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Abstract

In order to solve more easily combinatorial optimization problems, one
way is to find theoretically a set of necessary or/and sufficient conditions
that the optimal solution of the problem has to verify. For instance, in
linear programming, weak and strong duality conditions can be easily de-
rived. And in convex quadratic programming, Karush-Kuhn-Tucker con-
ditions gives necessary and sufficient conditions. Despite that, in general,
such conditions doesn’t exist for integer programming, some necessary
conditions can be derived from Karush-Kuhn-Tucker conditions for the
unconstrained quadratic 0-1 problem. In this paper, we present these
conditions. We show how they can be used with constraints program-
ming techniques to fix directly some variables of the problem. Hence,
reducing strongly the size of the problem. For example, for low density
problems of size lower than 50, those conditions combined with constraints
programming may be sufficient to solve completely the problem, without
branching. In general, for quadratic 0-1 problems with linear constraints,
we propose a new method combining these conditions with constraints
and linear programming. Some numerical results, with the instances of
the OR-Library, will be presented.
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1 Introduction

We are interested in this paper to solve exactly unconstrained quadratic 0-1
problems. The mathematical form of the problem is the following

(QP) Min < c, x > +x⊤Qx

s-t : (1) x ∈ {0, 1}n

where c ∈ R
n, Q is a real n × n upper triangular matrix.

This problem involves (with additional constraints) many academical problems
as the graph bipartitoning problem, the quadratic assignment problem, the max-
cut problem or the maximum independent set problem. All of these problems
are known to be NP-hard (Garey and Johnson [12]) and modelize real-world
applications in computer sciences, transports and logistics.

The difficulty of quadratic problems is mainly due to the non-linearity of the
function and the integrity of the variables. That’s why most of the techniques
proposed to solve it consist first to break the non-linearity of the functions and
to relax the integrity constraints. For instance, it can be found in the litterature
linearizations of the objective function [2] [7] [13], semidefinite relaxations [17]
[18] [23], and lagrangean relaxations [6] [20]. For all of these techniques, the size
of the instances that be can be solved exactly in a reasonable amount of time
is limited : no more than 150 variables for all densities for the unsconstrained
quadratic 0-1 problem, and no more than 32 variables for the quadratic assign-
ment problems. It must be noticed that low density problems are easier to solve
that high density ones.
Since the resolution techniques are based on relaxations of the problem, to im-
prove the numerical results we have to strengthen the relaxation by adding
some linear cuts (ideally some facets) in the case of linear relaxation, or some
semidefinite cuts in the case of semidefinite relaxation [17] [18]. Another way
is to try first to reduce the size of the realisable domain of the problem, by
characterizing theoretically the optimal solution of the problem. In integer lin-
ear programming, this phase is usually known as the preprocessing phase. It
allows to fix some variables and add some new constraints. This is precisely one
purpose of this paper.

Our contribution may be viewed as an extension of the first result below of
P. Hansen [16]. It allows to fix some variables under certain conditions.

Lemma 1.1 . Let us notice q−ij = Min{0, qij} and q+
ij = Max{0, qij} (1 ≤ i <

j ≤ n).

• If ci +
i−1
∑

j=1

q−ij +
i−1
∑

j=1

q−ij < 0 then xi = 0
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• If ci +
i−1
∑

j=1

q+
ij +

i−1
∑

j=1

q+
ij < 0 then xi = 1

Depending on the structure of the problem, these rules may be succesfull to
fix some variables. This is the case for the quadratic problem benchmarks for
which the values of ci and qij are chosen randomly between [−100, 100]. At the
opposed, in the max-cut problem the lemma has absolutely no effect because of
the structure of the objective function.

We have observed and proved that, even when we cannot fix a variable, it
is always possible to fix products of any number of variables as xixj = 0 or
xixjxk = 0, or (1 − xi)xjxkxl = 0, etc. We call these equalities fixations.

To present the fixations, we need to introduce some notations and definitions.
If xi (i = 1, 2, .., n) denote a boolean variable, the complement of xi (i.e 1− xi)
will be noticed by xi.

Definition 1.2 A litteral is a boolean variable of the set L = {x1, x2, ..., xn, x1, , .., xn}.

This is a definition from the theory of posiforms (see [4]). Hence, a fixation is
in fact a product of litterals. For instance the third one above corresponds also
to xixjxkxl = 0.

Definition 1.3 The cardinality of a fixation is the number of litterals of the
fixation.

It can be noticed that lower is the cardinality and better is the fixation for
the simplification of the problem. For instance, xi = 0 and xixj = 0 are two
fixations of cardinality 1 and 2. With the first one, the number of variables of
the problem is decreased by one, but with the second we can only eliminate a
quadratic term : xi = 0 is more interesting than xixj = 0.

The interests of the fixations are the following :

- Reducing the density of the matrix Q : for instance the fixation xixj = 0
eliminates the term qijxixj hence, simplifying the resolution of the problem.

- Reducing the realisable domain : for instance, the fixation xixjxk = 0 re-
duce the realisable domain of the problem.
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Moreover, in all cases, these fixations can be linearized as xi + xj ≤ 1 ,
xi + xj + xk ≤ 2 and introduced in a linear or a semidefinite relaxation. There-
fore, they can be viewed as new cuts strengthening the relaxations.

These fixations are derived from necessary optimal conditions for the uncon-
strained quadratic 0-1 problem. We present these conditions in section 2 and
show how numerous fixations can be generated from these conditions.

To find in practice these new fixations, we have to solve a series of minimal
cover problems. The link between minimal cover problems and our fixations are
shown in section 3 and a heuristic is proposed to solve it in the same section.
The iterations of the heuristics produce a series of fixations, for which it can
be viewed that some deductions can produced (in certain cases) other fixations
with lower cardinalities. These deductions are obtained by using constraint pro-
gramming techniques, specially propagation schemes. We discuss this aspect in
section 4.

By combining the heuristics and constraint programming, we propose in the
same section a preprocessing algorithm for unconstrained quadratic 0-1 prob-
lems and some numerical tests in section 5. The algorithm allows, for most
cases, to solve completely the problem (i.e to fix all variables) for low density
problem of size lower than 50.

For more difficult problem, we propose to combine the algorithm with linear
or semidefinite relaxations. In section 6, this approach is presented with a lin-
ear relaxation and is experimented in section 7 .

Some perspectives of this framework are discussed in section 8.

2 Fixations for the unconstrained quadratic 0-1

problem

It is well known (see Rosenberg [24]) that solving the problem (QP)

(QP) Min < c, x > + 1
2x⊤Qx

(1) x ∈ {0, 1}n

is equivalent to solve its continuous relaxation (QP )

(QP ) Min < c, x > +x⊤Qx

(2) x ∈ [0, 1]n
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In other words, there exists at least one integer point x ∈ {0, 1}n for which the
value of the objective function corresponds to the optimal value of the problem
(QP ). Given that x is optimal for (QP ), x has to verify Karush-Kuhn-Tucker
conditions. By expressing these conditions, the following necessary optimality
conditions may be deduced for (QP).

Proposition 2.1 Let x be the optimal solution of (QP ). The following two
inequalities are necessary verified.

• cixi +
n
∑

j=1
j 6=i

qijxixj ≤ 0 , i = 1, 2, ..., n.

• ci(1 − xi) +
n
∑

j=1
j 6=i

qij(1 − xi)xj ≥ 0 , i = 1, 2, ..., n.

Proof Let us first consider a more explicit formulation of (QP )

(QP) Min
n
∑

i=1

cixi +
n
∑

i=1

n
∑

j=i+1

qijxixj

(2) 0 ≤ xi ≤ 1 i = 1, 2, ..., n

Let µi (resp. αi) be the lagrangean multipliers associated to the constraints
xi ≤ 1 (resp. −xi ≤ 0).

We know that the Karush-Kuhn-Tucker conditions applied to the problem yield
the following equalities and inequalities :

1. ci +
n
∑

j=1
j 6=i

qijxj + µi − αi = 0, 1 ≤ i ≤ n

2. µi(1 − xi) = 0, 1 ≤ i ≤ n

3. αixi = 0, 1 ≤ i ≤ n

4. µi ≥ 0, αi ≥ 0, 1 ≤ i ≤ n

5. xi ≥ 0, xi ≤ 1, 1 ≤ i ≤ n

By multiplying with xi the equality (1), we obtain :
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cixi +
n
∑

j=1
j 6=i

qijxixj + µixi − αixi = 0

⇒ cixi +
n
∑

j=1
j 6=i

qijxixj + µixi = 0, because of the relation (3)

⇒ cixi +
n
∑

j=1
j 6=i

qijxixj = −µixi,

⇒ cixi +
n
∑

j=1
j 6=i

qijxixj ≤ 0, because of the relation (4)

The first inequality of the theorem is verified.

By multiplying the relation (1) by (1−xi) and perform the same deduction, the
second inequality of the theorem can be proved.

�

Using a result of E. Boros and P.L. Hammer [5], the same theorem can be
obtained more easily. In this paper, the authors consider more general function
called pseudo-boolean functions for which a representation is

f(x1, x2, ..., xn) =
∑

S⊆{1,2,...,n}

qS

∏

j∈S

xj

Notice that quadratic boolean functions in problem (QP) are particular cases
of pseudo-boolean functions, since they can be obtained by taking subset S of
cardinality 2 and qii = ci (1 ≤ i ≤ n). Now, let us consider the following
quantities

∆i(x) =
∑

S⊆{1,2,...,n}\i

qS∪{i}

∏

j∈S

xj , i = 1, 2, ..., n

With these notations, E.Boros and P.L. hammer prove the following result.

Proposition 2.2 Given the pseudo-boolean function f , a binary vector x ∈
{0, 1}n is a local minimzer of f if and only if

xi =







1 if ∆i(x) < 0

0 if ∆i(x) > 0
, i = 1, 2, ..., n
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Applying this proposition to the problem (QP) gives our first proposition.

Remark 2.3 It is intersting to remark that Hansen result in the introduction
can be obtained with the proposition 2.1.

Indeed, we know that

ci +
n
∑

j=1
j 6=i

q−ij ≤ ci +
n
∑

j=1
j 6=i

qijxj where q−ij = Min{0, qij}.

Since xi[ci +
n
∑

j=1
j 6=i

qijxj ] ≤ 0 and xi ≥ 0 then

xi[ci +
n
∑

j=1
j 6=i

q−ij ] ≤ 0 is necessary verifiy by the optimal solution.

Therefore, if ci +
n
∑

j=1
j 6=i

q−ij > 0 then xi = 0, and the first result of Hansen is

obtained.

Just like above, since ci +
n
∑

j=1
j 6=i

q+
ij ≥ ci +

n
∑

j=1
j 6=i

qijxj where q+
ij = Max{0, qij},

we have

(1 − xi)[ci +
n
∑

j=1
j 6=i

q+
ij ] ≥ 0.

Thus, if ci +
n
∑

j=1
j 6=i

q+
ij < 0 then xi = 1.

�

It can be also observed that each inequality of the proposition 2.1 is a deduction

obtained by multiplying the expression ci +
n
∑

j=1
j 6=i

qijxj by xi or 1 − xi.

Since the mutiplication by one variable yields the hansen fixation rules for that
variable, it comes that the multiplication by a product of 2 variables will pro-
duced another rule for this product. The proposition below is based on this idea.

Proposition 2.4 Let i and k ∈ {1, 2, ..., n} with i 6= k, and x the optimal so-
lution of the problem (UQP).
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(i) • If ci + qik +
n
∑

j=1
j 6=i,k

q−ijxj > 0 then xixk = 0.

(ii) • If ci + qik +
n
∑

j=1
j 6=i,k

q+
ijxj < 0 then (1 − xi)xk = 0.

(iii)• If ci +
n
∑

j=1
j 6=i,k

q−ijxj > 0 then xi(1 − xk) = 0.

(iv) • If ci +
n
∑

j=1
j 6=i,k

q+
ijxj < 0 then (1 − xi)(1 − xk) = 0.

Proof We know that cixi +
n
∑

j=1
j 6=i

qijxixj ≤ 0.

By multiplying with xk (i 6= k) we obtain cixixk +qikxixk +
n
∑

j=1
j 6=i,k

qijxixjxk ≤ 0.

Thus xixk[ci + qik +
n
∑

j=1
j 6=i,k

qijxj ] ≤ 0.

Since ci+qik +
n
∑

j=1
j 6=i,k

q−ijxj ≤ ci+qik +
n
∑

j=1
j 6=i,k

qijxj ⇒ xixk[ci+qik +
n
∑

j=1
j 6=i,k

q−ijxj ] ≤ 0.

Thus, if ci + qik +
n
∑

j=1
j 6=i,k

q−ijxj > 0 then xixk = 0. The point (i) is obtained.

By analogy, we also know that ci(1 − xi) +
n
∑

j=1
j 6=i

qij(1 − xi)xj ≥ 0.

By multiplying with xk (i 6= k) we obtain xk(1 − xi)[ci + qik +
n
∑

j=1
j 6=i,k

q+
ijxj ] ≥ 0.

Therefore, if ci + qik +
n
∑

j=1
j 6=i,k

q+
ijxj < 0 then (1 − xi)xk = 0. And the point

(ii) is obtained.

The last two results are deduced in the same way. �

The results of the propostion 2.4 are called fixations of cardinality 2. They allow
to discard or to linearize quadratic terms. Hence, to decrease the density of the
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matrix Q. Indeed, the equality xixk = 0, for instance, can be used to eliminate
the term qikxixk, but corresponds also to the valid inequality xi +xk ≤ 1. This
cut can be introduced in any relaxation (linearization, semidefinite relaxation)
of the problem (QP).

As we derive fixations for product of 2 variables, many others fixations of all
cardinalities can be deduced. The proposition below is a generalization of the
propostion 2.4.

Proposition 2.5 Let i ∈ {1, 2..., n}, S ⊆ {1, 2..., n} and yj (j ∈ S) some lit-
terals. Let us consider the following three sets :

S1 = {j ∈ S|yj = xj} S0 = {j ∈ S|yj = xj} S = {1, 2..., n}\S

• If ci +
∑

j∈S1

qij +
∑

j∈S

q−ij > 0 then xi

∏

j∈S

yj = 0

• If ci +
∑

j∈S1

qij +
∑

j∈S

q+
ij < 0 then (1 − xi)

∏

j∈S

yj = 0

Proof Let us assume that variables yj (j ∈ S1 ∪ S0 have been fixed to 1 (or
equivalently that xj for j ∈ S1, have been fixed to 1 while xj for j ∈ S0

have been fixed to 0). We can then apply Lemma 1.1 to the resulting reduced
problem. We then have

ci +
∑

j∈S1

qij +
∑

j∈S

q−ij ≥ 0 ⇒ xi = 0

Therefore, if the left hand side of the above implication is verified, it is impossible
to have

yj = 1 ∀j ∈ S1 ∪ S0, and xi = 1

in the initial problem. Thus xi

∏

j∈S1∪S0

yj = xi

∏

j∈S

yj = 0.

The second point is obtained like above.

�

Remark 2.6 .

- When |S| = 1, we obtain exactly the results of proposition 2.4.

- When |S| > 1, we cannot fix or eliminate quadratic terms, but new valid
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inequalities can be introduced.

Indeed, the fixation xi

∏

j∈S

yj = 0 is equivalent to the linear inequality

xi +
∑

j∈S

yj ≤ |S|,

and the fixation (1 − xi)
∏

j∈S

yj = 0 is equivalent to

(1 − xi) +
∑

j∈S

yj ≤ |S|.

�

In order to illustrate how these results can help to solve (QP), we present the
following example.

Example 2.7 Let us consider the following uncosntrained quadratic 0-1 prob-
lem of 7 variables

Min 85x1 +100x2 −88x3 −16x4 −37x5 +14x6 +80x7

+42x1x2 −68x1x3 −6x1x4 −10x1x5 −23x1x6 −87x1x7

+60x2x3 −76x2x4 −58x2x5 +82x2x6 +85x2x7

+19x3x5 −10x3x6 +60x3x7

+25x4x5 +98x4x6 −2x4x7

+70x5x6 −57x5x7

−57x5x7

s − t x1 x2 x3 x4 x5 x6 x7 ∈ {0, 1}

The optimal value of this problem is −109 corresponding to the optimal solution
x = [1, 0, 1, 0, 1, 1, 1].

Iteration 1

10
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Let us first observe that the proposition 1.1 of Hansen is inactive for this prob-
lem. No variables can be fixed to 0 or 1.

Neverthelees, by applying our proposition 2.1, we deduce that the optimal so-
lution has to verify :

For i = 2 and k = 3, we have, with point (i),

ci + qik +
n
∑

j=1
j 6=i,k

q−ij = 100 + 60 − 76 − 58 = 26 > 0 ⇒ x2x3 = 0 (a).

For i = 3 and k = 2, we have, with point (iv),

ci +
n
∑

j=1
j 6=i,k

q+
ij = −88 + 19 + 60 = −9 < 0 ⇒ (1 − x3)(1 − x2) = 0 (b).

For i = 3 and k = 7, we have, with point (iv),

ci +
n
∑

j=1
j 6=i,k

q+
ij = −88 + 19 + 60 = −9 < 0 ⇒ (1 − x3)(1 − x7) = 0 (c).

For i = 2 and k = 7, we have, with point (iv),

ci + qik +
n
∑

j=1
j 6=i,k

q−ij = 100 + 85 − 76 − 58 = 51 > 0 ⇒ x2x7 = 0 (d).

Thus, quadratics terms x2x3, x3x7, x2x7 can be eliminated from the objective
function of the problem.

However, it is more interesting to observe that the four fixations above imply
that x2 = 0 and x3 = 1.

Indeed, fixations (a) and (b) give x2 + x3 = 1, thus x2 = 1 − x3. And, be-
cause of fixations (c) and (d), we can deduced that x2 = 0 and hence x3 = 1.
Variables x2 and x3 can then be eliminated to the problem. It follows the new
update problem.

Min −88 +17x1 −16x4 −18x5 +4x6 +140x7

−6x1x4 −10x1x5 −23x1x6 −87x1x7

+25x4x5 +98x4x6 −2x4x7

+70x5x6 −57x5x7

−57x5x7

s − t x1 x4 x5 x6 x7 ∈ {0, 1}

11



Iteration 2

Once again, no fixation rules of Hansen proposition 1.1 are verified. But the
following fixations of cardinality 2 and 3 can be deduced :

For i = 7 and k = 1, we have, with point (iii),

ci +
n
∑

j=1
j 6=i,k

q−ij = 140 − 2 − 57 − 57 = 24 > 0 ⇒ x7(1 − x1) = 0 (e).

For i = 7, S = S1 = {1, 6}, we have, with proposition 2.5,
ci +

∑

j∈S1

qij +
∑

j∈S

q+
ij = 140 − 87 − 57 + 0 = −4 < 0 ⇒ (1 − x7)x1x6 = 0 (f).

For i = 1, S = S0 = {6, 7}, we have, with proposition 2.5,
ci +

∑

j∈S

q−ij = 17 − 6 − 10 = 1 > 0 ⇒ x1(1 − x6)(1 − x7) = 0 (g).

As in the first iteration above, it may be seen analytically that fixations (e),
(f) and (g) give x1 = x7.

Thus one of the variable x1 = x7, for instance x7, can be eliminated. We
obtain the new problem

Min −88 +70x1 −16x4 −18x5 +4x6

−8x1x4 −67x1x5 −80x1x6

+25x4x5 +98x4x6

+70x5x6

s − t x1 x4 x5 x6 ∈ {0, 1}

Iteration 3

Proposition 1.1 is still inactive. Applying propostion 2.4 gives :

For i = 1 and k = 6, we have, with point (ii),

ci + qik +
n
∑

j=1
j 6=i,k

q+
ij = 70 − 80 + 0 = −10 < 0 ⇒ (1 − x1)x6 = 0 (h).

For i = 6 and k = 1, we have, with point (iii),

ci +
n
∑

j=1
j 6=i,k

q−ij = 4 − 0 = 4 > 0 ⇒ x6(1 − x1) = 0 (i).
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Thus, (h) and (i) yields x1 = x6. And the update problem is

Min −88 −6x1 −16x4 −18x5

+90x1x4 +3x1x5

+25x4x5

s − t x1 x4 x5 ∈ {0, 1}

Iteration 4

Applying propostion 2.4 in this new problem gives :

For i = 1 and k = 4, we have, with point (i),

ci + qik +
n
∑

j=1
j 6=i,k

q−ij = −6 + 90 = 84 > 0 ⇒ x1x4 = 0 (j).

For i = 1 and k = 4, we have, with point (iv),

ci +
n
∑

j=1
j 6=i,k

q+
ij = −6 + 3 = −3 < 0 ⇒ (1 − x1)(1 − x4) = 0 (k).

For i = 4 and k = 5, we have, with point (i),

ci + qik +
n
∑

j=1
j 6=i,k

q−ij = −16 + 25 + 0 = 9 > 0 ⇒ x4x5 = 0 (l).

For i = 5 and k = 4, we have, with point (iv),

ci +
n
∑

j=1
j 6=i,k

q+
ij = −18 + 3 = 15 < 0 ⇒ (1 − x5)(1 − x4) = 0 (m).

With (j), (k), (l) and (m), it can be seen analytically that x1 = x5 and x4 =
1 − x1. The update problem is

Min −104 −5x1

s − t x1 ∈ {0, 1}

The solution of this last problem is trivial : x1 = 1.

Therefore, by using in reverse order the chain of deduction found at each it-
eration, the optimal solution can be deduced as below :

- Iteration 4 : x1 = x5 = 1, x4 = 1 − x1 = 0,

13



- Iteration 3 : x1 = x6 = 1.

- Iteration 2 : x1 = x7 = 1.

- Iteration 1 : x2 = 0 , x3 = 1.

Thus we find x = [1, 0, 1, 0, 1, 1, 1] corresponding to the optimal solution.
�

The problem has been completely solve exactly by applying two strategies :
application of proposition 2.5 (generalizing proposition 2.4 and proposition 1.1)
and performing some deductions on the fixations found at each iteration.
In practice, to implement the method, we need procedures for each strategies.
In section 3, an heuristic generating some fixations of any order will be pre-
sented, and in section 4, we show how constraints programming can be used to
make deductions.

3 An heuristic for generating fixations

Let i ∈ {1, 2, ..., n} and let us consider the quantity cixi +
∑

j=1
j 6=i

qijxixj .

For each i, it is always possible by complementing (if necessary) the variables
xj to change the expression in an equivalent one where all qij are negative.

This is done by the following operations.

Let V = {1, 2, ..., n}\{i}, P = {j ∈ V |qij > 0} and N = {j ∈ V |qij ≤ 0}.

Thus cixi +
∑

j∈P

qijxixj +
∑

j∈N

qijxixj .

Since xj = 1 − xj , we have cixi +
∑

j∈P

qijxi(1 − xj) +
∑

j∈N

qijxixj .

(ci +
∑

j∈P

qij)xi −
∑

j∈P

qijxixj +
∑

j∈N

qijxixj .

So, with the notations q
′

ij =

{

−qij j ∈ P
qij j ∈ N

and yj =

{

xj j ∈ P
xj j ∈ N

the expression may be written (ci +
∑

j∈P

qij)xi +
∑

j∈V

q
′

ijxiyj where all q
′

ij , are

non positive.
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Hence for eah i, we will consider that in the expression of the form cixi +
∑

j=1
j 6=i

qijxiyj , all value qij are non positive.

Let us apply Hansen proposition 1.1 or our propositions 2.4 and 2.5 on the
expression. The following cases can occured :

Case 1. If ci < 0 Hansen proposition 1.1 imply that xi = 1.

Case 2. If ci = 0, point (ii) of proposition 2.4 imply that (1 − xi)yj = 0 (∀ j | qij < 0).

Case 3. If ci > 0 and :

Case 3.1. ci +
n
∑

j=1
j 6=i

qij > 0, then Hansen proposition 1.1 gives xi = 0.

Case 3.2. ci +
n
∑

j=1
j 6=i

qij ≤ 0, then proposition 2.5 may be applied as below.

For the case 3.2, since we consider that all qij are non positive, there are two
possibilities for generating some fixations by applying proposition 2.5.

Possibility 1 • Finding sets S for which S1 = ∅ and ci +
∑

j∈S

q−ij > 0.

In this case, we have the fixation xi

∏

j∈S

yj = 0.

Possibility 2 • Finding sets S = S1 for which ci +
∑

j∈S1

qij +
∑

j∈S

q+
ij < 0.

In this case, we have the fixation xi

∏

j∈S

yj = 0.

Notice that in the possibility 2, we have ci +
∑

j∈S1

qij +
∑

j∈S

q+
ij = ci +

∑

j∈S1

qij ,

since we consider that all qij are non positive.

Finding sets S for each possibility is, in fact, equivalent to find some mini-
mal covers for a knapsack inequality.

Let us consider the possibility 1. Since we consider that each value qij are
non positive, we can write

ci +
∑

j∈S

q−ij = ci +
∑

j∈S

qij = ci +
n
∑

j=1
j 6=i

qij −
∑

j∈S

qij

15



Let us introduce the binary variable uj verifiying uj =

{

1 j ∈ S
0 else

Thus ci +
n
∑

j=1
j 6=i

qij −
∑

j∈S

qij = ci +
n
∑

j=1
j 6=i

qij −
n
∑

j=1
j 6=i

qijuj .

Finding S verifying ci +
∑

j∈S

q−ij > 0 is therefore equivalent to find u verify-

ing −
n
∑

j=1
j 6=i

qijuj > −ci −
n
∑

j=1
j 6=i

qij .

Let us notice aj = −qij and b = −ci −
n
∑

j=1
j 6=i

qij .

Thus, we have to find u verifying
n
∑

j=1
j 6=i

ajuj > b.

In the litterature on mixed integer linear programming, specially in knapsack
problems, the set defined by u is called a cover. Thus, the set S giving a fixation

corresponds to a cover of the knapsack inequality
n
∑

j=1
j 6=i

ajuj ≤ b.

This equivalence between fixations and covers gives in the same time a way
to identify the ”best” fixations. First, let us recall the definition of minimal
covers.

Definition 3.1 Let
n
∑

j=1

ajuj ≤ b be a knapsack inequality.

S ⊆ {1, 2, ..., n} is a minimal cover if and only if

n
∑

j∈S

ajuj > b and
n
∑

j∈S
′

ajuj ≤ b ∀ S
′

⊆ S

A binary vector verifying
n
∑

j=1
j 6=i

ajuj > b corresponds to a subset S for which

n
∑

j∈S

aj > b and for which the fixation xi

∏

j∈S

yj = 0 can be introduced in the

problem.

However, if S ⊆ S
′

, we also have
n
∑

j∈S
′

aj > b and xi

∏

j∈S
′

yj = 0.

xi

∏

j∈S
′

xj = 0 and xi

∏

j∈S

xj = 0 are redundant. xi

∏

j∈S

yj = 0 is sufficient.
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This observation shows that to avoid redundancy, we have to generate only

minimal covers of the knapsack inequality
n
∑

j=1
j 6=i

ajuj ≤ b.

For the possibility 2, we obtain a similar equivalence.

This is summarized in the following proposition.

Proposition 3.2 Let i ∈ {1, 2, ..., n} and let us consider , by complementing
some variables if necessary, that all value qij are non positive.

Let us notice aj = −qij, b1 = −ci −
n
∑

j=1
j 6=i

qij and b2 = ci.

• If S is a minimal cover of the knapsack inequality (1)
n
∑

j=1
j 6=i

ajuj ≤ b1

then xi

∏

j∈S

yj = 0.

• If S is a minimal cover of the knapsack inequality (2)
n
∑

j=1
j 6=i

ajuj ≤ b2

then (1 − xi)
∏

j∈S

yj = 0.

To find fixations of any order, we thus have to perform the following procedure.

• Finding Fixations

for i = 1 to n
{
. Generate Knapsack Inequality (1)
. Find minimal covers for Knapsack Inequality (1)

. Generate Knapsack Inequality (2)

. Find minimal covers for Knapsack Inequality (2)
}

There is no difficulty to generate the different knapsack inequalities. It is
sufficient to complement the adequate variables and to follow the notations of

17



proposition 3.2.

To find some covers and hence some fixations, a enumerative procedure has
been implemented. This procedure is a recursive enumerative tree for which at
each iteration an item aj is chosen. Since the number of minimal covers may
be exponential, it is not reasonable to enumerate all possible covers. That is
the reason why, before applying the recursive procedure, we sort the vector a
of the knapsack inequality in decreasing order and introduce a parameter to
fix the maximal number of covers (i.e the maximal number of iterations of the
algorithm). The whole algorithm is the following.

• Init

- Sort vector a in decreasing order
- max = maximal number of covers
- count = 0
- i = 1
- S = 0

• Find minimal covers for Knapsack Inequality

MinimalCovers(a,b,n,S,count,max,i)
{
. if(S > b)
. {
. STOP
. Return the corresponding cover
. }
. else
. if(count == max)
. STOP
. else
. {
. S = S + ai (i.e choose item ai)
. MinimalCovers(a,b,n,S,count+1,max,i+1)
. S = S − ai (i.e don’t choose item ai)
. MinimalCovers(a,b,n,S,count+1,max,i+1)
. }
}

This algorithm can be used to find minimal covers for knapsack inequalities
(1) and (2). Application of this procedure yields in fact many redundancies.
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Indeed, many fixations from knapsack inequality (1) appear also in fixations
from knapsack inequality (2). In order to avoid this effect, we propose another
procedure below in which only one type of knapsack inequalities ((1) our (2))
is ocnsidered. The procedure is based on the following idea.

Since the difference between the two knapsack inequalities is only on the value
of the right-hand-side b1 or b2, it is reasonable to think that most of covers will
be found from the knapsack inequalities in which the right-hand-side has the
lower value. Hence, a second strategy to generate fixations is the following.

• Finding Fixations

for i = 1 to n
{
. Generate Knapsack Inequality (1)
. Generate Knapsack Inequality (2)

. if(b1 < b2)

. Find minimal covers for Knapsack Inequality (1)

. else

. Find minimal covers for Knapsack Inequality (2)
}

We know how to generate fixations by solving minimal cover problems. We
have seen in the examples that some deductions can be obtained from a set
of fixations. These deductions are analytically simple, nevertheless finding an
algorithm giving the same analytical results is not clear. In the section below,
we propose a constraint programming approach for this task.

4 Using constraints programming techniques

Let us consider k subsets Si ⊆ {1, 2, ..., n}, and let us denote by Fi (i = 1, .., k) a
fixation involving |Si| litterals yj (j ∈ Si). These fixations are found by ”Find-
ing Fixations” above.

Example 4.1 For instance, in iteration 1 of example 2.7, S = {1, 2, ..., 7} and
we have 4 fixations :

F1 = x2x3 = 0, S1 = {2, 3}
F2 = x2x3 = 0, S2 = {2, 3}
F3 = x3x7 = 0, S3 = {3, 7}
F4 = x2x7 = 0, S2 = {2, 7}

�
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Let F = {Fi, i = 1, 2, ..., k}. Our objectif is to derived, iteratively, from F others
fixations with lower cardinalities.

Let Fk+1 be a fixation not in F . To verify that Fk+1 = 0, it suffices to solve the
following constraints satisfaction problem

(CSP) Fk+1 = 1,
F1 = 0,
F2 = 0,
. = .

Fk = 0,

If the problem has a solution, nothing can be deduced. However, if it has no
solution it can be concluded that Fk+1 = 0. Fk+1 may thus be added to F , and
F has to be updated. This is the main idea of our procedure.

Two questions arise to implement such procedure :

1. How to solve the constraints satisfaction problems ?

2. What new fixations have to be tested ?

4.1 Solving the constraint satisfaction problem

Constraint programming gives many techniques to solve a satisfaction problem
(see [11]) : constraint propagation, searching tree.

Let us illustrate constraint propagation in the following example.

Example 4.2 Let us consider the 4 fixations above :

(a) x2x3 = 0
(b) x2x3 = 0
(c) x3x7 = 0
(d) x2x7 = 0

and the constraints satisfaction problem

x2 = 1
(a) x2x3 = 0
(b) x2x3 = 0
(c) x3x7 = 0
(d) x2x7 = 0
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Initially, the domain of the variables is {0, 1}. For each propagation, domains
of the variables are updated if necessary (i.e a value in the domain is elimi-
nated). Different propogation are possible depending on the exploration type of
the searching tree. A depth-first (resp. breadth-first) searching tree corresponds
to a depth-first (resp. breadth-first) search propagation.
In depth-first constraint propagation, a change in the domain of a variable is
propagated in a constraint where the variable appears. If this propagation has
an effect on another variable, another propogation in constraints involving this
variable is immediately perfomed and so on,...

For instance

- In constraint (a), x2 = 1 imply that the domain of x3 is now {0}.

This new change is propagated again in constraints where x3 appears.

- In constraint (b), x3 = 0 imply that x2 = 1. Thus domain of x2 {1} is
the same.

In constraint (c), x3 = 0 imply that the the domain of x7 is now {1}

This new change is propagated in constraints where x7 appears.

- In constraint (c), x7 = 1 imply that x2x7 = 1 = 0 ! (Impossible).

Hence, it can be concluded that the constraint satisfaction problem is infeasi-
ble.

�

Many software implementing these techniques are available. Gnu-prolog devel-
opped in INRIA, prolog IV implemented by Prologia or Ilog Solver are some
examples. For our numerical experiments, we use Ilog Solver 6.1.

4.2 Testing fixations

Since a fixation is a product, one possibility for the question 2 could be to con-
sider all product of possible litterals. This is obviously not possible because the
number of such product is exponnential. Another more reasonable possibility is
to consider only product involving in existing fixations in F .
This choice reduces the number of fixations considered, but also make easier the
resolution of the associated constraints satisfaction problem. Let us illustrate
this idea.
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Example 4.3 Let us consider the two fixations found at the iteration 2 of the
example 2.7.

(a) (1 − x7)x1x6 = 0
(b) x1(1 − x6)(1 − x7) = 0

Other fixations of lower cardinality that can be tested are, for instance, x1 = 1
or x2x7 = 1.

None of these fixations yield infeasible constraint satisfaction problem.

At the opposed, introducing the constraint (1 − x7)x1 = 1 (i.e. x7 = 0, x1 = 1)
imply direct propagation.

Indeed, from (a) we have x6 = 0 and from (b) we have x1(1−x6)(1−x7) = 1 = 0
! (Impossible).

This imply (1 − x7)x1 = 0.

As above, the constraint (1 − x7)x6 = 1 may also be tested.

This imply direclty from (a), that x1 = 1. And from (b), we obtain x1(1 −
x6)(1 − x7) = 0 = 0. Thus a solution has been found, and nothing can be
concluded for the fixation (1 − x7)x6 = 0 �

This technique has been generalized in the following procedure

• Init

- F = {Fi, i = 1, 2, ..., k} : a set of fixations
- sort F in increasing order of the cardinality of fixations Fi

- max = Maximal number of iteration
- end = false
- count = 0
- i = 1
- buffer

22



• Testing fixations

while(end = false and count ≤ max)
{
. end = true
. buffer = vide

. for all j ∈ |Si|

. {

. Fk+1 =
∏

j∈Si\{j}

yj

. result = solve the constraint satisfaction problem associated with F ∪ {Fk+1}

. if (result = infeasible)

. {

. buffer = buffer ∪ {Fk+1}

. end = false

. }

. }

. if(end = false)

. {

. for j = 1 to |buffer|

. {

. F = F ∪ {bufferj}

. Update F (i.e. eliminate fixations in which bufferj are included)

. }

. i = 1

. }

. else

. i = i + 1

. count = count + 1
}

4.3 Testing equality

At the end of the algorithm above, other fixations deriving from the initial set F
could be introduced in the problem. Nevertheless, many other type of relations
between variables cannot be found with the procedure. For example, equality
of two variables, as in the examples 2.7 and ??, are such relations.

In order to be able to deduce also these relations, we propose to solve n(n − 1)
constraint satisfaction problem of the following type :
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(CSP1) xi = xj ,
F1 = 0,
F2 = 0,
. = .

Fk = 0

(CSP2) xi = (1 − xj),
F1 = 0,
F2 = 0,
. = .

Fk = 0

where 1 ≤ i < j ≤ n and F = {F1, F2, ..., Fk} are the initial set of fixations.

This idea is implemented in the following algorithm.

• Init

- F = {Fi, i = 1, 2, ..., k} : a set of fixations
- equalities : list of equalities found
- buffer

• Testing equality

for i = 1 to n
for j = i + 1 to n
{
. result = solve the constraint satisfaction problem associated with F ∪ {xi = xj}
. if (result = infeasible)
. buffer = buffer ∪ {xi 6= xj}
. result = solve the constraint satisfaction problem associated with F ∪ {xi 6= xj}
. if (result = infeasible)
. buffer = buffer ∪ {xi = xj}
}

equalities = equalities ∪ {buffer}

While buffer 6= ∅
{
. Update F with equality buffer1 (i.e. the first equality of the list)
. Update the problem (QP ) with equality buffer1

. Update bufferi (2 ≤ i ≤ |buffer|) with buffer1

. Delete buffer1

}

4.4 Global algorithm : Testing equality and testing fixa-

tion

The equalities found in the procedure above allow to update the set of fixations
F . The update set F may then be the initial set of others iterations of the algo-
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rithm ”Testing fixations”. In turn, new fixations found by ”Testing fixations”
can be used as initial set for ”Testing equality” and so on,... Thus, ”Testing
equality” and ”Testing fixations” can be used successively in a more general
procedure ”Deductions” coupling the two algorithm.

• Init

- F = {Fi, i = 1, 2, ..., k} : a set of fixations
- max: maximal number of iterations
- newequalities : list of new equalities found by Testing equality

• Deductions

while (end = false and ount ≤ max)
{
. Testing fixations
. newequalities = Testing equality
. if newequalities = ∅
. end = true
. count = count + 1
}

This algorithm has been used in numerical experiments. Results obtained are
presented in the next section.

5 Numerical Results for the constraint program-

ming approach

The algorithm ”Deductions” presented above has been implemented and tested
with different instances of the unconstrained quadratic 0-1 problem. The objec-
tives of the numerical experiments is to evaluate the number of variables that
can be fixed, and the maximal size and densities of problems that can be solved
exactly by this approach.
We used two type of instances : ORLIB instances and our own randomly gen-
erated problems.

ORLIB Benchmark

We first consider problems of the OR-Library (see [3]) of size 50 and of densities
of approximately 10%. The benchmarks of the OR-Library has been solved by
heuristics (simulated annealing, Tabou, etc.). That is the reason why the results
report the best known solutions. To our knowledge, there is no exact method
giving the optimal values for these instances.
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The best known solutions are reported in table 1 (see [14]). Since we have

p n d(%) BEST

50.1 50 8 2098
50.2 50 9 3702
50.3 50 10 4626
50.4 50 9 3544
50.5 50 10 4012
50.6 50 8 3693
50.7 50 10 4520
50.8 50 11 4216
50.9 50 9 3780
50.10 50 8 3507

Table 1: OR-Library : Best Known Solutions

best known solutions, these instances allow us to verify the results found by
our algorithms : ”Finding Fixations” and ”Dedutions”. The numerical results
obtained are presented in table 3. The meanings of the column of the table are
explained below ( table 2).

In the results table 3, for each instance in which we fix all the variables

p Identifier of the problem
n Number of Variables

d(%) Density
Fixed Number of Fixed Variables

Fixed Average Number of Fixed Variables
Fixation Number of fixations
Fixation Average Number of Fixations

OPT Optimal value of the problem
BEST Best Known value
Time Process Time of the algorithms

”Fiinding Fixations” and ”Deduction”
Time Average Process Time of the algorithms

”Fiinding Fixations” and ”Deduction”

Table 2: Caption

we report the optimal value found and compare it to the best known in the
litterature. When it remains less than k ≤ 5 variables to fix, we also find the
optimal solution by enumerate the 2k solutions. Otherwise, we consider that
the constraint programming approach failed to find the optimal solution and
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write ”-” in the column OPT. For the 10 instances, only two of them cannot

p n d(%) Fixed OPT Time (sec.)

50.1 50 8 3 - 12.6
50.2 50 9 45 3702 60
50.3 50 10 50 4626 17.7
50.4 50 9 48 3544 15.8
50.5 50 10 49 4012 19.8
50.6 50 8 36 - 17.9
50.7 50 10 50 4520 17.9
50.8 50 11 50 4216 18.0
50.9 50 9 47 3780 22.8
50.10 50 8 29 3507 14.6

Table 3: Application of the algorithm ”Deductions”

be solved at optimality by the constraint programming approach. All optimal
values found correspond exactly to the best known solution of the litterature.

Randomly generated instances

To have more extensive experiments, we generate our own instances of size
10, 20, 30, 40 of 10% of all densities. For each size and density, 10 instances
have been generated. The table 4 below report the average number of fixed
variables, fixations and time for the instances.

For instances of size 10 for all densities, the value of Fixed are between 8
and 10. This signify that, except a little number of them, all variables of the
instances has been fixed by the constraint programming algorithms in few times
less than 1sec. For instances of size 20 (resp. 30 and 40), the algorithm works
perfectly until instances of density 40% (resp. 40, 10).

Let us noticed that in the columun Fixations, it has been reported the number
of fixations after the constraint programming algorithms. These fixations will
be exploited later to solve exactly instances for which the constraints program-
ming approach failed to fix all variables.

It can be seen that the approach gives good results for low density problems. To
have an idea of the limits of the method, we generate additional instances of size
50, 60, 70, 80 and density 10%. For these instances, we limit the computation
time to 300 sec. The sign ”-” signify that the computation time exceed 300 sec.
The results are in table 5

Once again, the process is very efficient for these instances. For problems
of size up to 70, the average number of fixed variables is closed to the number
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n d(%) Fixed F ixations T ime (sec.)

10 10 9 0 0.0
10 20 10 0 0.0
10 40 10 0 0.0
10 60 10 1 0.0
10 80 8 32 0.1
10 100 9 9 0.2
20 10 19 0 0.0
20 20 20 1 0.1
20 40 17 19 1.3
20 60 7 767 7.5
20 80 0 1716 5.9
20 100 0 1868 7.3
30 10 29 1 0.2
30 20 29 6 1.1
30 40 14 1124 56.4
30 60 0 2822 22.1
30 80 0 2984 32.1
30 100 0 2989 43.1
40 10 38 6 1.8
40 20 29 316 38.5
40 40 0 3447 67.4
40 60 0 3986 75.9
40 80 0 3997 109.0
40 100 0 4000 158.5

Table 4: Size 10 to 40

n d(%) V arF ixed F ixations T ime (sec.)

50 10 45 31 2.2
60 10 55 30 22.6
70 10 56 184 74.5
80 10 64 182 312.9

Table 5: 50, 60, 70, 80 variables
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of variables. This indicates that for most of the instances, the corresponding
problem has been solved completely. This number decreases for size 80. For
problems of greater sizes, the processing time exceed the maximal time. This is
why the results are not reported here.

We have observed also that the most consuming-time algorithm is the algo-
rithm ”Testing equality” in which n(n − 1) constraint satisfaction problem has
to be solved. This algorithm gives very good result for low density problem
but for higher density and size problems, no equality can be found. That is
the reason why in the next section adressing problem of minimal size 50 for all
densities, this algorithm will be swicth off.

In conclusion, the constraint programming algorithms are very efficient for low
density problems (less than 10%) but are insufficient to solve completely greater
problems with high densities. In all cases, the procedures yields a huge number
of fixations that can be used to reduce the realisable domain of (QP) and help
other techniques. The purpose of the section below is to use these fixations in
a linearization of the problem (QP).

6 Constraints programming and linear program-

ming

In order to solve exactly more difficult instances of the unconstrained quadratic
0-1 problem, the constraint programming approach is not enough. Nevertheless,
the algorithms proposed above yield a huge number of fixations implying several
variables that can help any relaxation to find more quickly the optimal value.
Since fixations found can be linearized, it is natural to combine the approach
with linear programming.

Let us highlight, that the purpose of combining constraints programming and
linear programming is not to claim that this approach numerically outperform
all previous known techniques for quadratic 0-1 programming. The goal is to
show that fixations found improve any linearization of the problem (QP).

We assume that the scheme proposed below have to be done after the constraints
programming approach phase, where some variables may be fixed, implying a
new updated problem.

Let us recall the unconstrained quadratic 0-1 problem.

(QP) Min < c, x > + 1
2x⊤Qx

s-t : (1) x ∈ {0, 1}n
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Linearization of (QP) is a technique of reformulation of into a constrained 0/1
linear program. They are many linear reformulations ( see [15]). The most
natural linearization is the so-called ”classical” linearization due to Fortet[9][10].
It consists in replacing each product term xixj by an additionnal variable zij .
This transformation yields the following formulation

(CL) Min
n
∑

i=1

n
∑

j=(i+1)

qijzij+
n
∑

i=1

cixi

s-t : (1) x ∈ {0, 1}n

(2) zij ≤ xi 1 ≤ i, j ≤ n

(3) zij = zji 1 ≤ i < j ≤ n

(4) zij ≥ xi + xj − 1 1 ≤ i < j ≤ n

(5) zij ≥ 0 1 ≤ i < j ≤ n

The convex hull of (CL) feasible set is contained in the ”Boolean Quadric Poly-
tope”(BQP). BQP has been fully studied by Padberg[22], and an exponential
number of other inequalities for the polytope of (CL) can be deduced from facets
of the so-called ”Boolean Cut Polytope” (Deza and Laurent[8], De Simone[25]).
Boolean Quadric Polytope facets contribute to give a very good lower bound,
specially for low density problems, corresponding to the optimal value of the
continuous relaxation of (CL).

It has been observed in [15] that the classical linearization is a particular case
of a huge set of linearizations. More accurately, a linearization of (QP) (in [15])
corresponds to a particular decomposition of the matrix Q. Thus, the set of lin-
earization corresponds to the set of decomposition of Q. Classical linearization
is only an instance of this set.

The best numerical results for the linearizations explored in [15] has been ob-
tained for a linearization called the ”Cliques-Edges Linearization” (see [15]).
That is the reason why we will use it in this section. However, it is important
to notice that the scheme that we propose can be apply (an can improve) to
any linearizations.

Let us present briefly the linearization that we used.
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Cliques-Edges Linearization

(CLEF ) Min
n
∑

i=1

cixi +
n
∑

i=1

n
∑

j=(i+1)

q−ijzij +
p
∑

i=1

M△i
t△i

s-t (x, z) ∈ Co{(x, zij) ∈ R
n+1 | x ∈ {0, 1}n, zij = xixj , 1 ≤ i < j ≤ n}

(x, t△i
) ∈ QP△i

n , 1 ≤ i ≤ p

x ∈ [0, 1]n

In this formulation :

• q−ij = min{0, qij} 1 ≤ i < j ≤ n.

• △1, △2,...,△p are cliques that cover the support graph G+ of Q+ (i.e positive
value of Q).

• M△i
= min{Q+

kl / k ∈ △i, l ∈ △i} (i = 1, 2, ..., p).

• QP△i
n = {(t, x) ∈ R

n+1 | t ≥ −k(k−1)
2 + (k − 1)

|△i|
∑

i=1

xi , x ∈ [0, 1]n , 2 ≤

k ≤ |△i| , k ∈ N}

To obtain a good lower bound, it is important to find as many facets (or valid
inequalities) as possible of the feasible domain of (CLEF). We show below how
to use fixation constraints to find valid inequalities.

6.1 Lifting

It has been seen in propostion 2.1 that the following two inequalities are neces-
sary verified by the optimal solution of (QP) .

• cixi +
n
∑

j=1
j 6=i

qijxixj ≤ 0 , i = 1, 2, ..., n.

• ci(1 − xi) +
n
∑

j=1
j 6=i

qij(1 − xi)xj ≥ 0 , i = 1, 2, ..., n.

Thus, if xi = 1 (resp. xi = 0) the following linear inequalities is valid

ci +
n
∑

j=1
j 6=i

qijxj ≤ 0 (resp. ci +
n
∑

j=1
j 6=i

qijxj ≥ 0)

To obtain a valid linear inequalities even when the variable xi is not fixed to 1
(resp. 0)a lifting technique (see [19] [1] [21]) can be used.
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Let us consider the case where xi = 1, the lifting scheme will be the same
for xi = 0. We have the following valid inequalities

ci +
n
∑

j=1
j 6=i

qijxj ≤ 0

To generate a valid linear inequality for (QP ) we have to lift the inequality
above : that is to say to find a constant M1 verifying the following inequality

M1(1 − xi) + ci +
n
∑

j=1
j 6=i

qijxj ≤ 0

Thus M1 ≤ −ci −
n
∑

j=1
j 6=i

qijxj ∀x ∈ {0, 1}. Hence the best value is

M1 = Min −ci −
n
∑

j=1
j 6=i

qijxj

s-t : x ∈ {0, 1}n

Finding the optimal value of this problem can be done in linear time since the

optimal value is M1 = −ci −
n
∑

j=1
j 6=i

q+
ijxj .

The resulting cut unfortunately leads to poor lower bound for the lineariza-
tion (CL).
But this value can be improved by using fixations found with the heuristics
”Finding fixation” , ”Testing fixation” and ”Testing equality” present in sec-
tion 2, section 3 and section 4.

Indeed, let S = {1, 2, ..., n}, in proposition 2.5, it has been seen that all fix-
ations have the form xi

∏

j∈S

yj = 0 or (1 − xi)
∏

j∈S

yj = 0.

In remark 2.6 we also see that these fixations correspond respectively to lin-
ear inequalities xi +

∑

j∈S

≤ |S|, and (1 − xi) +
∑

j∈S

≤ |S|.

Thus all the fixations can be written in a matrix form as Ax ≤ b where
A ∈ {−1, 0, 1}m×n and b ∈ Z

m. Here, m is the number of fixations and n
the number of variables. Therefore, the constraints Ax ≤ b can be introduced
to find a better value for M1. The resulting problem is
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M1 = Min −ci −
n
∑

j=1
j 6=i

qijxj

s-t : x ∈ {0, 1}n

Ax ≤ b

At the opposed of the first problem, solving exactly this problem is not reason-
able since it is a mixed integer linear problem, for which the matrix A is not
in general totally unimodular. A realisable approach is to solve the continuous
relaxation. The resulting lower bound can be still used.

We summarize the result above in the proposition below.

Proposition 6.1 (lifting cuts) Let M1 and M2 defined by

M1 = Min −ci −
n
∑

j=1
j 6=i

qijxj

s-t : x ∈ [0, 1]n

Ax ≤ b

M2 = Max −ci −
n
∑

j=1
j 6=i

qijxj

s-t : x ∈ [0, 1]n

Ax ≤ b

we have the following valid inequalities, called ”lifting cuts” :

• M1(1 − xi) + ci +
n
∑

j=1
j 6=i

qijxj ≤ 0, i = 1, 2, ..., n.

• M2xi + ci +
n
∑

j=1
j 6=i

qijxj ≥ 0, i = 1, 2, ..., n.

6.2 Linking inequalities

To improve the formulation (CLEF), it has been seen in the subsection above
how to derive some valid inequalities by a lifting procedure. In this subsection,
these cuts will be exploited to find other valid inequalities. Indeed, since these
cuts are linear, let us consider that the general form of these inequalities is
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n
∑

i=1

aixi ≤ b. By multiplying by xk and (1 − xk) the inequalities the following

new cuts can be found.

Proposition 6.2 Let :

- S = {1, 2, ..., n}, k ∈ S

- T (i) = {j ∈ S | (i, j) ∈ ∆j}, i = 1, 2, ..., n

- T− = {i ∈ S | T (i) 6= ∅ and ai < 0}

- T+ = {i ∈ S | T (i) 6= ∅ and ai > 0}

- Z = {i ∈ S | xixk = zik}

we have the following valid inequalities, called ”linking cuts” :

• (ak − b)xk +
∑

i∈Z

aizik +
∑

i∈T−

ait∆j
≤ 0 ∀ j ∈ T (i) ∀ i ∈ T

• bxk +
∑

i∈S\k

aixi −
∑

i∈Z

aizik +
∑

i∈T+

ait∆j
≤ b ∀ j ∈ T (i) ∀ i ∈ T

Proof �

With ”lifting cuts” and ”Linking cuts” the enhanced model (CLEF++) that
we have to solve is then

Cliques-Edges Linearization

(CLEF++) Min
n
∑

i=1

cixi +
n
∑

i=1

n
∑

j=(i+1)

q−ijzij +
p
∑

i=1

M△i
t△i

s-t (x, z) ∈ Co{(x, zij) ∈ R
n+1 | x ∈ {0, 1}n, zij = xixj , 1 ≤ i < j ≤ n}

(x, t△i
) ∈ QP△i

n , 1 ≤ i ≤ p

x ∈ {0, 1}n

Lifting cuts

Linking cuts

The cuts are generated iteratively with a cutting plane algorithm.
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6.3 Branching rules

The optimal value of the continuous relaxation of (CLEF ) gives a lower bound
for the problem (QP ). This bound is used in a branch bound tree to solve
exactly the problem. It is well known that to reduce the number of nodes of
the tree, good branching strategies are necessary. In the light of the inequalities
found in proposition 2.1, we propose some branching rules.

Recall that these inequalities are

(e) • cixi +
n
∑

j=1
j 6=i

qijxixj ≤ 0 , i = 1, 2, ..., n.

(f) • ci(1 − xi) +
n
∑

j=1
j 6=i

qij(1 − xi)xj ≥ 0 , i = 1, 2, ..., n.

To reduce the numbers of nodes of the branch-and-bound tree, our objective is
to cuttof a branch as soon as possible. The idea is to branch to a variable xi, for

which either the quantity cixi +
n
∑

j=1
j 6=i

qijxixj is as big as possible or the quantity

is ci(1 − xi) +
n
∑

j=1
j 6=i

qij(1 − xi)xj ≥ 0 is as little as possible.

So, let x∗ be the optimal solution of the continuous realxation of (CL) in a
node of the branch and boudn tree, we associate to each variable the following
quantity

∆i = Max{0, cix
∗
i +

n
∑

j=1
j 6=i

qijx
∗
i x

∗
j} − Min{ci(1 − x∗

i ) +
n
∑

j=1
j 6=i

qij(1 − x∗
i )x

∗
j}

∆i gives a measure of the two quantities (e) and (f) for one variable. Indeed,
big value of (e) and little value of (f) correspond to big value of ∆i. Thus, to
cut off a branch as soon as possible, we branch on the variable maximizing ∆i.

In our numerical experiments with ILOG cplex, this branching rules has been
implemented in a cplex branch callback.

7 Numerical Results for the constraints and lin-

ear programming approach

To evaluate the quality of the approach, numerical experiments have been per-
formed with some instances of the OR-Library benchmark [3]. We use the
instances of Glover, Kochenberger and Alidae [14]. It consists in 40 uncon-
strained quadratic 0-1 problems of size up to 200 and density up to 100%. In
table ?? the size and densities are written. The experiments have been done
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with ILOG Cplex 9.1 on a Personnal Computer (AMD Celeron 800 Mhz). The
meaning of each column is explained in the table 6 below. Since the goal is

num identifer of the problem
n number of variables of the problem
d density of the matrix Q

Nvar number of variables of the linearization
Fixed Number of variable fixed by the constraint programming approach

Fixation Number of fixations
Lb Lower bound at the root of the branch and bound tree

Opt optimal value
Ub upper bound at the root of the branch and bound tree

(found by a greedy heuristic)
Nodes Number of nodes of the branch-and-bound tree
Time Processing time

Table 6: Caption

to show that the fixations may improve the linearization (CLEF), two series of
tests have been done. The first one (table 7) with the formulation (CLEF++)
with lifting cuts, linking cuts, and the branching rules. The second exprimenta-
tions (table 8) with the formulation (CLEF )( that is to say without any lifting
and linking cuts, and without the branching rules). For the two table, we report
results on instances solved in processing time less than 5000sec. (maximal time
processing).

In table 7, for the 40 instances, only the first 28 has been solved within the
maximal time. The last cannot be solved in this time. It can be seen that the
lower bound is always good, and few nodes are necessary. The 12 instances that
cannot be solved witihin the maximal time are instances of size 100 (resp. 200)
of densities strictly greater to 28% (resp. 9%).

Let us now compare the results of table 7 to the results of table 8. First,
let us observe that the instances 27 and 28 are not reported on table 8. This
signify that the corresponding problems cannot be solved with the formulation
(CLEF). Therefore, this result shows that for these two instance, the fixations
allow to improve the formulation. Instances 1 to 26 seems to be easy in com-
parison to instances 27 and 28. All of these instances can be solved by the two
approaches. Formulation (CLEF++) need more time but fewer number nodes
for these instances, and at the opposed formulation (CLEF ) need more nodes
but fewer time.

In the light of these results, it can be seen the advantage of fixations is sig-
nificant for difficult problem as 27 and 28. Thus, to have more experiments we
generate randomly 5 instances of size 100 and density 30%. The same type of
tests with (CLEF ) and (CLEF++) has been performed with these instances.
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The results are reported in table 9 and in table 10.

It may be observed that two instances 30 and 33 (not reported in table 10)
cannot not be solved with the formulation (CLEF). It shows once again that
cuts (derived from fixations) are of interest to find more easily the optimal so-
lution of the problems. Moreover, except the instance number 32, the time to
solve optimally the problem is always better for the formulation (CLEF++),
and in all cases the number of necessary nodes decreases significantly in the
formulation (CLEF++).

num n d Nvar Fixed Fixation Lb Opt Ub Nodes Time

1 50 8 129 16 139 -3414.0 -3414.0 -3414.0 0 0.3
2 60 9 191 18 334 -6063.0 -6063.0 -6063.0 0 0.8
3 70 9 280 8 1016 -6196.5 -6037.0 -6037.0 4 3.1
4 80 9 359 5 2038 -8598.0 -8598.0 -8598.0 0 10.4
5 50 18 273 3 2191 -6043.0 -5737.0 -5737.0 14 6.3
6 30 40 202 0 2200 -4082.3 -3980.0 -3980.0 1 3.8
7 30 48 240 0 2526 -4670.5 -4541.0 -4541.0 4 4.4
8 100 6 374 52 206 -11109.0 -11109.0 -11109.0 0 3.5
9 20 98 191 0 261 -133.0 -133.0 -98.0 0 0.2
10 30 98 398 0 678 -132.0 -121.0 -106.0 3 1.1
11 40 98 692 0 1208 -122.6 -118.0 -90.0 4 4.1
12 50 98 1052 0 1881 -134.2 -118.0 -105.0 7 10.8
13 60 98 1489 0 2440 -152.0 -150.0 -137.0 2 19.8
14 70 98 1961 0 3252 -155.9 -146.0 -112.0 4 46.0
15 80 98 2479 0 4023 -172.7 -160.0 -160.0 4 76.8
16 90 98 3111 0 4718 -176.0 -145.0 -123.0 2 114.1
17 100 99 3748 0 5719 -168.9 -135.0 -119.0 4 184.9
18 125 98 5666 0 7358 -201.0 -154.0 -154.0 36 492.4
19 40 80 652 0 4000 -5561.5 -5058.0 -5058.0 22 11.6
20 50 62 797 0 5000 -7186.0 -6213.0 -6213.0 52 20.6
21 60 39 753 0 5950 -7258.5 -6665.0 -6665.0 34 20.4
22 70 29 785 0 6247 -8138.0 -7398.0 -7398.0 38 28.1
23 80 20 710 0 6242 -8002.0 -7362.0 -7362.0 46 41.5
24 90 9 462 5 2620 -5824.0 -5824.0 -5823.0 0 19.5
25 100 10 549 20 2338 -7225.0 -7225.0 -7225.0 0 18.8
26 100 9 580 4 4150 -6385.5 -6333.0 -6333.0 6 41.1
27 100 20 1104 0 8645 -7473.3 -6579.0 -6510.0 1224 1598.5
28 100 28 1510 0 9751 -10014.0 -9261.0 -9213.0 394 3360.0

Table 7: (CLEF++) on Glover, Kochenberger and Alidae benchmark
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num n d Nvar Fixed Fixation Lb Opt Ub Nodes Time

1 50 8 156 0 0 -3414.0 -3414.0 -3414.0 0 0.3
2 60 9 223 0 0 -6063.0 -6063.0 -6063.0 0 0.5
3 70 9 292 0 0 -6196.5 -6037.0 -6037.0 4 0.9
4 80 9 384 0 0 -8598.0 -8598.0 -8598.0 0 1.4
5 50 18 281 0 0 -6032.0 -5737.0 -5737.0 5 0.3
6 30 40 204 0 0 -4089.0 -3980.0 -3980.0 1 0.1
7 30 48 240 0 0 -4670.5 -4541.0 -4541.0 1 0.1
8 100 6 404 0 0 -11109.0 -11109.0 -11109.0 0 3.3
9 20 98 191 0 0 -133.0 -133.0 -98.0 0 0.1
10 30 98 398 0 0 -132.0 -121.0 -106.0 9 0.3
11 40 98 692 0 0 -122.6 -118.0 -90.0 6 0.9
12 50 98 1052 0 0 -134.2 -129.0 -105.0 12 2.4
13 60 98 1489 0 0 -152.0 -150.0 -137.0 7 3.3
14 70 98 1961 0 0 -155.9 -146.0 -112.0 4 5.9
15 80 98 2479 0 0 -172.7 -160.0 -160.0 16 13.4
16 90 98 3111 0 0 -176.0 -145.0 -123.0 10 22.2
17 100 99 3748 0 0 -168.9 -120.0 -119.0 15 40.5
18 125 98 5666 0 0 -201.0 -154.0 -154.0 79 225.1
19 40 80 652 0 0 -5561.5 -5058.0 -5058.0 14 0.6
20 50 62 797 0 0 -7186.0 -6213.0 -6213.0 89 2.1
21 60 39 753 0 0 -7258.5 -6665.0 -6665.0 38 1.2
22 70 29 785 0 0 -8138.0 -7398.0 -7398.0 65 1.8
23 80 20 716 0 0 -8052.5 -7362.0 -7362.0 37 1.9
24 90 9 490 0 0 -5824.0 -5824.0 -5823.0 0 2.2
25 100 10 595 0 0 -7225.0 -7225.0 -7225.0 0 3.5
26 100 9 594 0 0 -6387.0 -6333.0 -6333.0 1 3.5

Table 8: (CLEF ) on Glover, Kochenberger and Alidae benchmark

num n d Nvar Fixed Fixation Lb Opt Ub Nodes Time

29 100 30 1568 0 9744 -14412.0 -11094.0 -11094.0 938 494.8
30 100 30 1564 0 9740 -14400.0 -9630.0 -9612.0 13540 4525.8
31 100 30 1565 0 9721 -14620.0 -11236.0 -11236.0 1407 578.5
32 100 30 1566 0 9688 -13522.0 -9945.0 -9945.0 1272 652.3
33 100 30 1567 0 9608 -13902.5 -9416.0 -9416.0 11308 4417.8

Table 9: (CLEF++) on randomly generated instances

num n d Nvar Fixed Fixation Lb Opt Ub Nodes Time

29 100 30 1568 0 0 -14412.0 -11094.0 -11094.0 106943 2060.4
31 100 30 1565 0 0 -14620.0 -11236.0 -11236.0 105555 2024.1
32 100 30 1566 0 0 -13522.0 -9945.0 -9945.0 26519 556.4

Table 10: (CLEF ) on randomly generated instances
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8 Conclusions and Perspectives

In this article, local optimality conditions have been used in order to fix as
many variables as possible or derive, as many constraints as possible between
variables. The fixations of one variable, or a product of several corresponds,
to the definition of ”fixations” introduced in section 2. To find these fixations,
a constraint programming approach has been proposed. With the algorithms
proposed, low densities problems (less than 10%) of size up to 80 can be solved
completely without any branching shemes.

For more difficult problem, a new scheme exploiting the fixations and lineariza-
tion has been proposed. The fixations allow to derive new valid inequalities,
obtained by a lifting procedure, and new branching rules. Full densities in-
stances of size up to 125 may be solved.

We highlight that the preprocessing phase proposed and a linearization of (QP)
are independent. Any kind of linearization can be used, and the preprocessing
algorithms can be plugged on any resolution schemes. Therefore, any algorithm
solving an unconstrained quadratic 0-1 problem can be improved by using fix-
ations and associated algorithms.

To experiment how much a linearization can be improved, two type of nu-
merical tests has been performed : with the formulation (CLEF ) and with the
formulation (CLEF++). For difficult problems, the formulation (CLEF++)
gives valuable results with less time and number of nodes.

Since the fixations can improved any resolution scheme, a perspective of this
paper is to extend this work to semidefinite programming relaxation of (QP )
or other kind of linearizations. Moreover, it is well known that a quadratic
0-1 problem with linear equality constraints can always be transformed into an
unconstrained one by a suitable penalization of the equality constraints. Thus,
another interesting extension is to apply the scheme proposed in this paper
to quadratic problem with equality constraints like the Graph Bipartitioning
Problem or the Quadratic Assignment Problem.

39



References

[1] E. Balas, S. Ceria, and G. Cornuèjols. A lift-and-project cutting plane
algorithm for mixed 0-1 programs. Mathematical Programming, 58(3):295–
324, 1993.

[2] E. Balas and J.B. Mazzola. Non-linear 0-1 programming i : Linearization
techniques. Mathematical Programming, 30:1–21, 1984.

[3] J.E. Beasley. Heuristic algorithms for the unconstrained binary quadratic
programming problem. Technical report, Department of Mathematics, Im-
perial College of Science and Technology, London, England, 1998.

[4] A. Billionnet and A. Sutter. Minimization of a quadratic pseudo-boolean
function. European Journal of Operational Research, 78:106–115, 1994.

[5] E. Boros and P. Hammer. Pseudo-boolean optimization. Rutcor Research
Report RRR 48-2001, Rutgers University, Piscataway, New Jersey, 2001.

[6] A. Caprara, D. Pisinger, and P. Toth. Exact solution of the quadratic
knapsack problem. INFORMS Journal on Computing, 11:125–137, 1999.

[7] C.T. Chang and C.C. Chang. A linearization method for mixed 0-1 polyno-
mial programs. Computers and Operations Research, 27:1005–1016, 2000.

[8] M. Deza and M. Laurent. Facets for the complete cut cone. Research
memorandum rmi, Department of Mathematical Engineering, University
of Tokyo, Japan, 1988.

[9] R. Fortet. L’algbre de boole et ses applications en recherche oprationnelle.
Cahier du Centre d’Etudes de Recherche Oprationnelle, 1:5–36, 1959.

[10] R. Fortet. Application de l’algbre de boole en recherche oprationnelle.
Revue Franaise de Recherche Oprationnelle, 4:17–26, 1960.

[11] T. Fruhwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

[12] M. Garey and D. Johnson. Computers and Intractibility: A Guide to the
Theory of NP-Completeness. W.H. Freeman & Company, 1979.

[13] F. Glover. Improved linear integer programming formulations of nonlinear
integer problems. Management Science, 22(4):455–460, 1975.

[14] F. Glover, B. Alidaee, C. Rego, and G. Kochenberger. One-pass heuristics
for large scale unconstrained binary quadratic problems. Technical Report
HCES-09-00, Hearin Center for Enterprise Science, 2000.

[15] S. Gueye. Linarisation et relaxation lagrangienne pour problmes quadra-
tiques en variables binaires. Thse de doctorat, Universit d’Avignon, 2002.

40

https://www.researchgate.net/publication/220589237_A_Lift-and-Project_Cutting_Plane_Algorithm_for_Mixed_0-1_Programs?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/220589237_A_Lift-and-Project_Cutting_Plane_Algorithm_for_Mixed_0-1_Programs?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/220589237_A_Lift-and-Project_Cutting_Plane_Algorithm_for_Mixed_0-1_Programs?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/2661228_Heuristic_Algorithms_for_the_Unconstrained_Binary_Quadratic_Programming_Problem?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/2661228_Heuristic_Algorithms_for_the_Unconstrained_Binary_Quadratic_Programming_Problem?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/2661228_Heuristic_Algorithms_for_the_Unconstrained_Binary_Quadratic_Programming_Problem?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/222631598_Minimization_of_a_quadratic_pseudo-Boolean_function?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/222631598_Minimization_of_a_quadratic_pseudo-Boolean_function?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/222686598_Pseudo-Boolean_Optimization?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/222686598_Pseudo-Boolean_Optimization?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/2554867_Exact_Solution_of_the_Quadratic_Knapsack_Problem?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/2554867_Exact_Solution_of_the_Quadratic_Knapsack_Problem?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/223859733_A_linearization_method_for_mixed_0-1_polynomial_programs?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/223859733_A_linearization_method_for_mixed_0-1_polynomial_programs?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/226931183_L'algebre_de_Boole_et_ses_applications_en_recherche_operationnelle?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/226931183_L'algebre_de_Boole_et_ses_applications_en_recherche_operationnelle?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/220690319_Essentials_of_Constraint_Programming?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/220690319_Essentials_of_Constraint_Programming?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/227444379_Improved_Linear_Integer_Programming_Formulations_of_Nonlinear_Integer_Problems?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/227444379_Improved_Linear_Integer_Programming_Formulations_of_Nonlinear_Integer_Problems?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/222297154_One-pass_heuristics_for_large-scale_unconstrained_binary_quadratic_problems?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/222297154_One-pass_heuristics_for_large-scale_unconstrained_binary_quadratic_problems?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/222297154_One-pass_heuristics_for_large-scale_unconstrained_binary_quadratic_problems?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/44534100_Computers_and_intractibility_A_guide_to_the_theory_of_NP-_Completeness_Michael_R_Garey_David_S_Johnson?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==
https://www.researchgate.net/publication/44534100_Computers_and_intractibility_A_guide_to_the_theory_of_NP-_Completeness_Michael_R_Garey_David_S_Johnson?el=1_x_8&enrichId=rgreq-3be661d4-252b-4c7b-aa98-bab1df3f8999&enrichSource=Y292ZXJQYWdlOzI2NTE5OTI2NjtBUzoyMDAzOTI2MTM4NjM0MjRAMTQyNDc4ODczMDA2Mg==


[16] P. Hansen. Method of non-linear 0-1 programming. Annals of Discrete
Mathematics, 5:53–70, 1979.

[17] C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefi-
nite programs and cutting planes. Preprint sc-95-35, Konrad-ZuseZentrum
Berlin, 1995.

[18] C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefi-
nite programs and cutting planes. Mathematical Programming, 82(3):291–
315, 1998.

[19] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting plane
in integer and mixed integer programming. Technical Report CORE Dis-
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