Radiation from Ag high energy density Z-pinch plasmas and applications to lasing
Résumé
Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have been shown to create L-shell plasmas that have the highest electron temperature (>1.8 keV) observed on the Zebra generator so far and upwards of 30 kJ of energy output. In this paper, results of single planar wire arrays and double planar wire arrays of Ag and mixed Ag and Al that were tested on the UNR Zebra generator are presented and compared. To further understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was designed and fielded, which has a spectral range of approximately 3.55.0 Å. With this, L-shell Ag as well as cold Lα and Lβ Ag lines was captured and analyzed along with photoconducting diode (PCD) signals (>0.8 keV). Along with PCD signals, other signals, such as filtered XRD (>0.2 keV) and Si-diodes (SiD) (>9 keV), are analyzed covering a broad range of energies from a few eV to greater than 53 keV. The observation and analysis of cold Lα and Lβ lines show possible correlations with electron beams and SiD signals. Recently, an interesting issue regarding these Ag plasmas is whether lasing occurs in the Ne-like soft x-ray range, and if so, at what gains? To help answer this question, a non-local thermodynamic equilibrium (LTE) kinetic model was utilized to calculate theoretical lasing gains. It is shown that the Ag L-shell plasma conditions produced on the Zebra generator at 1.7 maximum current may be adequate to produce gains as high as 6 cm−1 for various 3p → 3s transitions. Other potential lasing transitions, including higher Rydberg states, are also included in detail. The overall importance of Ag wire arrays and plasmas is discussed.