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Introduction

Let H be a separable Hilbert space (possibly infinite dimensional). We are interested in the following minimization problem :

min x∈H F (x) (M)
where F = f + g : H -→ R = R ∪ {+∞}, with :

H.1 f a convex function in C 1,1 (H) with L-Lipschitz gradient H.2 g a convex, l.s.c. proper function (possibly non-smooth)

H.3 F is coercive

Under the conditions , it is clear that the minimization problem (M) admits a solution. In what follows we will consider the conditions as guaranteed and we will note x * ∈ H a minimizer of F .

In order to solve the problem (M), several algorithms have been proposed based on the use of the proximal operator due to the non differentiable part . One of the basics is the Forward-Backward algorithm (FB), which consists in obtaining the new iterate by evaluating the proximal operator of g on the previous point, i.e. : For x 0 ∈ H and 0 < γ < 2L , for all n ≥ 1 we define1 

x n+1 = Prox γg (x n -γ∇f (x n )) (1.1)
The FB turns out to be a descent algorithm with a rate of convergence of the objective function F (x n ) -F (x * ) ≤ C n , ∀n ≥ 1 and C > 0 a positive constant. It was also proven that the generated iterates weakly converge to a minimizer x * . In the seminal work of Nesterov in [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o (1/k2)[END_REF], it was shown that considering -not to the previous but-a relaxed version of the two previous iterations, can lead to some significant fast convergence properties for the trajectories generated. These ideas are further developed in the semi-differential case (where g is not necessarily differentiable) in [START_REF] Güler | New proximal point algorithms for convex minimization[END_REF] and notably in [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. The basic scheme of these algorithms is the following :

Given x 0 = y 0 ∈ H, {a n } n∈N a positive sequence, such that a n 1 and 0 < γ < 2 L , for all n ≥ 1, define

x n = Prox γg (y n-1 -γ∇f (y n-1 ))

y n = x n + a n (x n -x n-1 ) (1.2)
There is a vast literature concerning the study of this type of inertial FB algorithms ( to name but a few, we address the reader to [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o (1/k2)[END_REF], [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF], [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF], [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF], [START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: theory and insights[END_REF]).

The basic idea behind the sequence {a n } n∈N is that it can be written as a n = sn-1 sn+1 , where {t n } n∈N , is a sequence that verifies Nesterov's rule, i.e. :

s 2 n + s n+1 -s 2 n+1 ≥ 0 ∀n ∈ N (NR)
It has been shown ( see for example [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate o (1/k2)[END_REF], [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF], [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF] ) that if the relation (NR) hold true, then one can obtain a better convergence rate towards the minimum, i.e.

F (x n ) -F (x * ) ≤ C n 2 , ∀n ≥ 1 where C > 0 is a positive constant.
A choice of a particular interest for the sequence {a n } n∈N , is when a n = n n+b for all n ≥ 1 ( this corresponds to

s n = n+b-1 b-1
), where b > 1. With this choice, Nesterov's rule (NR) is equivalent to considering b ≥ 3. Nevertheless, in [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF] ( see also [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF] ) the authors show that by assuming that b > 3, one can additionally expect the weak convergence of the iterates {x n } n∈N generated by i-FB, to a minimizer x * of F . In addition in [START_REF] Attouch | The rate of convergence of nesterov's accelerated forwardbackward method is actually faster than 1/kˆ2[END_REF] the authors show that by taking b > 3 can asymptotically increase the rate of convergence of

F (x n ) -F (x * ) to a o n -2 .
In this paper we study the case of i-FB algorithm where a n = n n+b for all n ≥ 1, with b ∈ (0, 3), which means that the Nesterov's rule (NR) is not satisfied. 2 In particular we deduce some relatively fast convergence rate for the objective function F (x n ) -F (x * ), as also for the local variation of the iterates x n -x n-1 . The exact estimate bounds that we find for these quantities, for b ∈ (0, 3), are the following (see Corollary 3.2) :

F (x n ) -F (x * ) ≤ C (n + b -1) 2b 3 and x n -x n-1 ≤ C (n + b -1) b 3 (1.3)
for all n ≥ 1, where C > 0 is a positive constant.

In addition we deduce "almost" the same convergence properties, in the perturbed case, where every iterate is inexactly calculated by some error parameters, under some control hypotheses over these errors (see Corollary 4.1 and Remark 1). This work consists a discrete time counterpart of the continuous one made recently in [START_REF] Aujol | Optimal rate of convergence of an ode associated to the fast gradient descent schemes for b > 0[END_REF] and it will provide us a useful guide for our study.

The paper is organized as follows. In section 2, we give the basic definitions and tools necessary for our analysis. In the third section we study the convergence rates for a special choice of over-relaxation terms for the i-FB algorithm. Finally in section 4 we present the same type of analysis for the inexact i-FB algorithm, where every new iterate of the algorithm is inexactly calculated with the presence of some errors.

Definitions and basic notions

Given a function G : H → R, we define its subdifferential, as the multi-valued operator ∂G : H → 2 H , such that for all x ∈ H :

∂G(x) = {z ∈ H : ∀y ∈ H, G(x) ≤ G(y) + z, x -y }
We also recall the definition of the proximal operator which is the basic tool for i-FB algorithm. If G is a lower semi-continuous, proper and convex function, the proximal operator of G is the operator Prox G H -→ R, such that :

Prox G (x) = arg min y∈H {G(y) + x -y 2 2 } , ∀x ∈ H (2.1)
Here we must point out that the proximal operator is well-defined, since by the hypothesis made on G, for every x ∈ H, the strongly convex function y → G(y)

+ x-y 2 2
, admits a unique minimizer. Equivalently the proximal operator can be also seen as the resolvent of the maximal monotone operator ∂G, i.e. for all x ∈ H and γ a positive parameter we have that :

P rox γG (x) = (Id + γ∂G) -1 (x) (2.2)
For a detailed study concerning the subdifferential and the proximal operator and their properties, we address the reader to [START_REF] Heinz | Convex analysis and monotone operator theory in Hilbert spaces[END_REF].

Convergence analysis for i-FB

In this section we present the results concerning the convergence analysis of the i-FB algorithm with a special choice of the over-relaxation terms.

Firstly we recall the i-FB algorithm as the one considered in [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF] :

Algorithm 1 i-FB Let 0 < γ < 1
L and b ∈ (0, 3). We consider the sequences {a n } n∈N * , {x n } n∈N , {y n } n∈N , such that x 0 = y 0 ∈ H, and for every n ∈ N * we set :

x n = T (y n-1 )

(3.1)

y n = x n + a n (x n -x n-1 ) with a n = n n + b (3.2)
where T (x) = P rox γg (x -γ∇f (x))

We also consider the following sequences : {t n } n∈N * , {δ n } n∈N * , {w n } n∈N and {E n } n∈N such that :

t n = n + b -1 (3.4) δ n = x n -x n-1 2 
(3.5)

w n = F (x n ) -F (x * ) (3.6)
In addition for λ > 0 and ξ > 0, we define the sequences {v n } n∈N and {E n } n∈N * , such that for all n ≥ 1 :

v n = 1 2 λ(x n-1 -x * ) + t n (x n -x n-1 ) 2 (3.7) E n = t 2 n w n + 1 2γ λ(x n-1 -x * ) + t n (x n -x n-1 ) 2 =vn + ξ 2γ x n-1 -x * 2 (3.8)
The sequence {E n } n∈N was used implicitly for the study of i-FB algorithm in numerous articles (see for example [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF], [START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: theory and insights[END_REF] and [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF]). Although it was introduced explicitly in [START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: theory and insights[END_REF] and [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF], as an energy function associated to the dynamical system corresponding to i-FB algorithm, which is the following :

ẍ(t) + b t ẋ(t) + ∇F (x(t)) = 0 (3.9)
In these works it has been shown that for higher values of parameter b which are greater than 3, the sequence {E n } n∈N is non-increasing. This leads to some fast convergence properties of the sequence {w n } n∈N as also to convergence of the generated sequence {x n } n∈N to a minimizer ( see for example [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF], [START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: theory and insights[END_REF] and [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF]). As also pointed out, the value of b = 3 ( which corresponds to the Nesterov's accelerated algorithm ) seems critical for this non-increasing property of {E n } n∈N . More precisely the following Theorem holds : Theorem 3.1 (Su and al. [START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: theory and insights[END_REF]). Let 0 < γ ≤ 1 L , b ≥ 3 and {x n } n∈N the sequence generated by i-FB. Then for λ = b -1 and ξ = 0 the sequence {E n } n∈N is non-increasing.

Corollary 3.1. Let 0 < γ ≤ 1
L , b ≥ 3 and {x n } n∈N the sequence generated by i-FB.Then there exists a constant C > 0 such that for all n ≥ 1, it holds :

w n ≤ C (n + b -1) 2 (3.10)
Our study focus on the convergence rates of the objective sequence {w n } n∈N for small values of b. More precisely we show that for b ∈ (0, 3), one can still obtain some relatively fast convergence rate for {w n } n∈N despite the fact that the energy-sequence {E n } n∈N is not necessarily non-increasing. We now give the main result of this paper.

Theorem 3.2. Let 0 < γ ≤ 1
L , b ∈ (0, 3) and {x n } n∈N the sequence generated by i-FB. Then for λ = 2b 3 and ξ = 4b 2 9 , there exists a constant C > 0, such that for all n ≥ 1, it holds :

E n ≤ C(n + b -1) 2(3-b) 3 (3.11) Corollary 3.2.
Under the hypotheses of Theorem 3.2, there exists a constant C > 0 such that for all n ≥ 1, we have :

F (x n ) -F (x * ) ≤ C (n + b -1) 2b 3 and x n -x n-1 ≤ C (n + b -1) b 3 (3.12)
The strategy of the proof is the following. Firstly we study the local variation of the sequence {E n } n∈N ( i.e. the difference E n+1 -E n ). Using some Lyapunov-type analysis, for some suitable choices of parameters λ > 0 and ξ > 0, we are able to control the growth of {E n } n∈N up to a suitable order. Once this control-estimate is proven, an application of a discrete version of Gronwall's lemma ( see Lemma A.1 in Appendix ) will provide the bound for the sequence {E n } n∈N as given on Theorem 3.2.

For the proof of Theorem 3.2 we also make use of the following lemma (see Lemma 1, in [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF]) :

Lemma 3.1. For any y ∈ H and 0 < γ ≤ 1 L we have that for every x ∈ H :

2γ(F (x) -F (T (y))) ≥ T (y) -x 2 -y -x 2 (3.13)
In order to prove the assertion of Theorem 3.2, we will use the next Lemma which shows the controlorder of the growth of

{E n } n∈N . Lemma 3.2. Let 0 < γ ≤ 1
L , b ∈ (0, 3) and {x n } n∈N the sequence generated by i-FB. Then for all n ≥ 1, the following recursive formula holds :

E n+1 -E n ≤ a (n + b -1) 2 + c (n + b -1) E n (3.14)
where a = Due to the technical details of the proof of Lemma 3.2, we will first present a sketch of it in order to give a better insight.

1. We start by investigating the local variation of the sequence {E n } n≥1 . By using Lemma 3.1 and performing some algebraic computations we obtain a relation of the following form :

2γ(E n+1 -E n ) ≤ 2γα n,λ,ξ w n + β n,λ,ξ δ n + γ n,λ,ξ x n -x n-1 , x n-1 -x * (3.15)
At this point, in order to prove Theorem 3.1 it is sufficient to choose suitable values for λ and ξ in order to show that γ n,λ,ξ = 0 and α n,λ,ξ , β n,λ,ξ ≤ 0 for all n ≥ 1, under the supplementary hypothesis that b ≥ 3.

2.

Here instead we are interested in the case where b ∈ (0, 3) and α n,λ,ξ , β n,λ,ξ are not necessarily non-positive for all n ≥ 1. In that point we express E n in function of w n and δ n and we find a relation of the form :

2γ(E n+1 -E n ) ≤ 2γ c t n E n + R n,λ,ξ (3.16) 
3. Finally by some suitable values for λ and ξ we show that : R n,λ,ξ ≤ 2γ a

t 2 n E n
We now pass to a detailed presentation of this proof.

Proof. By applying Lemma (3.1) to y = y n and x = 1-λ tn+1 x n + λ tn+1 x * we obtain ( here λ ∈ (0, 1+b)):

2γ F 1- λ t n+1 x n + λ t n+1 x * -F (x n+1 ) ≥ x n+1 -x n + λ t n+1 (x n -x * ) 2 -a n (x n -x n-1 )+ λ t n+1 (x n -x * ) 2
(3.17) By using the convexity of F we obtain :

2γ 1- λ t n+1 F (x n )+ λ t n+1 F (x * )-F (x n+1 ) ≥ x n+1 -x n + λ t n+1 (x n -x * ) 2 -a n (x n -x n-1 )+ λ t n+1 (x n -x * ) 2
(3.18) By adding F (x * ) on both sides ,by definition of w n , we have :

2γ 1 - λ t n+1 w n -w n+1 ≥ x n+1 -x n + λ t n+1 (x n -x * ) 2 -a n (x n -x n-1 ) + λ t n+1 (x n -x * ) 2 (3.19) 
By multiplying both sides by t 2 n+1 , we obtain :

2γ (t 2 n+1 -λt n+1 )w n -t 2 n+1 w n+1 ≥ t n+1 (x n+1 -x n ) + λ(x n -x * ) 2 -n(x n -x n-1 ) + λ(x n -x * ) 2
(3.20) by adding t 2 n w n on both sides we obtain :

2γ k n+1 w n + t 2 n w n -t 2 n+1 w n+1 ≥ t n+1 (x n+1 -x n ) + λ(x n -x * ) 2 =vn+1 -n(x n -x n-1 ) + λ(x n -x * ) 2 (3.21) where k n+1 = t 2 n+1 -λt n+1 -t 2 n = (n + b) 2 -λ(n + b) -(n + b -1) 2 = n 2 + 2bn + b 2 -λn -λb -n 2 -2(b -1)n -b 2 + 2b -1 = (2 -λ)(n + b) -1 (3.22) So that : 2γ(t 2 n+1 w n+1 -t 2 n w n ) ≤ 2γk n+1 w n + n(x n -x n-1 ) + λ(x n -x * ) 2 -v n+1 (3.23)
Hence by using the last inequality and the identity

u -z 2 -v -z 2 = u -v 2 + 2 u -v, v -z ∀u, v, z ∈ H (PI)
and the definition of E n we have that :

2γ(E n+1 -E n ) = 2γ(t n+1 w n+1 -t n w n ) + v n+1 -v n + ξ x n -x * 2 -x n-1 -x * 2 (3.23) ≤ 2γk n+1 w n + n(x n -x n-1 ) + λ(x n -x * ) 2 -t n (x n -x n-1 ) + λ(x n-1 -x * ) 2 + ξ x n -x * 2 -x n-1 -x * 2 (PI)z = λx * = 2γk n+1 w n + (λ + 1 -b) 2 x n -x n-1 2 + 2(λ + 1 -b) x n -x n-1 , t n (x n -x n-1 ) + λ(x n-1 -x * ) (PI)z = x * + ξ x n -x n-1 2 + 2ξ x n -x n-1 , x n-1 -x * = 2γk n+1 w n + (λ + 1 -b) 2 + ξ + 2(λ + 1 -b)t n x n -x n-1 2 + 2 λ(λ + 1 -b) + ξ x n -x n-1 , x n-1 -x * (3.
24) By definition of E n we also have

2γE n = 2γt 2 n w n + (λ 2 + ξ) x n-1 -x * 2 + t 2 n x n -x n-1 2 + 2λt n x n -x n-1 , x n-1 -x * (3.25) so that t n x n -x n-1 2 = 2γ t n E n -2γt n w n - (λ 2 + ξ) t n x n-1 -x * 2 -2λ x n -x n-1 , x n-1 -x * (3.26)
By injecting this last equality into (3.24), we find :

2γ(E n+1 -E n ) ≤ 2γ k n+1 -2(λ + 1 -b)t n w n + (λ + 1 -b) 2 + ξ x n -x n-1 2 - 2(λ + 1 -b)(λ 2 + ξ) t n x n-1 -x * 2 + 2 ξ -λ(λ + 1 -b) x n -x n-1 , x n-1 -x * + 2γ 2(λ + 1 -b) t n E n
(3.27) By choosing ξ = λ(λ + 1 -b), we obtain :

2γ(E n+1 -E n ) ≤ 2γ k n+1 -2(λ + 1 -b)t n w n + (λ + 1 -b)(2λ + 1 -b) x n -x n-1 2 -2 λ(λ + 1 -b)(2λ + 1 -b) t n x n-1 -x * 2 + 2γ 2(λ + 1 -b) t n E n (3.28)
By definition of k n+1 (3.22), we obtain :

2γ(E n+1 -E n ) ≤ 2γ (2 -λ)(n + b) -1 -2(λ + 1 -b)t n w n + (λ + 1 -b)(2λ + 1 -b) x n -x n-1 2 -2 λ(λ + 1 -b)(2λ + 1 -b) t n x n-1 -x * 2 + 2γ 2(λ + 1 -b) t n E n = 2γ 2b -3λ (n + b)w n + 2γ(2(λ -b) + 1)w n + (λ + 1 -b)(2λ + 1 -b) x n -x n-1 2 -2 λ(λ + 1 -b)(2λ + 1 -b) t n x n-1 -x * 2 + 2γ 2(λ + 1 -b) t n E n (3.29) By choosing λ = 2b
3 , we find :

2γ(E n+1 -E n ) ≤ 2γ (3 -2b) 3 w n + (3 -b)(3 + b) 9 x n -x n-1 2 -2 2b(3 -b)(3 + b) 27t n x n-1 -x * 2 + 2γ 2(3 -b) 3(n + b -1)
E n (3.30) In this point, firstly we express the term x n -x n-1

2 with the aid of E n and w n and then we regroup the different terms.

From the inequality

α 2 ≤ 2 α + β 2 + 2 β 2 , ∀α, β ∈ H
and the definition of E n , we have ( for α = t n (x n -x n-1 ) and β = λ(x n-1 -x * ) ) we find :

2γE n ≥ 2γt 2 n w n + t 2 n 2 x n -x n-1 2 + (ξ -λ 2 ) x n-1 -x * 2 (ξ = λ(λ + 1 -b)) = 2γt 2 n w n + t 2 n 2 x n -x n-1 2 -λ(b -1) x n-1 -x * 2 (3.31)
Therefore, we obtain

x n -x n-1 2 ≤ 2γ 2 t 2 n E n -4γw n + 2λ(b -1) t 2 n x n-1 -x * 2 (3.32)
By injecting the inequality (3.32) into (3.27), we obtain :

2γ(E n+1 -E n ) ≤ 2γ 3 -2b 3 -2 (3 -b)(3 + b) 9 w n + 2 2b(3 -b)(3 + b) 27 b -1 t 2 n - 1 t n x n-1 -x * 2 + 2γ 2(3 -b)(3 + b) 9t 2 n E n + 2γ 2(3 -b) 3(n + b -1)
E n (3.33) Therefore we have :

2γ(E n+1 -E n ) ≤ 2γ (2b 2 -6b -9) 9 w n - 2b(3 -b)(b + 3)n 27(n + b -1) 2 x n-1 -x * 2 + 2γ 2(3 -b)(b + 3) 9(n + b -1) 2 E n + 2γ 2(3 -b) 3(n + b -1) E n = 2γB 1 w n + -B 2 n x n-1 -x * 2 (n + b -1) 2 + 2γa (n + b -1) 2 E n + 2γc n + b -1 E n (3.34)
where :

B 1 = 2b 2 -6b -9 9 < 0 , ∀b ∈ (0, 3) B 2 = 2b(3 -b)(b + 3) 27 > 0 , ∀b ∈ (0, 3) a = 2(3 -b)(b + 3) 9 > 0 , ∀b ∈ (0, 3) c = 2(3 -b) 3 > 0 , ∀b ∈ (0, 3)
Hence it follows that for all n ≥ 1 : .

E n+1 -E n ≤ a (n + b -1) 2 E n + c (n + b -1) E n ( 3 
We are now ready to give the proof of Theorem 3.2, by using the estimation (3.14) of Lemma 3.2 and a discretized version of Gronwall's Lemma (see Lemma A.1).

Proof of Theorem 3.2.

From Lemma 3.2 for all n ≥ 1, we have : . By summing (3.36) over n, we find that for all n ≥ 1 it holds :

E n+1 -E n ≤ a (n + b -1) 2 E n + c (n + b -1) E n (3.36) with a = 2(3-b)(b+3)
E n+1 ≤ E 1 + n i=1 a i + c E i i (3.37)
where for ease of notation we denote as i the quantity i + b -1. By applying Lemma A.1, for all n ≥ 1 we find :

E n+1 ≤ E 1 n i=1 1 + c i + a i 2 = E 1 e n i=1 log 1+ c i + a i 2 (3.38) The function G(x) = log 1 + c x + a x 2
is positive and non-increasing in [1, +∞), therefore by summation-integral comparison test for all n ≥ 1, we have :

n i=1 G(i) ≤ G(1) + n 2 G(x)dx = log(1 + c + a) + n 2 log 1 + c x + a x 2 dx (3.39)
By standard integration techniques, for all n ≥ 1 we find :

n 2 log 1 + c x + a x 2 dx = n log 1 + c n + a n 2 + n 2 cx + 2a x 2 + cx + a dx + A = n log 1 + c n + a n 2 + c 2 n 2 2x + c x 2 + cx + a dx + 2a - c 2 2 n 2 1 x 2 + cx + a dx + A = n log 1 + c n + a n 2 + c 2 log(n 2 + cn + a) + 1 2 n 2 dx 2x+c √ 4a-c 2 2 + 1 + A = c 2 log(n 2 + cn + a) + n log 1 + c n + a n 2 + 4a -c 2 arctan 2n + c √ 4a -c 2 + A (3.40)
where A > 0 is a renamed constant at each step. Here we stress out that every step is justified, since 4a > c 2 . As the function arctan is bounded for all n ≥ 1, we obtain :

n 2 log 1 + c x + a x 2 dx ≤ c 2 log(n 2 + cn + a) + n log 1 + c n + a n 2 + A (3.41) 
where A > 0 is a (renamed) constant which can be chosen positive. By injecting this last inequality into (3.39), for all n ≥ 1, we have

n i=1 G(i) ≤ log(1 + c + a) + c 2 log(n 2 + cn + a) + n log 1 + c n + a n 2 + A ≤ log(1 + c + a) + c 2 log((1 + a + c)n 2 ) + n log 1 + c n + a n 2 + A = 2 log(1 + a + c) + log(n c ) + log 1 + c + a n n n + A (3.42) 
By injecting the last inequality into (3.38), for all n ≥ 1, we obtain :

E n+1 ≤ E 1 2(1 + a + c)A 1 + c + a n n n n c ≤ Cn c (3.43) for a positive constant C > 0, since 1 + c+ a n n n
is bounded, as a convergent sequence ( such a bound is for example e c+a ). This concludes the proof of Theorem 3.2 up to substituting n by n + b -1.

The perturbed case

In many cases the calculation of the proximal operator is not exact In this section we present i-FB algorithm in presence of some error parameters as the ones considered in [START_REF] Aujol | Stability of over-relaxations for the forward-backward algorithm, application to fista[END_REF] [14], [START_REF] Villa | Accelerated and inexact forward-backward algorithms[END_REF], [START_REF] Patrick | Signal recovery by proximal forward-backward splitting[END_REF]. In what follows we keep the same notations as in the unperturbed case for the different sequences.

Inexact computations of the proximal point

In this section, we introduce the different notions used to approximate a proximal operator in this work.

As recalled in the first section, if F is a proper, convex and l.s.c function and γ > 0, we can define the proximal map Prox γF by Prox γF (y) = arg min

x∈H F (x) + 1 2γ x -y 2 (4.1) 
Let us denote by

G γ (x) = F (x) + 1 2γ x -y 2 . (4.2) 
The first order optimality condition for a convex minimum problem yields

z = Prox γF (y) ⇐⇒ 0 ∈ ∂G γ (z) ⇐⇒ y -z γ ∈ ∂F (z) (4.3) 
We now introduce the notion of ε-subdifferential of F at the point z ∈ domF as:

∂ ε F (z) = {y ∈ H | F (x) ≥ F (z) + x -z, y -ε, ∀x ∈ H} (4.4)
It is worth noticing that it holds:

0 ∈ ∂ ε F (z) ⇐⇒ F (z) ≤ inf F + ε (4.5)
The ε-subdifferential is a generalization of the subdifferential as given in section 2. Note that if ε > 0, then ∂f (x) ⊂ ∂ ε f (x).

We start by giving some definitions on the different types of approximations of the proximal operator that on can find in [START_REF] Aujol | Stability of over-relaxations for the forward-backward algorithm, application to fista[END_REF], following [START_REF] Salzo | Inexact and accelerated proximal point algorithms[END_REF] and [START_REF] Villa | Accelerated and inexact forward-backward algorithms[END_REF]. Definition 4.1. We say that z ∈ H is a type 1 approximation of Prox γF (y) with ε precision and we write z ≈ 1 Prox γF (y) if and only if

0 ∈ ∂ ε G γ (z) (4.6) 
Definition 4.2. We say that z ∈ H is a type 2 approximation of Prox λF (y) with ε precision and we write z ≈ 2 Prox γF (y) if and only if

y -z γ ∈ ∂ ε F (z) (4.7) 
Notice that if z ≈ 2 Prox γF (y), then z ≈ 1 Prox γF (y) (see Proposition 1 in [START_REF] Salzo | Inexact and accelerated proximal point algorithms[END_REF]).

Finally we make call of a technical lemma taken from [START_REF] Schmidt | Convergence rates of inexact proximal-gradient methods for convex optimization[END_REF] ( see Lemma 2 ), that enables to consider approximations of types i = 2 or i = 3 in the same setting. 

-x -r γ ∈ ∂ ε F (x) (4.8) 
Notice that when r = 0, then we get the definition of a type 2 approximation.

Convergence rate for inexact i-FB algorithm

In this framework we consider the inexact i-FB algorithm as follows :

Algorithm 2 Inexact i-FB Let 0 < γ ≤ 1 L and b ∈ (0, 3). We consider the sequences {t n } n∈N * , {x n } n∈N , {y n } n∈N , such that x 0 = y 0 ∈ H and for every n ∈ N * we set :

x n = T εn en (y n-1 ) (4.9)

y n = x n + a n (x n -x n-1 ) where a n = n n + b (4.10)
where T εn en (x) ≈ εn j Prox sg x -γ(∇f (x) + e n ) where j ∈ {1, 2}

We present here the main results concerning the inexact i-FB algorithm :

Theorem 4.1. Let 0 < γ ≤ 1 L , b ∈ (0, 3) and {x n } n∈N the sequence generated by the inexact i-FB algorithm. Then for λ = 2b 3 and ξ = 4b 2 9 , for every η > 0, there exists C η > 0, such that for all n ≥ 1, we have :

E n ≤ 2A n + 2 C η + B n 2 2γ (n + b -1) 2(3-b) 3 +η (4.

11)

where :

A n = n i=1 t 1-c+η 2 i γ e i + 2γε i and B n = γ n i=1 t 2-(c+η) i ε i (4.12)
Corollary 4.1. Let 0 < γ ≤ 1 L , b ∈ (0, 3) and {x n } n∈N the sequence generated by the inexact i-FB algorithm. Then for every η > 0, there exists C η > 0, such that for all n ≥ 1, we have :

F (x n ) -F (x * ) ≤ 2A n + 2 C η + B n 2 2γ(n + b -1) 2b 3 -η and x n -x n-1 2 ≤ 2A n + 2 C η + B n 2 (n + b -1) 2b 3 -η (4.

13)

where :

A n = n i=1 t 1-c+η 2 i γ e i + 2γε i and B n = γ n i=1 t 2-(c+η) i ε i (4.14)
Remark 1. The last Corollary asserts that under the supplementary hypothesis over the perturbation terms A n and B n , the convergence rates for the inexact i-FB algorithm remain "almost" the same as in the unperturbed case(i-FB algorithm). Formally, let 0 < γ ≤ 1 L , b ∈ (0, 3) and {x n } n∈N the sequence generated by the inexact i-FB algorithm. If in addition, for every η > 0, we make the following assumptions :

+∞ n=1 n 1-c+η 2 e n ≤ A < +∞ and +∞ n=1 n 1-c+η 2 √ ε n ≤ B < +∞ (4.15) 
Then there there exists C η > 0, such that for all n ≥ 1, we have :

F (x n ) -F (x * ) ≤ C η 2γ(n + b -1) 2b 3 -η and x n -x n-1 2 ≤ C η (n + b -1) 2b 3 -η (4.16)
We begin by adapting the Lemma 3.1 of the previous section, for the perturbed version :

Lemma 4.2. Let y ∈ H and γ ≤ 1 L . For all x ∈ H , we have :

F (x) -F (T ε e (y)) + ε + e + r γ , x -T ε e (y) ≥ 1 2γ T ε e (y) -x 2 -y -x 2 (4.17)
where r ∈ H sucht that r ≤ √ 2γε

For a complete proof of Lemma 4.2, we address the reader to Lemma A.1. in [START_REF] Aujol | Stability of over-relaxations for the forward-backward algorithm, application to fista[END_REF].

We are now ready to present the proof of Theorem 4.1 :

Proof of Theorem 4.1. In the same way than the one in the unperturbed case, by applying Lemma 4.2 to y = y n and x = 1 -λ tn+1 x n + λ tn+1 x * we obtain ( here λ ∈ (0, 1 + b)):

2γ(t 2 n+1 w n+1 -t 2 n w n ) ≤ 2γk n+1 w n + (t n -1)(x n -x n-1 ) + λ(x n -x * ) 2 -v n+1 -2γt n+1 e n+1 + r n+1 γ , λ(x n -x * ) + t n+1 (x n+1 -x n )) =vn+1 + 2γt 2 n+1 ε n+1 (4.18)
Therefore by using the last inequality, and performing the same computations as the ones made in proof of Theorem 3.2, we find that for all n ≥ 1, it holds:

E n+1 -E n ≤ (c + a n+b-1 ) n + b -1 E n -(n + b) e n+1 + r n+1 γ , v n+1 + (n + b) 2 ε n+1 (4.19)
For ease of notation we will use the re-indexation n + b -1 n, which we will replace at the end of the proof. Hence we rewrite the previous inequality as : (4.21) Since for any η > 0 there exists N η ∈ N, such that the right-hand side of the last inequality is non-positive, we deduce that the tail sequence {H n } n≥Nη is non-increasing. Therefore by setting C η = max{H n : n ≤ N η }, using the definition of H n , the Cauchy-Schwartz inequality and Lemma 4.1, for all n ≥ 1 we find : 

E n+1 -E n ≤ (c + a n ) n E n -(
E n n c+η ≤ C η - n i=1 i 1-(c+η) e i + r i γ , v i + n i=1 i 2-(c+η) ε i ≤ C η + n i=1 i

  (3-b)(3+b) 9 and c = 2(3-b) 3

  .35) which concludes the proof of Lemma 3.2, with a = 2(3-b)(b+3) 9 and c = 2(3-b) 3
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  and c = 2(3-b) 

3

 3 

Lemma 4 . 1 .

 41 If x ∈ H is a type 2 approximation of Prox γF (y) with ε precision, then there exists r such that r ≤ √ 2γε and y

  (4.27) which by replacing n by n + b -1 and c = 2(3-b) 

  n + 1) e n+1 + r n+1 γ , v n+1 + (n + 1) 2 ε n+1 (4.20)Let η > 0. We define the sequence {H n } n∈N * , such that for all n ≥ 1 :(1 + 1 n ) c+η E n + (n + 1) e n+1 + rn+1 γ , v i -(n + 1) 2 ε n+1 (n + 1) c = E n+1 -E n -c n E n + (n + 1) e n+1 + rn+1 γ , v i -(n + 1) 2 ε n+1 -η n E n + O n -2 E n (n + 1) c (4.20) ≤ O n -1 -η E n n 1+c

		H n =	E n n c+η +	n i=1	i 1-(c+η) e i +	r i γ	, v i -	n i=1	i 2-(c+η) ε i
	For all n ≥ 1, we have :						
	H n+1 -H n =	E n+1 (n + 1) c+η -	E n n c+η +	(n + 1) e n+1 + rn+1 γ , v i (n + 1) c+η	-	(n + 1) 2 ε n+1 (n + 1) c+η
	=	E n+1 -						

  Using the last inequality and the definition of {E n } n≥1 , we find : = 2n 1-( c+η 2 ) γ e n + 2γε n and S n = 2C η + 2B n (4.24)we find that for all n ≥ 1, it holds :v n ≤ 2A n + 2 C η + B n nBy injecting this last inequality into (4.22) and multiplying both members by 2γ, we find :2γE n n c+η ≤ 2A n 2A n + 2 C η + B n + 2 C η + B n = 2A n + 2 C η + B n

						≤ C η +	n i=1	1-(c+η) e i + i 1-( c+η 2 ) e i + r i γ	√	γ 2γε i v i +	n i -c+η 2 i=1 i 2-(c+η) ε i i=1 v i + n	i 2-(c+η) ε i	(4.22)
								n
	(n	-c-η 2	v n ) 2 ≤ 2C η + 2B n + 2	i 1-( c+η 2 ) γ e i + 2γε i i -c+η 2	v i	(4.23)
								i=1
	By applying Lemma A.2 with :	
	u n = n	-c-η 2	v n	, a n c+η 2	(4.25)
									2	(4.26)
	It follows that :					
								2A
							E n ≤

n + 2 C η + B n 2 2γ

n c+η

For a definition of the Prox operator, see (2.1) in the next section

To this issue, we address the reader to Remark A at the end of this document

, concludes the proof of Theorem

4.2. 
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A Appendix

The next two Lemmas are the discretized versions of Gronwall's Lemma and Gronwall's-Bellman's Lemma ( see for example Theorem 4 in [START_REF] John M Holte | Discrete gronwall lemma and applications[END_REF] and Lemma 1 in [START_REF] Schmidt | Convergence rates of inexact proximal-gradient methods for convex optimization[END_REF] ).

Lemma A.1. Let C 0 a positive real number and {u n } n∈N , {a n } n∈N two non-negative sequences such that u 1 ≤ C 0 and for all n ≥ 1 :

Then for all n ≥ 1 it holds :

Lemma A.2. Let C 0 a positive real number and {u n } n∈N , {a n } n∈N two non-negative sequences, such that for all n ∈ N * it holds

where {S n } n∈N is a non-decreasing sequence such that u 2 1 ≤ S 1 . Then for all n ≥ 1, it holds :

Remark. While submitting this paper we were informed that in a parallel but independent way Attouch and al. worked in the same problem and had just submitted the preprint "Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3" ( see [START_REF] Attouch | Rate of convergence of the nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF], https://arxiv.org/abs/ 1706.05671 ).

Nevertheless our method allow us to conclude with Corollary 3.2 concerning the estimates (3.12), i.e.

which is a better result as the one proven in [START_REF] Attouch | Rate of convergence of the nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF] which corresponds to the following estimates (see Theorem 4.1 and Remark 4.1 of [2]) :

where 0 < p < b 3 . In addition we give a complete proof of Theorem 4.1, concerning the results for the inexact i-FB algorithm.