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Abstract. In this work, Discrete Element Method (DEM) is used in order to calculate the motion of granular

material in rotating dryers. We are particularly interested in analysing the effect of flight shape on the behaviour

of spherical particles in the cross section of the dryer. We will be using two segments flights and three different

profiles : a straight flight (180◦ between both segments), an angled flight (with an angle of 120◦) and a right-

angled flight (90◦). The results show that the profile of the flight affects significantly the motion of the particles

in the cross section of the dryer. Changing the angle between the segment’s flight, changes the flight loading and

thus the material hold-up which leads to different discharging profiles of the flight. For a right angled flight, the

range of the discharge angle increases leading to a more uniformized cascade pattern in time and an enlarging

of the area occupied by the curtains of particles. The specific durations (discharging time, falling time) are also

determined and studied as a function of the flight shape.

1 Introduction

Drying granular materials can be defined as the removal

of moisture from a solid product. The moisture commonly

consists of water. Materials are dried to ease handling,

to preserve materials for storage and shipment and mostly

they must be dried to bring their moisture content to a spe-

cific value before being sold [1].

Rotating dryers are widly used in industry to dry vari-

ety of solids [1]. They consist of long drum driven at low

speed. The rotation speed, ω, is selected according to the

desired mode of bed motion which is characterized by the

Froude number ω2R/g [2], where R is the inside radius of

the drum and g is the acceleration due to gravity. Industrial

rotary dryer is a tube of length L of circular cross section

of a diameter D, with aspect ratio L/D about 10. The drum

can be horizontal or slightly inclined [3], [4], [5].

Wet granular material is introduced into the upper inlet

of the drum. Then the material accumulates and progress

through the drum due to the combined action of the rota-

tion of the drum, the slope of the drum -if present- and the

hot gas flow passing through the drum. The dried product

leaves the drum from its other extremity.

The dryers are usually fit with flights, which consist

of slab made of steel distributed on the periphery of the

cross section and periodically along the tube. Flights carry

the solid particles and disperse them into the hot gas flow.

Flights used in industrial dryers can have complex shape.
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However, for theoretical and experimental purposes, sim-

ple flight shapes are frequently considered composed by

one , two or three segments ([6], [7], [8], [5], [9]).

Several topics that interest scientists and engineers in

connection with heat and mass transfer arise in the prob-

lem of rotary dryers. The most important of them are the

behaviour of the material bed, the holdup of the material

by the flights, the material curtains and the mean residence

time. While the behaviour of the granular bed material is

greatly studied by the DEM approach [10], [11], the other

topics are treated essentially with theory or experiments.

Thus, most of the studies on the subject of the holdup of

the material use the approach of bulk material [12], [6],

[8], [5], [9]. Experiments also showed that the mean resi-

dence time is affected by the flight’s shape. A drum fitted

with right-angled flights has a higher residence time than

a drum fitted with straight flights [13].

In order to study the effect of flight shape on the be-

haviour of the granular material, we use EDEM, a high-

performance software for bulk material flow simulation

based on the Discrete Element Method. This study is con-

ducted to investigate the influence of the flight shape on

the holdup. And it is also extended to the analysis of the

falling length and falling time of particles in the cross sec-

tion of the dryer. The flight profiles chosen are: straight

flight, large angled flight and right angled flight.

2 Description of the problem and

simulation parameters

We are interested to study the granular motion in a trans-

verse cross section of the drum. Due to the periodicity
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Figure 1. Drum’s section used during the simulations

of the granular motion along the tube [7], we have used

a portion of the rotating drum with thickness of 0.01 m.

The diameter is also reduced in order to minimize the par-

ticles number. The diameter, D, is equal to 0.16 m (Fig.

1). This portion is driven with rotation speed ω = 16 rpm.

The Froude number is equal to 0.02. It corresponds to the

cascade regime for a filling degree τ > 0.1 according to

[14]. Where τ express the volumetric filling percentage of

drum’s load (τ = VMaterial

VDrum
).

In industry, the number of the flights is calculated to

insure a maximum holdup. In the present study, in order

to avoid interaction between the flights, we have used only

two opposite flights. Thus the portion of the tube is fit-

ted with flights composed of two segments which have the

same length l of 0.0075 m. Three profiles of flights are

considered for which the angle α1 between the segments

is 180◦, 120◦ and 90◦ (Fig.2). The angle α0 of fixation of

the flights on the drum wall is 90◦. Each flight is drawn

in Fig.2 at θ = 0◦, where the flight is supposed to be filled

at it’s maximum hold-up [7], [6]. In the approach of bulk

material, the free surface is an inclined line with an angle

equal to the dynamic angle of repose,Φ, which is equal to

the static angle of repose (Φ0) at θ = 0◦. This dynamic an-

gle depends on the rotation speed, drum’s radius and fric-

tion coefficient as it was demonstrated by Schofield and

Glikin [15] by studying the equilibrium of a particle about

to fall from the flight. The volume of material in the flight

can be calculated by the formula given in [5] for angled

flight with two segments or in [9] for right angled flight.

For three segments flight, a similar formula can be found

in [8].

In our simulations, the particle-particle and particle-

wall collision are modelled through the soft-sphere ap-

proach. This was used to simulate particle-to-particle and

particle-to-wall contact interaction. The model is used due

to its accurate and efficient force calculation. It is based on

Hertzian contact theory when calculating the normal force
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(a) Straight flight

(α0 = 90◦ ,

α1 = 180◦)
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(b) Large angled

flight (α0 = 90◦ ,

α1 = 120◦)
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(c) Right angled

flight (α0 = α1

= 90◦)

Figure 2. Three differents flight’s shapes

Table 1. Physical parameters of the particle and of the tube used

in the numerical simulations

Particle Tube

Poisson’s ratio 0.3 0.3

Shear modulus (Pa) 2.00E+07 7.00E+07

Density (kg/m3) 2600 7800

Coefficient of restitution 0.1 0.24

Coefficient of static friction 5.45E-01 5.45E-01

coefficient of rolling friction 0.01 0.01

component and the work of Mindlin-Deresiewicz when

determining the tangential force [16], [17].

Particles are considered spherical and the dryer is

made of steel. Particles have a radius of r = 0, 00075 m re-

sulting in the use of 9558 particles to acheive τ = 15% as

a filling degree, with a porosity of 0.44, corresponding to

a random loose packing [18]. This value has been verified

later on with an image analysis software on some images

of our configuration obtained by EDEM. Characteristics

of the materials used are shown in table 1.

3 Results

In order to increase the drying efficiency, it is recom-

mended to increase the density of material in the airborne

phase (particles flying through the cross-section of the

drum) particularly in the upper half of the drum [5], [4].

Thus most of the studies consider the quantity of particles

in the upper half of the drum as a design criterion [15], [7],

[6]. We have applied this criterion and have calculated the

variation of the particles number in this upper half of the

drum.

In Fig. 3, we see the change of volume of material on

the flight from θ = 0◦ up to complete discharge. To com-

pare all flight’s shapes we have drawn the relative volume

of particles in the flight. This volume is calculated accord-

ing to a constant porosity, equal to 0.44.

In order to compare the behaviour of the flights, we

have divided this volume by the capacity of each flight for

θ = 0◦. In this figure, we have also drawn the holdup

of right angled flight with the approach of bulk material

developed by Sunkara and al. [9]. The angle α1 between
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Figure 3. Relative hold-up in the flight, where Vθ=0◦ is the hold-

up at θ = 0◦: for a straight flight Vθ=0◦ = 111 cm3/m, for an large

angled flight Vθ=0◦ = 119 cm3/m and for a right angled flight

Vθ=0◦ = 72.8 cm3/m

the two segments influences the discharging profile of the

flight. The time the flight takes to be completely empty

is more important for an angle α1 = 90◦. This favours

the presence of particles in the cross section of the tube

for a long period. Even though straight flight carries more

particles (Vθ=0◦ = 111 cm3/m). Its angular discharging

angle, for which the flight is completely empty, is small.

In figure 4, we present the flight’s cascading rate which

varies from one flight to another. The number of particles

leaving the flight is more or less constant over time for a

right angled and a large angled flight.
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Figure 4. Flight cascading rate as a function of the angular posi-

tion for different flight’s shape

Snapshots of the behaviour of the granular material in

the drum are presented in Fig. 5. These snapshots show

that the flight profile affects the behaviour in the cross-

section of the drum. The particles are concentrated in a

small zone for the straight flight. However for the angled

flight, a more extended zone is observed. Fig. 5 also illus-

trate both the hold-up in the flight and the particle curtain,

which appear to have a constant width for angled flights

and change shape for a straight flight. A straight flight has

the maximum initial volume, but a Right-angled flight car-

ries the particles higher. So for further characterization of

the particles movement, we calculate the falling length and

falling time. The falling length is the distance traveled by

the particle from the flight’s tip up to the contact point with

the bed of material or the drum’s wall. And the falling time

is the time the particle takes to travel the falling length.

(a) θ = 0◦ (b) θ = 0◦ (c) θ = 0◦

(d) θ = 14◦ (e) θ = 14◦ (f) θ = 14◦

(g) θ = 29◦ (h) θ = 83◦ (i) θ = 115◦

Figure 5. Snapshots of the granular behaviour in the rotating

drum for three shapes of the flight

The dispersion of the falling length and the falling time

is not the same from one flight shape to another, leading

to different discharging patterns. Since the number of par-

ticles leaving the flight is important and depends on the

angular position of the flight, we calculate the average

falling length and falling time over an angular range of 1◦

to present the results and to ease the comparison between

the flight’s shapes (Fig. 6, 7). The more we reduce the an-

gle α1 between the segments of the flight, the greater the

range of the discharging flight. Moreover, when calculat-

ing the average falling length and falling time of all parti-

cles leaving each the flight, the results show an increase in

the falling length and the falling time up to 50% and 70%,

respectively, when using a right-angled flight instead of a

straight one.

4 Conclusion

The shape of the flight influences the discharging pattern

of the granular material retained in the flight. Compared

to the other flights an angled flight with 120◦ offers a

large angular discharging range while carrying an impor-

tant quantity of material compared to a right-angled flight.

The falling length and the falling time of the particles

also increases up to a maximum value then they start de-

creasing for a large-angled flight and a Right-angled flight.
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Figure 6. Falling length of the particles, for three different flight

profiles. Vertical lines show the angular discharging angle
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Figure 7. Falling time of the particles, for three different flight

profiles. Vertical lines show the angular discharging angle

Compared to the other flight’s shape, the angled flight of-

fers a compromise between the angular discharging range

and the falling length and falling time. It allows to get

greatest falling length and time without decreasing after-

wards as with a right-angled flight. The angular discharg-

ing rate is optimum compared to a straight flight.

Although the comparaison between the hold-up given

by Sunkara’s equations [9] and DEM’s simulations shows

the same tendancy. However, DEM’s simulations offer a

more accurate calculations of the flight’s hold-up since the

DEM takes into account the interactions between particles

and the particle’s size unlike the bulk material’s approach.

Notations

D : dryer diameter (m)

L : length of the dryer (m)

r : particle radius (m)

l : length of the flight segment (m)

ω : dryer rotational seed (rad/s)

τ : drum’s filling degree (%)
θ : angular position of the tip of the flight (◦)

α0 : angle between the fist segment and the wall (◦).

α1 : angle between the segments of the flight (◦)

Φ : the dynamic angle of repose (◦)

Φ0 : the static angle of repose (◦).
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