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Abstract. In this paper, we propose for the first time an approximate
joint diagonalization (AJD) method based on the natural Riemannian
distance of Hermitian positive definite matrices. We turn the AJD prob-
lem into an optimization problem with a Riemannian criterion and we
developp a framework to optimize it. The originality of this criterion
arises from the diagonal form it targets. We compare the performance
of our Riemannian criterion to the classical ones based on the Frobe-
nius norm and the log-det divergence, on both simulated data and real
electroencephalographic (EEG) signals. Simulated data show that the
Riemannian criterion is more accurate and allows faster convergence in
terms of iterations. It also performs well on real data, suggesting that
this new approach may be useful in other practical applications.

Keywords: approximate joint diagonalization; Riemannian geometry;
Hermitian positive definite matrices; Riemannian optimization

1 Introduction

The approximate joint diagonalization (AJD) of a matrix set is instrumental to
solve the blind source separation (BSS) problem. We refer to [1] for a complete
review on theory and applications. The AJD of a set {Ck}1≤k≤K of K Hermitian
positive definite (HPD) matrices of size n×n consists in finding a full rank matrix
B of size n × n such that the set {BCkBH}1≤k≤K is composed of matrices as
diagonal as possible according to some criterion, where superscript ·H denotes
the conjugate transpose.

Criteria of interest are diagonality measures that turn the AJD problem into
an optimization problem. The three most popular cost functions are the following
ones. A widely used cost function based on the Frobenius distance is given by

fF(B) =

K∑
k=1

∥∥BCkBH − ddiag(BCkB
H)
∥∥2
F
, (1)

where ‖·‖F denotes the Frobenius norm and the ddiag(·) operator returns the
matrix with the diagonal elements of its argument. Some variations of (1) have
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been proposed in [2, 3] in order to have better invariance properties of the cost
function. In [4], (1) is minimized through an indirect strategy. The idea is that,
given B, a matrix A is sought in order to solve the optimization subproblem
with cost function

f̃F(A) =

K∑
k=1

∥∥BCkBH −Addiag(BCkB
H)AH

∥∥2
F
. (2)

The joint diagonalizer B is then updated as B ← A−1B. Another popular cost
function based on the log-det divergence and introduced in [5, 6] is given by

fLD(B) =

K∑
k=1

log
det(ddiag(BCkB

H))

det(BCkBH)
, (3)

where det(·) denotes the determinant of its argument. Recently, a generaliza-
tion of (3) based on the log-det α-divergence has been proposed in [3] showing
promising results.

In this paper, we propose for the first time an AJD method based on the
natural Riemannian distance on the cone of HPD matrices [7, 8], which has
recently attracted much interest in the signal processing and machine learning
communities. This new approach exploits the geometrical properties of HPD
matrices. Our solution is original compared to those obtained with previous
criteria since the diagonal form it targets is profoundly different as we will show.

This paper is divided into four sections including this introduction. In section
2 the Riemannian cost function (section 2.3) is defined along with a framework
to optimize it (sections 2.3 and 2.4). This new criterion stems from the Rie-
mannian diagonality measure [3] (section 2.2) on the cone of HPD matrices [7,
8] (section 2.1). In section 3 we compare the performance of our Riemannian
criterion to three state of the art ones on both simulated data and on a real
electroencephalographic (EEG) recording. On simulated data (section 3.1) our
Riemannian criterion prooves more accurate and allows faster convergence in
terms of iterations. It also performs well on the real EEG recording (section
3.2). Finally, in section 4, some conclusions are drawn.

2 Method: Riemannian Distance and Optimization

2.1 Cone of Hermitian Positive Definite Matrices

Let Mn(C) be the set of n × n complex matrices and Hn = {C ∈ Mn(C) :
CH = C} be the set of Hermitian matrices. The cone of HPD matrices H++

n is
defined as the set {C ∈ Hn : C � 0}. We give a succint introduction of H++

n ,
the reader is refered to [7] for a complete presentation.
H++
n is an open subspace of Hn, thus the tangent space TCH++

n at C ∈ H++
n

can be identified as Hn. To turn H++
n into a Riemannian manifold, we need to

endow every tangent space with a Riemannian metric, that is a smooth inner
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product. At C ∈ H++
n , the natural Riemannian metric on TCH++

n is defined for
all ξ and η in Hn as [7]

〈ξ, η〉C = tr(C−1ξC−1η), (4)

where tr(·) denotes the trace operator. Note that this metric is positive definite

and yields a norm on TCH++
n defined as ‖ξ‖C = 〈ξ, ξ〉1/2C . It leads to a natural

Riemannian distance on H++
n defined for C1 and C2 as [7, 8]

dH++
n

(C1, C2) =
∥∥∥log(C

−1/2
1 C2C

−1/2
1 )

∥∥∥
F
, (5)

where log(·) denotes the matrix logarithm. The function C1 7→ dH++
n

(C1, C2) is

convex. Having defined the Riemannian distance dH++
n

on H++
n , we can define

a proper Riemannian diagonality measure.

2.2 Riemannian Diagonality Measure

The subset D++
n of diagonal positive definite matrices is a closed submanifold of

H++
n with respect to the Riemannian metric (4). The closest diagonal matrix Λ

in D++
n to a matrix C in H++

n according to a distance or a divergence d is [3]

argmin
Λ∈D++

n

d(C,Λ) . (6)

The diagonality measure of C relative to d is therefore the distance or divergence
to its closest diagonal matrix Λ. For the distance based on the Frobenius norm
(corresponding to functionnal (1)) and for the log-det divergence (corresponding
to (3)), the closest diagonal matrix to a matrix C is simply its diagonal part
ddiag(C) [3]. Using the Riemannian distance (5), the closest diagonal matrix Λ
is the unique solution to equation [3]

ddiag(log(C−1Λ)) = 0. (7)

To our knowledge, there is no closed form solution to this equation, however
Λ can be numerically estimated by solving the optimization problem (6) with
d = dH++

n
. This can be done as it follows: the directional derivative of g : Λ 7→

dH++
n

(C,Λ) in the direction ξ ∈ Dn (set of diagonal matrices) is given by

D g(Λ)[ξ] = 2 tr(Λ−1Λ ddiag(log(C−1Λ))Λ−1ξ). (8)

This is a consequence of proposition 2.1 in [8], basic calculations, and of the
fact that D++

n is a closed submanifold of H++
n . From (8), one can obtain the

Riemannian gradient of g at Λ with the identification 〈grad g(Λ), ξ〉Λ = D g(Λ)[ξ]
[9]. This yields

grad g(Λ) = 2Λ ddiag(log(C−1Λ)). (9)

Starting from an initial guess Λ0 (for example ddiag(C)), one can obtain a
sequence of iterates {Λi}. Given iterate Λi, the Riemannian gradient (9) of g at
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Λi leads to a descent direction ξi in Dn using for example a steepest-gradient
or a conjugate gradient scheme (stepsize included in ξi if any). Finally, the
exponential map of D++

n yields the iterate Λi+1 as

Λi+1 = Λi exp(Λ−1i ξi). (10)

2.3 AJD based on the Riemannian Distance of H++
n

Similarly to (1), the cost function based on the natural Riemannian distance (5)
is defined by

fR(B) =
∑K
k=1 dH++

n
(BCkB

H , Λk)

=
∑K
k=1

∥∥log((BCkB
H)−1/2Λk(BCkB

H)−1/2)
∥∥2
F
,

(11)

where Λk is the closest diagonal matrix to BCkB
H as per section 2.2. We can

minimize (11) by taking an approach similar to the one introduced in [4]. Given
the sets {BCkBH} and {Λk}, the idea is to find a matrix A such that the set
{AΛkAH} gets closer (according to (5)) to the set {BCkBH}. This way, matrices
A−1BCkB

HA−H are closer to diagonal form. Further, note that when the best
possible matrix A is the identity matrix In, {BCkBH} contains matrices as
diagonal as possible according to (5). To find A, we define the optimization

subproblem with cost function f̃R as

f̃R(A) =

K∑
k=1

∥∥∥log((BCkB
H)

−1/2AΛkA
H(BCkB

H)
−1/2)

∥∥∥2
F
. (12)

This function has a simpler expression and we can minimize it with a Riemannian
gradient based method that we describe in section 2.4. We then update the
matrix B according to

B ← A−1B. (13)

This leads to Algorithm 1.

Algorithm 1: RD-AJD (Riemannian Distance AJD)

Input: set of K matrices {Ck} in H++
n , initial guess B0 for B, maximum

number of iteration imax.
Output: estimated joint diagonalizer B.

1 Initialization: set i = 0 and compute matrices {B0CkB
H
0 }.

2 while not convergence and i < imax do
3 Find diagonal matrices {Λk,i} as described in section 2.2.
4 Set A0 = In and find Ai by performing one step in a descent direction of

(12) (see section 2.4).
5 Bi+1 ← A−1

i Bi.
6 i = i+ 1.
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2.4 Riemannian Optimization for the Subproblem

It remains to define a method to optimize the cost function f̃R defined in (12).
In order to do so, we perform a Riemannian optimization on the special polar
manifold [10] defined as

SPn = {(U,P ) ∈ H++
n ×On : det(P ) = 1} . (14)

This manifold is a consequence of the following observation: every full rank
matrix A admits the unique polar decomposition A = UP , where U ∈ On (group
of orthogonal matrices) and P ∈ H++

n , thus the manifold of full rank matrices is
equivalent to the product manifold H++

n ×On. To avoid degenerated solutions,
we impose det(AAH) = 1, which is equivalent to det(P ) = 1.

In the following, notations A is used to denote the point (U,P ) in SPn
and A to denote its corresponding full rank matrix UP . Given the initialization
A0 = (In, In) (corresponding to A0 = In), one can obtain a descent direction ξi
from the Riemannian gradient of (12) by a steepest-descent or conjugate gradient
algorithm (stepsize included in ξi if any). The iterate Ai (corresponding to the
matrix Ai) is then obtained through the retraction R of SPn as

Ai = RA0
(ξi). (15)

From proposition 2.1 in [8] and basic calculations, the directional derivative of

f̃R at A in the direction Z is

D f̃R(A)[Z] = 4
∑K
k=1 tr(log((BCkB

H)−1AΛkA
H)UZHU )

+ tr(P−1 log(AH(BCkB
H)−1AΛk)ZHP ).

(16)

Thus, the Euclidean gradient of f̃R on the ambient space of SPn is

gradE f̃R(A) = 4
∑K
k=1

(
log((BCkB

H)−1AΛkA
H)U,

P−1 log(AH(BCkB
H)−1AΛk)

) (17)

and the Riemannian gradient of (12) is

grad f̃R(U,P ) = (ΠU (gradE f̃R(U)), ΠP (P Herm(gradE f̃R(P ))P )), (18)

where gradE f̃R(U) and gradE f̃R(P ) denote the first and second component of

gradE f̃R(A), respectively. ΠA = (ΠU , ΠP ) is the projection map from the am-
bient space onto the tangent space TASPn at A. It is given, for Z = (ZU , ZP ) ∈
Rn×n × Rn×n, by

ΠA(Z) = (ZU − U Herm(UHZU ), Herm(ZP )− 1

n
tr(P−1 Herm(ZP ))P ), (19)

where Herm(·) returns the Hermitian part of its argument. Finally, the retraction
RA mapping a tangent vector back onto the manifold is, for ξA = (ξU , ξP ),

RA(ξA) =
(

uf(U + ξU ), P
1/2 exp(P

−1/2ξPP
−1/2)P

1/2
)

(20)

where uf(.) extracts the orthogonal factor of its argument by Lödwin’s orthog-
onalization [11].
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3 Numerical Experiments

We now have all the ingredients to perform RD-AJD. We estimate its perfor-
mance on simulated data and we compare our approach with those using cost
functions (1), (2) and (3). For RD-AJD, we compute the closest diagonal matrices
using a Riemannian conjugate gradient on D++

n . Classical algorithms minimizing
those cost functions (1), (2) and (3) generally use specific optimization schemes
and constraints [4, 6]. In order to compare the performance of the criteria, we
perform all optimization on SPn with the same Riemannian conjugate gradi-
ent method. This way, differences in performance are not due to the optimiza-
tion scheme but solely to the criterion employed. This Riemannian optimization
scheme has been shown to perform well in general, see for example [10].

We refer to the resulting algorithms by acronyms FD-AJD (Frobenius dis-
tance) for (1), mFD-AJD (modified Frobenius distance) for (2) and LD-AJD
(log-det) for (3). We initialize all algorithms with the inverse of the square root
of the arithmetic mean of the target matrices. For all of them, the stopping cri-
terion for iterate i is defined as ‖Bi−1B

−1
i −In‖2F/n and is set to 10−6. Note that

when comparing the performance of different algorithms, it is very important to
use the same stopping criterion. The Riemannian conjugate gradient method is
performed using manopt toolbox [12].

3.1 Simulated Data

We simulate sets of K real valued n× n matrices {Ck} according to the model
[13]

Ck = AΛkA
T +

1

σ
EkΛ

N
k E

T
k + αIn, (21)

where matrices A and Ek are random matrices with i.i.d. elements drawn from
the normal distribution, σ is a free parameter defining the expected signal to
noise ratio, α = 10−3 is a free parameter representing uncorrelated noise and
matrices Λk and ΛNk are diagonal matrices with i.i.d. elements respectively cor-
responding to signal matrices and noise. The pth element λp,k is drawn from a
chi-squared distribution with expectation n/p1.5.

To estimate how the methods behave, we use two criteria. The first one is
the Moreau-Amari index IM-A [14], which is a measure of accuracy, i.e., of how
close to the true one is the estimated solution. It is defined as

IM-A(M) =
1

2n(n− 1)

n∑
p=1


n∑
q=1
|Mpq|

max
1≤q≤n

|Mpq|
+

n∑
q=1
|Mqp|

max
1≤q≤n

|Mqp|

− 1

(n− 1)
, (22)

where M = BA, with B the estimated joint diagonalizer and A the true mixing
matrix of the signal part in (21). The second criterion IC concerns the conver-
gence speed of the algorithms. It measures the distance between the iterate Bi
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and the final estimated joint diagonalizer B. It is defined as [13]

IC(Bi) =
‖Bi −B‖2F
‖B‖2F

. (23)
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Fig. 1: mean of the performance of the considered algorithms as a function of the
noise parameter σ over 50 trials for different values of n (input matrix dimension)
and K (number of matrices). RD-AJD outperforms the other approaches in every
cases. The difference with the other methods increases with n and/or K. See text
for details.

First, we analyze the quality of the results as a function of the noise parameter
σ. One can see in figure 1 that RD-AJD outperforms the other methods in all
cases. As expected, the performance of the algorithms increases with K and
decreases with n. The difference between RD-AJD and the others increases with
K and n. This shows that this criterion is more robust with respect to these
parameters. This property may be important in practical applications where the
size and number of matrices are large.

Concerning the convergence of the algorithms (figure 2), RD-AJD generally
reaches its final solution faster than the other algorithms in terms of iterations.
When it does not (n = 32, FD-AJD), it can be explained by the fact that faster
methods converge to a less satisfying solution, which is closer to the initial guess
B0. However, in terms computational time, RD-AJD, as performed here, is slower
than the other methods since it needs to find the closest diagonal matrices at
each iteration. This could be corrected by taking approximations of matrices Λk.
We will further investigate this in future work.
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Fig. 2: mean of the convergence of the considered algorithms as a function of
the number of iterations for σ = 50 over 20 trials. RD-AJD generally converges
faster in terms of iterations. When it does not, faster methods converge to a less
satisfying solution closer to the initial guess B0. See text for details.

3.2 Electroencephalographic (EEG) Data

We tested our AJD optimization using the four criteria on an EEG recording
acquired on an epileptic patient with 19 electrodes placed according to the in-
ternational 10-20 system. The sampling rate was 128Hz and the band-pass was
1-32Hz. The data comprised 30 seconds. The BSS of the data was performed
using the procedure detailed in [15]. In summary, after a whitening step retain-
ing at least 99.9% of the total variance of the data (reduction to dimension 17
with this data), AJD was performed on the set of Fourier cospectra estimated
by 75% overlapping sliding windows of 1 second (Welch method) for frequencies
1 to 32Hz with 1Hz resolution.

Figure 3 shows the last 5 seconds of the original data and the corresponding
17 sources estimated using AJDC [15] performed by the classical AJD algo-
rithm [4], mFD-AJD, mFD-AJD with trace-normalized cospectra, LD-AJD and
RD-AJD respectively. Note that FD-AJD gives similar results as compared to
mFD-AJD. We are interested here in the three peak-slow wave complexes, often
seen in epileptic patients and visible in the original data at frontal locations
(figure 3, electrode labels starting with F). For all criteria with the exception of
mFD-AJD and LD-AJD, the three peak-slow wave complexes are well separated
in an unique source (s3 in figure 3). This shows that RD-AJD does not need any
ad-hoc normalization of the input matrices in order to give satisfying results,
whereas mFD-AJD and FD-AJD do. Further investigations should be done to
compare the sources found by the different methods because the obtained joint
diagonalizer are not equivalent. These results demonstrate the accuracy of our
optimization procedure and the feasability of using the natural Riemannian dis-
tance criterion.
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Fig. 3: 5 last seconds of the original EEG data and the 17 sources obtained with
classical algorithm AJDC [15], mFD-AJD, mFD-AJD with trace-normalized
cospectra, LD-AJD and RD-AJD. See text for details.

4 Conclusions

In this paper, we have provided for the first time an optimization framework for
the AJD cost function based on the natural Riemannian distance on the cone
of HPD matrices. This problem could not find a solution so far, despite it has
been recognized as important [3]. The results obtained on simulated data are
promising since our method outperforms the others in terms of accuracy in all
cases investigated. Results obtained on real EEG data show that the Riemannian
criterion allows to retrieve sources of interest without having to scale the target
matrices. Actually, it is invariant by any diagonal scaling which is theoritically
advantageous as pointed out in [2, 6].

Here, we limited ourselves to a first order optimization method for simplicity.
We will investigate second order methods in future works. We will also study if
the differences in the performances arise from the properties of the Riemannian
distance, the choice of the closest diagonal matrices, or both. Indeed, we can
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replace the diagonal matrices in (11) by those in (2) and reciprocally. Note
that this substitution cannot be operated using (3) due to the properties of the
determinant.
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