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Application of the spectral element method to the solution
of the multichannel Schrédinger equation

Andrea Simoni, Alexandra Viel, and Jean-Michel Launay
Institut de Physique de Rennes, UMR 6251, CNRS and Université de Rennes 1, 35042 Rennes Cedex, France

(Received 7 February 2017; accepted 8 June 2017; published online 26 June 2017)

We apply the spectral element method to the determination of scattering and bound states of the
multichannel Schrodinger equation. In our approach, the reaction coordinate is discretized on a grid
of points whereas the internal coordinates are described by either purely diabatic or locally diabatic
(diabatic-by-sector) bases. Bound levels and scattering matrix elements are determined with spectral
accuracy using relatively small number of points. The scattering problem is cast as a linear sys-
tem solved using state-of-the-art sparse matrix non-iterative packages. Boundary conditions can be
imposed so as to compute a single column of the matrix solution. A comparison with log-derivative
propagators customarily used in molecular physics is performed. The same discretization scheme can
also be applied to bound levels that are computed using direct scalable sparse-matrix solvers. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4987026]

. INTRODUCTION

The solution of partial differential equations, ubiquitous
in all areas of physics, can be tackled by a variety of numerical
methods developed over the last decades. Solution algorithms
can essentially be divided into propagation and basis expan-
sion approaches. The former build the solution iteratively from
a known initial value up to the final propagation distance,
where suitable boundary conditions are imposed. Such meth-
ods are easy to implement and cheap in memory storage but
provide relatively low convergence rates as a function of the
step size. Large number of steps may therefore be needed,
such that accumulation of round-off errors can limit the accu-
racy, in particular, for complex systems. Due to its pivotal
role in quantum dynamics, the time-independent Schrédinger
equations have been granted particular attention in the
molecular physics community. Popular propagation algo-
rithms include the log-derivative propagator of Johnson,' later
improved by Manolopoulos,? and the renormalized Numerov
algorithm.?

In basis expansions, the solution is determined altogether
as a development over a basis, usually trigonometric or poly-
nomial, with suitable conditions imposed at the boundaries. A
main advantage is the exponential numerical convergence as a
function of the expansion order.* Grid-discretization methods
are particular basis expansions in which each basis function is
nonzero at a unique grid point. In global approaches, the whole
interval of interest is represented as a discrete grid of points.
Global grid techniques have been introduced in molecular
physics in the context of the so-called discrete variable rep-
resentation (DVR).> One drawback of global grids is the need
to introduce nonlinear coordinate transformations to efficiently
represent complex solutions varying on disparate length scales
such as ultracold processes.%’

Local approaches subdivide the interval of interest in
subintervals, often termed as elements. Basis functions local-
ized in subintervals are used to expand the solution. As
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compared to global approaches, since the resulting matrix is
sparse one can apply performant sparse linear algebra pack-
ages to carry out the operations needed in the specific prob-
lem. Moreover, at least in one-dimensional problems, the ele-
ment size can be tailored to the solution in a straightforward
way.

One widespread local approach is the finite element
method.® Being based on low order polynomial expansions,
such a method requires a large number of points to achieve
high accuracy. Use of high order polynomials as basis func-
tions in each element marked the birth of spectral element
approaches few decades ago.’ The spectral element method is
nowadays a well established tool in scientific and engineering
computations. %1

Use of this computational technique in molecular physics
has been pioneered for one-dimensional problems in Ref. 12.
More recently, a spectral element approach in two spatial
dimensions has been presented in Refs. 13 and 14, where
it was termed as finite-element DVR. Appropriate scatter-
ing boundary conditions were imposed using a spatial rota-
tion in the complex plane known as the exterior complex
scaling approach.!>!> A combination of the spectral element
and the slow variable representation'® has been proposed in
order to compute weakly bound states of triatomic systems
in the hyperspherical framework.!” Finally, the finite-element
DVR has been used as a time-independent representation
in multidimensional time-dependent calculations; see, e.g.,
Refs. 18-20.

The main aim of the present work is to explore the use-
fulness of the spectral element method in quantum dynamics
for time-independent multichannel problems. More particu-
larly, we point out that combining the spectral element method
with traditional molecular basis or diabatic-by-sector expan-
sions?! to treat the internal coordinates optimizes sparsity and
size of the discretized Hamiltonian. One major advantage is
that the wavefunction is obtained at no extra computational
cost. Moreover, the spectral nature of the method allows the

Published by AIP Publishing.
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accuracy of the solution to be estimated reliably in each region
of space. Subsequent step refinements lead to a grid tailored to
the interaction strength in various regions of space. We show
that the spectral element formulation lends itself to imposing
in a natural way different boundary conditions for scattering
and bound-state calculations.

The paper is organized as follows: Sec. II presents the
discretization scheme and introduces various boundary con-
ditions, Sec. III discusses numerical results on a realistic ro-
vibrational system, and Sec. IV summarizes and concludes this
work.

Il. HAMILTONIAN DISCRETIZATION

Fundamentals of the spectral-element approach can be
found in textbooks and articles.! =13 In order to set the notation
and illustrate the specific approach we follow to combine full
or locally diabatic expansions and the grid basis, we reproduce
in this section the main steps of the derivation from scratch.

We consider a generic time-independent multidimen-
sional problem and identify an “external” reaction coordinate
R describing the “size” of the system and a set of “internal”
variables denoted collectively as Q. For instance, in the two-
body problem, R typically represents the distance between the
particles and Q represents the orientation of the inter-particle
position vector. In three-body systems, R may represent the
hyperradius and Q may represent a set of hyperangles. Note
that in general QQ may comprise coordinates with physical
dimension of length, like in the case of our test atom-molecule
ro-vibrational problem described in detail in Sec. III.

The time-independent Schrodinger equation is schemati-
cally written as

1 9%

21 0K + VR, Q)| PR,Q) = E¥(R,Q) €))]
which is to be solved in the hyper-region Rpnin < R < Rpax-
Here V contains various potential energy terms and/or differen-
tial operators acting on the internal variables Q. The derivation
turns out to be formally simpler if, in the spirit of the slow
variable representation,16 R is discretized first and the internal
variables € at a second stage.

The radial interval is partitioned into M subintervals or
elements. We generate in each subinterval m a set of P,
Gauss-Lobatto points and weights (R(m), wp, ™, p=1,...,Py,
with R(m) and R(m) the subinterval endpoints.* Note that

since the endpomts of contiguous intervals are such that
R(m D= R(m) the number of distinct points in the complete

Py

gridis L = ZM (P — 1) + 1. The local points and weights
can be used to implement the Gauss-Lobatto quadrature

Ry Py
/ S@AR = ) up"f R, @)
1 p=1

an integration rule exact for polynomials up to degree 2P,,
— 3. Each point can be associated with a Gauss-Lobatto cardi-
nal or shape function defined such that Cl.('")(Rf,m)) = §;p at the
nodal points inside the element and continued as identically
zero outside the element, Cl.(m)(R) =0,ifR ¢ [Rgm), R;,',"n) ]. The

Cl.(m) functions can be obtained by linear mapping in terms
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of the corresponding cardinal functions c;(x) of the primitive
interval x € [—-1, 1],

C(R) = ;|2 ——— —1]. 3)

Explicitly, ¢; for N grid points can be expressed in terms of
the derivatives of the Legendre polynomial of order N — 1 as
follows:*

-(1-x%) dPy_1(x)
NN = DPy_1()(x —x;)  dx

where the Gauss-Lobatto points x; in the primitive interval
comprise the endpoints +1 and the (N — 2) zeros of the W
polynomial.

The Gauss- Lobatto cardinal functions associated with the
internal point: — 1 vanish at the element end-
points R = R, and followmg Ref. 11 will be referred
to as mternal functlons We also conventionally consider
as internal the cardinal functions relative to the first R(ll) and

“

ci(x) =

last R%) grid points. For each internal point, that is, for
m=2,....M—1andi = 2,...,P, — 1 as well as for (i,
m) = (1, 1) and (i, m) = (Py, M), we will simply take as basis
functions the cardinal functions

C"(R) = C™(R). (5)

The construction of the basis functions associated with the
remaining (M — 1) inter-element points R;,mtll) = Rﬁm) with
m = 2,...,M is obtained by “glueing” cardinal functions.'!
These interface or bridge functions are defined by

;)m ll)(R) Re [R(m 1) R(m 1)]

/" (R) = (©)
1 (m) (m) p(m)
C/"(R)., Re[R".Rp’],
form = 2,..., M. Note that contiguous subintervals are only

connected through such interface functions.

In order to build a global representation of the Hamilto-
nian, we now introduce a single index a = 1,...,L running
over the L distinct points of the full grid and note R, such
distinct grid points. We define global weights

(wf,,m by im)) , if R, is inter-element,
_ m—1
Wq = @)

wl(,m), otherwise.

Similarly, we build a global grid basis comprising internal and
interface functions

C(lm), if R, is inter-element,
CaR) = (8)

Cf,m), otherwise.

Equations (5) and (8) guarantee that the orthogonality relation,

R
/ Co(R)Co(R)AR = Opawa, )

Ry

holds with at least Gaussian quadrature accuracy; see Eq. (2).
For each value of the internal coordinates €, we now
develop the system wavefunction on the radial basis

L
YR, Q) = )| DQCa(R), (10)

a=1
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the coefficients being equal to the wavefunction evaluated at
the grid points @,(Q) = Y(R,, Q). The Schrodinger equation is
now projected on the basis functions C,. The second derivative
arising from the radial kinetic energy term gives rise to an
integral in R that is further developed as a sum of integrals
restricted to each element,

2 Ry 2
C(,(R)a RO o Z C (R)a ‘P(R Q) .

OR?
B i ) / R 3C(R) OV(R, Q) R
S A\ Jgm OR OR
OW(R, ) 1R
Cu(R) T .1

where one integration by parts has been performed for the
second equality. Noticing that for two consecutive elements
one has

(m) (m+1)
a\P(R m ) — Ca(R(hHl)) ( Q)

OR ! OR ’
Equation (11) reduces to

Ca(RY") (12)

82‘I’(R Q) Ry, ac (R) O¥(R, Q)
A c (R)———-—=dR = Z /R N —n IR
AY(RL, Q)
+Ca(RL)T
AY(R,,Q
-tk L (13)

The boundary terms’ cancellation of Eq. (12) holds for the
exact solution but is only approximately valid when the solu-
tion is computed as an expansion on a finite basis. In other
terms, the numerical solution in general will have a discon-
tinuous derivative at the element interfaces. In spite of such
discontinuity, it can be proved that the numerical error tends
to zero exponentially with the number of basis functions when
expressed in the energy norm, which measures the error both
in the function value and derivative; see, e.g., Ref. 11. Note
that convergence in the energy norm does not imply uniform
or even point-wise convergence. However, although we are not
aware of a formal proof, in our tests performed in Sec. III, we
numerically find that the discontinuity in the derivative tends
to zero exponentially not affecting the fast convergence rate in
the quantities of interest.

Using the decomposition Eq. (10) for the evaluation of
0Y(R,Q)/OR, one gets a term involving the matrix

B " dCy(R) dCy(R)
Tab —Z/m o dR (14)

formally recast as

R dCa(R) dch(R)
Tt = /Rl k. ar "

Using the definitions Eqgs. (5) and (6), the linear mapping in
Eq. (3), and approximating the integrals on the rhs by the
quadrature of Eq. (2), the kinetic matrix can be expressed
in terms of analytically known Gauss-Lobatto derivation
matrices Cj’ (x;); see, e.g., Ref. 4.

15)
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A closer look at Eq. (14) keeping into account the local
character of the C,(R) functions shows that most elements of
T are zero. More specifically, 7, = 0 if C, and Cp, are both
internal functions and do not belong to the same element. If C,,
is an interface function, thus at the interface of two elements
mand m + 1, Ty, = 0 if b does not belong to any of the two
m and m + 1 elements, while 7, # 0 if Cp, is an internal or an
interface function of element m or m + 1. In addition, 7T, # 0if
both a and b belong to the same element. The potential energy
is approximately diagonal in the grid basis with diagonal ele-
ments w,V(R,, Q) if quadrature Eq. (2) is used. Collecting all
the terms, the matrix form of the Schrodinger equation finally
reads

L
D T ®y(Q) + 04 V(R Q) ~ E] 04()
b=1

= 01a0rYIr=r;, — 01a0RY |R=R, - (16)

We now introduce an internal coordinate basis ¢, (€2)
whose nature or dimension is not needed for the moment to be
specified. We write therefore

N@
Do(Q) = ) Fuad (), a7
a=1
where the superscript (a) stresses the possible dependence of
the basis on the grid point. Insertion of Eq. (17) in Eq. (16)
leads to the algebraic equation,

N@

L N©
2
Z Z a(t,bﬁ Fip + _l; Z Wq [uaﬁ(Ra) - Eéaﬁ] Fap
h
b=1 B=1 B=1
= 6La§a/L _61446&1’ (18)
where Ouo 8 = (qﬁ(a) | ¢(b)) is the overlap matrix element over

the Q coordinates and Uaﬁ(Ra) = (O Q)|V(R,, Q)|®g‘)(g)>.
The quantities £,, with @ = 1, L are the normal derivatives of
the wavefunction at the integration boundaries in channel «,
ie.,

baa = (90 10R Y IR=, )2 (19)

Equation (18), supplemented by the proper boundary con-
ditions in Secs. II A and II B, represents the key formal result
of the paper. In order to maximize sparsity, one requires that
the basis ¢£f) does not depend on the grid point a. This is, for
example, the case when using spherical or hyperspherical har-
monics, or ro-vibrational molecular states. In this case, the O
matrix reduces to the identity matrix.

A pictorial representation of the resulting Hamiltonian
matrix is given in Fig. 1 where each small block corresponds
to fixed grid indices and varying channel indices. Similar
matrix structure representations can be found elsewhere in the
literature, for instance, in Refs. 15 and 20. For this exam-
ple, three subintervals M = 3 are considered; the number of
Gauss-Lobatto points and the number of basis for the inter-
nal coordinates are identical for the three subelements and are
fixed to P,, =4 and N® = 5 channels. The non-zero elements
arising from the kinetic part are depicted in gray while the ones
resulting from the potential are in blue. For the illustrative case
presented, 340 over the 50 X 50 matrix elements are non-zero,
which amounts to a filling factor of 13.6%.
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FIG. 1. Structure of the discretized matrix for 3 elements, 4 Lobatto points,
and 5 channels per element. Each full block along the main diagonal (blue)
contains the 25 channel matrix elements 74, 6ap + i—’; wy [Z/{(,ﬁ (Ry)—E 605]
for @, = 1,...,5 on the lhs of the equation system Eq. (18). Each off-
diagonal diagonal block (gray) only arises from kinetic energy coupling and
contains matrix elements 7,,643. The two 5 X 5 matrix blocks in darker
color contained in the main diagonal indicate inter-element points connecting
contiguous elements (see text).

Restoring some flexibility in the choice of the basis used
for the Q part but still leaving quite a large sparsity in the
full Hamiltonian matrix can also be obtained by imposing
that the basis does not vary within each element. This means
that the dependence of ¢ff) on (a) is replaced by an ensem-
ble of basis functions in which the same basis is used for all
points within the same element m with the exception of the
inter-element points for which alternative basis functions may
be used. One such example would be the set of eigenvectors
obtained through diagonalization of the reduced Hamiltonian
V(R,,Q) at a fixed point R, inside the element (diabatic-
by-sector method?!). The diabatic-by-sector approach trades
loss of some sparsity with a (possible) reduction in the basis
size.

As an example, the matrix structure for a more flexible
basis choice is depicted in Fig. 2 in which different numbers of
Lobatto points are used P =4, P, =5, and P3 = 7. In addition,
the first element contains 5 basis functions, whereas the other
two contain 4 alternative basis functions. The basis associated
with the first inter-element point is taken to be identical to the
5 basis functions of the first element. The modification of the
basis between elements 1 and 2 induces additional non-zero
elements (pink in the figure) due to basis overlaps.

In the extreme case where the Hamiltonian is diagonal-
ized at each point, one retrieves the slow-variable formulation
proposed for hyperspherical bound states in Ref. 17. Such
a fully adiabatic procedure does optimize the basis size but
results in full overlap matrices at all off-diagonal grid ele-
ments, putting severe memory constraints on the size of
treatable systems.

Realistic calculations usually require a large number of
elements and points to be converged. Therefore, in the locally
diabatic formulation, the empty part of the matrix becomes
large and the filling factor decreases significantly. More

J. Chem. Phys. 146, 244106 (2017)

o
o

FIG. 2. Same as in Fig. 1 with 3 elements but now varying number of Lobatto
points in each element (4, 5, and 6, respectively) and different channel bases
in elements 1 and 2. The overlap matrix in Eq. (18) is now a full matrix giving
rise to the full off-diagonal blocks (pink) containing elements 7., O b3

quantitatively, let us consider a potential represented by a
full matrix with N channels. For a partition composed of M
elements with P points per element, the number of nonzero
elements is N(N + 1) [M(P — 1)+ 1] /2 + P(P — 1)MN /2 that
reduces to ~LN [N + P + 1] /2 for M, P > 1. Note that due to
matrix symmetry only elements above (or below) the main
diagonal have been taken into account. The total number
of elements (now both above and below the main diagonal)
is N2 [M(P - 1) + 11> ~ (NLP)?, resulting in a filling factor
~(N + P + 1)/(2NLP?) that may easily drop below 1%. We
remark that this worst case scenario of a full potential matrix
seldom happens in molecular physics due to the tensor nature
of at least part of the interaction and to the accompanying
selection rules.

Depending on the problem, purely diabatic and diabatic-
by-sector representation can also be conveniently combined.
For instance, in Ref. 22 the present algorithm was used to join
a purely diabatic spherical harmonics basis at a short range
with a diabatic-by-sector representation at a long range to treat
the difficult problem of ultracold collisions between two polar
molecules in an optical tube.

A. Bound states

Bound states W of the system with energy E,, are calcu-
lated imposing that the solution of the Schrddinger equation
vanishes at the boundaries R; and R; of the radial inter-
val. Accordingly, for a = 1 and L, the expansion coefficients
F ,(;3 = 0, and all elements of the discretized Hamiltonian with
gridindices a, b=1, L in the system of Eq. (18) can be dropped.

The resulting equations for the multichannel bound-state
solution at the remaining L — 2 points present themselves in
the form of a generalized eigenvalue problem

L-1 N® 2 N@
u
Eboaa,bﬁFZg + ﬁ Z wauaﬁ(Ra)F;’/?
b=2 p=1 B=1
= Eyw FY, a=2,...,L-1. (20)
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The w, factor on the rhs can be removed by redefining as new
unknown \/aTaFff('l) and by right multiplication by the diag-
onal matrix with element 1/4/w,. In this way, the problem
is expressed as an ordinary eigenvalue problem. Finally note
that, if needed, Eq. (18) with left grid index a = 1 and L can
be used to compute the normal derivative components 533 as
a function ofFlg"a) withb=2,...,L—1.

B. Scattering states

In the case of scattering solutions, a number N of lin-
early independent solutions with energy E can be built from
Eq. (18). We consider for definiteness the most common case
where at the left end point R; the wavefunction vanishes. As in
the bound-state problem, this implies that all lines and columns
in the system of Eq. (18) with grid index a = 1 can be dropped.
At the other edge of the grid, we discuss below two approaches
to obtain the physical wavefunction and thus the relevant scat-
tering observables. The first one requires us to compute a
matrix comprising all linearly independent solutions of the
discretized Schrodinger equation, and the second one can be
used to determine a single column-vector solution.

1. R-matrix boundary conditions

The so-called R-matrix solutions P are defined by the
condition that their normal derivative vanishes on the surface
R = Ry in all but channel y, where it is unity. Therefore, such
N®) independent R-matrix solutions with energy E can be
determined by imposing &, = 6y and solving the linear
system

L N® N@
Z b aa,bB F(y) Z O-)a aﬁ(R ) — E(Saﬁ] F(Y)
b=2 p=1

=0rlay, a=2,... ,L. 2n

The R-matrix R is simply defined as the matrix with elements
Rop = FP)
af La*

Solutions with physical boundary conditions can be writ-

ten for R > Ry, as a superposition of solutions of the asymp-

totic Hamiltonian, comprising angular channel eigenfunc-

tions CDE,LH), and of reference regular f and irregular g radial
functions,
N
YOR,Q) = " [falR)ar — Bal®Ker | 95 (Q). (22)
a=1

The channel eigenfunctions are R-independent and the super-
script (L + 1) is merely introduced as an additional artificial
grid point for ease of notation in subsequent formal manip-
ulations. A solution W) corresponds to a wave incoming in
channel 7 with scattered waves in all channels @, with ampli-
tudes K. If f and g are real standing waves, the coefficients
K,; form the reaction matrix K.

The solutions W) and its normal derivative can be
expressed on the surface R = Ry as linear combinations of
the R-matrix solutions ¥ with constant coefficients N,;,

N©D
YORL, Q) = > FORL, QN (23)
y=1

J. Chem. Phys. 146, 244106 (2017)

and
ND

ORPORL, Q) = > 9PV (R, QN (24)
y=1
Following the standard asymptotic matching procedure,!
Eq. (22) is inserted on the lhs of Egs. (23) and (24) and the
latter are projected on the angular basis ®V ® (Q). The resulting
linear system can be easily solved for K in terms of R,

K= (z-Rg)" (f-Rf). (25)
Here, matrices f and f are, respectively, defined as

fop = fa(RLOLa 1+1)5 fap =fi(RL)OLa sy (26)

as a function of the overlap between the asymptotic channels
and the angular basis at the last grid point. A similar definition
holds for g and g’.

2. Scattering boundary conditions

Rather than going through the determination of N'©)
independent R-matrix solutions, scattering boundary condi-
tions can also be incorporated directly in the linear system of
Eq. (18). To this aim, we first impose that at the last grid point
a = L, the wavefunction takes form (22),

Fg; = Z [faﬁéﬁl - gaﬁKﬁl] . 27
B

Similarly, the normal derivative channel components on the
rhs of Eq. (18) becomes

& = Z [f(;ﬁéﬁl - g(/y’gKﬁI] . (28)
B
For notational ease, we define the matrix on the lhs of
Eq. (18) as
2u
0 [Uap(Ra) = Ebap) 6ap. (29)

Maa/,bﬁ 7:1b Oaaf bB +

As it will be clear from Eq. (30), in order to obtain a
symmetric linear system, it is necessary to introduce the new
unknown X = gK in place of K. We also define the log-
derivative ratio Y& = g’g”!, such that the quantity g’K on
the rhs of Eq. (28) becomes g'K = Y5X.

With these definitions, the simple matrix algebra allows

one to cast system (18) into the form

L-1 N® N©D
Z Z Mya bﬁF(I) + Z aa LBt 6La ] Xg)
b=2 B=1
ND
== > Maasplpr + S1af})- (30)
B=1

As a final step, the K-matrix can be computed from the
definition of X by solving the linear system gK =X. It is impor-
tant to notice that for a given incoming wave labeled by index
I, one can determine a single column of the matrix solution X
and thus of K. If one uses complex algebra and replaces f,, and

b : =) +) : i
gaq by traveling waves h,,’ and h,’, the asymptotic condition
(22) becomes

ND
YOR,Q) = " [1 R)Sar = Y (R)Sar| @54 (@), (31)

a=1



244106-6 Simoni, Viel, and Launay

with S the scattering matrix, whose elements are directly
related to observables. The procedure to determine K pre-
sented in this section applies to the determination of S, leading
to the equivalent of Eq. (30) with f and g replaced by h™) and
h®, respectively, and Y¢ by Y = h®’[h®]”". Determin-
ing a single column of interest of the scattering matrix may
lead to computational advantages, in particular, in problems
with a large number of open channels.

C. Spectral log-derivative propagation

In spite of the sparse character of the discretized Hamil-
tonian, memory can become a limiting factor for systems
described by a large number of collision channels. In this case,
it may be necessary to split the full propagation interval in
smaller intervals, each comprising, for instance, only one ele-
ment. The scattering equation is solved in any given element
to determine at each point a matrix of linearly independent
solutions F, with elements F’ E,’a) labeled by column index I and
channel index a@. Such solutions will be combined to form the
log-derivative matrix Y, = F/F, .

Our main equation (18) specialized to an element with
P,, points can now be rearranged as an algorithm expressing
the value of Yp,, on the right-end of the element to a known
input value Y, assigned on the left-end point. This task can
be accomplished by right multiplications by F;,:I to give after
simple algebra

Pu—1N®

Z Z [Maa,bﬁ + 6laY1,aﬁ] Fh,ﬁy = _M(l(l,Pm’y9 (32)
b=1 p=1

a=1,...,(P,—1).

With FaEFaF;IL determined at first (P,, — 1) points, the
remaining equation at the last point

Pu—1 N®

Yp,ay = Z ZMPma,bﬁFb,ﬁy +Mp,ap,y  (33)
b=1 =1

determines the final log-derivative through a series of sparse
matrix multiplications. The log-derivative Yp,, can then be
used as an entry for the calculation in the next element.

D. Error control

A major advantage of the spectral element method is the
possibility to estimate precisely the numerical error by a pos-
teriori analysis of the calculated solution. To this aim, let us
consider the solution wavefunction restricted to the mth sector
and suppose for the sake of simplicity that the angular basis
of dimension N,, is constant within the sector. The discretized
solution at the P,, points in the sector for the different channels
is therefore represented by P,, X N, elements noted as Fq.

The error is estimated by first performing an orthogonal
transformation from the grid basis to the polynomial basis of
Legendre polynomials P,(R) defined in the [R(lm), RE,":] inter-
val through a coordinate transformation in the same fashion as
in Eq. (3). Assuming the polynomials normalized, the trans-

formation matrix reads explicitly O,, = Pn(Rp)/ wl(,m). For

each channel «, the transformation O gives the set of pseu-
dospectral coefficients F), of the solution expanded on the
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Legendre basis as Fro = anl OnpFpe. The main point is that
the convergence of the Legendre polynomial series is superal-
gebraic, at least for sufficiently regular solutions.* The size of
last calculated coefficients Fp,  is therefore a reliable estimate
of the remainder of the series, i.e., of the numerical truncation
error in each channel. If the error is larger (smaller) than a
given tolerance criterion, one can either reduce (increase) the
element size or increase (reduce) the polynomial order P,,.
As recognized at the birth of the so-called Ap-methods, the
optimal strategy to guarantee an exponential accuracy of the
calculated solution consists in increasing P,, in the regions
where the latter is regular and in decreasing the element size
in the regions where it is irregular.”3

We will show in Sec. III a series of numerical experi-
ments for both scattering and bound state calculations. We
limit ourselves to a relatively simple ro-vibrational model with
a purely diabatic basis in order to make the numerical con-
vergence analysis as plane as possible. Since as most usual
in molecular physics the solution is regular, we fix the same
polynomial order in all elements and study the behavior of
selected observables as a function of both the element size and
polynomial order.

lll. NUMERICAL TESTS

We perform numerical tests of efficiency and accuracy of
the algorithm on the Rb,He trimer, a system for which bound
states and ultra-cold scattering properties have already been
studied in our group.’*?>

For the description of RbyHe, the R and 7 Jacobi vectors
are used. The corresponding Hamiltonian in the space fixed
frame reads”®

s K2 (1 92 R) K2 (1 92 )
—_ e — — — _— __r
2URb,~ He \R OR? 2Ry, \r r?

L? 2 .
LA, v (34)
2 prp, 12

+
2 URb,-HeR?

where R and r are the Rb,—He and Rb, distances, prp,-ne and
URb, are the associated reduced masses, L andf are the angular
momenta, and V is the potential term taken from Ref. 25 lim-
ited to the 2-body part. The generic Q coordinates introduced
in Sec. II correspond for this system to five spatial coordi-
nates, namely, r, 7, and R that reduce to three when fixing
the total angular momentum quantum numbers J and M. The
basis functions used to represent ®,(Q2) in Eq. (17) are taken
identical for all sectors. Equation (17) reads for this specific
case |

Pu(Q) = ) vasje—xof(Y! (7.R) (35)

vjl

where y,;(r) are the rovibrational eigenstates of the Rb,
diatomic and Yﬁ,M are the coupled spherical harmonics.”

A. Scattering states

For the calculations, we vary R from 4 to 120 ap, we
use Rby(v =1,j=0) as the initial state for the collision, and
we impose R-matrix boundary conditions. The linear system
Eq. (21) is solved using the PARDISO package®’-?® included
in the MKL.?? This state-of-the art direct solver determines
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the solution of a sparse linear system in (number of nonzero
elernents)3/2 operations. In our tests, we find that the total
memory used by PARDISO is about five times larger than
the memory required to store the nonzero elements of the
discretized Hamiltonian. The K-matrix, extracted from the
matching procedure in Eq. (25) performed at R = 120 ay, is
diagonalized to compute the eigenphase sum

Nop

5= Z arctan(1;), (36)
=1

with 77; being the n,, eigenvalues of the open-open part of the
K-matrix. Note that while the eigenphase sum is a function
of collision energy and depends on the partial wave J consid-
ered, the corresponding indices have been dropped for ease of
notation.

For the accuracy tests, we used a collisional energy of 1 K
above the v =1, j = 0 initial state and focused on the J =1
partial wave. Basis functions with up to v =4, j = 24 quantum
numbers are included, resulting in 125 channels, 32 of which
are energetically open at the considered collision energy. A
fixed Lobatto order P is used for all M elements used for the
discretization of the [Ry, R;] = [4, 120] (in ag) interval. All
elements are taken of the same length, noted % hereafter, with

h=(R; - R)/M. (37)

Figure 3 presents the variation of ¢ as a function of 4 in
the log-log scale, when £ is systematically divided by two.
Assuming a dependence of ¢ of the form

6 =60+ Ch?, (38)

the power « is directly accessible by the slope of the variation
of the quantity Aé = 6(h) — 6(h/2) as a function of 4 in the
log-log scale, even when the exact value of &y is unknown.
A comparison with the resolution of the coupled equations
performed by the Johnson log-derivative propagator! is also
presented in the figure. The results for the Lobatto order
P =3 case are strictly identical to the ones obtained with the

T T 3
3

Johnson

log; (AS)

-3 -2.5 -2 -1.5 -1 -0.5 0
log; (h)

FIG. 3. Error as a function of element size for Johnson (star) and various
Lobatto orders (P = 3 to 7). Relevant lines are also indicated.
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Johnson propagator method. One can indeed show formally
that the solution of Eq. (32) with two Lobatto points followed
by the application of (33) gives exactly the same result as the
three-point Johnson recursion. However, the two algorithms
should not be viewed as equivalent, in the sense that the first
half propagation step in Johnson’s method is not equivalent to
solving our Eq. (32) for two points. For these cases, the known
a = 4 value can be read from the linear curves in the figure. For
log;((h) < —2.2, the accuracy on ¢ can no longer be improved
by a reduction of & when using the Johnson propagator. For
the P = 3 Lobatto case, the memory requirement prohibits the
computation at such small /. For the P = 4 to P =7 Lobatto
orders, a slope @ = 2P — 2 is obtained. When increasing P,
lower values of the absolute error are obtained for specific val-
ues of 4. For example, a 107'° accuracy is reached for P = 7
and i ~ 0.4 ap. We stress that § is a very sensitive quantity
and such an absolute error value on ¢ corresponds to the usu-
ally observed accuracy on rate coefficients calculations, much
easier to converge.

An analysis of the central processing unit (CPU) time
needed for given accuracies is presented in Table I. The table
presents as a function of the Lobatto order P the CPU in
seconds needed to reach a given accuracy of log;o(Ad). The
corresponding / are also listed in the table. For these calcula-
tions, we increase J to 10 for which the number of channels
increases to 565 channels with 129 of them energetically open.
The CPU given in the table corresponds to the resolution of
the equations for one value of the collisional energy after an
initialization step which is energy independent and thus to be
performed only once if multiple collision energies are con-
sidered. The table shows that for a given accuracy, one gains
in increasing the Lobatto order at least to the tested orders.
The comparison of the CPU time needed by the Johnson' log-
derivative propagator is clearly in favor of this last approach
when low accuracy is required. However, the situation changes
when high accuracy is needed. In the present test, a P =7 com-
putation is always more efficient than the Johnson version even
for a single collision energy. When using the Gauss-Lobatto
discretization, the CPU time requirement of the collisional
energy dependent step is closely related to the number of
integration points L as underlined in Fig. 4. A roughly lin-
ear dependence of the CPU time as a function of the number
of integration points is found for the Lobatto orders we tested.
At a given number of integration points, the general trend is

TABLE I. CPU (in seconds) for various P and & combinations corresponding
to two given values of the error on ¢ extracted from Fig. 3. The columns E .,
ind. and E,; dep. correspond to the CPU time of steps to be done once per
collisional energy (E,; ind.) and at each collision energy (E.,; dep.).

logg(AS) = -2 logg(AS) = -6

Type h E.o ind.  E, dep. h E.oind.  E, dep.
P=3 0.10 368 2267

P=4 0.38 140 795

P=5 0.77 95 492 0.24 282 1556
P=6 1.23 73 373 0.49 180 814
P=17 1.81 59 339 0.80 141 778
Johnson  0.10 354 80 0.01 3422 786
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FIG. 4. CPU time in seconds for the energy-dependent part of the algorithm as
a function of number of integration points L for a selection of Lobatto orders,
P and M elements. The data concern the J = 8 partial wave computations.

an increase of the CPU time with the Lobatto order. Some
exceptions are found like the P = 6 case presented in Fig. 4
which turns out to be the cheapest calculation with respect to
the CPU time for all numbers of integration points from 300 to
1000. We infer that this is due to particularities in the sparse-
ness structure of the matrices handled by PARDISO. Similar
but less marked exceptions have been found for the J = 10 and
J = 14 partial wave computations.

B. Bound states

With the appropriate boundary conditions builtin Eq. (20),
bound states of the triatomic RbrHe can be determined
using the same discretized Hamiltonian. We solve the sparse
eigenvalue problem Eq. (20) using the density-matrix-based
algorithm FEAST, a package included in MKL based on
a contour representation of the resolvent in the complex
plane.’® Internally, FEAST solves a series of sparse linear
systems using a user-defined subroutine, PARDISO in our
case.

_3 C T T T M T T D/Y o
K @ ©
4+ - o /Ef i
L
5 . /L:r 4
}%g(\*/ @Q@ /7
K %} -
- %% 4 o )
E\j OO a] //D a]
2 gt 2 /o 1
E & o /B
2 0,9 o
8| % o |
/O
; P=3 X
9+ 6@ © B P=4 O i
O% B . P=5 O
o 7 ) n
10 b5 N pS e 1
. A% PR
_11 i 1 /ﬁ 1 1 1 1 1 1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
log( (h)

FIG. 5. Error as a function of element size for various Lobatto orders (P = 3,
4, and 5) together with relevant power lines in the log-log scale.
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We focus on the J = 2 partial wave of total parity I = — for
which a single bound state is found. This state is weakly bound
with respect to the Rb, + He asymptote, and an enlarged R box
with R € [4,236] ag is used. The converged energy is —12.63
mK below the Rb, + He asymptote. Figure 5 presents the
evolution of the relative error on the computed energy when
increasing by two the element size % for various Lobatto orders
P in the log-log scale. For the lowest P orders presented,
the h2P~2 behavior is retrieved. For P = 5, numerical noise
increases when reducing A. This is partly due to the FEAST
algorithm which implies an iterative procedure with two kinds
of internal convergence criteria. One criterion tests the evolu-
tion of the energies from one iteration to the next one, and the
second one is a maximum number of iterations. The data pre-
sented have been obtained with a 10~'# value and 50 iterations
maximum for these two FEAST parameters.

IV. CONCLUSIONS

In summary, we have explored the numerical performance
of the spectral-element method in multichannel quantum
dynamics. Combination of the spectral-element discretization
with purely diabatic or diabatic-by-sector bases leads to a
highly sparse representation of the Hamiltonian. This results in
significant memory saving for the bound state problem as com-
pared, for instance, to the scaled DVR approach.®’ Regarding
the scattering problem, accuracy is significantly less limited by
round-off errors in the spectral element approach than in pop-
ular propagation methods, and the corresponding computation
time is advantageous when the required accuracy is high.

In perspective, it may be interesting to test iterative rather
than direct algorithms to solve the scattering linear system
for the discretized Schrodinger equation, in particular, when
boundary conditions of Eq. (30) are imposed to obtain a sin-
gle column of the scattering matrix. In this case, if iterative
solvers turned out to perform better than (number of nonzero
elements)*2, one might be able to overcome the (number of
channel)? unfavorable computational cost scaling presented by
time-independent calculations as compared to time-dependent
calculations.
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