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Abstract

Most methods for condition monitoring are based on the analysis and characterization of
physical quantities that are three-dimensional in nature. Plotted in a three-dimensional
Euclidian space as a function of time, such quantities follow a trajectory whose geometric
characteristics are representative of the state of the monitored system. Usual condition mon-
itoring techniques often study the measured quantities component by component, without
taking into account their three-dimensional nature and the geometric properties of their tra-
jectory. A significant part of the information is thus ignored. This article details a method
dedicated to the analysis and processing of three-component quantities, capable of highlight-
ing the special geometric features of such data and providing complementary information for
condition monitoring. The proposed method is applied to two experimental cases: bearing
fault monitoring in rotating machines, and voltage dips monitoring in three-phase power
networks. In this two cases, the obtained results are promising and show that the estimated
geometric indicators lead to complementary information that can be useful for condition
monitoring.

Keywords: three-component signals, geometric properties, Frenet-Serret frame, bearing
faults, voltage dips, condition monitoring

1. Introduction

Safety and economical constraints force industries to continuously improve their main-
tenance strategies. When possible, predictive or condition-based maintenance is used as it
helps reducing repair time and cost, improve safety, and avoid economic losses. Very often,
condition monitoring techniques rely on the characterization of inherently three-component
physical quantities, which are frequently encountered in technological processes. A first
example is the monitoring of three-phase electrical systems, based on three-phase electrical
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measurements like voltages and currents. Another common example is the monitoring of me-
chanical systems, based on three-axis vibration or three-dimensional displacement measure-
ments. In order to obtain efficient fault indicators, such three-component signals are usually
analyzed with the usual marginal and/or joint analysis tools in the time domain (correlation
functions and/or correlation matrices) as well as in the frequency domain (spectra and/or
spectral matrices) [1]. However, three-component signals also contain another type of infor-
mation which is completely different in nature: their geometric properties. When a three-
component signal is represented in three-dimensional Euclidean space, it follows a particular
trajectory. The geometric properties of this trajectory may contain information concerning
the state of the monitored system from which the signal was acquired. This approach has
already been successfully proposed in the field of system monitoring with two-component
signals [2] by using complex-valued signal processing tools [3]. It is for example the case
for orbit shape analysis used to detect faults in rotating machines [4, 5, 6], and for voltage
dips detection and classification in power networks [7]. However, and as previously men-
tioned, usual condition monitoring methods do not take into account the three-dimensional
geometric characteristics of the trajectory of the measured three-component quantities. As
a consequence, a significant part of the diagnostic information is ignored.

This research work aims to fill this gap by developing a method to estimate the geometric
properties of three-component signals which takes into account all three components at the
same time. The proposed method relies on basic concepts of differential geometry of space
curves such as the Frenet-Serret frame and formulas, curvature and torsion, and leads to
local geometric descriptors of the three-dimensional curves followed by three-component
signals. The method takes as its input a three-component signal, i.e. a time series where
three data points are available at each time t. These data are then considered as Cartesian
coordinates defining the position of the measured signal at time t in a three-dimensional
Euclidean space. However, raw signals measured in real-life systems tend to be complicated
and thus lead to trajectories with complicated geometric properties. To simplify matters,
as in spectral analysis, the signal is simplified by analyzing only one frequency component.
This sinusoidal signal, composed of three sinusoids of the same frequency, follows a trajectory
in three-dimensional space which is elliptical in shape, and the geometric properties of the
corresponding trajectory can be analyzed more easily. This is what the proposed method is
for: to estimate the geometric properties of the trajectory of a three-component sinusoidal
signal in three-dimensional space. The estimated geometric properties can then be used to
elaborate stand-alone or complementary fault indicators for condition monitoring purposes.

In order to validate this approach, the proposed method is applied to two different
experimental cases: voltage dips monitoring in three-phase power networks, and bearing
faults monitoring in rotating machines. In this two cases, the results obtained are promising
and show that the estimated geometric indicators lead to complementary information that
can be useful for condition monitoring purpose.

The previous ideas are detailed in this article, which is organized as follows. The theoret-
ical foundations of the proposed method are presented in section 2, which includes the basic
differential geometry tools used, the definition of the three-component signal of interest, as
well as the geometric properties to be estimated. The structure of the algorithm developed
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to estimate these geometric properties is then described in section 3, along with the details
of its estimation performance with respect to various parameters. The experimental results
obtained by this algorithm in the context of the two application examples of voltage dips
monitoring in three-phase power networks and bearing faults monitoring in rotating ma-
chines are given in sections 4 and 5 respectively. Finally, the article ends with concluding
remarks including a summary and suggestions of possible future work.

2. Geometric properties of three-component sinusoidal signals

2.1. Differential geometry of space curves
A natural way of defining a curve is through differentiable functions. Let I be an open

interval in the real line R and r be a function from I to R3 as defined in Eq. (1) where R3

denotes the set of triples of real numbers and r1, r2 and r3 are differentiable functions of t.

r : I → R3

t 7→ (r1 (t) , r2 (t) , r3 (t)) (1)

r is called a parametrized differentiable curve and the variable t is the parameter of the
curve [8, 9]. A curve r maps each t in I into a point r (t) = (r1 (t) , r2 (t) , r3 (t)) in R3 in
such a way that the functions r1, r2 and r3 are differentiable. In other words, at each t in
some open interval I, r is located at the point r (t) = (r1 (t) , r2 (t) , r3 (t)) in R3, and the
corresponding curve can be pictured as a trip taken by a moving point r in R3.

The Frenet-Serret frame is the most natural choice to study the local geometric properties
of a curve. It can be interpreted as a moving reference frame that provides a local coordinate
system at each point of the curve, facilitating the definition of geometric properties of the
curve in the neighborhood of each point [10]. The Frenet-Serret frame is composed of three
orthogonal unit vectors T (t), N (t), and B (t), respectively called the tangent, normal and
binormal vector. Their definition is given by the three following equations [9, 11]:

T (t) =
r′ (t)

‖r′ (t)‖ (2)

N (t) =
T′ (t)

‖T′ (t)‖ =
r′ (t)× (r′′ (t)× r′ (t))

‖r′ (t)‖ ‖r′′ (t)× r′ (t)‖ (3)

B (t) = T (t)×N (t) =
r′ (t)× r′′ (t)

‖r′ (t)× r′′ (t)‖ (4)

where r′(t) = dr(t)
dt is the derivative of r(t), × denotes the cross-product between two vectors

and ‖r (t)‖ is the norm of r (t) defined by:

‖r (t)‖ =
√
r1 (t)

2 + r2 (t)
2 + r3 (t)

2 (5)

As shown in Fig. 1, these three vectors form an orthonormal basis spanning R3, and each
of them contains a precise geometric information about the curve. The tangent vector T (t)
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points in the direction of motion of r at any point t. N (t) is normal to the direction of
motion of r and indicates the direction in which r is turning at t. As shown in Eq. (4), the
binormal vector B (t) is defined as the cross product between T (t) and N (t), and is thus
orthogonal to both of them. This vector defines the osculating plane spanned by the tangent
and normal vectors in which the curve r lies at t such as to have a second order contact with
this plane [9].

N (t)

B (t)

T (t)

r (t)

Figure 1: Tangent T (t), normal N (t) and binormal B (t) vectors of the Frenet-Serret frame and the oscu-
lating plane (in gray) at t of a space curve r (t).

The Frenet-Serret formulas express the derivatives T′ (t), N′ (t) and B′ (t) in terms of
T (t), N (t) and B (t). They can be interpreted as a set of first order differential equations
verified by the Frenet-Serret frame for a given parametrized differentiable curve r, and are
given in matrix notation in the following equation:T′ (t)N′ (t)

B′ (t)

 = ‖r′ (t)‖

 0 κ (t) 0
−κ (t) 0 τ (t)

0 −τ (t) 0

T (t)
N (t)
B (t)

 (6)

where the scalars κ (t) and τ (t) are the curvature and the torsion of the curve at point r (t),
respectively. Using that N (t) is a unit vector, the first line of Eq. (6) leads to ‖T′ (t)‖ =
‖r′ (t)‖ |κ (t)|. The curvature κ (t) is therefore related to the rate of change of the tangent
vector, and represents the tendency of r (t) to deviate from the local direction of motion.
This positive scalar measures how sharp r is curving at each point: the sharper the bend,
the larger the curvature. For example, the curvature of a circular curve is constant at every
point and equal to the inverse of the circle radius, while the curvature of a straight line is
null at every point. Similarly, the third line of Eq. (6) leads to ‖B′ (t)‖ = ‖r′ (t)‖ |τ (t)|.
Hence, the torsion τ (t) is directly related to the rate of change of the binormal vector B (t),
and measures at each point the tendency of r (t) to deviate from the osculating plane. For
example, if r is a plane curve, the torsion τ (t) is null whatever t. In that case the binormal
vector is constant since B′ (t) = 0, and the curve r (t) lies in the plane orthogonal to B, that
is the osculating plane. Finally, as for the three unit vectors defining the Frenet-Serret frame,
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the curvature and torsion can be expressed in terms of r (t) and its first derivatives [9, 11]:

κ (t) =
‖r′ (t)× r′′ (t)‖
‖r′ (t)‖3

(7)

τ (t) =
(r′ (t)× r′′ (t)) · r′′′ (t)
‖r′ (t)× r′′ (t)‖2

(8)

where · is the dot product between two vectors.

2.2. Interesting geometric indicators
Several quantities presented in this section can be used to locally characterize the geom-

etry of the curve followed by a three-component signal. The curvature κ (t) and the torsion
τ (t) defined in Eq. (7) and (8) are clearly interesting geometric indicators, and give simple
and precise information on the shape of the curve. This is confirmed by the fundamental
theorem of space curves [8, 11], stating that for a given curvature κ and torsion τ , there
exists exactly one space curve r such that κ is the curvature and τ is the torsion of r, this
curve being determined except for its orientation and position in space.

Another interesting geometric indicator is the osculating plane or equivalently the binor-
mal vector B (t) defined in Eq. (4). Indeed, this vector indicates in which plane the curve lies
at t, and gives the orientation of the curve in space contrary to the two previous indicators.

The last interesting indicator is the norm of r(t) defined in Eq. (5). This quantity
measures the distance between the point r (t) and the origin of the static Euclidian frame.
Consequently, it can be interpreted as an instantaneous amplitude of the three-component
signal, or similarly as the global amount of signal at time t.

2.3. The case of three-component sinusoidal signals
As previously mentioned, this research work focuses on condition monitoring applications

where the measured three-component signals can be considered as quasi-periodic, i.e. as a
sum of sine waves. Consequently, it makes sense to study in detail the geometric character-
istics of simple three-component sinusoidal signals by using the different tools presented in
the previous paragraph.

A signal is a three-component sinusoidal signal if each of its components is a sine wave
with the same frequency. A three-component sinusoidal signal r can therefore be written
mathematically as in Eq. (9), where Ai and ϕi for i ∈ {1, 2, 3} denote the amplitude and
phase of the sinusoids and f0 is their frequency.

r (t) =

r1 (t)r2 (t)
r3 (t)

 =

A1 sin (2πf0t+ ϕ1)
A2 sin (2πf0t+ ϕ2)
A3 sin (2πf0t+ ϕ3)

 (9)

This equation clearly shows that such a signal can be considered as a parametrized differen-
tiable 3D space curve where t is the parameter on which the differential geometric approach
presented in the last paragraph can be directly applied.
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In this context, it has been demonstrated in [12] that under very general conditions, a
three-component sinusoidal signal with constant amplitudes, phases and frequency follows
an elliptical trajectory in a three-dimensional Euclidean frame. This elliptical trajectory can
be seen as a Lissajous figure in 3D, and is sometimes referred to as a 3D polarization ellipse
[13]. Using the general expression of three-component sinusoidal signals given in Eq. (9) and
the definition of the desired geometric indicators given in Eq. (5), (7), (8), the theoretical
expression of the signal norm, curvature and torsion are obtained:

‖r (t)‖ =
√
A2

1 sin
2 (2πf0t+ ϕ1) + A2

2 sin
2 (2πf0t+ ϕ2) + A2

3 sin
2 (2πf0t+ ϕ3) (10)

κ (t) =

√
(A2A3)

2 sin2 (ϕ2 − ϕ3) + (A1A3)
2 sin2 (ϕ3 − ϕ1) + (A1A2)

2 sin2 (ϕ1 − ϕ2)√(
A2

1 cos
2 (2πf0t+ ϕ1) + A2

2 cos
2 (2πf0t+ ϕ2) + A2

3 cos
2 (2πf0t+ ϕ3)

)3 (11)

τ (t) = 0 (12)

One interesting result is that the torsion is null for such signals, meaning that the corre-
sponding trajectories are as expected plane curves, with a plane orthogonal to the binormal
vector obtained with Eq. (4):

B (t) =
1

δ

A2A3 sin (ϕ2 − ϕ3)
A3A1 sin (ϕ3 − ϕ1)
A1A2 sin (ϕ1 − ϕ2)

 (13)

where δ =
√

(A2A3)
2 sin2 (ϕ2 − ϕ3) + (A3A1)

2 sin2 (ϕ3 − ϕ1) + (A1A2)
2 sin2 (ϕ1 − ϕ2).

Eq. (10) to (13) give the theoretical values of the main geometric properties of the space
curve corresponding to a three-component sinusoidal signal, and Figure 2 shows an example
of application of these relations for a particular signal. From Fig. 2b and 2c, it can be seen
that the norm and the curvature of r do vary with time t for an ellipse, while the torsion
is null in Fig. 2d and the binormal vector is constant in Fig. 2e as expected. By comparing
Fig. 2f and Fig. 2g giving the 3D representation of r and B, it can finally be verified that
the binormal vector points in the direction perpendicular to the osculating plane that the
ellipse is in.

The next section presents a simple algorithm dedicated to the estimation of the geometric
properties of interest for three-component signals, and a brief description of its estimation
performance in the case of noisy measurements.

3. Estimation algorithm

3.1. General structure
In the last section, the norm ‖r (t)‖, curvature κ (t), torsion τ (t) and binormal vector

B (t) have been chosen to characterize the geometry of the trajectory followed by a three-
component sinusoidal signal. Eq. (5), (7), (8) and (4) show that these geometric properties
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(f) r (t) in the 3D Euclidian space
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(g) B (t) in the unit sphere

Figure 2: A three-component sinusoidal signal r (t) with f0 = 10 Hz, A1 = A2 = A3 = 1, [ϕ1, ϕ2, ϕ3] =[
0, 3π7 ,

8π
7

]
, and the theoretical values of its main geometric properties.
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can be calculated in terms of the values of the position vector r (t) and its first three deriva-
tives with respect to time t, r′ (t), r′′ (t) and r′′′ (t). This remark leads to the three-step
algorithm illustrated in Fig. 3, already proposed and detailed in [14] and [12] to estimate
the four previous geometric properties of a three-component signal x at a given frequency.

x (t) frequency-
selective
filter

r (t) r (t)

differentiator

differentiator

differentiator

differentiation

r′ (t)

r′′ (t)

r′′′ (t)

equations

(5)

(7)

(8)

(4)

geometric indicators

‖̂r (t)‖

κ̂ (t)

τ̂ (t)

B̂ (t)

Figure 3: Block diagram of the proposed estimation algorithm.

Measured signals usually contain more than one frequency component including noise,
and it is therefore essential to filter such signals first to remove noise and all unwanted
frequency components leaving only one frequency component. To carry out this step, a clas-
sical linear phase finite impulse response (FIR) frequency-selective filter [15], which can be
a lowpass, bandpass or highpass filter depending on the value of the selected frequency f0, is
used. This first step produces the three-component sinusoidal signal r following an elliptical
trajectory from which the geometric properties can be further estimated and analyzed. As
can be seen from the mathematical definitions of the four geometric properties of interest,
the next necessary step is the differentiation of r, realized thanks to a simple linear phase
FIR differentiator filter. Instead of a full-band differentiator, a partial-band differentiator
adapted to the selected frequency f0 is used in order to avoid amplifying possible residual
high frequency components and maximize the signal-to-noise ratio (SNR) at the output of
each differentiator [16]. Since r needs to be differentiated three times, the same differentia-
tor filter is applied three times consecutively to r. The use of the frequency-selective and
differentiator FIR filters means that there are signal delays that need to be managed after
each application of a filter to synchronize the signals. Now that the position vector r and
its first three derivatives are estimated, the four geometric properties of interest, ‖r‖, κ, τ
and B, can be computed. The third and final step of the estimation algorithm illustrated in
the block diagram of Fig. 3 is to compute these desired geometric properties using the four
equations (5), (7), (8) and (4), where only basic mathematical operators (division, square
root, dot product, cross product) are needed. Once the geometric properties are computed,
their time evolution can be further plotted and analyzed, which is done in the following
section using a synthetic signal.
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3.2. Application to a synthetic signal
The proposed algorithm is applied to a synthetic signal including a change in ampli-

tude and phase with the purpose of illustrating its estimating and tracking capabilities. A
three-component sinusoidal signal of frequency f0 = 10 Hz is first generated with a contin-
uous change in its amplitude (from [20, 20, 20] to [25, 25, 25]) and phase (from

[
0, 3π

7
, 8π

7

]
to[

0, 3π
7
, 5π

7

]
) between 10 s and 10.0625 s. A centered and stationary white Gaussian noise with

variance 126 is then added to each sine wave to obtain a noisy three-component sinusoidal
signal x, with a global signal-to-noise ratio on each component close to 2 dB before the
change and to 4 dB after the change. The sampling frequency is set to fs = 1024 Hz.

The specifications of the two filters used in the proposed algorithm are set according
to the frequency of the sinusoidal components to be characterized. The frequency-selective
filter is a bandpass filter with a central frequency equal to the chosen frequency f0 = 10 Hz,
a bandwidth of 2 Hz and a transition band of 1 Hz, while the bandwidth of the partial-band
differentiator filter ends at 11 Hz and its stopband starts at 12 Hz. Figure 4 shows the
magnitude of the frequency response function of these two filters, the frequency axis being
truncated between 0 and 20 Hz for clarity.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

(a) bandpass filter

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

·10−2

(b) differentiator filter

Figure 4: Frequency response function of the two filters for f0 = 10 Hz.

The results obtained by the proposed algorithm applied to the previous synthetic signal
are shown in Fig. 5. The noisy signal x is represented in Fig. 5a and the corresponding
trajectory in Fig. 5g, where the influence of noise is clearly visible. The bandpass filtered
signal r is shown in Fig. 5b and the corresponding trajectory in Fig. 5h, where the noise
has been significantly reduced by the frequency-selective filter. The continuous change in
amplitude and phase is visible in these two figures, where its influence on the shape of the
trajectory and therefore on its geometric properties is particularly highlighted. Figures 5c
to 5f show the estimated geometric properties where black curves correspond to theoretical
values. As expected, ‖r (t)‖ and κ (t) are time-varying because of the elliptical shape of the
trajectory. The variations of these two geometric properties are greater before the change
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Figure 5: Simulated noisy three-component sinusoidal signal x (t) with its main geometric properties.
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than after, showing that the ellipse of the trajectory followed by r is flatter before the change
than after. Figures 5e and 5f show that τ andB are approximately constant when amplitudes
and phases stay constant. The torsion and binormal vector being related to the osculating
plane, this means that the trajectory has a constant osculating plane during these parts of
the signal. However, B has different coordinates before and after the change, corresponding
to two different osculating planes. The theoretical values of these two directions of B are
visible in Fig. 5i and drawn as two black lines, while the estimated values of B are plotted
in red. Finally, the torsion τ takes large values only during the change where the osculating
plane moves, and could be useful as a simple and efficient change detector.

The performance of the proposed algorithm seems to be good for estimation and tracking
the geometric properties of three-component sinusoidal signals, although small estimation
errors exist. In order to quantify these errors and clarify their origin, the influence of different
parameters on the estimation performance of this algorithm is detailed in the following
section.

3.3. Estimation performance
The estimation performance of the proposed algorithm as well as its limits once applied

to a three-component sinusoidal signal are discussed in this section. Three parameters
influencing the accuracy of the method have been identified:

• the amount of noise present in the original three-component signal,

• the fundamental frequency of the three-component sinusoidal signal to analyze,

• the ellipticity of the corresponding three-dimensional trajectory.

Three separate tests are therefore carried out where in each test, two of the parameters
remain fixed while the third one varies within a given range of values. The three-component
sinusoidal signal used for these tests is a 40-second discrete-time signal y with a mathematical
expression given in Eq. (14).

y =

A1 sin (2πf0k/fs + ϕ1)
A2 sin (2πf0k/fs + ϕ2)
A3 sin (2πf0k/fs + ϕ3)

 where k ∈ N (14)

Its sampling frequency fs is 256 Hz and its fundamental frequency is f0 < 128 Hz. All
three sinusoids have the same amplitude A1 = A2 = A3 = 20 to obtain the same amount
of signal whatever the component. The phases [ϕ1, ϕ2, ϕ3] are set to obtain a given flatness
of the ellipse, measured by the ratio b/a where b is its semiminor axis and a its semimajor
axis. In that case, b/a = 0 corresponds to a line segment trajectory and b/a = 1 to a
circular trajectory. A centered and stationary white Gaussian noise is then added to this
pure sinusoidal signal with the same variance whatever the component, the amount of which
being measured by the global signal-to-noise ratio SNR computed for one component and
expressed in dB. The range of values of the different parameters for the three performance
tests are summarized in Table 1.
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SNR (dB) f0 (Hz) b/a

Test 1 0 – 50 10 0.5994
Test 2 20 1 – 127 0.5994
Test 3 20 10 0.0741 – 1

Table 1: Range of values of the three parameters for the performance tests.

Concerning filters, the frequency-selective filter is a bandpass filter with a central fre-
quency equal to f0, a bandwidth of 2 Hz and a transition band of 1 Hz. The bandwidth of
the partial-band differentiator filter ends at f0 + 1 Hz and its stopband starts at f0 + 2 Hz,
corresponding to a transition band of 1 Hz.

The estimation performance is measured using the mean squared errors (MSE) of ‖̂r‖,
B̂, κ̂ and τ̂ , the estimates of the four geometric properties of interest ‖r‖, B, κ and τ .
Moreover, in order to facilitate the comparison between the different cases, the normalized
MSE (NMSE) is computed when possible. These quantities are defined in the following
equations for discrete-time signals where N represents the total number of samples of the
signals.

NMSE‖̂r‖ =

∑N
k=1

(
‖r [k]‖ − ‖̂r [k]‖

)2
∑N

k=1 ‖r [k]‖
2

(15)

NMSEκ̂ =

∑N
k=1

(
κ [k]− κ̂ [k]

)2
∑N

k=1 κ [k]
2

(16)

NMSEB̂ =

3∑
i=1

(
1

N

N∑
k=1

(
Bi − B̂i [k]

)2)
3∑
i=1

B2
i

=
3∑
i=1

(
1

N

N∑
k=1

(
Bi − B̂i [k]

)2)
(17)

MSEτ̂ =
1

N

N∑
k=1

τ̂ [k]
2

(18)

Equations (15) and (16) are used to compute the NMSE of the estimated norm and curvature
of the three-component sinusoidal signal, respectively. Equation (17) takes into account the
three components Bi, i ∈ [1, 2, 3] of the binormal vector to compute the global NMSE
NMSEB̂. For three-component sinusoidal signals, B is a constant unit vector as stated in
the previous section, which explains why the Bi’s are constant and

∑3
i=1 B

2
i = 1 in this

equation. The MSE of the torsion estimator MSEτ̂ is computed using Eq. (18), where the
theoretical value of the torsion τ has been set to zero as expected for such signals. This also
explains why this error is not normalized.

For each parameter value, averaged MSEs obtained after averaging over 1000 Monte
Carlo simulations are computed and analyzed. The corresponding results are summarized
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in Figure 6. Figure 6a shows these errors with respect to the SNR expressed in dB. As
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(c) test 3: errors versus b/a

Figure 6: Averaged estimation errors NMSE‖̂r‖, NMSEκ̂, NMSEB̂ and MSEτ̂ obtained for the three perfor-
mance tests.

expected, the greater the SNR, the smaller the errors, and the linear shape shows that the
different MSEs are all inversely proportional to the SNR in this range of values. It can be
noticed that the worst estimation error is obtained for the curvature κ. This can be due to
the fact that κ̂ is the only estimator that uses derivatives of r and estimates a time-varying
quantity. Indeed, ‖̂r‖ estimates a time-varying quantity without differentiators, while B̂ and
τ̂ need differentiators but estimate constant values. Figure 6b shows the same quantities
with respect to the signal frequency f0 expressed in Hertz. This figure shows that NMSE‖̂r‖
is independent of f0 while the other MSEs increase when f0 is very small compared to the
sampling frequency. Contrary to ‖̂r‖, estimators B̂, κ̂, τ̂ all use derivatives of r, and this
decrease in performance is mainly due to the FIR differentiator filters. Indeed, it has been
shown in [12] that when the signal frequency f0 is not much greater than the bandwidth
of the bandpass filter, each differentiation step decreases the SNR because of the residual
noise left by the bandpass filter, and finally deteriorates the global estimation performance
of the algorithm. Figure 6c shows the influence of the ellipticity b/a on the estimation errors.
Concerning NMSEκ̂, Eq. (7) shows that the denominator of the curvature κ (t) is ‖r′ (t)‖3.
Now, the flatter the ellipse, the faster ‖r′ (t)‖3 tends to zero at the tips of the ellipse, and as
‖r′ (t)‖ tends to zero, κ (t) becomes infinite and so does NMSEκ̂. In the worst-case scenario,
the trajectory is a line segment, the flattest ellipse possible where ‖r′ (t)‖ = 0 at the tips
where the curvature is impossible to estimate in this case. Concerning the estimation errors
of the binormal vector NMSEB̂ and of the torsion MSEτ̂ , they both increase the flatter
the ellipse. When the ellipse is flatter, it tends to a line segment trajectory for which the
osculating plane, the binormal vector and the torsion are not correctly defined. Therefore, it
is not surprising that these quantities are difficult to estimate when the elliptical trajectory
followed by the position vector flattens increasingly.

From these performance tests, several things should be kept in mind before applying
this algorithm to experimental signals. A lot of noise in the measured signal deteriorates
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the estimation performance of the algorithm, especially when the signal frequency is not
greater than the bandwidth of the frequency-selective filter. Moreover, if the signal follows
a trajectory that is almost a line or a very flat ellipse, this algorithm will produce higher
estimation errors.

4. Bearing faults monitoring with three-axis vibration signals

In this section, the proposed algorithm is applied to vibration signals for bearing faults
detection in rotating machines. The objective is to extract bearing fault indicators from the
geometric characteristics of the trajectory followed by vibration signals measured in three
orthogonal directions.

4.1. Experimental setup and datasets
The signals used in this section are measured on the test bench represented in Fig. 7. The

 2 

To illustrate this work, we will address the problem of fault detection at low speed and 
we will compare different methods of analysis based on the vibration signals. 
Monitoring of the bearing defects in a wind turbine is primarily performed using 
accelerometers. The detection techniques are well known and tested, however they were 
designed to operate at relatively high speed (4) (hundreds of rpm). The speed of the main 
bearing of a wind turbine is less than 20 rev/min, thus it requires special care. Usually, 
the solution is to switch to another method that requires specific sensors (acoustic 
emission, proximity sensors, 0 Hz accelerometers ...), which increases the cost of the 
monitoring system. However, it is possible to achieve early fault detection using the 
same accelerometers than the ones of the faster stages of the kinematics. 
 
2.  Wind turbine endurance test bench 
 
The wind turbine test bench is about 4 meters long (fig. 1). It was designed to reproduce 
the kinematics of a wind turbine with a maximum power of 10 kW. A geared motor 
generates the rotation of the low speed shaft and simulates the rotation of the blades of 
the turbine. The bearing of the main shaft can be loaded in the axial and radial 
directions by two hydraulic actuators (loading unit 1) to simulate the weight of the hub 
and blades, and the drag forces. A multiplier with a transmission ratio of 100:1 delivers 
power to the output shaft and to the generator. The output bearing can be loaded radially 
by an actuator. Finally, the generator can act as a brake and thereby generate the torque 
applied to the output shaft. Part of generated power is reused to feed the geared motor. 
 

Generator

Multiplier

Geared-motor

Loading unit 1
(main bearing inside)

Loading unit 2

Torquemeter 2

Torquemeter 1

 
Figure 1. Endurance wind turbine test bench 

 
Monitoring sensors were installed near the degraded components and time signals were 
periodically recorded. A database was created with the time data from new condition 
and from several levels of damage for each component. These data were used to 
evaluate standard fault detection techniques used in condition monitoring system (CMS) 
and to compare them with innovative methods still under development. 

Page 3 of 10

low-speed shaft

high-speed shaft

Figure 7: Structure of the test bench used for bearing faults monitoring [17].

kinematic chain consists in a low-speed shaft, a multiplier gearbox and a high-speed shaft.
The output load is an induction generator and the operating conditions are determined by
controlling the speed of the low-speed shaft thanks to a geared motor. This bench can
be used to emulate the structure and behavior of a geared wind turbine, but also of an
industrial system if the output generator is considered as a mechanical load. Loading unit 1
mounted on the low-speed shaft is used to accelerate the deterioration of the main bearing
by applying radial and axial load to this component. The type of bearing used in the test is
a radial spherical roller bearing with an inside diameter of 50 mm, on which natural faults
may appear on any part, be it the inner race, outer race, bearing balls or cage.
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Date Event

October 7 2013 start of the 1st test
November 8 2013 fault appears
November 19 2013 end of the 1st test
December 16 2013 main bearing is replaced
December 17 2013 start of the 2nd test

Table 2: Main events and dates during the endurance tests of interest.

Several consecutive endurance tests were conducted with an alternation of degradation
phases and measurement phases for which the rotational speed of the low-speed shaft was
kept constant at 20 rpm. At the end of each test, the bearing was damaged up to an unknown
degradation level and dismounted to visually characterize the level of damage. The period
of time covered by this study starts on October 7 2013 and ends on January 31 2014. During
this period, a natural fault appeared on November 8, the corresponding measurements were
stopped on November 19, the faulty bearing was replaced with a new one on December 16
and a new measurement process started on December 17. Table 2 summarizes these events
with the corresponding dates. Fig. 8 shows the state of the bearing at the end of the test
used in this work, where localized spalling on the outer race is clearly visible.

(a) outer race defects (b) detail of the largest defect

Figure 8: Spalling on the outer race of the bearing (courtesy of CETIM).

The data measured on this test bench and used in this work are vibration signals mea-
sured using three mono-axial accelerometers mounted on "loading unit 1" in three orthogonal
directions in order to obtain the vibrations in the three directions of 3D Euclidean space.
20 datasets obtained between October 7 2013 and January 31 2014 are used. Each dataset
consists in a three-component vibration signal of 1500 samples acquired with a sampling
frequency of 100 Hz.
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Figure 9: Power spectral density of the three-axis vibration signal before (in blue) and after (in orange) the
fault appeared.

4.2. Experimental results
First of all, the presence of the outer race fault during the test can be verified thanks

to the power spectral density (PSD) of each component of the three-axis vibration signals
before and after the fault appears. Indeed, bearings faults generate mechanical impacts and
consequently vibrations with a frequency depending on the geometric characteristics of the
bearing, the rotating speed of the shaft where the bearing is mounted on, and the type
and location of the fault in the bearing. In this experiment, the expected outer race fault
frequency of 2.72 Hz is clearly visible in Fig. 9 showing the PSD of each component for two
datasets: in blue, the PSD of dataset November 7 2013 (before the fault appears), and in
orange the PSD of dataset November 19 2013 (after the fault appears). This result confirms
the presence of this particular fault in the monitored bearing before its visual inspection.

Next, the algorithm detailed in the previous section is applied to each dataset in order to
estimate the time evolution of the four geometric properties of interest at different dates all
along the test, and to analyze their behavior regarding the presence of the fault. Figures 10
and 11 show the results obtained for the two same datasets as previously: dataset November
7 2013 before the fault appears, and dataset November 19 2013 after the fault appears. These
figures show vibration signals before and after frequency-selective filtering as well as the four
geometric properties estimated by the algorithm. Figures 10a, 10g and 11a, 11g show that
without the frequency-selective filter (a bandpass filter with a central frequency set to the
fault frequency 2.72 Hz), no meaningful geometric information can be extracted from the
data due to the presence of wide-band noise and several sinusoidal components. The signal
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Figure 10: Three-axis vibration signal before the bearing fault appears with its main geometric properties.
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Figure 11: Three-axis vibration signal after the bearing fault appears with its main geometric properties.
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r (t) obtained after this necessary filtering step in shown in Fig. 10b, 10h and 11b, 11h.
Before the fault appears, its 3D trajectory is completely unstructured in Fig. 10b and 10h,
while a typical elliptical trajectory is clear in Fig. 11b and 11h once the fault appears.
This remark is confirmed by the four geometric properties obtained for the two datasets.
The signal norm in Fig. 10c and 11c show that ‖r (t)‖ increases in amplitude in case of a
fault, because the amount of signal at the fault frequency increases as the fault appears.
Notice also that ‖r (t)‖ has a more regular pattern after the fault appears, corresponding
to a more structured 3D trajectory. The second geometric property, the curvature κ (t)
shown in Fig. 10d and 11d, behaves inversely. Before the fault appears, κ (t) takes very
large values and seems to fluctuate randomly, which represents a completely unstructured
trajectory. When the fault appears, κ (t) decreases and oscillates regularly around smaller
values, which is expected since the 3D trajectory becomes more structured and elliptical
in that case. The third geometric property, the torsion, is closely related to the variations
of the binormal vector. As can be seen in Fig. 10e, the torsion τ (t) reflects the frequent
and big changes in the binormal vector B (t), highlighting an unstructured shape for the
trajectory. However, in Fig. 11e, τ (t) takes smaller values, corresponding to a more steady
trajectory plane. The fourth and last geometric property is the binormal vector B (t) shown
in Fig. 10f, 10i and 11f, 11i. From these figures, it can be seen that before the fault appears,
B (t) does not point in a particular direction and varies randomly all along the measurement.
Once the fault appears, it points in a stable direction, orthogonal to the plane that the 3D
trajectory of r (t) is in. Finally, the results obtained before the fault appears and represented
in Fig. 10 can be summarized as follows: ‖r (t)‖ shows that there is no significant signal at
the fault frequency while κ (t), τ (t) and B (t) show that the corresponding 3D trajectory
has no structured shape. On the contrary, once the fault appears, the same quantities
represented in Fig. 11 lead to the opposite conclusion: ‖r (t)‖ indicates that there is a
significant component at the fault frequency and κ (t), τ (t) and B (t) indicate that the
resulting trajectory has a structured elliptical shape with almost constant characteristics.

Different bearing fault indicators can be proposed using the previous results, and several
have been studied in [12]. One particularly interesting indicator quantifying the variations
of the binormal vector is its standard deviation, defined has the square root of the sum of the
variances of each of its components. As seen through the previous experimental results, this
vector is nearly constant in the faulty case and varies strongly and randomly in the healthy
case. Therefore, its standard deviation should be close to zero in the faulty case and should
take large values in the healthy case. This is verified in Fig. 12 where this quantity has been
computed for each dataset measured during the endurance test, and where the two vertical
red lines mark when the bearing defect appears and when the faulty bearing is replaced by
a new one. Another interesting property clearly visible in this figure is that this indicator is
bounded between 0 and 1. This maximal value is due to the fact that the binormal vector
is a unit vector with components bounded between ±1. Indeed, before the fault appears,
the corresponding 3D trajectory is unstructured and there is no preferred direction pointed
to by the binormal vector as illustrated in Fig. 10f and 10i. In that case, the binormal
vector can be thought of as a random variable with each of its components following a
uniform probability distribution between ±1. Their variance is therefore equal to 1/3 and
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Figure 12: Standard deviation of the binormal vector obtained for each dataset during the endurance test
(left red line: bearing defect appears, right red line: bearing replaced).

the standard deviation of B (t) previously defined is then equals to 1. On the contrary,
when a fault occurs, the binormal vector is nearly constant and its standard deviation stays
close to zero. These experimental results show that the type of information provided by the
geometric properties of interest are different in nature and complementary. The signal norm
‖r (t)‖ is connected to the amount of signal at the fault frequency as well as to the shape of
the trajectory. The curvature κ (t) gives information about the shape of the trajectory, such
as the flatness of the ellipse. The binormal vector B (t) gives the plane the trajectory is in,
whereas the torsion τ (t) shows when this plane changes. These geometric informations can
be used to deeply characterize the detected faults, but they can also be used to detect the
presence of a fault in the monitored bearing as shown at the end of this section.

The next section presents a different experimental application of these tools.

5. Voltage dips monitoring with three-phase voltage signals

This section concerns the application of the proposed algorithm to the monitoring of
voltage dips in three-phase power networks. These phenomena are the most common type
of power-quality disturbances, and lead to important economic losses and distorted quality of
industrial products [18]. Thus, voltage dips monitoring has become an essential requirement
for power quality monitoring in power networks, and several methods have been developed
to detect and characterize such disturbances [19, 20]. However, most of these techniques
consider three-phase measurements as three separate one-dimensional quantities, and process
each phase voltage independently from each other. In [7], a first step is taken where the
three-phase quantities are considered two-dimensional after a Clarke transform [21], and
are processed as complex-valued signals. In this section, the proposed method is applied
in order to consider the three-phase voltages as a single three-dimensional quantity. The
objective, if not to obtain better results than previously proposed methods, is to adopt a
different and complementary point of view by considering three-phase voltages as a whole
and gain additional information in the process.

The proposed algorithm is applied to an experimental three-phase voltage signal x (t)
with a fundamental frequency f0 = 50 Hz and sampled at fs = 3200 Hz. This data, measured
at one point of a high-voltage power network, is represented in Fig. 13a. It clearly undergoes
a voltage dip between t = 50 ms and t = 120 ms with the dip being more pronounced for the
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Figure 13: Experimental three-phase voltage signal x (t) containing a voltage dip with its main geometric
properties (time t in ms).
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blue voltage. The corresponding three-dimensional trajectory is shown in Fig. 13g, where a
change in the trajectory can also be seen. Voltage signals measured in power networks are
very specific, and mostly consist in one large sine wave called the fundamental component,
added to smaller harmonics, the closest and most significant being the 5th and 7th [18]. This
particularity can be used to simplify the first step of the proposed algorithm. Instead of a
bandpass filter, a simple lowpass filter is sufficient to separate the fundamental component
from the others and obtain the desired three-component sinusoidal signal r (t). Since the
fundamental frequency is 50 Hz, the passband of the lowpass filter is set to 60 Hz and
its transition band to 200 Hz. Similarly, the passband of the differentiator filter ends at
60 Hz and its stopband starts at 260 Hz. The corresponding position vector r (t), shown in
Fig. 13b, is then obtained at the output of the lowpass filter, and is represented as a moving
point in 3D Euclidean space in Fig. 13h. These figures show that r (t) rotates around the
origin with frequency f0 = 50 Hz, and that the three-dimensional trajectory followed by
r (t) changes during the measurement – clearly there are two different osculating planes –
due to the voltage dip.

Next, the four geometric properties of r (t) are estimated using the proposed algorithm.
The estimated signal norm, curvature, torsion and binormal vector are shown in Fig. 13c
to 13f respectively. Notice that the torsion takes significant values only at the beginning and
at the end of the voltage dip. Apart from these special periods of time, the torsion remains
small and close to zero. Geometrically, this means that the 3D trajectory followed by r (t)
stays in a fixed plane, except at these specific periods of time during which the osculating
plane changes significantly. Notice also that the osculating plane containing the trajectory
during and outside the voltage dip is not the same. This is confirmed by changes in the
binormal vector: its Cartesian coordinates plotted in Fig 13f clearly take different values
during and outside the voltage dip, which is confirmed by its 3D representation in Fig 13i.
The curvature provides a different kind of information, related to the shape of the trajectory
followed by r (t). Outside the voltage dip, the curvature is nearly constant so the trajectory
is circular, which is what the trajectory of a balanced three-phase voltage should be. Indeed,
a balanced three-phase voltage v can be written in the form of Eq. (19), corresponding to a
circular trajectory of radius

√
3
2
V and thus of constant curvature.

v (t) =

 V cos (2πf0t+ ϕ)
V cos

(
2πf0t+ ϕ− 2π

3

)
V cos

(
2πf0t+ ϕ− 4π

3

)
 (19)

During the dip, the curvature varies with frequency 2f0 = 100 Hz, i.e. twice per revolution.
When the curvature in Fig. 13d is compared to the signal norm in Fig. 13c, it is clear that
when r (t) is close to the origin, the curvature is small and vice versa. This corresponds to
a trajectory with an elliptical shape. Therefore, the curvature shows that the trajectory of
r (t) changes from a circle outside the dip to an ellipse during the dip.

The results obtained through this experimental data set show that geometric properties
lead to important geometric information concerning the three-dimensional trajectory fol-
lowed by r (t) and through this, provide information about the state of the corresponding
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three-phase system. In other words, the proposed algorithm can be used to analyze the geo-
metric changes in the trajectory of three-phase voltages as well as to detect and also possibly
characterize voltage dips. More specifically, the torsion τ can be used for dip detection as it
only takes significant values when there is a change in the osculating plane, indicating that
there is a change in the system. The detected dips can then be characterized thanks to the
osculating plane given by the coordinates of the binormal vector B. Along with the signal
norm ‖r‖ and the curvature κ, this leads to information about the shape of the trajectory
during the dips.

6. Conclusions

With the objective of condition monitoring, this article proposes a method of estimating
the geometric properties of the trajectory followed by a three-component sinusoidal signal in
three-dimensional Euclidean space, along with a simple and efficient estimation algorithm.
The proposed method is applied to two types of experimental data: three-axis vibration
signals measured on a rotating machine and used for bearing fault monitoring, and voltage
signals measured on a three-phase power network and used for voltage dips monitoring.
The estimated geometric properties of the three-dimensional elliptical trajectory followed
by these signals reflect the bearing faults and the voltage dips to be detected. From these
results, it can be concluded that the proposed method is useful as it gives different and
complementary information to existing condition monitoring methods.

Several improvements to the method can be considered in future works. The noise re-
moval and frequency selection step can be further developed and improved so that the noise
is removed more precisely and the frequency component is isolated more accurately. Certain
geometric properties such as the semimajor axis, semiminor axis as well as the orientation
in space of the obtained ellipse can be estimated in order to complete the geometric infor-
mation given by the algorithm. In addition, the proposed method could be extended to
more complex deterministic signals such as periodic signals containing more than a single
sinusoidal component and even further, to random signals. It can also be noticed that the
geometric approach relying on Frenet-Serret frame and formulas have been generalized to
signals with any number of components [22, 23]. This allows to consider the application of
the proposed method to signals with a number of components higher than three, even if in
this case the geometric meaning of the obtained indicators is not so simple to analyze.

Concerning applications, the results already obtained for voltage dips and bearing faults
detection could be taken a step further. More particularly, the estimated geometric proper-
ties could by used to classify the detected voltage dips or deeply characterize the detected
bearing fault. Indeed, the geometric properties of vibration signals are directly connected
to the three-dimensional movements of the rotating machine they are measured from, and
thus have clear physical significations. For example the main direction of vibration, which
is reflected thanks to the binormal vector defining the plane of the elliptical trajectory, can
be used to deduce the direction in which the bearing is vibrating.
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