y, z ∈ RN .
The polar function F ∗ of F is defined by

F ∗(x, p) := sup {〈v, p〉 : F (x, v) ≤ 1} for x, p ∈ RN .

It is easy to see that F ∗ is also a continuous, non-degenerate Finsler metric and

〈ξ, p〉 ≤ F ∗(x, p)F (x, v) ∀x, v, p ∈ RN .

Now, we consider the optimal transport problem of moving µ into ν with the cost c = dF . Since
the cost dF satisfies the triangle inequality and dF (x, x) = 0 for any x ∈ RN , we have

min
{
K(σ) : σ ∈ π(µ, ν)

}
= sup

{∫
RN

u d(ν − µ) : u ∈ LipdF
}
.

In the case where F (x, v) = |v| for any (x, v) ∈ RN × RN , it is clear that dF is the Euclidean
distance. For regular densities µ and ν, Evans and Gangbo proved that the characterization
of the Kantorovich potential may be given by a nonlinear PDE of the p−Laplacian type with
p =∞. Since [11], this PDE is called Monge–Kantorovich equation and formally reads −∇ · Φ = ν − µ in D′(RN )

u ∈ Lip|.|, Φ · ∇u = |Φ|.
(2.3)

Roughly speaking, the flux Φ in (2.3) is called the transportation flow and its total variation |Φ|
gives the density of the transportation. Formally, the second line of (2.3) conceives the equation

Φ ∈ ∂IIB(0,1)(∇u),

where B(0, 1) is the Euclidean closed unit ball.
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As we will see, among our results, we give a generalization of the PDE (2.3) for general
Finsler metrics. Actually, for a Finsler metric F , (2.3) reads formally{

−∇ · Φ = ν − µ in D′(RN )
u ∈ LipdF , Φ · ∇u = F (.,Φ).

(2.4)

In general, since Φ is a finite Radon vector measure, the second equation of (2.4) needs to be
understood in the sense of tangential gradient with respect to a measure. More precisely, a
couple (u,Φ) is said to satisfy the PDE (2.4) if (u,Φ) ∈ LipdF ×Mb(RN ;RN ), −∇ · Φ = ν − µ
in D′(RN ) and

Φ

|Φ|
· ∇|Φ|u = F

(
.,

Φ

|Φ|
(.)

)
, |Φ| − a.e. in RN .

Here, we denote by
Φ

|Φ|
the density of Φ with respect to |Φ| and by∇|Φ|u the tangential gradient of

u with respect to |Φ| (cf. [10,11,25]) which is well-defined for any Lipschitz continuous function.
Following [25, Lemma 4.9], given Φ ∈ Mb(RN ;RN ) and η ∈ Mb(RN ) such that −∇ · Φ = η in
D′(RN ), we have∫

RN

Φ

|Φ|
· ∇|Φ|ξd|Φ| =

∫
RN

Φ

|Φ|
· ∇ξd|Φ| =

∫
RN

ξ dη for all ξ ∈ C∞c (RN ). (2.5)

Moreover, one can prove that (using approximation and (2.5))∫
RN

Φ

|Φ|
· ∇|Φ|ξd|Φ| =

∫
RN

ξdη for all ξ ∈ Lip(RN ) ∩ Cb(RN ).

2.2. Main result for the PMK with general costs. Assume that µ, ν ∈ M+
b (RN ) are

compactly supported and
mmax := min{µ(RN ), ν(RN )}.

Given a total mass m ∈ [0,mmax], the PMK problem aims to transport effectively a total mass
m from a supply submeasure of µ into a submeasure of ν. The set of submeasures of mass m is
given by

Subm(µ, ν) :=
{

(ρ0, ρ1) ∈M+
b (RN )×M+

b (RN ) : ρ0 ≤ µ, ρ1 ≤ ν, ρ0(RN ) = ρ1(RN ) = m
}
.

Then the PMK reads as

min

K(γ) :=

∫
RN×RN

c(x, y)dγ : γ ∈ πm(µ, ν)

 , (2.6)

where
πm(µ, ν) :=

{
γ ∈ π(ρ0, ρ1) : (ρ0, ρ1) ∈ Subm(µ, ν)

}
.

The couple (ρ0, ρ1) ∈ Subm(µ, ν) is called a couple of active submeasures. It is a couple of
optimal active submeasures if it solves the PMK (2.6). That is, there exists an optimal plan γ of
the PMK (2.6) such that γ ∈ π(ρ0, ρ1).

Our main result concerning duality for the PMK problem with general costs is the following.
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Theorem 2.2. Let µ, ν ∈ M+
b (RN ) be measures with compact supports X and Y , m ∈

[0,mmax]. Assume that c is lower semi continuous and bounded on X × Y . The PMK problem
has a solution σ∗ ∈ πm(µ, ν) and the Kantorovich duality turns into

K(σ∗) = min
γ∈πm(µ,ν)


∫

RN×RN

cdγ


= max


∫
RN

φ dµ+

∫
RN

ψ dν + λm : λ ∈ R+, (φ, ψ) ∈ Sλc (µ, ν)

 ,

(2.7)

where

Sλc (µ, ν) :=
{

(φ, ψ) ∈ L1
µ × L1

ν : φ ≤ 0, ψ ≤ 0 and φ(x) + ψ(y) + λ ≤ c(x, y) ∀x, y ∈ RN
}
.

Moreover, σ ∈ πm(µ, ν) and (λ, φ, ψ) ∈ R+ × Sλc (µ, ν) are solutions, respectively, if and only if

φ(x) = 0 for (µ− πx#σ)-a.e. x ∈ RN , ψ(y) = 0 for (ν − πy#σ)-a.e. y ∈ RN

and φ(x) + ψ(y) + λ = c(x, y) for σ-a.e. (x, y) ∈ RN × RN .
(2.8)

The maximization problem on the right hand side of (2.7) is called dual partial Monge–
Kantorovich (DPMK) problem.

Remark 2.3. See that the duality formulations (2.7) is different from Caffarelli-McCann’s
duality (see [12, Corollary 2.7]). In (2.7), λ is a variable and the duality is direct to the PMK
problem. This formulation can be seen also as a minimax formulation of the problem. For
numerical computation concerning the PMK problem, the formulation (2.7) with λ as a variable
is very useful. This issue is discussed in [23].

We have a further structure of the duality (2.7) for the costs satisfying the triangle inequality.

Theorem 2.4. Under the assumptions and notations of Theorem 2.2, assume moreover that
the cost function c satisfies the triangle inequality and c(x, x) = 0 for any x ∈ RN . Then the
DPMK problem can be rewritten as

K(σ∗) = max

{
D(λ, u) :=

∫
ud(ν − µ) + λ(m− ν(RN )) : λ ≥ 0 and u ∈ Lλc

}
, (2.9)

where
Lλc :=

{
u ∈ Lipc : 0 ≤ u(x) ≤ λ for any x ∈ RN

}
.

In addition, σ ∈ πm(µ, ν) and (λ, u) ∈ R+ × Lλc are solutions of the PMK and of the DPMK
(2.9), respectively, if and only if

u(x) = 0 for (µ− πx#σ)-a.e. x ∈ RN , u(x) = λ for (ν − πy#σ)-a.e. x ∈ RN

and u(y)− u(x) = c(x, y) for σ-a.e. (x, y) ∈ RN × RN .
(2.10)

The proofs of Theorem 2.2 and Theorem 2.4 are given in Section 3.
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2.3. Main results for Finsler distance costs. Coming back to the Finsler distance cost
dF , we introduce a new nonlinear PDE that we call the obstacle Monge–Kantorovich (OMK)
equation. Then, we use this PDE to show the uniqueness of optimal active submeasures whenever
the data µ and ν are absolutely continuous with respect to Lebesgue measure.

To introduce our PDE, we see that the dual formulation (2.9) may be written as

max
λ≥0

(
max
u

{
D(λ, u) : u ∈ LλdF

})
.

Moreover, formally, for any fixed λ ≥ 0, the Euler–Lagrange equation associated with the problem

max
u

{
D(λ, u) : u ∈ LλdF

}
(2.11)

is given by the following PDE

(Pλ)


θ −∇ · Φ = ν − µ in D′(RN )

Φ · ∇u = F (.,Φ)

u ∈ LλdF , θ ∈ ∂II[0,λ](u).

This is a double obstacle problem associated with the PMK problem (2.6) with c = dF . And,
formally we conclude that the study of the PMK is closely connected to the study of the depen-
dence of a solution of (Pλ) with respect to λ. Our aim now is to study this connection to get a
characterization of optimal active submeasures of the PMK problem. Before going further, let
us give the notion of solution to the OMK equation (Pλ).

Definition 2.5. For a fixed λ ≥ 0, a triplet (θ,Φ, u) ∈ Mb(RN )×Mb(RN ;RN )× LipdF is
said to be a solution to the OMK equation (Pλ) if u ∈ LλdF and we have

θ −∇ · Φ = ν − µ in D′(RN )
Φ

|Φ|
(x) · ∇|Φ|u(x) = F

(
x,

Φ

|Φ|
(x)

)
, |Φ|-a.e. x ∈ RN

u = 0, θ−-a.e. in RN and u = λ, θ+-a.e. in RN ,

where θ± is the positive and negative part of the measure θ given by the Jordan decomposition.

Without abusing, we also say that a Radon measure θ ∈ Mb(RN ) is a solution of (Pλ) if
there exists (Φ, u) ∈Mb(RN ;RN )× LipdF such that (θ,Φ, u) satisfies the OMK equation (Pλ).

To set the connection between the OMK equation and the optimal active submeasures, let
us denote by µ ∧ ν the measure of common mass of µ and ν. Recall that if µ, ν ∈ L1(RN ) then
µ ∧ ν ∈ L1(RN ) and

(µ ∧ ν)(x) = min{µ(x), ν(x)} for a.e. x ∈ RN .

In general, the measure µ ∧ ν is defined by (see [2])

µ ∧ ν(A) = inf{µ(A1) + ν(A2) : disjoint Borel setsA1, A2, such that A1 ∪A2 = A}.
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Theorem 2.6 (Existence of a solution to the OMK equation). Given µ, ν ∈ M+
b (RN ) and

λ ≥ 0, the OMK equation (Pλ) admits at least one solution (θ,Φ, u). Moreover,

θ− ≤ µ− µ ∧ ν ≤ µ and θ+ ≤ ν − µ ∧ ν ≤ ν

for any solutions (θ,Φ, u).

Because of the degeneracy of the OMK equation, the question of the uniqueness of a solution
for (Pλ) is delicate. In fact, one cannot in general expect the uniqueness of the components Φ
and u of solutions for the OMK equation (Pλ). However, we can prove the uniqueness of the
component θ whenever µ and ν are absolutely continuous with respect to the Lebesgue measure.

Theorem 2.7 (Uniqueness of θ). Assume that µ, ν ∈ L1(RN )+. Let θ1 and θ2 be two
solutions to the same OMK equation (Pλ). Then θ1, θ2 ∈ L1(RN ) and θ1 = θ2.

Now, we come to the connection between the OMK equation and the PMK problem.

Theorem 2.8 (Optimal active submeasures and OMK equation). Let µ, ν ∈ M+
b (RN ) be

compactly supported.
(i) For any λ ≥ 0 and θλ a solution of the OMK equation (Pλ), the couple

(ρ0, ρ1) := (µ− θ−λ , ν − θ
+
λ )

is a couple of optimal active submeasures corresponding to mλ = (µ− θ−λ )(RN ).
(ii) Conversely, if (ρ0, ρ1) ∈ Subm(µ, ν) is a given couple of optimal active submeasures and
m ∈ [(µ ∧ ν)(RN ),mmax] then for any λm ≥ 0 such that

λm ∈ arg max
λ≥0

{
max
u

{
D(λ, u) : u ∈ LλdF

}}
,

the measure θλm defined by

θ−λm := µ− ρ0 and θ+
λm

:= ν − ρ1

is a solution of the OMK equation (Pλm).

Following Theorems 2.8 and 2.7, we have the following result for the PMK problem.

Corollary 2.9 (Uniqueness of couple of optimal active submeasures). Let µ, ν ∈ L1(RN )+

be compactly supported and m ∈ [‖µ ∧ ν‖L1 ,mmax]. There exists a unique couple of optimal
active submeasures.

To end up this section of main results, we propose to study the maps that associate to
each λ ≥ 0 the corresponding optimal active submeasures and their total mass in the case
µ, ν ∈ L1(RN ). Thanks to Theorems 2.6, 2.8 and 2.7, for any λ ≥ 0 there exist a unique mass
mλ := (µ−θ−λ )(RN ) and a unique couple of optimal active submeasures (ρλ0 , ρ

λ
1) := (µ−θ−λ , ν−θ

+
λ )

corresponding to mλ. Let us define the maps

m : [0,∞) → [(µ ∧ ν)(RN ),mmax]

λ → m(λ) := mλ
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and
R : [0,∞) → L1(RN )× L1(RN )

λ → R(λ) := (ρλ0 , ρ
λ
1).

To simplify the presentation, let us denote
Subopt(µ, ν) := {(ρ0, ρ1) : ρ0 and ρ1 are optimal active submeasures for some m ∈ [‖µ∧ν‖L1 ,mmax]}.

Theorem 2.10. Let µ, ν ∈ L1(RN )+ be compactly supported. We have that
(i) the map m is continuous, non-decreasing and surjective;
(ii) the map R is continuous, non-decreasing and surjective from [0,∞) to Subopt(µ, ν).

Remark 2.11. (i) There is in general no uniqueness of optimal active submeasures when
m < (µ∧ ν)(RN ). Indeed, in this case, all active submeasures ρ0 ≡ ρ1 ≤ µ∧ ν are optimal. This
is not a contradiction with our PDE approach. Because there is no such an OMK equation with
λ ≥ 0 characterizing the PMK problem in this case.
(ii) In general, the uniqueness of optimal active submeasures does not hold true if both µ and ν
are not in L1. For example, on R, taking µ = δ1 + δ3, ν = δ2, where δk is the Direct mass at k
in R. Then all active submeasures are optimal for any m.
(iii) We show that the uniqueness holds true whenever µ, ν ∈ L1(RN ) by using PDE techniques.
We do not know if this remains to be true when one of µ, ν belongs to L1(RN ).

3. Kantorovich-type duality

The aim of this section is to prove Theorems 2.2 and 2.4.

Proof of Theorem 2.2. The existence of an optimal plan σ∗ ∈ πm(µ, ν) is standard which can
be shown by Direct Method. Next, for any σ ∈ πm(µ, ν) and (λ, φ, ψ) ∈ R+×Sλc (µ, ν), we have∫

RN

φ(x) dµ(x) +

∫
RN

ψ(y) dν(y) + λm ≤
∫
RN

φ(x) dπx#σ +

∫
RN

ψ(y) dπy#σ + λm

=

∫
RN×RN

(φ(x) + ψ(y) + λ) dσ

≤
∫

RN×RN

c(x, y)dσ.

(3.1)

Hence,

sup


∫
RN

φ dµ+

∫
RN

ψ dν + λm : λ ∈ R+, (φ, ψ) ∈ Sλc (µ, ν)

 ≤ min
σ∈πm(µ,ν)

K(σ).

In order to prove the converse inequality, we add two points x̂ ∈ RN \X and ŷ ∈ RN \Y as extra
production and consumption positions, respectively. Let us consider X̂ := X∪{x̂}, Ŷ := Y ∪{ŷ}
as metric spaces (induced by the Euclidean distance) and the measures on X̂ and Ŷ defined,
respectively, by
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µ̂ = µ+ (ν(Y )−m))δx̂ and ν̂ = ν + (µ(X)−m)δŷ.

Obviously, µ̂(X̂) = ν̂(Ŷ ). Then, let us consider the extra cost on X̂ × Ŷ

ĉ(x, y) :=

{
c(x, y) if (x, y) ∈ X × Y
0 if x = x̂ or y = ŷ.

From the assumptions on c, we have that ĉ is l.s.c. and bounded on the compact metric space
X̂ × Ŷ . Using Theorem 2.1,

min
γ̂∈π(µ̂,ν̂)

∫
X̂×Ŷ

ĉ(x, y) dγ̂ = max
(û,v̂)∈Sĉ(µ̂,ν̂)

∫
X̂

ûdµ̂+

∫
Ŷ

v̂ dν̂.

Fixed any γ̂ ∈ π(µ̂, ν̂), set γ1 := γ̂ X×Y the restricted measure of γ̂ on X × Y . It is easy to see
that πx#γ1 ≤ µ, πy#γ1 ≤ ν and γ1(X × Y ) ≥ m. Let us define γ :=

m

γ1(X × Y )
γ1 ∈ πm(µ, ν)

and ∫
X×Y

c(x, y)dγ ≤
∫

X×Y

c(x, y)dγ1 =

∫
X̂×Ŷ

ĉ(x, y)dγ̂.

This implies that

min
γ∈πm(µ,ν)

∫
X×Y

c(x, y)dγ ≤ min
γ̂∈π(µ̂,ν̂)

∫
X̂×Ŷ

ĉ(x, y)dγ̂ = max
(û,v̂)∈Sĉ(µ̂,ν̂)

∫
X̂

ûdµ̂+

∫
Ŷ

v̂ dν̂.

To finish the proof, for any (û, v̂) ∈ Sĉ(µ̂, ν̂), we can moreover assume that û, v̂ have finite values.
Set u1 := û + v̂(ŷ), v1 := v̂ + û(x̂) and λ := −û(x̂) − v̂(ŷ) ≥ 0. Since û(x) + v̂(y) ≤ ĉ(x, y), we
see that u1 ≤ 0 in X, v1 ≤ 0 in Y and u1(x) + v1(y) ≤ c(x, y) − λ for any (x, y) ∈ X × Y. So,
extending arbitrarily u1 and v1 up to RN such that (u1, v1) ∈ Sλc (µ, ν), we get∫

X̂

û(x) dµ̂+

∫
Ŷ

v̂(y) dν̂ =

∫
X

û(x) dµ+

∫
Y

v̂(y) dν + (ν(Y )−m)û(x̂) + (µ(X)−m)v̂(ŷ)

=

∫
X

(û(x) + v̂(ŷ)) dµ+

∫
Y

(v̂(y) + û(x̂)) dν − (û(x̂) + v̂(ŷ))m

=

∫
X

u1(x) dµ+

∫
Y

v1(y) dν + λm.

Thus

min
γ∈πm(µ,ν)

∫
X×Y

c(x, y) dγ ≤ max
(û,v̂)∈Sĉ(µ̂,ν̂)

∫
X̂

ûdµ̂+

∫
Ŷ

v̂ dν̂

≤ sup


∫
RN

φ dµ+

∫
RN

ψ dν + λm : λ ≥ 0, (φ, ψ) ∈ Sλc (µ, ν)

 .
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From the above arguments, the supremum is actually the maximum.
At last, by the duality (2.7), σ ∈ πm(µ, ν) and (λ, φ, ψ) ∈ R+ × Sλc (µ, ν) are solutions of the
PMK and of the DPMK, respectively, if and only if the two inequalities in (3.1) are equalities.
This is equivalent to the optimality condition (2.8). �

Now, we prove the duality for the case where the cost satisfies the triangle inequality.

Proof of Theorem 2.4. We see that

min
γ∈πm(µ,ν)

∫
RN×RN

c(x, y)dγ ≥ sup
{
D(λ, u) : λ ≥ 0 and u ∈ Lλc

}
.

Indeed, for any γ ∈ πm(µ, ν) and u ∈ Lλc , we have

∫
RN

ud(ν − µ) + λ(m− ν(RN )) =

∫
RN

−u(x) dµ+

∫
RN

(u(y)− λ)dν + λm

≤
∫
RN

−udπx#γ +

∫
RN

(u(y)− λ) dπy#γ + λm

≤
∫

R×RN

c(x, y) dγ(x, y).

(3.2)

Conversely, for a given λ ≥ 0 and (φ, ψ) ∈ Sλc (µ, ν), we consider

u1(x) := sup
y∈Y

(ψ(y) + λ− c(x, y)) ≤ λ and u(x) := max{u1(x), 0} ∀x ∈ RN .

We see that u is 1-Lipschitz with respect to c and −u ≥ φ and u(y)− λ ≥ ψ(y) ∀y ∈ Y (where
we use the condition c(y, y) = 0). So∫

RN

ud(ν − µ) + λ(m− ν(RN )) ≥
∫
RN

φ dµ+

∫
RN

ψ dν + λm.

By Theorem 2.2, the duality and the existence of a solution (λ∗, u∗) are proven. For the optimality
condition (2.10), we use again the duality and (3.2) similarly to the case of general costs c. �

Remark 3.12. If c satisfies the triangle inequality and c(x, x) = 0 for any x ∈ RN then the
DPMK problem can be also written as

max


∫
RN

ud(ν − µ) + λ(m− µ(RN )) : λ ∈ R+, u ∈ Lipc, −λ ≤ u ≤ 0

 .

Indeed, in the construction of u from (φ, ψ), we can take

u1(y) := inf
x∈X

(c(x, y)− φ(x)− λ) and u(y) := min{u1(y), 0} ∀y ∈ RN .
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4. OMK equation

The aim of this section is to study the existence and uniqueness of solutions for the OMK
equation (Pλ). Besides this, we also show some estimates for solutions θ of the OMK equation
which are useful for later use. We will make use of variational techniques for the existence while
the uniqueness and the estimates of θ are shown by using PDE techniques. In this section, we
do not really need the compactness of the supports of µ and ν.

4.1. Existence of solution to the OMK equation. The existence of solution to the OMK
equation is based on the dual approach. More precisely, by applying the Fenchel–Rockafellar dual
theory to the problem (2.11), we introduce a minimum flow-type problem (for the minimum flow
problem and some its variants, one can see [31, Chapter 4]). And then we show that the OMK
equation is given by the optimality condition for the two problems.

Proposition 4.13. Let µ, ν ∈M+
b (RN ) and λ ≥ 0 be fixed. We have

max
u∈LλdF

∫
RN

ud(ν − µ) = min
{ ∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|+ λ

∫
RN

dθ1 : (Φ, θ0, θ1) ∈ S
}
, (4.1)

where

S :=
{

(Φ, θ0, θ1) ∈Mb(RN ;RN )×M+
b (RN )×M+

b (RN ) : −∇ · Φ = ν − θ1 − (µ− θ0)
}
.

We need some elementary lemmas concerning the set LipdF of 1-Lipschitz functions w.r.t dF .

Lemma 4.1. Let F be a continuous, nondegenerate Finsler metric and u ∈ LipdF . Setting
uε := ρε ? u, where ρε is the standard mollifier on RN . Then

lim sup
ε→0

F ∗(x,Duε(x)) ≤ 1 for all x ∈ RN . (4.2)

Proof. Let x ∈ RN be fixed. There exists some ‖ξε‖ = 1 such that

F ∗(x,Duε(x)) =
〈Duε(x) · ξε〉
F (x, ξε)

= lim
h→0+

uε(x+ hξε)− uε(x)

F (x, hξε)

= lim
h→0+

∫
RN

ρε(t) (u(x+ hξε − t)− u(x− t)) dt

F (x, hξε)
.

This implies that

F ∗(x,Duε(x)) ≤ lim sup
h→0+

∫
RN

ρε(t)dF (x− t, x− t+ hξε) dt

F (x, hξε)

≤ lim
h→0+

∫
RN

ρε(t)
1∫
0

F (x− t+ τhξε, hξε) dτ dt

F (x, hξε)

=

∫
RN

ρε(t)F (x− t, ξε) dt

F (x, ξε)
.

(4.3)
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On the other hand, there is a sequence εn → 0 such that

lim sup
ε→0

F ∗(x,Duε(x)) = lim
εn→0

F ∗(x,Duεn(x)). (4.4)

Since ‖ξεn‖ = 1, up to a subsequence of {ξεn}, we can assume moreover that

ξεn → ξ as εn → 0. (4.5)

Thanks to (4.3), we get

F ∗(x,Duεn(x)) ≤

∫
RN

ρεn(t)F (x− t, ξεn) dt

F (x, ξεn)
. (4.6)

Let εn → 0, using (4.4), (4.6) and (4.5), we obtain

lim sup
ε→0

F ∗(x,Duε(x)) = lim
εn→0

F ∗(x,Duεn(x)) ≤ lim
εn→0

∫
RN

ρεn(t)F (x− t, ξεn) dt

F (x, ξεn)
= 1. �

Remark 4.14. The lower semicontinuity of F is not enough to hold (4.2). Indeed, taking
the lower semicontinuous, non-degenerate Finsler metric F on R defined by

F (x, ξ) =

{
|ξ| if x ≤ 0

2|ξ| if x > 0
for x, ξ ∈ R

and u is 1-Lipschitz w.r.t. dF given by

u(x) =

{
x if x ≤ 0

2x if x > 0
for x ∈ R.

Then,

F ∗(x, p) =

|p| if x ≤ 0
1

2
|p| if x > 0

and u′ε(x) =

∫
R

ρε(s)u
′(x− s)ds.

Therefore, u′ε(0) =

∫
[s≥0]

ρε(s)ds+ 2

∫
[s<0]

ρε(s)ds =
3

2
and F ∗(0, u′ε(0)) =

3

2
> 1.

It is known that if u ∈ C1(RN ) then

u(y)− u(x) ≤ dF (x, y) ∀x, y ∈ RN (i.e., u ∈ LipdF ) if and only if F ∗(x,∇u(x)) ≤ 1 ∀x ∈ RN .

The latter is equivalent to

q · ∇u(x) ≤ F (x, q) ∀x ∈ RN , ∀q ∈ RN .

In the case where u is non-smooth, we have the characterization via the tangential gradient.

Lemma 4.2. For any u ∈ LipdF and Φ ∈Mb(RN ;RN ) such that ∇·Φ ∈Mb(RN ), we have
Φ

|Φ|
(x) · ∇|Φ|u(x) ≤ F (x,

Φ

|Φ|
(x)), |Φ|-a.e. x ∈ RN .
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Proof. Taking uε as in Lemma 4.1, for any Borel subset B, we have∫
B

Φ

|Φ|
·∇|Φ|ud|Φ| = lim

ε→0

∫
B

Φ

|Φ|
(x)·∇uε(x)d|Φ| ≤ lim sup

ε→0

∫
B

F ∗(x,∇uε(x))F (x,
Φ

|Φ|
(x))d|Φ|(x).

Letting ε→ 0, using again Fatou’s Lemma and Lemma 4.1, we get∫
B

Φ

|Φ|
(x) · ∇|Φ|u(x)d|Φ| ≤

∫
B

F (x,
Φ

|Φ|
(x))d|Φ|.

The proof ends up by the arbitrariness of Borel set B. �

Proof of Proposition 4.13. The case λ = 0 is obvious. Let us now assume that λ > 0.
1. We show that

max
u∈LλdF

∫
RN

ud(ν − µ) ≤ inf
{ ∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|+ λ

∫
RN

dθ1 : (Φ, θ0, θ1) ∈ S
}
.

Fix any u ∈ LλdF and (Φ, θ0, θ1) ∈ S. Taking u as a test function in the equation −∇ · Φ =

ν − θ1 − (µ− θ0), using Lemma 4.2, we have∫
RN

ud(ν − µ) =

∫
RN

Φ

|Φ|
∇|Φ|ud|Φ|+

∫
RN

udθ1 −
∫
RN

udθ0

≤
∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|+ λ

∫
RN

dθ1.

So

sup
u∈LλdF

∫
RN

ud(ν − µ) ≤ inf
{ ∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|+ λ

∫
RN

dθ1 : (Φ, θ0, θ1) ∈ S
}
.

It is not difficult to see that the supremum is actually a maximum by the direct method.
2. Obviously, we have

max
{ ∫
RN

ud(ν − µ) : u ∈ LλdF
}
≥ sup

{ ∫
RN

ud(ν − µ) : u ∈ LλdF , u ∈ C
1,1(RN )

}
.

It remains to show that

sup
{ ∫
RN

ud(ν − µ) : u ∈ C1,1(RN )
⋂
LλdF

}
= min

{ ∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|+ λ

∫
RN

dθ1 : (Φ, θ0, θ1) ∈ S
}
.

(4.7)
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On the other hand,

sup
{ ∫
RN

ud(ν − µ) : u ∈ C1,1(RN )
⋂
LλdF

}
= sup

{ ∫
RN

ud(ν − µ) : u ∈ C1,1(RN ), F ∗(x,∇u(x)) ≤ 1, 0 ≤ u(x) ≤ λ ∀x ∈ RN
}

= − inf
u∈V

{
F(u) + G(Λu)

}
,

where

F(u) := −
∫
RN

ud(ν − µ) ∀u ∈ V := C1,1(RN )
⋂
Cb(RN ),

Λ(u) = (∇u,−u, u) ∈ Z := Cb(RN ;RN )× Cb(RN )× Cb(RN )

and, for all (q, z, w) ∈ Z,

G(q, z, w) :=

{
0 if z(x) ≤ 0, w(x) ≤ λ and F ∗(x, q(x)) ≤ 1 ∀x ∈ RN

+∞ otherwise.

We use the W 1,∞-norm and L∞-norm for the spaces V and Z, respectively, i.e.,

‖u‖V := ‖u‖L∞ + ‖∇u‖L∞ and ‖(q, z, w)‖Z := ‖q‖L∞ + ‖z‖L∞ + ‖w‖L∞ .

Now, applying the Fenchel–Rockafellar dual theory (see e.g. [17], Chapter III, Theorem 4.1 with

the choice u0 =
λ

2
there. Note that the assumption λ > 0 is used in this step), we have

inf
u∈V
F(u) + G(Λ(u))

= max
(Φ,θ0,θ1)∈Mb(RN ;RN )×Mb(RN )×Mb(RN )

(
−F∗(−Λ∗(Φ, θ0, θ1))− G∗(Φ, θ0, θ1)

)
.

The proof of (4.7) is completed by computing explicitly the quantities in this maximization
problem. For completeness, let us give the results of this computation.

• Since F is linear, F∗(−Λ∗(Φ, θ0, θ1)) is finite (and is always equal to 0) if and only if

〈−Λ∗(Φ, θ0, θ1), u〉 = F(u) = −
∫
RN

ud(ν − µ) for any u ∈ V,

or equivalently
〈Φ,∇u〉 − 〈θ0, u〉+ 〈θ1, u〉 = 〈ν − µ, u〉 for any u ∈ V.

This means that
−∇ · Φ = ν − θ1 − (µ− θ0) in D′(RN ).
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• For G∗(Φ, θ0, θ1), we have

G∗(Φ, θ0, θ1) = sup
q∈Cb(RN ;RN ):F ∗(x,q(x))≤1,∀x∈RN

〈Φ, q〉+ sup
z∈Cb(RN ):z≤0

〈θ0, z〉+ sup
w∈Cb(RN ):w≤λ

〈θ1, w〉

=


∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|+ λ

∫
RN

dθ1 if θ0 ≥ 0 and θ1 ≥ 0

+∞ otherwise.

�

Proposition 4.15. Given µ, ν ∈M+
b (RN ) and λ ≥ 0. We have that

(i) if u and (Φ, θ0, θ1) are solutions for the duality (4.1) then (θ,Φ, u) := (θ1 − θ0,Φ, u) is a
solution to the OMK equation (Pλ). Moreover θ+ = θ1, θ− = θ0 if λ > 0.
(ii) Conversely, if (θ,Φ, u) is a solution to the OMK equation (Pλ) then u and (Φ, θ0, θ1) :=
(Φ, θ−, θ+) are solutions for the duality (4.1).

Proof. (i) Let u ∈ LλdF and (Φ, θ0, θ1) ∈ S be solutions for the duality (4.1). Then (θ,Φ, u) :=

(θ1 − θ0,Φ, u) is a solution to the OMK equation (Pλ). Indeed, we have

θ −∇ · Φ = ν − µ in D′(RN )

and ∫
ud(ν − µ) =

∫
Φ

|Φ|
∇|Φ|ud|Φ|+

∫
udθ1 −

∫
udθ0

≤
∫
F (x,

Φ

|Φ|
(x))d|Φ|+ λ

∫
dθ1 (by Lemma 4.2).

From the optimality of u and (Φ, θ0, θ1), using Proposition 4.13, we have that
Φ

|Φ|
(x)∇|Φ|u(x) = F (x,

Φ

|Φ|
(x)), |Φ|-a.e. x,

u = 0, θ0-a.e. and u = λ, θ1-a.e..
By the Jordan decomposition, we get θ+ ≤ θ1, θ− ≤ θ0 and thus

u = 0, θ−-a.e. and u = λ, θ+-a.e..

So (θ,Φ, u) is a solution to the OMK equation (Pλ). It remains to verify that θ− = θ0 and
θ+ = θ1 in the case λ > 0. Since λ > 0, we deduce that θ0 and θ1 are concentrated on two
disjoint sets. Thus θ+ = θ1 and θ− = θ0 by the Jordan decomposition.
(ii) Conversely, assume that (θ,Φ, u) is a solution to the OMK equation (Pλ). We see that∫

RN

ud(ν − µ) =

∫
RN

Φ

|Φ|
∇|Φ|ud|Φ|+

∫
RN

udθ

=

∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|+

∫
RN

λdθ+.
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The optimality of u and (Φ, θ−, θ+) follows immediately from the duality (4.1). �

We have the following estimates for solutions θ of the OMK equation.

Proposition 4.16 (Estimate of solutions θ). Given µ, ν ∈M+
b (RN ) and λ ≥ 0. Let (θ,Φ, u)

be a solution to the OMK equation (Pλ). Then

θ− ≤ µ− µ ∧ ν ≤ µ and θ+ ≤ ν − µ ∧ ν ≤ ν.

Proof. Case 1: If λ = 0, then u ≡ 0, Φ ≡ 0 and

θ ≡ ν − µ = ν − µ ∧ ν − (µ− µ ∧ ν).

By the Jordan decomposition, θ+ ≤ ν − µ ∧ ν and θ− ≤ µ− µ ∧ ν.
Case 2: Let us now assume that λ > 0. For 0 < ε < λ, let us consider the Lipschitz continuous
functions of one variable

T 1
ε (r) :=


0 if r ≤ λ− ε
r − (λ− ε)

ε
if λ− ε ≤ r ≤ λ,

1 if r ≥ λ

∀r ∈ R.

For ξ ∈ C∞c (RN ) such that ξ ≥ 0, we take T 1
ε (u)ξ as a test function in the equation θ−∇ ·Φ =

ν − µ. We get ∫
T 1
ε (u)ξdθ +

∫
Φ

|Φ|
· ∇|Φ|

(
T 1
ε (u)ξ

)
d|Φ| =

∫
T 1
ε (u)ξd(ν − µ). (4.8)

Thanks to Lemma 7.5 (see Appendix), we get∫
Φ

|Φ|
· ∇|Φ|

(
T 1
ε (u)ξ

)
d|Φ| =

∫
(T 1
ε )
′
(u)∇|Φ|u ·

Φ

|Φ|
ξd|Φ|+

∫
Φ

|Φ|
· ∇ξT 1

ε (u)d|Φ|

≥
∫

Φ

|Φ|
· ∇ξT 1

ε (u)d|Φ|.
(4.9)

Using (4.8) and (4.9), we see that∫
T 1
ε (u)ξdθ +

∫
Φ

|Φ|
· ∇ξT 1

ε (u)d|Φ| ≤
∫
T 1
ε (u)ξd(ν − µ)

=

∫
T 1
ε (u)ξd(ν − µ ∧ ν − (µ− µ ∧ ν))

≤
∫
T 1
ε (u)ξd(ν − µ ∧ ν).

(4.10)

Since u ≤ λ, for any x ∈ RN , we have

T 1
ε (u)(x)→ χ[u=λ](x) as ε→ 0.

Now, using Lemma 7.5 (ii), the non-degeneracy of F and the definition of solution for (Pλ), we
have |Φ| ([u = λ]) = 0 (i.e. Φ gives no mass on the set [u = λ]). This implies that∫

Φ

|Φ|
· ∇ξT 1

ε (u)d|Φ| → 0 as ε→ 0.
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Letting ε→ 0 in (4.10), we get∫
[u=λ]

ξdθ ≤
∫

[u=λ]

ξd(ν − µ ∧ ν) for any ξ ∈ C∞c (RN ), ξ ≥ 0.

Using the definition of solution for (Pλ), we have u = 0 for θ−-a.e.. Since λ > 0, we deduce that∫
[u=λ]

ξdθ+ =

∫
[u=λ]

ξdθ ≤
∫

[u=λ]

ξd(ν − µ ∧ ν) for any ξ ∈ C∞c (RN ), ξ ≥ 0.

This implies that θ+ ≤ ν − µ ∧ ν on [u = λ] and that θ+ ≤ ν − µ ∧ ν (since θ+ is concentrated
on [u = λ]). At last, using T 2

ε (u)ξ as a test function in the equation θ −∇ · Φ = ν − µ, where

T 2
ε (r) :=


−1 if r ≤ 0

−1 +
r

ε
if 0 ≤ r ≤ ε,

0 if r ≥ ε
∀r ∈ R,

we can prove in the same way that θ− ≤ µ− µ ∧ ν. �

Proof of Theorem 2.6. The proof follows directly from Propositions 4.13, 4.15 and 4.16. �

As a consequence of Proposition 4.13, we have the following result that will be useful later.

Corollary 4.17. Let µ, ν ∈M+
b (RN ) be such that ν(RN ) ≤ µ(RN ). We have

sup
{ ∫
RN

ud(ν − µ) : u ∈ LipdF , u ≥ 0
}

= min
(Φ,θ0)∈Mb(RN ;RN )×M+

b (RN )

{ ∫
RN

F (x,
Φ

|Φ|
(x))d|Φ| : −∇ · Φ = ν − (µ− θ0)

}
.

Proof. Using the assumption ν(RN ) ≤ µ(RN ), there exists (Φ̃, θ̃0) ∈ Mb(RN ;RN ) ×M+
b (RN )

such that −∇ · Φ̃ = ν − (µ− θ̃0). This implies that

inf
(Φ,θ0)∈Mb(RN ;RN )×M+

b (RN )

{ ∫
RN

F (x,
Φ

|Φ|
(x))d|Φ| : −∇ · Φ = ν − (µ− θ0)

}
:= C < +∞.

Now, taking u as a test function in the equation −∇ · Φ = ν − (µ− θ0), we get∫
RN

ud(ν − µ) =

∫
RN

Φ

|Φ|
∇|Φ|ud|Φ| −

∫
RN

udθ0 ≤
∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|.
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Hence,

sup
{ ∫
RN

ud(ν − µ) : u ∈ LipdF , u ≥ 0
}

≤ inf
(Φ,θ0)∈Mb(RN ;RN )×M+

b (RN )

{ ∫
RN

F (x,
Φ

|Φ|
(x))d|Φ| : −∇ · Φ = ν − (µ− θ0)

}
= C < +∞.

(4.11)
Conversely, let us consider a sequence λn → +∞ as n→ +∞. Thanks to Proposition 4.13, there
exist un ∈ LλndF and (Φn, θ

0
n, θ

1
n) ∈ S such that∫

RN

F (x,
Φn

|Φn|
(x))d|Φn|+ λn

∫
RN

dθ1
n =

∫
RN

und(ν − µ)

≤ sup
{ ∫
RN

ud(ν − µ) : u ∈ LipdF , u ≥ 0
}
≤ C.

(4.12)

It is not difficult to see that
{

(Φn, θ
0
n, θ

1
n)
}
is bounded in Mb(RN ;RN ) ×Mb(RN ) ×Mb(RN ).

Thus, up to a subsequence, (Φn, θ
0
n, θ

1
n) converges to some (Φ, θ0, θ1) weakly* inMb(RN ;RN )×

Mb(RN ) ×Mb(RN ). It is clear that θ1 = 0, θ0 ≥ 0 and −∇ · Φ = ν − (µ − θ0). Now, using

the lower semicontinuity of the functional
∫
F (x,

Φ

|Φ|
(x))d|Φ| w.r.t. the weak* convergence in

variable Φ (see e.g. [2, Theorem 2.38]) and passing to the limit in (4.12), we obtain

∫
RN

F (x,
Φ

|Φ|
(x))d|Φ| ≤ lim

n→+∞

∫
RN

F (x,
Φn

|Φn|
(x))d|Φn| ≤ sup

{ ∫
RN

ud(ν−µ) : u ∈ LipdF , u ≥ 0
}
.

The proof is completed by combining this with (4.11). �

4.2. Uniqueness of solution θ to the OMK equation. We usually identify a measure
with its density function with respect to Lebesgue measure LN when the measure is absolutely
continuous w.r.t. LN . In this subsection, we focus on the proof of the uniqueness for the
solution θ of the OMK equation (Pλ) which is then used to show the uniqueness of optimal
active submeasures for the PMK problem. The result of uniqueness is somehow optimal in view
of Theorem 2.8 and Remark 2.11 (ii). Our proof will be based on the doubling and de-doubling
variable technique (the technique was known in PDEs, due to [26], see also [13] and the references
therein). It uses mainly the following result.

Lemma 4.3. Let λ ≥ 0 and µ, ν ∈ L1(RN )+. Suppose that (θi,Φi, ui), i = 1, 2, are solutions
to the same OMK equation (Pλ). Then θ1, θ2 ∈ L1(RN ) and, for any ξ ∈ C∞c (RN × RN ) such
that ξ ≥ 0, we have
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∫
RN

∫
RN

(θ1(x)− θ2(y))+ξ(x, y)dxdy ≤
∫
RN

∫
RN

| (∇xξ +∇yξ) |d|Φ1|(x)dy

+

∫
RN

∫
RN

| (∇xξ +∇yξ) |d|Φ2|(y)dx

+

∫
RN

∫
RN

|(ν − µ)(x)− (ν − µ)(y)|ξ(x, y) dxdy.

(4.13)

Before giving the proof of this lemma, let us show how it enables us to prove the main result
of uniqueness in Subsection 2.3.

Proof of Theorem 2.7. Fixed any α ∈ C∞c (RN ), α ≥ 0, let us choose

ξε(x, y) := ρε(x− y)α(x+ y)

as test functions in (4.13). Note that ∇xξε +∇yξε = 2ρε(x− y)∇α(x+ y). We have∫
RN

∫
RN

|∇xξε +∇yξε|d|Φ1|(x)dy =

∫
RN

∫
RN

|∇xξε +∇yξε|dyd|Φ1|(x)

= 2

∫
RN

∫
RN

ρε(x− y)|∇α(x+ y)| dyd|Φ1|(x)

= 2

∫
RN

∫
RN

ρε(t)|∇α(2x− t)|dtd|Φ1|(x)

→ 2

∫
RN

|∇α(2x)|d|Φ1|(x).

Similarly,
∫
RN

∫
RN

|∇xξε +∇yξε|d|Φ2|(y)dx→ 2

∫
RN

|∇α(2y)|d|Φ2|(y). Next, since f := ν − µ ∈ L1,

we have ∫
RN

∫
RN

|f(x)− f(y)|ξε(x, y) dxdy =

∫
RN

∫
RN

|f(x)− f(y)|ρε(x− y)α(x+ y) dxdy

≤ ‖α‖∞
∫
RN

∫
RN

|f(x)− f(y)|ρε(x− y) dydx

= ‖α‖∞
∫
RN

∫
RN

|f(x)− f(x− t)|ρε(t) dtdx

= ‖α‖∞
∫
RN

Fε(x)dx→ 0,
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by the fact that Fε(x) :=

∫
RN

|f(x)− f(x− t)|ρε(t) dt, and Fε → 0 in L1. Thus (4.13) leads to

∫
RN

(θ1(x)− θ2(x))+α(2x)dx ≤ 2

∫
RN

|∇α(2x)|d|Φ1|(x) + 2

∫
RN

|∇α(2y)|d|Φ2|(y). (4.14)

Taking a sequence αn ∈ C∞c (RN ) such that χB(0,n) ≤ αn ≤ χB(0,n+1) and |∇αn| ≤ C. Substitut-

ing αn into (4.14) and letting n→ +∞, using the finiteness of Φi, we get
∫
RN

(θ1(x)−θ2(x))+ dx ≤

0. Hence θ1 ≤ θ2. Since θ1 and θ2 have the same role, we obtain θ1 = θ2. �

Now, we give the proof of Lemma 4.3. Let us consider the Lipschitz continuous function

Hε(r) := min(r+/ε, 1) for any r ∈ R.

Proof of Lemma 4.3. Thanks to Proposition 4.16, we have θ1, θ2 ∈ L1(RN ). Let us consider
the test functions ξε(x, y) := Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) where ξ ∈ C∞c (RN × RN ), ξ ≥
0, ρ ∈ C∞(RN ×RN ) and 0 ≤ ρ ≤ 1. For each y, considering ξε(., y) as a test function, we have∫

RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)θ1(x) dx

+

∫
RN

Φ1

|Φ1|
(x).∇|Φ1|,x (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ1|(x)

=

∫
RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(x)dx.

Integrating with respect to y, we get∫
RN

∫
RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)θ1(x) dxdy

+

∫
RN

∫
RN

Φ1

|Φ1|
(x).∇|Φ1|,x (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ1|(x)dy

=

∫
RN

∫
RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(x)dxdy.

(4.15)

Similarly, applying for (θ2,Φ2, u2), we get
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∫
RN

∫
RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)θ2(y) dydx

+

∫
RN

∫
RN

Φ2

|Φ2|
(y).∇|Φ2|,y (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ2|(y)dx

=

∫
RN

∫
RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(y)dydx.

(4.16)

From (4.15) and (4.16), we have

I1(ε) + I2(ε) + I3(ε) = 0, (4.17)

where

I1(ε) :=

∫
RN

∫
RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)(θ1(x)− θ2(y)) dxdy

−
∫
RN

∫
RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(x)dxdy

+

∫
RN

∫
RN

Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y) (ν − µ)(y)dxdy;

I2(ε) :=

∫
RN

∫
RN

Φ1

|Φ1|
(x).∇|Φ1|,x (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ1|(x)dy;

and I3(ε) := −
∫
RN

∫
RN

Φ2

|Φ2|
(y).∇|Φ2|,y (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) d|Φ2|(y)dx.

Recall that ∫
RN

∇g(x)dx = 0 for any g ∈ Lip(RN ) ∩ Cc(RN ). (4.18)

For short, in the following computation, we denote by Hε := Hε(u1(x) − u2(y) + ερ(x, y)) and
H
′
ε := H

′
ε(u1(x)− u2(y) + ερ(x, y)). Using the chain rule in Lemma 7.5, we have
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I2(ε) =

∫
RN

∫
RN

Φ1

|Φ1|
(x)
(
∇xξHε +∇|Φ1|u1H

′
εξ + ε∇xρH

′
εξ
)

d|Φ1|(x)dy

=

∫
RN

∫
RN

Φ1

|Φ1|
(x)
(

(∇xξ +∇yξ)Hε + (∇|Φ1|u1 −∇u2(y))H
′
εξ + ε(∇xρ+∇yρ)H

′
εξ
)

d|Φ1|(x)dy

≥
∫
RN

∫
RN

Φ1

|Φ1|
(x) (∇xξ +∇yξ)Hεd|Φ1|(x)dy + ε

∫
RN

∫
RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)H

′
εξd|Φ1|(x)dy,

(4.19)
where, in the second equality, we used (4.18) and the fact that ξ ∈ C∞c (RN × RN ) as follows:∫

RN

∫
RN

Φ1

|Φ1|
(x)
(
∇yξHε −∇u2(y)H

′
εξ + ε∇yρH

′
εξ
)

d|Φ1|(x)dy

=

∫
RN

Φ1

|Φ1|
(x)

∫
RN

∇y (Hε(u1(x)− u2(y) + ερ(x, y))ξ(x, y)) dyd|Φ1|(x) = 0.

On the other hand,

ε

∫
RN

∫
RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)H

′
ε(u1(x)− u2(y) + ερ(x, y))ξd|Φ1|(x)dy

=

∫
RN

∫
RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)χ[−ερ≤u1(x)−u2(y)≤ε(1−ρ)]ξd|Φ1|(x)dy → 0.

(4.20)

Indeed, since Φ1 gives no mass on the set [u1 = u2(y)], for each y (using again Lemma 7.5 (ii),
the non-degeneracy of F and the definition of solution for (Pλ)),

Fε(y) :=

∫
RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)χ[−ερ≤u1(x)−u2(y)≤ε(1−ρ)]ξd|Φ1|(x)

→
∫
RN

Φ1

|Φ1|
(x)(∇xρ+∇yρ)χ[u1(x)=u2(y)]ξd|Φ1|(x) = 0;

and moreover,

|Fε(y)| ≤
∫
RN

|(∇xρ+∇yρ)|ξd|Φ1|(x) ∈ L1(RN ).

Using the Lebesgue Dominated Convergence Theorem gives (4.20). Next, by (4.19) and (4.20),

lim inf
ε

I2 ≥ −
∫
RN

∫
RN

| (∇xξ +∇yξ) |d|Φ1|(x)dy. (4.21)
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In the same way, we have

lim inf
ε

I3 ≥ −
∫
RN

∫
RN

| (∇xξ +∇yξ) |d|Φ2|(y)dx. (4.22)

Concerning I1(ε), we have the convergence in pointwise (x, y),

Hε(u1(x)− u2(y) + ερ(x, y))→ Sign+
0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)],

where

Sign+
0 (r) =

{
1 if r > 0

0 if r ≤ 0.

Since ν − µ ∈ L1, then

I1(ε)→
∫
RN

∫
RN

(θ1(x)− θ2(y))
(
Sign+

0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)]

)
ξ dxdy

−
∫
RN

∫
RN

((ν − µ)(x)− (ν − µ)(y))
(
Sign+

0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)]

)
ξ dxdy

≥
∫
RN

∫
RN

(θ1(x)− θ2(y))
(
Sign+

0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)]

)
ξ dxdy

−
∫
RN

∫
RN

|(ν − µ)(x)− (ν − µ)(y)|ξ(x, y) dxdy,

where we used the assumption 0 ≤ ρ(x, y) ≤ 1 and therefore

Sign+
0 (u1(x)− u2(y)) + ρ(x, y)χ[u1(x)=u2(y)] ≤ 1.

Now, by density, we can choose ρ(x, y) := Sign+
0 (θ1(x)− θ2(y)), so that

lim inf
ε

I1(ε) ≥
∫
RN

∫
RN

(θ1(x)− θ2(y))+ξ −
∫
RN

∫
RN

|(ν − µ)(x)− (ν − µ)(y)|ξ(x, y) dxdy.

Combining this with (4.17), (4.21) and (4.22), we obtain Lemma 4.3. �

5. OMK equation vs optimal active submeasures

5.1. Partial minimum flow problem. Recall that in the connection between balanced
MK problem and the Monge–Kantorovich equation the so called minimum flow problem is a key
ingredient. For the PMK problem, the definition of minimum flow problem, that we call here
the partial minimum flow problem, as well as its connection with the PMK problem are given in
the following proposition.
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Proposition 5.18 (Partial minimum flow problem). Let µ, ν ∈ M+
b (RN ) be compactly

supported. For any m ∈ [0,mmax], we have

min {K(σ) : σ ∈ πm(µ, ν)} = max
{
D(λ, u) : (λ, u) ∈ R+ × LλdF

}
= min


∫
RN

F

(
x,

Φ

|Φ|
(x)

)
d|Φ|(x) : (Φ, θ0, θ1) ∈ Ψm(µ, ν)

 ,

(5.1)
where

Ψm(µ, ν) :=
{

(Φ, θ0, θ1) ∈Mb(RN ;RN )×M+
b (RN )×M+

b (RN ) : θ0(RN ) = µ(RN )−m,

θ1(RN ) = ν(RN )−m and −∇ · Φ = ν − θ1 − (µ− θ0) in D′(RN )
}
.

The last minimization problem in (5.1) is called the partial minimum flow (PMF). We have
an immediate consequence.

Corollary 5.19. If (Φ, θ0, θ1) ∈ Ψm(µ, ν) is an optimal solution to the PMF problem and
θ0 ≤ µ, θ1 ≤ ν then ρ0 := µ − θ0 and ρ1 := ν − θ1 are optimal active submeasures of the PMK
problem. Conversely, if ρ0 and ρ1 are optimal active submeasures to the PMK problem then there
is a vector measure Φ such that (Φ, θ0, θ1) := (Φ, µ−ρ0, ν−ρ1) is a solution to the PMF problem.

Note that we do not have any constraints of type θ0 ≤ µ or θ1 ≤ ν in the definition of the
PMF problem. However, following Theorem 5.20 and Proposition 4.16, these constraints are
automatically satisfied for any optimal solutions (Φ, θ0, θ1) whenever m ∈ [(µ ∧ ν)(RN ),mmax].
The case m < (µ ∧ ν)(RN ) is not interesting for the optimal partial transport problem because
of the obviousness of solutions.

Proof of Proposition 5.18. The first equality has been shown in Theorem 2.4. Let us prove
the second equality. First, for any (λ, u) ∈ R+ × LλdF and a triplet (Φ, θ0, θ1) ∈ Ψm(µ, ν), using
Lemma 4.2, we have∫

RN

ud(ν − µ) + λ(m− ν(RN )) =

∫
RN

ud(ν − µ)− λ
∫
RN

dθ1

≤
∫
RN

ud(ν − µ) +

∫
RN

udθ0 −
∫
RN

udθ1

=

∫
RN

∇|Φ|u(x)
Φ

|Φ|
(x)d|Φ| ≤

∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|.

This shows that

max
{
D(λ, u) : (λ, u) ∈ R+ × LλdF

}
≤ inf


∫
RN

F

(
x,

Φ

|Φ|
(x)

)
d|Φ|(x) : (Φ, θ0, θ1) ∈ Ψm(µ, ν)

 .
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Now, let (ρ0, ρ1) be a couple of optimal active submeasures for the PMK problem w.r.t. m.
Thanks to Corollary 4.17, there exists Φ ∈Mb(RN ;RN ) such that −∇ · Φ = ρ1 − ρ0 and∫

RN

F (x,
Φ

|Φ|
(x))d|Φ| = sup

{ ∫
RN

ud(ρ1 − ρ0) : u ∈ LipdF , u ≥ 0
}

= min {K(σ) : σ ∈ πm(ρ0, ρ1)} .
Let us set

θ0 := µ− ρ0 and θ1 := ν − ρ1.

Then (Φ, θ0, θ1) ∈ Ψm(µ, ν) and∫
RN

F (x,
Φ

|Φ|
(x))d|Φ| = min {K(σ) : σ ∈ πm(ρ0, ρ1)} = max

{
D(λ, u) : (λ, u) ∈ R+ × LλdF

}
. �

5.2. Link between the OMK equation and the PMK problem. The connection be-
tween the OMK equation and the PMK problem appears when we deal with the extremal condi-
tion between the PMF problem and DPMK problem. Roughly speaking, the optimality condition
in the duality of the DPMK and PMF problems corresponds to (Pλ) for some λ.

Theorem 5.20. Let µ, ν ∈M+
b (RN ) be compactly supported.

(i) Given m ∈ [0,mmax] and a solution (Φ, θ0, θ1) to the PMF problem and (λ, u) is a solution to
the DPMK problem. Setting θ := θ1 − θ0, the triplet (θ,Φ, u) is a solution to the OMK equation
(Pλ). Moreover, θ+ = θ1 and θ− = θ0 if m ≥ (µ ∧ ν)(RN ).
(ii) Given λ ≥ 0 and (θ,Φ, u) a solution to the OMK equation (Pλ). Then (λ, u) is a solution
to the DPMK problem corresponding to m = (µ − θ−)(RN ) and (Φ, θ0, θ1) := (Φ, θ−, θ+) is a
solution to the associated PMF problem.

Proof. (i) From the optimality of (Φ, θ0, θ1) and of (λ, u), using Proposition 5.18, we have∫
RN

ud(ν − µ) + λ(m− ν(RN )) =

∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|,

or ∫
RN

ud(ν − µ) =

∫
RN

F (x,
Φ

|Φ|
(x))d|Φ|+ λ

∫
RN

dθ1.

Thanks to Proposition 4.13, we have that u and (Φ, θ0, θ1) are solutions for the duality (4.1).
Using Proposition 4.15, we have that (θ,Φ, u) is a solution to the OMK equation (Pλ). Now, let
us show that θ+ = θ1 and θ− = θ0 for the case m ≥ (µ ∧ ν)(RN ). We divide into two cases:
If m = (µ ∧ ν)(RN ), then the total cost of the associated optimal partial transport problem is
zero. This implies that Φ ≡ 0 and θ := θ1− θ0 = ν −µ = ν −µ∧ ν − (µ−µ∧ ν). By the Jordan
decomposition, we have

θ+ = ν − µ ∧ ν ≤ θ1 and θ− = µ− µ ∧ ν ≤ θ0.

Using the constraints on the total mass of θ0 and of θ1, we obtain

θ+ = ν − µ ∧ ν = θ1 and θ− = µ− µ ∧ ν = θ0.
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If m > (µ ∧ ν)(RN ) then λ > 0 and the conclusion follows from Proposition 4.15.
(ii) The proof is similar as the one of Proposition 4.15 (ii) with the use of the duality (5.1). �

We are now ready to give the proof of the connection between optimal active submeasures
and solutions θ of the OMK equation.

Proof of Theorem 2.8. First, let θλ be a solution of the OMK equation (Pλ). Thanks to
Proposition 4.16, 0 ≤ µ − θ−λ ≤ µ and 0 ≤ ν − θ+

λ ≤ ν. Then, using Theorem 5.20 (ii) and
Corollary 5.19, we deduce that ρ0 := µ− θ−λ and ρ1 := ν − θ+

λ are optimal active submeasures.
Conversely, let m ∈ [(µ∧ ν)(RN ),mmax] and (ρ0, ρ1) be a couple of optimal active submeasures.
Let (λm, um) be a solution of the DPMK problem. Thanks to Corollary 5.19, there exists a flow
Φ such that (Φ, µ− ρ0, ν − ρ1) is a solution of the corresponding PMF problem. And, thanks to
Theorem 5.20 (i), θλm := ν − ρ1 − µ+ ρ0 is a solution of the OMK equation (Pλm) and

θ+
λm

= ν − ρ1, θ
−
λm

= µ− ρ0. �

Thanks to the above connection, let us give the proof of the uniqueness of optimal active
submeasures by using the result of the OMK equation.

Proof of Corollary 2.9. Assume that (ρ0, ρ1) and (η0, η1) ∈ Subm(µ, ν) are two pairs of op-
timal active submeasures. We will show that ρ0 = η0 and ρ1 = η1. Let λm ≥ 0 be fixed such
that

λm ∈ arg max
λ≥0

{
max
u

{
D(λ, u) : u ∈ LλdF

}}
.

Let θ1, θ2 be Lebesgue functions with negative and positive parts defined by

θ+
1 = ν − ρ1, θ

−
1 = µ− ρ0,

and θ+
2 = ν − η1, θ

−
2 = µ− η0.

Thanks to Theorem 2.8, θ1 and θ2 are solutions to the same OMK equation (Pλm). So, using the
uniqueness in Theorem 2.7, we deduce that θ1 = θ2 and that θ−1 = θ−2 , θ+

1 = θ+
2 . This implies

that ρ0 = η0 and ρ1 = η1. �

6. Monotonicity

In order to study the maps m and R defined in Section 2, we study the monotone and
continuous dependence of the solution θλ of the OMK equation (Pλ) on the parameter λ.

Proposition 6.21 (Monotonicity and continuity of θλ). Let µ, ν ∈ M+
b (RN ) be compactly

supported and absolutely continuous. Let (θλ,Φλ, uλ) be a solution to the OMK equation (Pλ).
(i) Let 0 ≤ λ1 ≤ λ2 and θλ1 , θλ2 be solutions to the OMK equations (Pλ1) and (Pλ2), respectively.
Then

θ+
λ1
≥ θ+

λ2
and θ−λ1 ≥ θ

−
λ2
.

(ii) If a nonnegative sequence λn → λ then θλn → θλ strongly in L1(RN ).



OPTIMAL PARTIAL MASS TRANSPORTATION AND OMK EQUATION 29

Lemma 6.4 (Monotonicity of total mass). For any λ ≥ 0, let θλ be the solution of the OMK
equation (Pλ) and mλ := (µ− θ−λ )(RN ) = (ν − θ+

λ )(RN ). If 0 ≤ λ1 ≤ λ2 then

(µ ∧ ν)(RN ) ≤mλ1 ≤mλ2 ≤mmax.

Proof. Thanks to Proposition 4.16, we see that µ∧ν ≤ µ−θ−λ and therefore (µ∧ν)(RN ) ≤mλ.
Since µ− θ−λ ≤ µ and ν − θ+

λ ≤ ν, we have mλ ≤mmax. For the monotonicity, due to Theorem
5.20, (λ1, uλ1) and (λ2, uλ2) are solutions to the DPMK problem w.r.t. mλ1 and mλ2 . By
optimality, we have∫

uλ1d(ν − µ) + λ1(mλ1 − ν(RN )) ≥
∫
uλ2d(ν − µ) + λ2(mλ1 − ν(RN )),

and ∫
uλ2d(ν − µ) + λ2(mλ2 − ν(RN )) ≥

∫
uλ1d(ν − µ) + λ1(mλ2 − ν(RN )).

Adding both sides, we obtain

λ1mλ1 + λ2mλ2 ≥ λ2mλ1 + λ1mλ2 ,

or
(λ2 − λ1)(mλ2 −mλ1) ≥ 0. �

To prove Proposition 6.21, we use the following result whose proof is given in [12].

Theorem 6.22. ([12, Theorem 3.4]) Let Γm
opt be the set of optimal transport plans of the

mass m ≥ 0. There is a curve m ∈ [0,min{‖µ‖L1 , ‖ν‖L1}] −→ γm ∈ Γm
opt along which the left

and right marginals γm+ε dominate those of γm whenever ε > 0.

Proof of Proposition 6.21. (i) Set mi := mλi ≥ (µ ∧ ν)(RN ), i = 1, 2. Since λ1 ≤ λ2 and
Lemma 6.4, we have m1 ≤ m2. Thanks to Theorem 6.22, there exist pairs of optimal active
submeasures (ρλi0 , ρ

λi
1 ) corresponding to the mass mi, i = 1, 2, such that

ρλ10 ≤ ρ
λ2
0 and ρλ11 ≤ ρ

λ2
1 . (6.1)

By Theorem 5.20 (ii), (λ1, uλ1) is a solution to the DPMK with mass m1. Setting θ := ν−ρλ11 −
µ+ ρλ10 . By Theorem 5.20 (i), there is Φ such that (θ,Φ, uλ1) is a solution to the OMK equation
(Pλ1). Due to the uniqueness in Theorem 2.7, we get

θλ1 ≡ θ = ν − ρλ11 − µ+ ρλ10 .

Following the proof of Theorem 2.8, we obtain

θ−λ1 = µ− ρλ10 and θ+
λ1

= ν − ρλ11 .

In the same way, we have
θ−λ2 = µ− ρλ20 and θ+

λ2
= ν − ρλ21 .

Combining these with (6.1), we get θ−λ1 ≥ θ
−
λ2

and θ+
λ1
≥ θ+

λ2
.

(ii) Since θ−λn ≤ µ, θ
+
λn
≤ ν as in Proposition 4.16, we have that |θλn | ≤ µ+ ν ∈ L1 and therefore

{θλn} is equi-integrable. By Dunford–Pettis theorem, up to a subsequence, θλn converges weakly
to some θ ∈ L1(RN ). Now, let us show that θ is a solution of the OMK equation (Pλ). Once this
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is done, by the uniqueness in Theorem 2.7, we deduce that θ ≡ θλ and thus the whole sequence
θλn → θλ weakly in L1(RN ). By the non-degeneracy of F and the definition of solution for the
OMK equation (Pλn), it is clear that {uλn} is bounded and equi-Lipschitz; and that {Φλn} is
bounded inMb(RN ;RN ). So, up to subsequence,

uλn → u uniformly on each compact subset of RN ,

and
Φλn → Φ weakly* inMb(RN ;RN ).

Let us show that (θ,Φ, u) is a solution to the OMK equation (Pλ). First, it is clear that u ∈ LλdF ,∫
udθ− = lim

λn→λ

∫
uλn dθ−λn = 0,

and ∫
(u− λ) dθ+ = lim

λn→λ

∫
(uλn − λn) dθ+

λn
= 0.

Moreover,∫
ξ dθ +

∫
Φ

|Φ|
∇ξ d|Φ| = lim

λn→λ

∫
ξ dθλn +

∫
Φλn

|Φλn |
∇ξ d|Φλn | =

∫
ξd(ν − µ) ∀ξ ∈ C∞c (RN ),

which implies that
θ −∇ · Φ = ν − µ in D′(RN ).

It remains to check that
Φ

|Φ|
(x)∇|Φ|u(x) = F (x,

Φ

|Φ|
(x)), |Φ|-a.e. x in RN . Thanks to Lemma

4.2, this is equivalent to ∫
RN

F (x,
Φ

|Φ|
(x))d|Φ| ≤

∫
RN

Φ

|Φ|
(x)∇|Φ|u(x)d|Φ|. (6.2)

Since Φλn → Φ weakly* inMb(RN ;RN ), we have (see e.g. [2, Theorem 2.38])∫
RN

F (x,
Φ

|Φ|
(x))d|Φ| ≤ lim inf

λn→λ

∫
RN

F (x,
Φλn

|Φλn |
(x))d|Φλn |. (6.3)

On the other hand,

lim
λn→λ

∫
RN

F (x,
Φλn

|Φλn |
(x))d|Φλn | = lim

λn→λ

∫
Φλn

|Φλn |
∇|Φλn |uλnd|Φλn |

= lim
λn→λ

∫
uλn d(ν − µ) +

∫
uλndθλn

=

∫
ud(ν − µ) +

∫
udθ =

∫
Φ

|Φ|
(x)∇|Φ|u(x)d|Φ|.

(6.4)

From (6.3) and (6.4), we deduce (6.2). We have just proved that θλn → θλ weakly in L1(RN ).
At last, by the monotonicity of the first part, we deduce the strong convergence in L1(RN ). �
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Proof of Theorem 2.10. The fact that mλ ∈ [(µ ∧ ν)(RN ),mmax] and the monotonicity of
mλ are given in Lemma 6.4 while the continuity of mλ follows from the continuity of θλ. Let
us show the surjectivity of mλ. Fix any m ∈ [(µ ∧ ν)(RN ),mmax]. Let (ρ0, ρ1) be a couple of
optimal active submeasures w.r.t. m. Taking λ := λm as in Theorem 2.8 (ii), then mλ = m.
Now, for the properties of R, the proof follows again from Theorem 2.8 and Proposition 6.21. �

7. Appendix

In this section, we prove a chain rule for the tangential gradient which was used in the paper.

Lemma 7.5 (Chain rule for the tangential gradient). Let η ∈M+
b (RN ) and u be a Lipschitz

continuous function defined on RN . Let G be a Lipschitz continuous function on R such that the
set of non-differentiable points of G is finite. Then

∇ηG(u)(x) = G
′
(u(x))∇ηu(x), for η-a.e. x, (7.1)

where G
′
(u(x)) is the usual derivative with convention G

′
(u(x))∇ηu(x) = 0 if ∇ηu(x) = 0 even

G is not differentiable at u(x). In particular, we have
(i) ∇ηu+ = χ[u>0]∇ηu and ∇ηu− = −χ[u<0]∇ηu, η-a.e. in RN ;
(ii) ∇ηu = 0, η-a.e. on the set [u = c] := {x ∈ RN : u(x) = c} for any constant c ∈ R.

Proof. 1. Let us first assume that G is continuously differentiable. To prove (7.1), it is enough
to show that ∫

RN

∇ηG(u) · Φ dη =

∫
RN

G
′
(u)∇ηu · Φ dη,

for every Φ ∈ L1
η(RN ;RN ) such that Φ(x) ∈ Tη(x) , η-a.e. x ∈ RN , where Tη(x) is the tangential

space w.r.t. η (see [10,11,25]). Let uε ∈ C∞(RN ) be the regularization of u by convolution.
Since u and G are Lipschitz, we have that uε and G ◦ uε converge uniformly to u and G ◦ u on
R, respectively. Thus (see e.g. [25, Proposition 4.5]) ∇ηuε and ∇ηG(uε) converge to ∇ηu and
∇ηG(u) in L∞η (RN ;RN )-w*, respectively. Since Φ(x) ∈ Tη(x) , η-a.e. x ∈ RN , we have∫

RN

∇ηG(u) · Φ dη = lim
ε→0

∫
RN

∇ηG(uε) · Φ dη

= lim
ε→0

∫
RN

∇G(uε) · Φ dη

= lim
ε→0

∫
RN

G
′
(uε)∇uε · Φ dη

= lim
ε→0

∫
RN

G
′
(uε)∇ηuε · Φ dη =

∫
RN

G
′
(u)∇ηu · Φ dη.

This gives the result (7.1) whenever G is continuously differentiable by taking

Φ = ∇ηG(u)−G′(u)∇ηu.
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For (i), consider the function Gε(r) :=

{√
r2 + ε2 − ε if r > 0

0 if r ≤ 0
. Then Gε is continuously

differentiable and Lipschitz on R. Thus we have∫
RN

∇ηGε(u) · Φ dη =

∫
RN

G
′
ε(u)∇ηu · Φ dη =

∫
{[u>0]}

u√
u2 + ε2

∇ηu · Φ dη

for every Φ ∈ L1
η(RN ;RN ) such that Φ(x) ∈ Tη(x) for η-a.e. x. Letting ε→ 0, we obtain∫

RN

∇ηu+.Φ dη =

∫
{[u>0]}

∇ηu.Φ dη =

∫
RN

χ[u>0]∇ηu.Φ dη.

The proof of the positive part ends up by choosing Φ := ∇ηu+ − χ[u>0]∇ηu. A similar proof is
done for the negative part. For (ii), we can assume that c = 0. The proof follows from

∇ηu = ∇ηu+ −∇ηu−.
2. Now, let us deal with a general Lipschitz function G satisfying our assumptions. Let us call
{r1, r2, ..., rn} the set of non-differentiable points of G and set open subsets Ωi := u−1(R \ {ri})

and Ω :=
n⋂
i=1

Ωi. In this case, since u is a constant on the set RN \ Ωi, i = 1, ..., n, we have

∇ηG(u)(x) = G
′
(u(x))∇ηu(x) = 0 for η-a.e. x ∈ RN \ Ωi, i = 1, ..., n.

It remains to verify that

∇ηG(u)(x) = G
′
(u(x))∇ηu(x) for η-a.e. x ∈ Ω. (7.2)

Let us assume that Ω 6= ∅ (if not, there is nothing to prove). Let Gε be a smooth approximation
of G by convolution. Let Φ ∈ L1

η(RN ;RN ) be such that Φ(x) = 0 for η-a.e. x in RN \Ω. Then∫
RN

∇ηG(u)Φdη = lim
ε→0

∫
RN

∇ηGε(u)Φdη

= lim
ε→0

∫
RN

G
′
ε(u)∇ηuΦdη

= lim
ε→0

∫
Ω

G
′
ε(u)∇ηuΦdη (since Φ(x) = 0, η-a.e. x in RN \ Ω)

=

∫
Ω

G
′
(u)∇ηuΦdη,

where we used the Lebesgue Dominated Convergence Theorem. Next, choosing

Φ = ∇ηG(u)−G′(u)∇ηu
as a test function, we obtain (7.2). �
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